Draft Second Five-Year Review Report for Load Lines 1 – 4 Load Line 12 Winklepeck Burning Grounds Ramsdell Quarry Landfill Camp Ravenna Joint Military Training Center

Portage and Trumbull Counties, Ohio

March 21, 2017

Prepared for:

Army National Guard Directorate Camp Ravenna Joint Military Training Center U.S. Army Environmental Command

Prepared by:

US Army Corps of Engineers®

U.S. Army Corps of Engineers

Buffalo District

1776 Niagara Street Buffalo, New York 14207

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188			
The public reporting burden for this c gathering and maintaining the data nee information, including suggestions for 1215 Jefferson Davis Highway, Suite penalty for failing to comply with a coll PLEASE DO NOT RETURN YC	ded, and completing ar reducing the burden, t 1204, Arlington, VA ection of information if	d reviewing the collection of info o Department of Defense, Washin 22202-4302. Respondents shou it does not display a currently va	per response, incl mation. Send com ogton Headquarters d be aware that no id OMB control nur	uding the tin ments regard Services, Di otwithstandin nber.	me for reviewing instructions, searching existing data sour ding this burden estimate or any other aspect of this collectio birectorate for Information Operations and Reports (0704-01 ng any other provision of law, no person shall be subject to	ces, n of 88), any
1. REPORT DATE (DD-MM-Y		ORT TYPE			3. DATES COVERED (From - To)	
21-03-2017		Draft			May 2016 - August 2017	
4. TITLE AND SUBTITLE				5a. COM	NTRACT NUMBER	
Draft Five-Year Review Re	port for Load L	ines 1 - 4, Load Line 12	2,		N/A	
Winklepeck Burning Grou				5h GB/	ANT NUMBER	
Military Training Center Po	ortage and Trum	ball Counties, Ohio		ob. dir	N/A	
				5c. PRO	OGRAM ELEMENT NUMBER	
					N/A	
6. AUTHOR(S)				5d. PRO	OJECT NUMBER	
Barker, Michelle, C					N/A	
Keil, Karen, G						
Stachowski, James, R				5e. TAS	SK NUMBER	
					N/A	
				5f. WO	RK UNIT NUMBER	
					N/A	
7. PERFORMING ORGANIZA		ND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER	
US Army Corps of Engine	ers - Buffalo				N/A	
1776 Niagara Street					11/74	
Buffalo, New York 14207						
9. SPONSORING/MONITORI					10. SPONSOR/MONITOR'S ACRONYM(S)	
National Guard Bureau 111 S. George Mason Dr.		US Army Environment			NGB	
111 S. George Mason Dr.2450 Connell Rd., Building 2264Arlington, VA 22204Fort Sam Houston, TX 78234				11. SPONSOR/MONITOR'S REPORT		
			70234		NUMBER(S)	
					N/A	
12. DISTRIBUTION/AVAILAB	LITY STATEMEN	т				
Public						
13. SUPPLEMENTARY NOTE	5					
None						
14. ABSTRACT						
Second five-year review re	port of remedial	actions at Camp Raver	nna sites RVA	AP-01 (I	Ramsdell Quarry Landfill), RVAAP-05,	
					VAAP-10 (Load line 3), RVAAP-08 (Loa	d
			The report su	ummarize	es issues identified during the review and	
includes recommendations	and follow-up a	ctions for them.				
15. SUBJECT TERMS						
Five-Year Review, Load L	ines 1, 2, 3, 4, a	nd 12, Winklepeck Bur	ning Grounds	, and Rar	msdell Quarry Landfill	
		17. LIMITATION OF	18. NUMBER	10- 10-		
16. SECURITY CLASSIFICAT a. REPORT b. ABSTRAC		ABSTRACT	OF		ME OF RESPONSIBLE PERSON R Stachowski, PE	
a. neruni D. Addikau			PAGES			
UC UC	UC	SAR	382	ISD. IEL	LEPHONE NUMBER (Include area code) (716) 879-4252	
					Reset Standard Form 298 (Rev. 8/9 Prescribed by ANSI Std. 239.18) 8)

PLACEHOLDER PAGE FOR:

Documentation of Ohio EPA Approval of Final Document

(Documentation to be provided once approval is issued)

	Draft	
	Second Five-Year Rev	view Report
	for	
	Load Lines 1	- 4
	Load Line	12
	Winklepeck Burning	g Grounds
	Ramsdell Quarry	Landfill
Cam	p Ravenna Joint Militai	ry Training Center
]	Portage and Trumbull (Counties, Ohio
	March 21, 20	017
	Prepared for	r:
	Army National Guard	Directorate
Ca	mp Ravenna Joint Militar	y Training Center
	U.S. Army Environment	tal Command
Approved by:		Date:
Brian Crock		
MJR, Ohio Army N Garrison Command		

DOCUMENT DISTRIBUTION

Draft Second Five-Year Review Report for Load Lines 1-4, Load Line 12, Winklepeck Burning Grounds, Ramsdell Quarry Landfill, Camp Ravenna Joint Military Training Center

Name/Organization	Number of Printed Copies	Number of Electronic Copies
Mark Leeper, ARNG-ILE-IED	0	1
Kevin Sedlak, ARNG – Camp Ravenna	0	1
Katie Tait, OHARNG – Camp Ravenna	1	0
Megan Oravec, Project Manager, Ohio EPA - NEDO	1	3
Bob Princic, Ohio EPA - NEDO	0	Email/Transmittal letter
Rod Beals, Ohio EPA - CO	0	Email/Transmittal letter
Tom Schneider, Ohio EPA – CO	0	Email/Transmittal letter
Craig Coombs, USACE – Louisville District	0	Email/Transmittal letter
USACE – Buffalo District	0	1
Gail Harris, AR Manager – Camp Ravenna	2	2

AR = Administrative Record

ARNG - Camp Ravenna = Army National Guard – Camp Ravenna Joint Military Training

ARNG-IED = Army National Guard – Installation Environmental Division

OHARNG - Camp Ravenna = Ohio Army National Guard - Camp Ravenna Joint Military Training Center

Ohio EPA – CO = Ohio Environmental Protection Agency – Central Office

Ohio EPA – NEDO = Ohio Environmental Protection Agency Northeast District Office

USACE = U.S. Army Corps of Engineers

21		TABLE OF CONTENTS	
22	EXECUT	IVE SUMMARY	xi
23	FIVE-YE	AR REVIEW SUMMARY FORM	XV
24	1.0 IN'	FRODUCTION	
25		TE CHRONOLOGY	
26		CKGROUND	
27		Physical Characteristics	
28	3.1.1		
28 29	3.1.1		
30	3.1.2		
31	3.1.4		
32	3.1.5		
33	3.1.6		
34	3.1.7	1 0	
35	3.2 (GEOLOGY	
36	3.2.1	Load Line 1	
37	3.2.2		
38	3.2.3		
39	3.2.4	Load Line 4	
40	3.2.5	Load Line 12	
41	3.2.6	Winklepeck Burning Grounds	
42	3.2.7	Ramsdell Quarry Landfill	
43	3.3 H	Hydrology	
44	3.3.1	Load Lines	
45	3.3.2	Winklepeck Burning Grounds	
46	3.3.3	Ramsdell Quarry Landfill	
47	3.4 I	LAND AND RESOURCE USE	
48	3.5 I	HISTORY OF CONTAMINATION	
49	3.5.1	Load Lines 1 Through 4	
50	3.5.2		
51	3.5.3		
52	3.5.4		
53	3.6 I	NITIAL RESPONSE	
54	3.6.1	Load Lines 1 Through 4	
55	3.6.2	e	
56	3.6.3		
57	3.6.4		
58	3.7 I	BASIS FOR TAKING ACTION	

59	3.7	7.1 Load Lines 1 Through 4	
60	3.7	7.2 Load Line 12	27
61	3.7	V.3 Winklepeck Burning Grounds	27
62	3.7	'.4 Ramsdell Quarry Landfill	27
63	4.0 H	REMEDIAL ACTIONS	28
64	4.1	LOAD LINES 1 THROUGH 4	
65	4.1	.1 Remedy Selection	
66	4.1	.2 Remedy Implementation	29
67	4.1	.3 Maintenance and Monitoring	31
68	4.2	LOAD LINE 12	31
69	4.2	2.1 Remedy Selection	31
70	4.2	2.2 Remedy Implementation	32
71	4.2	2.3 Maintenance and Monitoring	33
72	4.3	WINKLEPECK BURNING GROUNDS	33
73	4.3	8.1 Remedy Selection	33
74	4.3	8.2 Remedy Implementation	35
75	4.3	B.3 Maintenance and Monitoring	36
76	4.4	RAMSDELL QUARRY LANDFILL	37
77	4.4	.1 Remedy Selection	37
78	4.4	.2 Remedy Implementation	39
79	4.4	A.3 Maintenance and Monitoring	40
80	5.0 I	PROGRESS SINCE LAST REVIEW	41
81	6.0 H	FIVE-YEAR REVIEW PROCESS	43
82	6.1	Administrative Components	43
83	6.2	COMMUNITY NOTIFICATION AND INVOLVEMENT	43
84	6.3	DOCUMENT REVIEW	44
85	6.4	DATA REVIEW	44
86	6.4	Load Lines 1 Through 4	44
87	6.4		
88	6.4	1 8	
89	6.4	A.4 Ramsdell Quarry Landfill	46
90	6.5	SITE INSPECTIONS	50
91	6.5	5.1 Load Lines	50
92	6.5	1 8	
93	6.5	5.3 Ramsdell Quarry Landfill	50
94	6.6	INTERVIEWS	50
95	6.6	5.1 Army National Guard Directorate	51
96	6.6	5.2 Camp Ravenna	51

97 98	6.6. 6.6.		
99	6.6.		
100	6.6.	5	
101	7.0 T	ECHNICAL ASSESSMENT	
102	7.1	LOAD LINES 1 THROUGH 4	. 54
103	7.1	- (
104	7.1	- (
105	7.1.	- (
106	7.1.		
107	7.2	LOAD LINE 12	. 55
108	7.2.		
109	7.2		
110	7.2.		
111	7.2.	4 Summary	. 56
112	7.3	WINKLEPECK BURNING GROUNDS	. 56
113	7.3	1 Question A:	. 56
114	7.3	2 Question B:	. 57
115	7.3.		
116	7.3.	4 Summary	. 57
117	7.4	RAMSDELL QUARRY LANDFILL	. 58
118	7.4	1 Question A:	. 58
119	7.4	2 Question B:	. 58
120	7.4		
121	7.4	4 Summary	. 58
122	8.0 IS	SSUES	. 59
123	9.0 R	ECOMMENDATIONS AND FOLLOW-UP ACTIONS	. 60
124	10.0 P	ROTECTIVENESS STATEMENTS	. 61
125	10.1	LOAD LINES 1 THROUGH 4	. 61
126	10.2	LOAD LINE 12	
120	10.2	WINKLEPECK BURNING GROUNDS	
127	10.3	RAMSDELL QUARRY LANDFILL	
		-	
129	11.0 N	EXT REVIEW	. 62

130 **TABLES**

131Table 1Summary of Camp Ravenna Environmental Restoration Program Sites132Table 2Chronology of Site Events

133	Table 3	COCs in Soil and Dry Sediment at Load Lines 1 Through 4
134	Table 4	Load Lines 1 Through 4 Soil Cleanup Goals
135 136	Table 5	Volume of PCB Contaminated and Non-Hazardous Excavated Soil and Dry Sediment from Load Lines 1 Through 4
137 138	Table 6	Winklepeck Burning Grounds Soil Cleanup Goals for 2008 ROD Remedial Action
139	Table 7	Winklepeck Burning Grounds Soil Cleanup Goals for 2015 ESD Remedial Action
140	Table 8	Volume of Excavated Soil and Dry Sediment from Winklepeck Burning Grounds
141	Table 9	Ramsdell Quarry Landfill Cleanup Goals
142	Table 10	Issues Identified and Recommendations Provided in the First Five-Year Review
143	Table 11	Pre-remedial Groundwater Conditions at Load Lines 1 Through 4
144	Table 12	Current Issues for Camp Ravenna Sites That Affect Protectiveness
145 146	Table 13	Recommendations to Address Issues That Affect Protectiveness at Camp Ravenna Sites
147 148	Table 14	Recommendations for Concerns That Do Not Affect Protectiveness at Camp Ravenna Sites

149 ATTACHMENTS

150	Attachment 1	Figures
151	Attachment 2	Documents Reviewed
152	Attachment 3	Decision Document Summaries
153	Attachment 4	Site Inspection Checklists
154	Attachment 5	Photographic Record
155	Attachment 6	Interview Records
156	Attachment 7	ARAR Evaluation
157	Attachment 8	Risk Assessment and Toxicology Evaluation
158	Attachment 9	Public Notices
159	Attachment 10	Groundwater Information and Data
160	Attachment 11	Soil and Dry Sediment Data
161	Attachment 12	Responses to Regulator Comments

162 **FIGURES**

163 Figure 1 Camp Ravenna Site Location

- 164 Figure 2 Areas of Concern Evaluated in Five-Year Review
- 165 Figure 3 Load Line #1
- 166 Figure 4 Load Line #2
- 167 Figure 5 Load Line #3
- 168 Figure 6 Load Line #4
- 169Figure 7Load Line #12
- 170 Figure 8 Winklepeck Burning Grounds
- 171 Figure 9 Ramsdell Quarry Landfill

172		ACRONYMS AND ABBREVIATIONS
173	ACM	asbestos-containing material
174	Alliant	Alliant Corporation
175	AMEC	AMEC Environment and Infrastructure, Inc.
176	amsl	above mean sea level
177	AOC	area of concern
178	ARAR	applicable or relevant and appropriate requirement
179	ARNG	Army National Guard
180	AST	above ground storage tank
181	bgs	below ground surface
182	BRACD	Base Realignment and Closure Division
183	CB&I	CB&I Federal Services, Inc.
184 185	CERCLA	Comprehensive Environmental Response, Compensation and Liability Act of 1980
186	COC	constituent of concern
187	COPC	constituent of potential concern
188	DERP	Defense Environmental Restoration Program
189	DQO	data quality objective
190	ECC	Environmental Chemical Corporation
191	EE/CA	engineering evaluation/cost analysis
192	EQM	Environmental Quality Management, Inc.
193	ER,A	Environmental Restoration, Army
194	ESD	explanation of significant differences
195	FS	feasibility study
196	ft	foot (feet)
197	ft^2	square feet
198	FYR	five-year review
199	GIS	geographic information system
200	HI	hazard index
201	HMX	octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
202	HVAC	heating, ventilation, and air conditioning
203	ILCR	incremental lifetime cancer risk
204	IRA	interim remedial action

205	IRP	Installation Restoration Program
206	Leidos	Leidos Engineering of Ohio, Inc.
207	LUC	land use control
208	MEC	munitions and explosives of concern
209	mg/kg	milligrams per kilogram
210	MKM	MKM Engineers, Inc.
211	MMRP	Military Munitions Response Program
212	MPPEH	material potentially presenting an explosive hazard
213	MRS	Munitions Response Site
214	NA	not applicable
215	NCP	National Contingency Plan
216	NFA	no further action
217	NGB	National Guard Bureau
218	NPL	National Priorities List
219	OAC	Ohio Administrative Code
220	OHARNG	Ohio Army National Guard
221	Ohio EPA	Ohio Environmental Protection Agency
222	PA	preliminary assessment
223	PAH	polycyclic aromatic hydrocarbon
224	PCB	polychlorinated biphenyl
225	PIKA	PIKA International, Inc.
226	PMP	Property Management Plan
227	PP	proposed plan
228	Prudent	Prudent Technologies, Inc.
229	QA/QC	quality assurance/quality control
230	RAB	Restoration Advisory Board
231	RA(C)	remedial action (construction)
232	RAO	remedial action objective
233	RCRA	Resource Conservation Recovery Act
234	RDX	1,3,5-trinitroperhydro-1,3,5-triazine
235	RI	remedial investigation
236	ROD	record of decision
237	RVAAP	Ravenna Army Ammunition Plant

238	SAIC	Science Applications International Corporation
239	Shaw	Shaw E&I/Shaw Environmental, Inc.
240	SI	site inspection
241	SVOC	semi-volatile organic compound
242	SWPPP	storm water pollution prevention plan
243	TBC	to-be-considered
244	TCRA	time-critical removal action
245	TEC-Weston	TEC-Weston Joint Venture
246	TNT	trinitrotoluene
247	USACE	U.S. Army Corps of Engineers
248	USAEHA	U.S. Army Environmental Health Administration
249	USEPA	U.S. Environmental Protection Agency
250	URS	URS Corporation
251	UST	underground storage tank
252	UU/UE	unlimited use/unrestricted exposure
253	UXO	unexploded ordnance
254	Vista	Vista Sciences Corporation
255	VOC	volatile organic compound
256	yd ³	cubic yards

EXECUTIVE SUMMARY

258 This is the second five-year review of remedial actions taken at Installation Restoration Program

259 sites on Camp Ravenna: Load Line 1, Load Line 2, Load Line 3, Load Line 4, Load Line 12,

- 260 Winklepeck Burning Grounds, and Ramsdell Quarry Landfill. The purpose of this review is to
- determine if remedial actions implemented at these sites are and will continue to be protective of
- human health and the environment.
- 263 The U.S. Army prepared this review consistent with applicable requirements of the
- 264 Comprehensive Environmental Response, Compensation, and Liability Act § 121 and the
- 265 National Oil and Hazardous Substances Pollution Contingency Plan. This five-year review is
- required because hazardous substances remain at the sites at levels that do not allow for
- 267 unlimited use and unrestricted exposure. The methods, findings, and conclusions of the review,
- 268 identified issues, and recommendations are documented in this report. The triggering action for
- this five-year review was completion of the first five-year review on August 31, 2012.

270 Camp Ravenna

257

- 271 Camp Ravenna, formerly known as the Ravenna Army Ammunition Plant (RVAAP), is located
- in northeastern Ohio within Portage and Trumbull counties. The installation was constructed in
- 273 1940 and 1941 and used for ammunition assembly, loading, and demilitarization activities. It
- originally encompassed 21,683 acres. Administrative accountability for the property was
- transferred to the U.S. Property and Fiscal Officer in several transfers with the last being in
- 276 September 2013. The property is licensed to the Ohio Army National Guard (OHARNG) as a 277 military training site known as Camp Rayenna Joint Military Training Center (Camp Rayenna).
- military training site known as Camp Ravenna Joint Military Training Center (Camp Ravenna).
 The installation is approximately one mile northwest of the city of Newton Falls (Figure 1). The
- surrounding areas are predominately woodland or farm acreage with the remainder residential.
- 279 Suffounding areas are predominately woodland of farm acreage with the remainder f 280 The location of sites evaluated in this five-year review is shown in Figure 2.

281 Load Lines 1 Through 4

- 282 Industrial operations at RVAAP primarily consisted of 12 munitions assembly facilities referred
- to as "load lines." Load Lines 1, 2, 3, and 4 are 150, 212, 167, and 125 acres, respectively, and
- were used for industrial operations associated with munitions loading, assembly, packaging,
- reconditioning, demilitarization, and quality assurance/quality control operations. Explosives (2.4.6-trinitrotoluene [TNT], octahydro-1,3.5.7-tetranitro-1,3.5.7-tetrazocine [HMX], and 1,3.5
- 286 (2,4,6-trinitrotoluene [TNT], octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine [HMX], and 1,3,5-287 trinitroperhydro-1,3,5-triazine [RDX]) were handled, processed, loaded into large-caliber shells,
- trinitroperhydro-1,3,5-triazine [RDX]) were handled, processed, loaded into large-caliber shells,
 and removed from munitions during demilitarization activities. These operations, together with
- and removed from munitions during demilitarization activities. These operations, together with ancillary activities associated with maintenance, power generation, and wastewater treatment,
- resulted in the contamination of soil and dry sediment in the vicinity of former site buildings.
- 290 Testited in the contamination of soil and dry sediment in the vicinity of former site buildings. 291 Chemical contaminants detected in soil and dry sediment above risk-based cleanup goals
- 292 consisted of inorganics (aluminum, antimony, arsenic, barium, cadmium, hexavalent chromium,
- lead, and manganese), explosives (2,4,6-TNT and RDX), polychlorinated biphenyls (PCBs)
- 294 (Aroclor-1254), and polycyclic aromatic hydrocarbons (PAHs) (benz(a)anthracene,
- 295 benzo(a)pyrene, benzo(b)fluoranthene, and dibenz(a,h)anthracene).
- 296 The selected remedy consisted of excavation and off-site disposal of contaminated soil and dry
- sediment, groundwater monitoring, and maintenance of former building slabs to prevent leaching
- of potentially contaminated soil and dry sediment. An Interim Record of Decision (ROD) for

- soil and dry sediment was signed on June 4, 2007 and the remedial actions were implemented
- 300 during August to November 2007. Subsequent environmental activities were conducted that
- 301 included removal of the building slabs, characterization and removal of chemically contaminated
- 302 soil and dry sediment beneath and adjacent to the slabs, and preparation of a feasibility study
- 303 addendum. Groundwater monitoring has been performed as part of a facility-wide groundwater
- 304 monitoring program.
- 305 According to the Interim ROD, the intended future use of the sites is for OHARNG mounted
- 306 training. To date, the OHARNG has not used the sites.

307 Load Line 12

- 308 Load Line 12 is an 80-acre parcel situated in the southeastern portion of the Camp Ravenna. It
- 309 was used for the production of ammonium nitrate and aluminum chloride and for
- 310 demilitarization activities to recover explosives from bombs. A wastewater treatment plant was
- 311 also operated on the site. Remedial activities performed prior to the ROD removed large
- 312 quantities of explosives-contaminated soil. Only arsenic-contaminated soil and dry sediment
- remained within a portion of a main drainage ditch at levels above risk-based cleanup goals.
- 314 The selected remedy consisted of excavation and off-site disposal of contaminated soil and dry
- sediment, and implementation of land use controls (LUCs). A ROD was signed on August 10,
- 316 2009 and the remedial action was implemented in 2010. LUCs have not been officially
- 317 implemented for Load Line 12 through a Property Management Plan (PMP). Subsequent
- 318 environmental activities included the preparation of a feasibility study addendum.
- According to the ROD, the intended future use of the site is for OHARNG mounted training. Todate, the OHARNG has not used the site.

321 Winklepeck Burning Grounds

- 322 Winklepeck Burning Grounds was used for open burning activities in unlined pits, pads, on
- 323 roads, along roadside ditch lines, and in refractory-lined trays. Prior to 1980, burning was
- 324 conducted on the bare ground, and the ash was abandoned at the site. Materials that were burned
- 325 included TNT, RDX, Composition B, antimony sulfide, lead azide, propellants, black powder,
- waste oils, sludge from the load lines, domestic wastes, explosives-contaminated waste, and
- 327 small amounts of laboratory chemicals. Chemical contaminants detected in soils and dry
- sediments above risk-based cleanup goals consisted of 2,4,6-TNT, RDX and benzo(a)pyrene.
- Asbestos-containing materials (ACM) also were present at former burning pads 61, 61A and 70.
- The total burning ground area consists of approximately 200 acres in the central portion of Camp
- Ravenna. The site is used as a Mark 19 Grenade Machine Gun range.
- 332 The selected remedy consisted of the excavation and off-site disposal of chemically
- contaminated soil and dry sediment from three former burning pads (61, 61A, and 67) and of
- ACM-contaminated soil and dry sediment. It also included screening and removal of any
- munitions. A ROD was signed August 19, 2008 and the remedial action was completed in 2008
- and 2009. LUCs have been implemented through a PMP. Future plans for the site include
- development and use as a Multipurpose Machine Gun range. Subsequent environmental
- activities have been performed that included preparation of a remedial investigation/feasibility

- 339 study (RI/FS) supplement, an explanation of significant differences to enable development of the
- 340 Multipurpose Machine Gun range, and a remedial design for post ROD changes.

341 Ramsdell Quarry Landfill

- 342 Ramsdell Quarry Landfill is a 14-acre site located in the eastern section of Camp Ravenna. The
- 343 site was an abandoned quarry with a 4-acre unlined landfill that was used for solid domestic
- 344 waste. Land-surface burning also was performed outside of the landfill to destroy waste
- explosives from Load Line 1 and napalm bombs. Chemical contaminants detected in soil and
- dry sediment above risk-based cleanup goals consisted of PAHs (benz(a)anthracene,
- 347 benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd) pyrene).
- A ROD was signed on August 20, 2009 that established excavation and off-site disposal of
- 349 chemically contaminated soil and dry sediment and LUCs as the selected remedy. Remediation
- 350 started in 2010 and was not completed because ACM was encountered in the subsurface. The
- 351 presence of ACM in the landfill was not known prior to discovery and the ROD did not account
- 352 for this material. The excavation was stopped once ACM was no longer visible and excavated
- 353 ACM was disposed off-site. Not all of the chemically contaminated areas were remediated. An
- engineering evaluation was performed and a ROD amendment was prepared. The ROD
- amendment remedy consisted of security fencing with warning signs installed around the site and removal of ACM from the ground surface. It was implemented in 2014 and routine inspections
- so removal of ACM from the ground surface. It was implemented in 2014 and routine insp so are being performed to verify that the LUCs are functioning as intended
- are being performed to verify that the LUCs are functioning as intended.

358 **Protectiveness Statements**

- 359 The remedy at Load Lines 1 4 currently protects human health and the environment because:
- Contaminated soil/dry sediment identified in the Interim ROD was remediated
- However, in order for the remedy to be protective in the long-term, the following action needs tobe taken to ensure protectiveness:
- Determine if unacceptable risk associated with remaining contaminated soils at Load
 Lines 1 4 exists and remediate in a manner consistent with the Interim ROD, if
 necessary to mitigate risk
- 366 The remedy at Load Line 12 is protective of human health and the environment because:
- Contaminated soil/dry sediment identified in the ROD was remediated
- The site is not being used and access is restricted by a perimeter fence with warning signs
- The remedy at Winklepeck Burning Grounds is protective of human health and the environmentbecause:
- Contaminated soil/dry sediment identified in the ROD was remediated
- LUCs have been implemented; they are being employed and maintained in accordance
 with the ROD
- 374 The remedy at Ramsdell Quarry Landfill is protective of human health and the environment
- 375 because:

376	•	Contaminated soil/dry sediment identified in the ROD was partially remediated
377 378	•	A perimeter fence with warning signs was installed and surficial ACM was removed by non-intrusive/no-digging methods in accordance with the ROD amendment
379 380	•	LUCs have been implemented; training, access restrictions, and land uses are being performed/maintained consistent with the ROD

FIVE-YEAR REVIEW SUMMARY FORM

SITE IDENTIFICATION					
Site Name: Camp Ra	ivenna				
EPA ID: OH52100	020736				
Region: 5	State: OH	City/County Ravenna/Portage and Trumbull Counties			
	S	SITE STATUS			
NPL Status: Non-NPL					
Multiple AOCs? Yes	Has	the site achieved construction completion?			
Load Lines 1 - 4	No				
Load Line 12					
Winklepeck Burning G					
Ramsdell Quarry Land	fill				
	RE	VIEW STATUS			
Lead agency: Other Fede If "Other Federal Agen		bove, enter Agency name: U.S. Army			
Author name (Federal o	or State Project M	anager): Mark Leeper			
Author affiliation: Arm	y National Guard				
Review period: May 21.	, 2016 – August 31	, 2017			
Date of site inspection: August 10, 2016					
Type of review: Statutory					
Review number: 2					
Triggering action date:	Triggering action date: August 31, 2012				
Due date (five years after	r triggering action	date): August 31, 2017			

Issues/Recommendations							
AOC(s) without Issues/Recommendations Identified in the Five-Year Review:							
	andfill, Winklepeck B						
Issues and Recom	mendations Identified	d in the Five-Year	Review:				
AOC(s): Load Lines 1 -4	Issue Category: New question the protective			t calls into			
	Issue: Contaminated goals at Load Lines 1 during future military	- 4 and may be acc	-	1			
	Recommendation : D remaining contaminat manner consistent wi	ted soils at Load Li	nes 1 - 4 exists an	d remediate in a			
Affect Current Protectiveness	Affect Future Protectiveness	Implementing Party	Oversight Party	Milestone Date			
No	Yes	Federal Facility	State	September 2017			
	Protecti	veness Statement(s	S)	I			
AOC: Load Lines 1 - 4	Protectivenes Short-term Pr	ss Determination: rotective	(if appl	<i>lum Due Date licable):</i> pplicable			
AOC:Protectiveness Determination:Addendum Due DateLoad Line 12Protective(if applicable):Not Applicable							
AOCs:Protectiveness Determination:Addendum Due DateWinklepeck BurningProtective(if applicable):GroundsNot Applicable							
<i>AOC:</i> Ramsdell Quarry Landfill	<i>Protectivenes</i> Protective	(if appl	<i>lum Due Date licable):</i> pplicable				
D ()							

Protectiveness Statement:

The remedy at Load Lines 1 - 4 currently protects human health and the environment because:

• Contaminated soil/dry sediment identified in the Interim ROD was remediated

However, in order for the remedy to be protective in the long-term, the following action needs to be taken to ensure protectiveness:

• Determine if unacceptable risk associated with remaining contaminated soils at Load Lines 1 - 4 exists and remediate in a manner consistent with the Interim ROD, if necessary to mitigate risk

The remedy at Load Line 12 is protective of human health and the environment because:

- Contaminated soil/dry sediment identified in the ROD was remediated
- The site is not being used and access is restricted by a perimeter fence with warning signs

The remedy at Winklepeck Burning Grounds is protective of human health and the environment because:

- Contaminated soil identified in the ROD was remediated
- LUCs have been implemented; they are being employed and maintained in accordance with the ROD

The remedy at Ramsdell Quarry Landfill is protective of human health and the environment because:

- Contaminated soil identified in the ROD was partially remediated
- A perimeter fence with warning signs was installed and surficial ACM was removed by non-intrusive/no-digging methods in accordance with the ROD amendment
- LUCs have been implemented; training, access restrictions, and land uses are being performed/maintained consistent with the ROD

381 1.0 INTRODUCTION

This review was conducted to determine whether previous remedial actions at seven areas of concern (AOCs) on Camp Ravenna are and will continue to be protective of human health and the environment. The methods, findings, and conclusions of the review are documented in this report. Also identified are issues found during the review and recommendations to address them.

The U.S. Army prepared this five-year review pursuant to the Comprehensive Environmental
Response, Compensation, and Liability Act (CERCLA) §121 and the National Oil and
Hazardous Substances Pollution Contingency Plan (NCP). CERCLA §121 states:

- If the President selects a remedial action that results in any hazardous substances,
 pollutants, or contaminants remaining at the site, the President shall review such
 remedial action no less often than each five years after the initiation of such remedial
 action to assure that human health and the environment are being protected by the
 remedial action being implemented. In addition, if upon such review it is the judgment of
- 394 *the President that action is appropriate at such site in accordance with section [104] or*
- 395 [106], the President shall take or require such action. The President shall report to
 396 Congress a list of facilities for which such review is required, the results of all such
- 396 *Congress a list of facilities for which such review is required, the res* 397 *reviews, and any actions taken as a result of such reviews.*
- The U.S. Environmental Protection Agency (USEPA) interpreted this requirement further in the NCP; 40 CFR §300.430(f)(4)(ii) states:
- 400 If a remedial action is selected that results in hazardous substances, pollutants, or 401 contaminants remaining at the site above levels that allow for unlimited use and 402 unrestricted exposure, the lead agency shall review such action no less often than every
- 403 *five years after the initiation of the selected remedial action.*
- 404 There are currently 84 AOCs at Camp Ravenna that are being investigated and/or remediated
- 405 under the U.S. Army's Installation Restoration Program (IRP) and the Military Munitions
- 406 Response Program (MMRP) (refer to Table 1). Management of these sites follows the
- 407 Director's Final Findings and Orders, which was signed by the U.S. Army and Ohio
- 408 Environmental Protection Agency (Ohio EPA) in June 2004. These orders were entered into by
- the U.S. Army pursuant to authority vested in the Secretary of the Army by CERCLA, 42 U.S.C.
- 410 Section 9601, et seq.; the Defense Environmental Restoration Program (DERP), 10 U.S.C.
- 411 Section 2701. et seq.; and the NCP, 40 C.F.R. Part 300. Camp Ravenna is not on the National
- 412 Priorities List (NPL).
- 413 This five-year review addresses remedial actions at the following sites:
- 414 Load Lines 1 4
- 415 Load Line 12
- Winklepeck Burning Grounds
- Ramsdell Quarry Landfill
- 418 The U.S. Army conducted the review of remedial actions implemented at these sites from May
- 419 21, 2016 to August 31, 2017. This is the second five-year review for these sites, which was
- triggered by completion of the first five-year review on August 31, 2012. Review is required

- 421 because the remedies do not allow unlimited use/unrestricted exposure (UU/UE) after the
- 422 cleanup actions were completed and the cleanup goals met.

[This page intentionally left blank]

AOC	Site	CERCLA Phase Completed	Affected Media	COCs/COPCs	Status	Evaluated in FYR? (Y/N)
			Compliane	ce Restoration Sites		
CC-RVAAP-68	Electric Substations (E, W, No. 3)	SI	None	None	RI and PP ongoing, draft PP recommends NFA	Ν
CC-RVAAP-69	Building 1048 – Fire Station	SI	Soil	VOCs	RI ongoing	Ν
CC-RVAAP-70	East Classification Yard	РА	Soil and dry sediment	Explosives, herbicides, metals, PAHs, PCBs, pesticides, SVOCs, and VOCs	SI ongoing	N
CC-RVAAP-71	Barn No. 5 Petroleum Release	SI	None	None	SI report recommended NFA, Ohio EPA issued approval letter on February 19, 2015	Ν
CC-RVAAP-72	Facility-Wide USTs	SI	None	None	SI report recommended NFA, Ohio EPA issued approval letter on July 14, 2015	Ν
CC-RVAAP-73	Facility-Wide Coal Storage	SI	None	None	RI ongoing, draft report recommends NFA	Ν
CC-RVAAP-74	Building 1034 Motor Pool Hydraulic Lift	SI	None	None	RI ongoing, draft report recommends NFA	Ν
CC-RVAAP-75	George Road STP Mercury Spill	SI	None	None	SI report recommended NFA	Ν
CC-RVAAP-76	Depot Area	SI	Soil	PAHs	RI/FS ongoing	Ν
CC-RVAAP-77	Building 1037 Laundry Wastewater Sump	SI	None	None	SI report recommended NFA, Ohio EPA issued approval letter on February 19, 2015	Ν
CC-RVAAP-78	Quarry Pond Surface Dump	РА	Soil	ACM, explosives, herbicides, metals, PAHs, PCBs, pesticides, propellants, and SVOCs	SI ongoing, draft report recommends proceeding to RI phase	N
CC-RVAAP-79	DLA Ore Storage Sites	SI	Soil	Metals	 SI ongoing, preliminary draft reports recommend: Proceeding to RI phase for the Main Storage Area NFA for remaining ore sites 	Ν
CC-RVAAP-80	Group 2 Propellant Can Tops	РА	None	None	SI ongoing, preliminary draft report indicates no evidence of a release of propellants and/or other munitions constituents	Ν
CC-RVAAP-83	Former Buildings 1031 and 1039	SI	None	None	SI report recommended NFA, Ohio EPA issued approval letter on July 29, 2015	Ν
			Installation Re	storation Program Sites		
RVAAP-01	Ramsdell Quarry Landfill	RA(C)	Soil and dry sediment	PAHs and ACM	Remedial actions complete, maintenance and monitoring ongoing	Y
RVAAP-02	Erie Burning Grounds	ROD	None	None	NFA ROD signed by Ohio EPA in January 2008	Ν

 Table 1 - Summary of Camp Ravenna Environmental Restoration Program Sites

AOC	Site	CERCLA Phase Completed	Affected Media	COCs/COPCs	Status	Evaluated in FYR? (Y/N)
RVAAP-03	Open Demolition Area #1	RI/FS	Soil and dry sediment	Explosives and PAHs	RI and PP ongoing	N
RVAAP-04	Open Demolition Area #2	ROD	None	None	NFA ROD signed by Ohio EPA in January 2008	N
RVAAP-05	Winklepeck Burning Grounds	RA(C), ROD ESD	Soil and dry sediment	Explosives and PAHs	Remedial action conducted 2008 – 2009; RD for post ROD changes ongoing.	Y
RVAAP-06	C Block Quarry	SI	Soil	Total and hexavalent chromium, ACM	RI/FS ongoing	N
RVAAP-07	Building 1601 Hazardous Waste Storage	NA	None	None	Closed under RCRA; Ohio EPA closure approval letter dated February 12, 1998	N
RVAAP-08	Load Line 1	RA(C)	Soil and dry sediment	Metals, explosives, PCBs, and PAHs	Remedial action conducted in 2007; RI/FS ongoing to further characterize the site for unrestricted or industrial use	Y
RVAAP-09	Load Line 2	RA(C)	Soil and dry sediment	Metals, explosives, PCBs, and PAHs	Remedial action conducted in 2007; RI/FS ongoing to further characterize the site for unrestricted or industrial use	Y
RVAAP-10	Load Line 3	RA(C)	Soil and dry sediment	Metals, explosives, PCBs, and PAHs	Remedial action conducted in 2007; RI/FS ongoing to further characterize the site for unrestricted or industrial use	Y
RVAAP-11	Load Line 4	RA(C)	Soil and dry sediment	Metals, explosives, PCBs, and PAHs	Remedial action conducted in 2007; RI/FS ongoing to further characterize the site for unrestricted or industrial use	Y
RVAAP-12	Load Line 12	RA(C)	Soil and sediment	Metals (arsenic)	Remedial action conducted in 2010; RI/FS ongoing to further characterize the site for unrestricted or industrial use	Y
RVAAP-13	Building 1200	RA(C)	Soil	Metals (manganese)	Remedial action conducted 2014 – 2015; UU/UE attained	N
RVAAP-14	Load Line 6 Evaporation Unit	None	None	None	Ohio EPA closure approval letter dated January 20, 1993	N
RVAAP-15	Load Line 6 Treatment Plant	None	See status column	See status column	Not eligible for ER,A funding	N
RVAAP-16	Fuze & Booster Quarry Landfill/Pond	None	None	None	NFA ROD signed by Ohio EPA in January 2008	N
RVAAP-17	Deactivation Furnace	NA	None	None	Closed under RCRA; soil and groundwater are covered under RVAAP-05 (Winklepeck Burning Grounds)	N
RVAAP-18	Load Line 12 Waste Water Treatment Plant	None	None	None	NFA date March 1997	N
RVAAP-19	Landfill North of Winklepeck Burning Grounds	SI	None	None	Draft RI/FS recommends removing surface debris to ensure integrity of the landfill	N
RVAAP-20	Sand Creek Sewage Treatment Plant	None	None	None	NFA date June 1989	N
RVAAP-21	Depot Sewage Treatment Plant	None	None	None	NFA date June 1989	N
RVAAP-22	George Road Sewage Treatment Plant	None	See status column	See status column	Activities for this site are carried under CC-RVAAP-75	N

 Table 1 - Summary of Camp Ravenna Environmental Restoration Program Sites

AOC	Site	CERCLA Phase Completed	Affected Media	COCs/COPCs	Status	Evaluated in FYR? (Y/N)
RVAAP-23	Unit Training Equipment Site UST	None	None	None	Ohio EPA issued a closure approval letter on February 5, 2003	Ν
RVAAP-24	Waste Oil Tank	None	See status column	See status column	Activities for this site are carried under CC-RVAAP-75	Ν
RVAAP-25	Building 1034 Motor Pool AST	None	See status column	See status column	Not eligible for ER,A funding	Ν
RVAAP-26	Fuze Booster Area Settling Tanks	None	See status column	See status column	15 tanks total, located in Load Line 5 (1 tank), Load Line7 (1 tank that was removed in 1988), Load Line 10 (1 AST & 8 USTs), Load Line 11 (3 tanks); all were emptied and cleaned. Soils are being investigated under RVAAP-39, -40, -42, -43, & - 44.	N
RVAAP-27	Building 854 PCB Storage	None	None	None	Ohio EPA issued a NFA approval letter on September1, 1999	Ν
RVAAP-28	Mustard Agent Burial Site	SI	None	None	EE/CA ongoing, draft report recommends no action.	Ν
RVAAP-29	Upper and Lower Cobbs Ponds	SI	Soil, sediment, surface water	Hexavalent chromium, metals, and PAHs	RI/FS ongoing, draft report recommends LUCs	Ν
RVAAP-30	Load Line 7 Pink Waste Water Treatment Plant	None	None	None	NFA date January 2000	Ν
RVAAP-31	Ore Pile Retention Pond	None	None	None	NFA date January 2000	Ν
RVAAP-32	40 MM Firing Range	None	None	None	Any concerns are being addressed under the MMRP	Ν
RVAAP-33	Load Line 6 Fuze and Booster	SI	None	None	RI ongoing, draft report recommends NFA	Ν
RVAAP-34	Sand Creek Disposal Road Landfill	SI	Soil	Metals and PAHs	RI/FS and PP ongoing; draft PP recommends excavation of contaminated soils, off-site disposal, and LUCs	Ν
RVAAP-35	Building 1037 Laundry Waste Water Sump	None	See status column	See status column	Activities for this site are carried under CC-RVAAP-77	Ν
RVAAP-36	Pistol Range	None	See status column	See status column	Active range being used by OHARNG. Ohio EPA letter dated February 14, 2006 approved the delay of any environmental restoration until the range is no longer being used.	Ν
RVAAP-37	Pesticide Building S-4452	None	None	None	Ohio EPA issued a closure approval letter on September 19, 2000	N
RVAAP-38	NACA Test Area	SI	Soil	Metals (lead) and PAHs	RI/FS ongoing; draft report recommends excavation of contaminated soil and LUCs	Ν
RVAAP-39	Load Line 5	SI	None	None	RI ongoing, draft report recommends NFA	Ν
RVAAP-40	Load Line 7	SI	Soil	PAHs	RI/FS ongoing, draft report recommends <i>ex-situ</i> thermal treatment of contaminated soils	Ν
RVAAP-41	Load Line 8	SI	None	None	RI ongoing, draft report recommends NFA	Ν

 Table 1 - Summary of Camp Ravenna Environmental Restoration Program Sites

AOC	Site	CERCLA Phase Completed	Affected Media	COCs/COPCs	Status	Evaluated in FYR? (Y/N)
RVAAP-42	Load Line 9	SI	Soil	Metals, PAHs	RI/FS ongoing, draft report recommends excavation and off-site disposal and <i>ex-situ</i> thermal treatment of contaminated soil	Ν
RVAAP-43	Load Line 10	RI	None	None	PP ongoing, draft report recommends NFA	N
RVAAP-44	Load Line 11	SI	None	None	RI ongoing, draft report recommends NFA	Ν
RVAAP-45	Wet Storage Area	SI	None	None	RI ongoing, draft report recommends NFA	Ν
RVAAP-46	Building F-15 and F-16	SI	None	None	RI ongoing, draft report recommends NFA	Ν
RVAAP-47	Building T-5301	IRA	None	None	IRA conducted in 2000, no contamination left in place	Ν
RVAAP-48	Anchor Test Area	RA(C)	Soil	Metals (arsenic)	RA completed in 2014, UU/UE attained	Ν
RVAAP-49	Central Burn Pits	ROD	None	None	NFA ROD signed by Ohio EPA in January 2008	Ν
RVAAP-50	Atlas Scrap Yard	RI	Soil	PAHs	FS and pilot study for soil treatment ongoing	Ν
RVAAP-51	Dump Along Paris Windham Road	RI/FS	Soil	PAHs	PP ongoing, draft document recommends LUCs	Ν
RVAAP-66	Facility-Wide Groundwater	SI	Groundwater	Explosives, metals, PAHs, SVOCs, and VOCs	RI/FS ongoing	Ν
RVAAP-67	Facility-Wide Sewers	SI	Sediment	Metals	RI/FS ongoing, draft report recommends removal of underground sewer pipes and related structures and contaminated sediment	Ν
			Military Muniti	ons Response Program Sites		
RVAAP-001-R- 01	Ramsdell Quarry Landfill MRS	RI	NA	MEC or MPPEH	RI report recommends FS	Ν
RVAAP-002-R- 01	Erie Burning Grounds MRS	RI	NA	MEC or MPPEH	RI report recommends FS	Ν
RVAAP-004-R- 01	Open Demolition Area #2 MRS	RI	NA	MEC or MPPEH	TCRA proposed to clear MEC and implement site improvement activities	Ν
RVAAP-005-R- 01	Winklepeck Burning Grounds	None	See status column	See status column	Operational range, ineligible for ER,A funding	Ν
RVAAP-008-R- 01	Load Line 1 MRS	ROD	None	None	NFA ROD issued August 14, 2015, Ohio EPA concurrence letter issued September 21, 2015	Ν
RVAAP-012-R- 01	Load Line 12 MRS	SI	None	None	SI report recommends NFA	Ν
RVAAP-016-R- 01	Fuze and Booster Quarry MRS	RI	NA	MEC or MPPEH	RI report recommends FS	Ν

 Table 1 - Summary of Camp Ravenna Environmental Restoration Program Sites

AOC	Site	CERCLA Phase Completed	Affected Media	COCs/COPCs	Status	Evaluated in FYR? (Y/N)
RVAAP-019-R- 01	Landfill north of Winklepeck MRS	RI	None	None	RI recommends NFA	Ν
RVAAP-032-R- 01	40mm Firing Range MRS	RI	NA	MEC or MPPEH	RI report recommends FS	N
RVAAP-033-R- 01	Firestone Test Facility MRS	ROD	None	None	NFA ROD issued August 14, 2015, Ohio EPA concurrence letter issued July 27, 2015	N
RVAAP-034-R- 01	Sand Creek Dump MRS	ROD	None	None	NFA ROD issued August 14, 2015, Ohio EPA concurrence letter issued September 21, 2015	N
RVAAP-046-R- 01	Building F-15 and F-16	SI	None	None	SI report recommends NFA	N
RVAAP-048-R- 01	Anchor Test Area	SI	None	None	SI report recommends NFA	N
RVAAP-050-R- 01	Atlas Scrap Yard MRS	RI	None	None	RI report recommends NFA	N
RVAAP-060-R- 01	Block D Igloo MRS	RI	NA	MEC or MPPEH	RI report recommends FS	N
RVAAP-061-R- 01	Block D Igloo – TD MRS	SI	NA	MEC or MPPEH	RI/FS ongoing	N
RVAAP-062-R- 01	Water Works #4 Dump MRS	ROD	None	None	NFA ROD issued September 29, 2015, Ohio EPA concurrence letter issued December 3, 2015	N
RVAAP-063-R- 01	Group 8 MRS	RI	NA	MEC or MPPEH	RI report recommends FS	N
RVAAP-064-R- 01	Old Hay Field MRS	None	See status column	See status column	Operational range, ineligible for ER,A funding	N

 Table 1 - Summary of Camp Ravenna Environmental Restoration Program Sites

Notes:

ACM asbestos-containing material

AOC area of concern

AST above ground storage tank

CERCLA Comprehensive Environmental Response, Compensation and Liability Act of 1980

COC constituent of concern

COPC EE/CA constituent of potential concern

engineering evaluation/cost analysis

- ER,A Environmental Restoration, Army
- ESD explanation of significant differences
- FS feasibility study

FYR	five-year review
IRA	interim remedial action
LUCs	land use controls
MEC	munitions and explosives of concern
MMRP	Military Munitions Response Program
MPPEH	material potentially presenting an explosive hazard
MRS	Munitions Response Site
NA	not applicable
NFA	no further action
OHARNG	Ohio Army National Guard
PA	preliminary assessment
PAH	polycyclic aromatic hydrocarbon
PCB	polychlorinated biphenyl
PP	proposed plan
RA(C)	remedial action (construction)
RI	remedial investigation
ROD	record of decision
RVAAP	Ravenna Army Ammunition Plant
SI	site inspection
SVOC	semi-volatile organic compound
TCRA	time-critical removal action
UST	underground storage tank
UU/UE	unlimited use/unrestricted exposure
VOC	volatile organic compound

VOC volatile organic compound

423 2.0 SITE CHRONOLOGY

424 The following table lists the dates of important events for Camp Ravenna and the sites evaluated425 in this five-year review.

Event	Date
Facility-Wide	
U.S. Government purchased approximately 25,000 acres in the northeastern part of Ohio in Portage and Trumbull counties and started the construction of facilities for loading, assembling, and packaging of large caliber ammunition and for depot storage	August 1940
The Atlas Powder Company operated the RVAAP for the Ordnance Department	September 1940
RVAAP was placed on standby status	1945
RVAAP was reactivated during the Korean War	April 1951
All production activities ended	August 1957
RVAAP was placed in a standby condition	October 1957
Three load lines and two component lines were reactivated to produce munitions for the Vietnam War	May 1968
The active load lines and component lines were deactivated and demilitarization of munitions continued on a periodic basis	August 1972
RVAAP received a Resource Conservation and Recovery Act (RCRA) Part A permit for the storage and treatment of off-specification munitions and munitions-related waste	1980
Munitions demilitarization activities were discontinued	1992
RVAAP submitted a RCRA Part B permit application for an open burning/open detonation grounds and a hazardous waste storage building. The application was withdrawn because it was determined that there was no longer a need for active demolition work.	1992
Operations and Support Command transferred control and operation of 16,164 acres to the National Guard Bureau (NGB)	May 1999
An agreement was signed to transfer an additional 3,774 uncontaminated acres to the NGB with the remaining acreage to be transferred as restoration of sites is completed	March 2002
The U.S. Army and Ohio EPA sign the <i>Director's Final Findings and</i> <i>Orders</i> to authorize groundwater monitoring at Ramsdell Quarry Landfill and to authorize activities at other RVAAP sites	June 2004

Event	Date
Multiple property transfers to the NGB for use by OHARNG	1999 - 2013
Load Line 1	
Melt and load activities (Trinitrotoluene [TNT] and Composition B) conducted	1941 - 1945, and 1951 - 1957
Soils contaminated with explosives and waste water lines were removed and replaced	1951
Munitions rehabilitation activities (dismantling, replacing components, and repainting of mines) conducted	1961 – 1967
Preliminary site assessment completed	February 1996
Phase I RI performed	1996
Salvage and demolition activities performed, which included the removal of friable asbestos shielding, transite siding, roofing, steel piping, trim, overhead lighting (with PCB ballasts), and structural steel	1996 - 2000
Site buildings demolished	1999 and 2007
Technical Memorandum for Human Health and Ecological Risk Assessment Approach issued	August 2002
Phase II RI performed	2003
Supplemental Baseline Human Health Risk Assessment for Load Line 1 Alternative Receptors issued	July 2004
Focused FS completed	May 2005
Proposed Plan for Remediation of Soil and Dry Sediment at Load Lines 1- 4 issued	July 2005
Final Interim ROD for the Remediation of Soils at Load Lines 1-4 issued	January 2007
Remedial action work plan completed	April 2007
Soil and dry sediment remedial action performed	August – November 2007
Letter issued from U.S. Army Base Realignment and Closure Division (BRACD) to Ohio EPA describing additional removal actions beneath the floor slabs	January 2008
Building floor slabs removed	May 2009
Surface and subsurface soil sampling performed at former building slab areas	October - November 2009
Sampling and characterization of surface soils around former building slabs performed	December 2009

Table 2 Chronology	of Site Events
--------------------	----------------

Event	Date
Sampling and characterization of deeper soils beneath the former building slabs performed	August - September 2010
Sub slab soil remedial action performed	September 2010
Comprehensive data gap sampling of subsurface soil below former building floor slabs and surface soil adjacent to former buildings performed to guide future remedial and administrative measures at the site	June - July 2011
Final characterization sampling report issued	March 2013
Load Line 2	
Melt and load activities (TNT and Composition B) and demilitarization activities conducted	1941 - 1945, 1951 - 1957, and 1969-1971
Preliminary site assessment completed	February 1996
Phase I RI performed	1996
Site buildings demolished	1999 and 2007
Phase II RI performed	2004
Focused FS completed	May 2005
Proposed Plan for Remediation of Soil and Dry Sediment at Load Lines 1- 4 issued	July 2005
Final Interim ROD for the Remediation of Soils at Load Lines 1-4 issued	January 2007
Remedial action work plan completed	April 2007
Soil and dry sediment RA performed	August – November 2007
Letter issued from BRACD to Ohio EPA describing additional removal actions beneath the floor slabs	January 2008
Building floor slabs removed	March - June 2008
Surface and subsurface soil sampling performed at former building slab areas	March - October 2008
Sampling and characterization of surface soils around former building slabs performed	December 2009
Sub slab soil remedial action performed	June 2010
Sampling and characterization of deeper soils beneath the former building slabs performed	August - September 2010

Event	Date	
Comprehensive data gap sampling of subsurface soil below former building floor slabs and surface soil adjacent to former buildings performed to guide future remedial and administrative measures at the site	June - July 2011	
Final characterization sampling report issued	March 2013	
Load Line 3		
Melt and load activities (Composition B) and demilitarization activities conducted	1941 - 1945, 1951 - 1957, and 1969 - 1971	
Site buildings demolished	1999 and 2007	
Preliminary site assessment completed	February 1996	
Phase I RI performed	1996	
Phase II RI performed	2004	
Focused FS completed	May 2005	
Proposed Plan for the Remediation of Soil and Dry Sediment at Load Lines 1-4 issued	July 2005	
Final Interim ROD for the Remediation of Soils at Load Lines 1-4 issued	January 2007	
Remedial action work plan completed	April 2007	
Soil and dry sediment remedial action performed	August – November 2007	
Letter issued from BRACD to Ohio EPA describing additional removal actions beneath the floor slabs	January 2008	
Building floor slabs removed	March - June 2008	
Surface and subsurface soil sampling performed at former building slab areas	March-October 2008 and October - November 2009	
Sampling and characterization of surface soils around former building slabs performed	December 2009	
Sub slab soil remedial action performed	June 2010	
Sampling and characterization of deeper soils beneath the former building slabs performed	August - September 2010	

Event	Date
Comprehensive data gap sampling of subsurface soil below former building floor slabs and surface soil adjacent to former buildings performed to guide future remedial and administrative measures at the site	June - July 2011
Final characterization sampling report issued	March 2013
Load Line 4	
Melt and load activities (TNT) conducted	1941 - 1945, and 1951 - 1957
Site buildings demolished	1999 and 2007
Preliminary site assessment completed	February 1996
Phase I RI performed	1996
Phase II RI performed	2004
Focused FS completed	May 2005
Proposed Plan for the Remediation of Soil and Dry Sediment at Load Lines 1-4 issued	July 2005
Final Interim ROD for the Remediation of Soils at Load Lines 1-4 issued	January 2007
Remedial action work plan completed	April 2007
Soil and dry sediment remedial action performed	August – November 2007
Letter issued from BRACD to Ohio EPA describing additional removal actions beneath the floor slabs	January 2008
Building floor slabs removed	March - June 2008
Surface and subsurface soil sampling performed at former building slab areas	March - October 2008 and October - November 2009
Sampling and characterization of surface soils around former building slabs performed	December 2009
Excavated soil stockpile restoration activities performed	June 2010
Sampling and characterization of deeper soils beneath the former building slabs performed	August - September 2010
Comprehensive data gap sampling of subsurface soil below former building floor slabs and surface soil adjacent to former buildings performed to guide future remedial and administrative measures at the site	June - July 2011

Event	Date	
Final characterization sampling report issued	March 2013	
Load Line 12		
Ammonium nitrate production operations conducted	November 1941 - May 1943	
Buildings 900, 904, and 905 were converted for the demilitarization of munitions	June 1944	
An ammonium nitrate line was operated by the Silas Mason Company for the production of ammonium nitrate fertilizer	1946 - 1950	
A private contractor leased building FF-19 to produce aluminum chloride	1965 - 1967	
Load Line 12 was used to melt-out and recover explosives from bombs	January 1961 - July 1961	
Site buildings demolished	1973 - 1975, 1980, and 1998 - 2000	
A pink water treatment plant was built to treat effluent prior to discharge	1981	
Preliminary site assessment completed	February 1996	
Phase I RI performed	1996	
A relative risk site evaluation was performed by the U.S. Army Center for Health Promotion and Preventative Medicine	1996	
Approximately 1,500 cubic feet of soil removed from four pits near Building 904	1999	
Additional sampling performed by the U.S. Army Corps of Engineers (USACE)	August 2001	
Phase II RI performed	2000	
Preliminary draft characterization report issued	2005	
Supplemental phase II RI performed	2004 - 2005	
FS completed	July 2006	
Proposed Plan for Soil and Dry Sediment issued	March 2007	
ROD for Soil and Dry Sediment Remediation issued	March 2009	
Remedial design completed	October 2009	
Soil and dry sediment remedial action performed	June 2010	
Surface soil samples collected to guide future remedial and administrative measures at the site	June - July 2011	

Event	Date
Final characterization sampling report issued	March 2013
Winklepeck Burning Grounds	
Open burning of explosives from artillery projectiles conducted in four burn pits, on burn pads, and sometimes on roads	Prior to 1980
Thermal treatment of munitions and explosives conducted in a 1-acre RCRA area at former burn pad 37 using metal, refractory-lined trays set on top of crushed slag	After 1980
Hazardous waste management study conducted by the U.S. Army Environmental Health Administration (USAEHA) issued	1983
Soils, groundwater, and surface water characterization report issued by USAEHA	1992
Preliminary site assessment completed	February 1996
Phase I RI performed	1996
Soil sample analysis performed	1997
RCRA field investigation report issued	1998
Phase II RI performed	1998
Biological field truthing effort report issued	March 2003
MEC density survey performed	2004
MEC cleanup performed in various portions of the site	2004 - 2005 and 2008 - 2009
Deactivation furnace soils transferred from RCRA to CERCLA under Director's Final Findings and Orders	June 2004
Phase III RI report issued	March 2005
Focused FS issued	March 2005
Removal action conducted, which included soil contaminated with MEC, chemicals, and asbestos-containing material (ACM)	March - August 2005
Proposed plan for soil and dry sediment issued	October 2005
U.S. Army transferred approximately 180 acres to the NGB for the construction of a Mark 19 Grenade Machine Gun range	2006
Construction of Mark 19 Machine Gun range completed	December 2006
Remedial action work plan issued	July 2008
ROD for soil and dry sediment remediation issued	August 2008

Event	Date
Contract awarded for data quality objectives (DQO) study for MEC and chemical contaminants	September 2005
Soil and dry sediment remedial action for burning pads 61/61A, 67, and 70 performed	September 2008 - May 2009
Remedial action completion report issued	November 19, 2009
DQO Report issued	June 2011
Final Property Management Plan (PMP) issued (identifies LUCs for Winklepeck Burning Grounds)	August 2012
Explanation of significant differences (ESD) for post-ROD changes to the remedy issued	Match 2015
Remedial design for post-ROD changes to the remedy issued	August 27, 2015
Ramsdell Quarry Landfill	
Quarry operations discontinued	1941
Quarry used for landfilling of non-hazardous solid waste	1941 - 1989
Bottom of the landfill used to burn waste explosives from Load Line 1	1946 - 1950
A portion of the quarry was permitted as a sanitary landfill by the state of Ohio	1978
Landfilling operations ceased	September 1989
Landfill closed under state of Ohio solid waste regulations	May 1990
Initial phase groundwater investigation performed	July 1998
Follow-on phase groundwater investigation performed	July 1999
Phase I RI performed	October 2003 - January 2004
The U.S. Army and Ohio EPA sign the <i>Director's Final Findings and</i> <i>Orders</i> to authorize groundwater monitoring at Ramsdell Quarry Landfill to be performed under a facility-wide groundwater monitoring program	June 2004
FS issued	October 2006
Proposed plan for soil and dry sediment issued	March 2007
ROD for soil and dry sediment issued	March 2009
20 acres of the site that contained four burn pads with soil and dry sediment contamination transferred to the Army National Guard	June 2010
Revised final remedial design issued	June 2010

Table 2 Chronology of Site Events

Event	Date
Soil and dry sediment remedial activities started (not completed due to presence of ACM)	July 2010
Engineering evaluation for soil and dry sediment issued	September 2011
Modified proposed plan for soil and dry sediment issued	October 2012
ROD amendment for soil and dry sediment issued	May 2013
Remedial design for soil and dry sediment issued	April 2014
ROD amendment remedial action performed	August - November 2014
Remedial action report for soil and dry sediment issued	January 2015
LUCs established	December 2014

Table 2 Chronology of Site Events

426 **3.0 BACKGROUND**

427 RVAAP was constructed in 1940 and 1941 for ammunition assembly/loading and depot storage.

- 428 It was placed on standby status in 1950. Production activities resumed from 1954 to 1957 and
- 429 1968 to 1972. Demilitarization activities, including disassembly of munitions and explosives
- 430 melt-out and recovery, continued until 1992.

431 Prior to 2002, RVAAP was a 21,419-acre installation. In 2003 the property boundary was

432 resurveyed and found to be 21,683 acres. As of September 2013, administrative accountability

433 for the facility entire acreage has been transferred to the U.S. Property and Fiscal Officer for

434 Ohio and subsequently licensed to the OHARNG for use as a military training site known as

435 Camp Ravenna.

436 **3.1 Physical Characteristics**

437 Camp Ravenna is located in northeastern Ohio within Portage and Trumbull counties,

438 approximately three miles east-northeast of the city of Ravenna and approximately one mile

- 439 northwest of the city of Newton Falls (Figure 1). The facility is approximately 11 miles long and
- 440 3.5 miles wide and is bounded by State Route 5, the Michael J. Kirwan Reservoir, and the CSX
- 441 System Railroad to the south, Garret, McCormick, and Berry roads to the west, the Norfolk
- 442 Southern Railroad to the north, and State Route 534 to the east.

443 **3.1.1 Load Line 1**

Load Line 1 is situated in the southeastern portion of Camp Ravenna (Figure 2). Physicalcharacteristics of the site are illustrated on Figure 3.

- 446 The ground surface is hummocky due to development associated with the load line buildings and
- 447 infrastructure. Elevations range from approximately 40 to 1,016 feet (ft) above mean sea level
- 448 (amsl). Outside of the main production area and to the southeast, the ground slopes
- southeastward. All buildings have been demolished and most of the site is heavily vegetated
- 450 with grasses, scrub vegetation, and immature hardwoods. The original security fence around the
- 451 load line and access gates are intact. Unimproved access roads and former railroad beds traverse
- 452 portions of the site.

453 **3.1.2 Load Line 2**

Load Line 2 is situated in the southeastern portion of Camp Ravenna (Figure 2). Physicalcharacteristics of the site are illustrated on Figure 4.

- 456 Ground surface elevations range from approximately 990 to 1,010 ft amsl. The land surface
- 457 generally slopes from the center of the load line in all directions. All buildings have been
- demolished and most of the site is heavily vegetated with grasses, scrub vegetation, and
- 459 immature hardwoods. The original security fence around the load line and access gates are
- 460 intact. Unimproved access roads and former railroad beds traverse portions of the site.

461 **3.1.3 Load Line 3**

Load Line 3 is situated in the southeastern portion of Camp Ravenna (Figure 2). Physicalcharacteristics of the site are illustrated on Figure 5.

464 Ground surface elevations range from approximately 980 to 1,020 ft amsl. The land surface 465 generally slopes from northeast to southwest. All buildings have been demolished and most of

- the site is heavily vegetated with grasses, scrub vegetation, and immature hardwoods. The
- 467 original security fence around the load line and access gates are intact. Unimproved access roads468 and former railroad beds traverse portions of the site.

469 **3.1.4 Load Line 4**

- 470 Load Line 4 is situated in the southeastern portion of Camp Ravenna (Figure 2). Physical
- 471 characteristics of the site are illustrated on Figure 6.
- 472 Berms are present around former buildings G-12, G-12A, G-16, G-19, and G-19A. Elsewhere at
- the site, the ground surface elevations range from approximately 980 to 1,000 ft amsl. The
- 474 overall topography slopes gently from north to south. Load Line 4 Pond is located in the
- 475 southern portion of the site.
- 476 All buildings have been demolished and most of the site is heavily vegetated with grasses, scrub
- vegetation, and immature hardwoods. The original security fence around the load line and
 access gates are intact. Unimproved access roads and former railroad beds traverse portions of
- 479 the site.

480 **3.1.5 Load Line 12**

- 481 Load Line 12 is situated in the southeastern portion of Camp Ravenna (Figure 2). Physical482 characteristics of the site are illustrated on Figure 7.
- 483 Elevations across the site range from approximately 970 to 990 ft amsl. The land surface gently
- 484 slopes from the west and east towards a main ditch. All buildings have been demolished and
- 485 most of the site is heavily vegetated with grasses, scrub vegetation, and immature hardwoods.
- 486 The original security fence around the load line and access gates are intact. Unimproved access
- 487 roads and former railroad beds traverse portions of the site.

488 **3.1.6 Winklepeck Burning Grounds**

- Winklepeck Burning Grounds is situated in the center of Camp Ravenna (Figure 2). Physicalcharacteristics of the site are illustrated in Figure 8.
- 491 The site is an open area with gently undulating topography. Ground surface elevations decrease
- 492 from west to east and vary from approximately 1,085 to 990 ft amsl. Gravel or dirt roads extend
- 493 east to west and are tied together with connecting roads at the eastern and western ends of the
- 494 site. Former burn pads (70 total) were located alongside of the east-west trending roads.

495**3.1.7Ramsdell Quarry Landfill**

- 496 Ramsdell Quarry Landfill is located in the eastern portion of Camp Ravenna. Physical497 characteristics of the site are illustrated in Figure 9.
- The site is a 14-acre parcel with a 4-acre unlined landfill located in an abandoned quarry. The quarry was excavated to the underlying Sharon Sandstone/Conglomerate and the landfill is 30 to
- 500 40 ft deep. A pool of water is intermittently present in the bottom of the quarry.
- 501 Ground surface elevations range from approximately 955 to 990 ft amsl. Prominent features
- 502 include the former quarry, the landfill, access roads, and a former rail line. The land surface in a
- 503 large portion of the site slopes into the former quarry. The quarry bottom is approximately 40 ft
- below the surrounding area. No surface water outlet exists from the quarry, which causes
- 505 surface water to accumulate at the quarry bottom.

506 **3.2 GEOLOGY**

- 507 Geology at Camp Ravenna consists of horizontal to gently dipping sedimentary bedrock that is
- 508 overlain by unconsolidated glacial deposits consisting of till and outwash. Soils are generally
- 509 derived from silty clay glacial till. Much of the soil was reworked or removed during
- 510 construction activities in operational areas. In general, the soils at the load lines are poorly
- 511 drained and consist of silty clay or clay loam formed over glacial till. Runoff is typically
- 512 medium to rapid and the soil is seasonally wet. The thickness of the soils ranges from thin to 513 absent in the eastern and northwestern portions of Camp Ravenna to an estimated 150 ft in the
- 514 central portion (TEC-Weston 2016).
- 515 The uppermost bedrock consists of several units of the Pottsville Formation, which varies from
- 516 coarse, permeable sandstones to impermeable shales (TEC-Weston 2016). The Sharon
- 517 Sandstone Member is a highly porous, loosely cemented, permeable sandstone that is frequently
- 518 fractured and weathered. It contains local conglomeratic zones that are referred to as the Sharon
- 519 Conglomerate. Thin shale lenses also occur in the upper portion of the Sharon Sandstone.
- 520 Figures showing surface geology and geologic cross sections are provided in Attachment 10.

521 **3.2.1 Load Line 1**

- 522 Soil cover is thin to absent in the vicinity of former buildings CB-4, CB-4A, CA-6, CA-6A, and 523 CB-14. Native soil at the load line belongs to the Mahoning silt loam series.
- 524 The Sharon Conglomerate is exposed at the ground surface throughout the load line. Its 525 presumed thickness exceeds 40 ft. (Leidos 2016j).

526 **3.2.2** Load Line 2

- 527 Poorly drained soils of the Trumbull, Mitiwanga, and Mahoning series are present.
- 528 Unconsolidated zone characteristics vary widely across the load line due to lateral discontinuities 529 within the glacial till and site disturbances (Leidos 2016j).
- 530 The Sharon Conglomerate is the uppermost bedrock unit. It consists of fine to medium grained 531 sandstone with shale lenses.

532 **3.2.3** Load Line 3

- 533 Poorly drained soils of the Mitiwanga and Mahoning series are present. Unconsolidated zone
- characteristics vary widely across the load line due to lateral discontinuities within the glacial till
- and site disturbances (Leidos 2016j). The Sharon Conglomerate is the uppermost bedrock unit.

536 **3.2.4 Load Line 4**

537 Poorly drained soils of the Mahoning series are present. The Sharon Conglomerate is the538 uppermost bedrock unit.

539 **3.2.5** Load Line 12

- 540 Silty to clayey soil derived from glacial sediments overly shale bedrock, except where disturbed
- 541 by previous site activities (SAIC 2009b). The Sharon Conglomerate is the uppermost bedrock
- 542 unit.

543**3.2.6**Winklepeck Burning Grounds

544 The site contains low permeability soil and glacial sediments except where the native materials 545 have been eroded, removed, or covered during previous site operations. The dominant soil types 546 are silt loam and clay loam. Glacial sediments vary across the site and overlay shale/sandstone

547 bedrock at 18 to 43 ft below ground surface (bgs).

5483.2.7Ramsdell Quarry Landfill

- 549 The landfill is underlain by weathered, fractured, fine- to medium grained sandstone of the
- 550 Sharon Conglomerate. Overburden is thin or absent across much of the landfill, particularly
- 551 within the quarry bottom.

552 **3.3 Hydrology**

553 Groundwater at Camp Ravenna is present in the unconsolidated glacial deposits, at the glacial

till-bedrock contact, and in the bedrock. The principal water-bearing aquifer is the Sharon

- 555 Sandstone/Conglomerate. Depending on the existence and depth of overburden, the Sharon
- ranges from an unconfined to a leaky artesian aquifer. Groundwater in the unconsolidated
- by deposits is limited to sandy lenses in the glacial tills, saturated lake sediments, outwash material,
- and alluvial deposits. Groundwater within the unconsolidated water-bearing zone and Sharon
- aquifer predominately flows in an eastward direction with local radial and/or southerly
- 560 components (TEC-Weston 2016).
- 561 The unconsolidated water-bearing zone has numerous local flow variations that are influenced by
- topography and site drainage patterns. These local variations in flow direction have been
- 563 interpreted to indicate that groundwater is generally in direct hydraulic communication with
- surface water and surface water drainage ways may also act as groundwater discharge locations
- 565 (USACE 2004). Groundwater in the bedrock generally flows from higher areas in the western
- 566 portion of Camp Ravenna toward stream valleys in the eastern portion that act as discharge areas.
- 567 Figures showing potentiometric surfaces in the unconsolidated water-bearing zone and sandstone
- aquifer are provided in Attachment 10.
- Outside of Camp Ravenna, domestic water wells and small public water supplies obtain
 reasonable quantities of water from wells completed in unconsolidated deposits.
- **571 3.3.1 Load Lines**
- 572 3.3.1.1 Load Line 1

573 The water table surface typically varies from 19 to 35 ft bgs (USACE 2004). Groundwater is

574 present within the unconsolidated water bearing zone, the Upper Sharon Aquifer, and the Lower

- 575 Sharon Aquifer. Potentiometric surface contours are consistent with topography and exhibit 576 radial flow away from the center of the load line (Attachment 10, Figure 3-1 and Figure 3-3).
- and figure 3-3).
- 577 Surface water drainage generally flows easterly with northeasterly and southeasterly components 578 in the northern and southern half of the load line, respectively (Leidos 2016j). Runoff from the
- 579 former main production area flows via ditches and storm sewers to discharge points along the
- 580 perimeter of the load line.
- 581 3.3.1.2 Load Line 2

582 Groundwater is present in the Upper Sharon and Lower Sharon aquifers. The water table surface 583 varies between 5 to 15 ft bgs and mimics surface topography. Groundwater flows radially in all

- directions within the Upper Sharon Aquifer (Attachment 10, Figure 3-3). The general directionof flow within the Lower Sharon Aquifer is northeast (Attachment 10, Figure 3-4).
- 506 Intermetition and a flore to the next flore the flore the sector of the local line. T
- 586 Intermittent surface water flows to the north and south from the center of the load line. The 587 majority of the surface water flows to the south through a series of manmade ditches that connect
- 587 inajority of the surface water nows to the south through a series of mainfade ditches that connect 588 on the south end of the load line and ultimately discharges into Kelly's Pond. Surface water also
- flows north through a smaller network of ditches to ponds at the north end of the load line
- 590 (Leidos 2016j).
- 591 3.3.1.3 Load Line 3
- 592 The water table surface typically varies between 10 to 30 ft bgs. Groundwater is present in the
- 593 Upper Sharon and Lower Sharon aquifers. Within the Upper Sharon Aquifer, the general
- direction of flow is southwest from a high area centered at the load line (Attachment 10, Figure
- 595 3-3). The general direction of flow within the Lower Sharon Aquifer is the northeast
- 596 (Attachment 10, Figure 3-4).
- 597 A series of drainage ditches convey surface water west across the load line to Cobbs Pond.
- 598 3.3.1.4 Load Line 4
- 599 The water table surface typically varies between 8 to 27ft bgs and mimics topography.
- 600 Groundwater is present within the unconsolidated water bearing zone, the Upper Sharon Aquifer,
- and the Lower Sharon Aquifer. It flows west-northwest towards a tributary entering Cobbs
- 602 Ponds (Leidos 2016j). In the southern portion of the load line, groundwater flows south (refer to
- Attachment 10, Figure 3-1, Figure 3-3, and Figure 3-4).
- 604 Surface water flow into and out of the pond is from the southeast to northwest.
- 605 3.3.1.5 Load Line 12
- The water table surface at Load Line 12 is typically less than 15 ft bgs (USACE 2004).
- 607 Groundwater is present within the unconsolidated water bearing zone, the Upper Sharon Aquifer,
- and the Lower Sharon Aquifer. Groundwater flow within the unconsolidated water bearing zone
- and the Upper Sharon Aquifer generally mimics the topography and surface water drainage
- 610 patterns (Attachment 10, Figure 3-1 and Figure 3-3). The general direction of flow within the
- 611 Lower Sharon Aquifer is northeast (Attachment 10, Figure 3-4).
- 612 Surface water drainage generally flows from south to north across the site. A main ditch bisects
- 613 the central part of the site and flows north. An active channel traverses the site from west to east
- and intercepts the main ditch near the northern boundary of the site. Drainage ditches within
- 615 Load Line 12 are primarily dry, except during rain events.

616 **3.3.2 Winklepeck Burning Grounds**

- 617 The groundwater flow pattern mimics site topography and surface water drainage patterns, it
- 618 generally flows to the east-southeast (SAIC 2005a).
- Surface water drainage generally flows from west to east/southeast across the site and ultimately
 discharges to Sand Creek. No perennial streams exist within the site.

621**3.3.3Ramsdell Quarry Landfill**

- 622 The water table surface is typically less than 25 ft bgs and groundwater flow is generally from
- 623 the southwest to northeast.

624 **3.4** LAND AND RESOURCE USE

- 625 Camp Ravenna is surrounded by several communities. Windham is to the north; Garrettsville is
- 626 six miles to the northwest; Newton Falls is one mile to the southeast; Charlestown is
- 627 immediately southwest; and Wayland is three miles to the south. It is located in a rural area,
- 628 access by the public is controlled, and it is not near any major industrial or developed areas. The
- 629 majority of surrounding land is woodland or farm acreage with the remainder residential.
- 630 Restricted land use and sound forest management practices within Camp Ravenna have
- 631 preserved and enabled forest tracts to mature (SAIC 2005a). The Northern Long Eared Bat was
- 632 listed by the U.S. Fish and Wildlife Service as a federally threatened species in 2015 in Ohio.
- 633 This species is known to reside at Camp Ravenna. According to the *Updated Integrated Natural*
- 634 *Resources Management Plan* (OHARNG 2014), several State-listed threatened and endangered
- 635 species have been confirmed at Camp Ravenna.
- 636 Jurisdictional wetland delineations at Camp Ravenna have surveyed approximately 26 percent
- 637 (5,680 acres) of the land. Approximately 13 percent (715 acres) of the surveyed area has been
- delineated as jurisdictional wetlands. The wetland communities consist of submergent marsh,
- floating-leaved marsh, mixed emergent marsh, cat-tail marsh, sedge-grass marsh, mixed shrub
- 640 swamp, button bush swamp, oak-maple swamp forest, mixed swamp forest, mixed floodplain
- 641 forest, wet fields, and red maple woods (OHARNG 2014).
- 642 Camp Ravenna is used by OHARNG for military training. Training and related activities
- 643 include ranges, field operations and bivouac training, convoy training, equipment maintenance,
- and storage of heavy equipment. The facility is fenced and access is controlled.
- 645 Anticipated future land uses for the sites are identified below.
- Load Lines 1 4 and 12; military training (vehicle maneuver area)
- Winklepeck Burning Grounds; small arms range (Mark 19 Grenade Machine Gun and Multi-Purpose Machine Gun)
- Ramsdell Quarry Landfill; closed landfill, restricted access
- 650 **3.5 HISTORY OF CONTAMINATION**

651 **3.5.1 Load Lines 1 Through 4**

- Load Lines 1 4 were used to melt and load TNT, Composition B (a mixture of TNT and RDX
- 653 [1,3,5-trinitroperhydro-1,3,5-triazine], and HMX [octahydro-1,3,5,7-tetranitro-1,3,5,7-
- tetrazocine]) into large-caliber shells. The load lines also were used for munitions rehabilitation
- activities (production and reconditioning of anti-tank mines) and the demilitarization of
- 656 projectiles. Previous industrial operations conducted at these sites are summarized below.
- Handling and screening of bulk TNT, RDX, and HMX
- Melting and loading TNT, Composition B, and HMX explosives into large-caliber shells
- Painting, drilling and boostering shells
- Munitions rehabilitation activities (dismantling, replacing components, and repainting mines)
- Quality assurance/quality control (QA/QC) using x-ray units
- Truck and equipment maintenance
- Paint, oil, solvent, and equipment storage

- Ancillary facilities for heating, ventilation, and air conditioning (HVAC), steam plant and
 power house, waste water treatment, elevator machine house, shipping, cafeteria, and
 worker change houses
- 668 The operations produced explosive dust, spills, and vapors that collected on the floors and walls
- of each building. Periodically, the floors and walls were cleaned with water and steam. The
- 670 liquid, containing TNT and Composition B, was known as "pink water" for its characteristic
- 671 color. Soil and dry sediment became contaminated as a result of these operations.

672 **3.5.2 Load Line 12**

673 Load Line 12 was originally known as the Ammonium Nitrate Plant. Operations started on 674 November 25, 1941. Structures related to the production of ammonium nitrate included a 675 Neutral Liquor Building (Building FF-19) and seven evaporation/crystallization units (Buildings 900, 901, 902, 903, 904, 905, and 906). From 1949 to 1993, munitions were periodically 676 677 demilitarized at the site. Building wash-down water and wastewater from bomb melt-out 678 operations, performed intermittently following the end of ammonium nitrate production, was 679 collected in a house gutter system and flowed through a piping system into two stainless steel 680 tanks. The first tank was used for settling and the second tank was used for filtration. Prior to 681 1980, the water leaked under the building and ponded there. Wash-down water from Building F-682 904 was also swept out through doorways onto the ground surrounding the building. Other 683 structures included Water Works No. 2 and Power House No. 3 (Building FE-17), which housed

684 support operations. A drainage ditch (main ditch) approximately bisects the site.

685 **3.5.3 Winklepeck Burning Grounds**

Winklepeck Burning Grounds is approximately 200 acres and was operated from 1948 to 1998.
Prior to 1980, open burning activities were performed in unlined pits, pads, and sometimes on

- roads and ditch lines within the area. Materials that were burned included TNT, RDX,
- 689 Composition B, antimony sulfide, lead azide, propellants, black powder, waste oils, sludge from
- 690 the load lines, domestic wastes, hospital waste, explosives-contaminated waste, and small
- amounts of laboratory chemicals. The resulting ash was abandoned in-place. Munitions,
- 692 munitions debris (primarily scrap metal), and explosive constituents were present at the site.
- From 1980 to 1989, burning of scrap explosives, propellants, and explosives-contaminated
- 694 materials was conducted within raised refractory-lined trays located within a 1.5-acre area.

6953.5.4Ramsdell Quarry Landfill

The landfill was used from 1941 to 1989. From 1946 to 1950 the site also was used as a landsurface burning site to thermally destroy waste explosives from Load Line 1 and napalm bombs. From 1976 to 1989 a portion of the site was used as a nonhazardous solid domestic waste landfill. The landfill ceased operations in September 1989 and was closed in May 1990 in accordance with State of Ohio solid waste regulations. The landfill has been capped and covers approximately four acres. The four-acre closed landfill is regulated under RCRA while the remaining bottom portion of the quarry is regulated under CERCLA.

703 **3.6 INITIAL RESPONSE**

704 **3.6.1** Load Lines 1 Through 4

In 1951, soil contaminated with explosives was removed from Load Line 1 and replaced withclean fill. Building demolition and salvage activities occurred in 1999 and 2007.

707 **3.6.2 Load Line 12**

Site buildings were demolished in 1973 to 1975, 1980, and 1998 to 2000.

709 **3.6.3 Winklepeck Burning Grounds**

MEC cleanup activities were performed on various portions of the site during 2004 to 2005 and2008 to 2009.

712 **3.6.4 Ramsdell Quarry Landfill**

Ramsdell Quarry Landfill was operated as a State of Ohio permitted sanitary landfill in 1978 and
 was closed under state of Ohio solid waste regulations in 1990.

715 **3.7 Basis for Taking Action**

716 The basis for taking action at each site is summarized on forms provided in Attachment 3 and 717 discussed below.

718 **3.7.1 Load Lines 1 Through 4**

- Table 3 lists COCs that were detected in soil and dry sediment at Load Lines 1 4. They were
- 720 present at concentrations that exceeded human health criteria associated with a National Guard
- 721 trainee receptor (incremental lifetime cancer risk [ILCR] greater than 10⁻⁵ and/or hazard index
- [HI] greater than one). Potentially complete exposure pathways were identified in the risk
- assessment for inhalation, ingestion, and direct contact.

Table 3 COCs in Soil and Dry Sediment at Load Lines 1 Through 4

СОС		Load Line			
COC	1	2	3	4	
Inorganic	cs				
Aluminum		Х	X	X	
Antimony		Х			
Arsenic	X	Х	X	X	
Barium			X		
Cadmium			Х		
Chromium, hexavalent		Х			
Lead	X				
Manganese	X	Х	Х	Х	
Explosive	2S				
2,4,6-TNT	X	Х	X		
RDX	X	Х			
PCBs					
Aroclor-1254	X	Х	Х	X	
SVOCs					
Benz(a)anthracene	X				
Benzo(a)pyrene	X	Х	Х		
Benzo(b)fluoranthene	X	X			
Dibenz(a,h)anthracene	X				

724 **3.7.2 Load Line 12**

- Soil and dry sediment within a section of the main ditch contained arsenic at concentrations that
- exceeded an ILCR greater than 10^{-5} for a National Guard trainee receptor. Arsenic is the sole
- 727 COC for Load Line 12. Potentially complete exposure pathways were identified in the risk728 assessment for inhalation, ingestion, and direct contact.

729 **3.7.3** Winklepeck Burning Grounds

- 730 The COCs listed below were present in soil and dry sediment at concentrations that exceeded
- risk-based levels. Potentially complete exposure pathways were identified in the risk assessment
 for inhalation, ingestion, and direct contact associated with an OHARNG range maintenance
- 732 for inhalation, inges733 soldier.
 - 733 soldier.
- 734 RDX
- Benz(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Dibenz(a,h)anthracene
- Indeno(1,2,3-cd)pyrene

740 3.7.4 Ramsdell Quarry Landfill

- The COCs listed below were present in soil and dry sediment at concentrations that exceeded
 risk-based levels for a National Guard security guard/maintenance worker. Potentially complete
 exposure pathways were identified in the risk assessment for inhalation, ingestion, and direct
 contact.
- 745 D ()
- 745 Benz(a)anthracene746 Benzo(a)pyrene
- 740 Benzo(a)pyrene747 Benzo(b)fluoranthene
- 748 Dibenz(a,h)anthracene
- Indeno(1,2,3-cd)pyrene

750 4.0 REMEDIAL ACTIONS

751 Remedial action summaries for each site are provided in Attachment 3 and discussed below.

752 **4.1 LOAD LINES 1 THROUGH 4**

753 **4.1.1 Remedy Selection**

- 754 The remedial action objective (RAO) identified in the 2007 Interim ROD was established to
- 755 prevent ingestion, inhalation, or direct contact with COCs exceeding cleanup goals (identified in
- Table 4) for soil and dry sediment. Interim status was applied to the ROD because soil beneath
- the former building slabs was excluded.

COC	Cleanup Goal (mg/kg) ^{1,2}
Inorgai	nics
Aluminum	34,942
Antimony	2,458
Arsenic	31
Barium	3,483
Cadmium	109
Chromium, hexavalent	16
Manganese (surface soils)	1,800
Manganese (subsurface soils)	3,030
Lead	1,995
Explosi	ives
2,4,6-TNT	1,646
RDX	838
РСВ	s
Aroclor-1254	35
SVOC	Cs
Benz(a)anthracene	105
Benzo(a)pyrene	10
Benzo(b)fluoranthene	105
Dibenz(a,h)anthracene	10

Table 4 Load Lines 1 Through 4 Soil Cleanup Goals

Notes:

mg/kg - milligrams per kilogram

¹ Soil 0 to 4 ft bgs is used for a National Guard trainee. Surface soils refer to the interval from 0 to 1 ft bgs and subsurface soil is greater than 1 ft bgs.

² Cleanup goals are based on an individual ILCR of 10⁻⁵ and/or a HI of 1.

The selected remedy for surface and subsurface soil and dry sediment at Load Lines 1 - 4 was
excavation and off-site disposal. This remedy included the following components (USACE
2007):

- Excavation of discrete areas of contaminated surface and subsurface soil and dry sediment that contained COCs at concentrations exceeding the cleanup goals
- Temporary on-site storage of excavated soil and dry sediment via stockpiling for characterization
- Off-site disposal of excavated soil and dry sediment at a permitted landfill and, as
 needed, at a TSCA and/or RCRA permitted landfill
- Replacement of excavated material with compacted clean backfill
- Groundwater monitoring to ensure the remedy does not impact groundwater
- Maintenance of building slabs and foundations

The Interim ROD required groundwater monitoring for five years to ensure that the remedial activities did not impact groundwater and to determine pre-remedial conditions. No numerical goals were established to interpret the groundwater data. Sampling was required on a semiannual basis for the first two years after the remedy was implemented. After the initial two-year period, the sampling frequency would be determined based on the analytical results. The following monitoring wells to be used were listed in the *Final Remedial Action Work Plan Remediation of Soils at Load Lines 1, 2, 3, and 4* (Shaw 2007):

- LL1mw-067, -078, -081, -082, -084, -085
- LL2mw-262, -263, -266, -267, -269
- LL3mw-236, -238, -239
- LL4mw-196, -197, -198
- 781 Results would be evaluated in the context of a facility-wide groundwater monitoring program
- and any follow-up actions would be determined by the U.S. Army with Ohio EPA approval.
- 783 Groundwater remedial action is deferred pending the completion of this facility-wide
- 784 groundwater monitoring program.
- The concrete slabs and building foundations that remained in place after remediation would beinspected periodically to ensure that their integrity was not compromised.

787 **4.1.2 Remedy Implementation**

- The Interim ROD remedy was implemented during August to November 2007. A total of 11,241
- tons of contaminated soil and dry sediment was removed from 119 locations and disposed offsite. The excavated material included 1.752 tons of PCB-contaminated soil/dry sediment and
- 9.489 tons of non-hazardous soil/dry sediment (Table 5). The maximum depth of the
- excavations was 3 ft bgs and most excavations were typically 2 ft bgs. The excavated areas are
- 793 illustrated in Figures 3 to 6.

Load Line	Excavated Soil and Dry Sediment (tons)		
	PCB-Contaminated	Non-Hazardous	
1	539	3,126	
2	320	2,617	
3	893	2,538	
4	0	1,208	
Totals	1,752	9,489	

Table 5 Volume of PCB Contaminated and Non-Hazardous Excavated Soil and Dry Sediment from Load Lines 1 Through 4

794 Soil and dry sediment confirmation sampling was performed using a multi-increment sampling

795 method. All cleanup goals were met. Each excavation area was restored by placing clean fill

from an off-site source and seeding. Baseline groundwater samples were collected in accordance 796

797 with the Final Remedial Action Work Plan Remediation of Soils at Load Lines 1, 2, 3, and 4

798 (Shaw 2007).

799 Soils from beneath the slabs and adjacent to the slabs were sampled in 2008 (Load lines 2, 3, and 800 4) and 2009 (Load lines 1, 3, and 4). The building slabs and foundations were removed in 2008 801 and 2009. Contaminated soil and dry sediment was subsequently removed and disposed off-site. 802 This activity was not specified in the Interim ROD. It was documented in U.S. Army

803 correspondence to Ohio EPA (BRACD 2008).

804 Sampling, analysis, and remedial actions performed in areas not addressed by the Interim ROD 805 have been discussed in other documents, which include:

- 806 • Final Multi-Increment Sampling and Analysis of Soils Below Floor Slabs at RVAAP-09 Load 807 Line 2, RVAAP-10, Load Line 3, and RVAAP-11 Load Line 4 (December 2009)
- 808 • Final Sampling and Analysis of Soils Below Floor Slabs at RVAAP-08 Load Line 1 and Other 809 Building Locations (September 2010)
- 810 • Final Remedial Action Completion Report Sub-Slab Soils at RVAAP-09 Load Line 2, RVAAP-10 Load Line 3, and RVAAP-11 Load Line 4 (December 2010) 811
- 812 • Final Sampling Report of Surface and Subsurface Incremental Sampling Methodology at Load Lines 1, 2, 3, and 4 (RVAAP-08, 09, 10, and 11) Ravenna Army Ammunition Plant 813 814 (March 2011)
- 815 • Final Remedial Action Completion Report Sub-Slab Soils at RVAAP-08 Load Line 1 (March 816 2011)
- 817 • Final Characterization Sampling Report of Surface and Subsurface Incremental Sampling 818 Methodology at Load Lines 1, 2, 3, 4 and 12 (RVAAP-08, 09, 10, 11, and 12) Ravenna Army 819 Ammunition Plant Ravenna, Ohio (March 2013)

820 Load Lines 1–4 are currently undergoing a FS addendum to evaluate the need for additional soil

- 821 and dry sediment remediation to achieve less restrictive use (residential or commercial/
- 822 industrial) of the sites. This activity was not identified in the Interim ROD. It is being
- 823 performed to remove the need for access restrictions and site controls that would hamper future

824 military training activities. The final FS addendum has not been released. A ROD amendment

will be prepared to address any additional remediation needed to achieve less restrictive use ofthe site (ARNG 2016).

827 **4.1.3** Maintenance and Monitoring

828 4.1.3.1 Groundwater

829 In general, groundwater samples have been collected for soil COCs from monitoring wells

830 identified in the Interim ROD. Groundwater at Camp Ravenna is managed through a facility-

831 wide approach called the "Facility-Wide Groundwater Monitoring Program", which is a

832 component of the *Director's Final Findings and Orders*. A separate RI/FS will be completed for

- facility-wide groundwater. These activities are being performed outside of the Interim RODrequirements.
- 835 4.1.3.2 Building Slabs and Foundations

Inspection and maintenance of the building slabs and foundations required by the Interim ROD
was not performed because these structures were removed in 2008 and 2009.

838 **4.2** LOAD LINE 12

851

839 4.2.1 Remedy Selection

840 The RAO presented in the 2009 ROD was established to prevent a National Guard trainee from 841 exposure to contamination in surface soil and dry sediment in the main ditch, which was defined

exposure to contamination in surface soft and dry sediment in the main ditch, which was as the top 4 ft of soil. The cleanup goal for arsenic was $31 \text{ mg/kg.}^{3,4}$

- 843 The selected remedy included the following components (SAIC 2009a):
- Preparation of a remedial design plan to detail preparatory activities, the extent of
 excavation, construction implementation and sequencing, decontamination, segregation,
 transportation, disposal of various waste streams, and LUCs
- Excavation and off-site disposal of contaminated soil and dry sediment from the main ditch to a depth of 4 ft bgs
- Handling of excavated materials and truck transportation to a licensed and permitted disposal facility
 - Confirmatory sampling to verify that the cleanup goal had been achieved
- Restoration of the remediated area by backfilling with clean soil and revegetation
- Implementation of LUCs until the arsenic concentrations in soil and groundwater are
 reduced to levels that allow for unrestricted use

Betails of the LUC implementation, maintenance, and periodic inspections were provided in the *Final Remedial Design for the RVAAP-12 Load Line 12* (SAIC 2009c). The LUC performance
objectives included:

- Maintenance of the Camp Ravenna perimeter fence
- Restricting future land use to mounted training (military use)
- Maintenance of the LUC program

³ Sediment from the main ditch aggregate

⁴ Total ICLR greater than 10⁻⁵ to a National Guard trainee from contaminants in the main ditch

- Limiting activities to tracked and wheeled operations that are consistent with a National
 Guard mounted training scenario and other essential security, safety, and natural
 resources management activities
- Prohibiting digging beyond 4 ft bgs, except for ground surface repairs resulting from maneuver damage and routine maintenance of the roads, ditches, and culverts
- The remedial design also established the following actions to ensure that the LUC objectives are met:
- Preparing geographic information system (GIS) data and a map indicating the location and dimensions of the AOC with the LUC location. This would include signage and markers placed in locations to identify areas where the LUC applies
- Incorporating an environmental overlay and appropriate Ohio EPA notice procedures into a PMP
- Through the PMP, prohibiting digging or excavation activities beyond 4 ft bgs, except for
 routine maintenance of roads, ditches, and culverts; and ground surface repairs resulting
 from maneuvering damage
- Through the PMP, maintaining the Camp Ravenna perimeter fence and limiting activities to tracked and wheeled operations that are consistent with a National Guard mounted training scenario and other essential security, safety, and natural resource management activities
- Periodic monitoring in the form of site inspections conducted by the U.S. Army to confirm whether the LUCs remain effective and meet LUC objectives
- 881 LUCs concerning disturbance of soil and restriction to military training use were expected to
- remain in place indefinitely unless further action was taken to reduce the concentrations of
- hazardous substances in soil to levels that allow for other uses of the site.
- Site inspections would be conducted as necessary, but not less than once per year. Monitoring
 results would be reported in an annual LUC report, which would be used for the CERCLA
 121(c) five-year review. A written certification was required in the LUC monitoring report
- stating whether or not the LUCs remain in place and are effective.

888 4.2.2 Remedy Implementation

- The remedy was implemented in 2010. A total of 1,181 tons of sediment were removed from the
 main ditch and disposed off-site (SAIC 2010c). Figure 7 shows the location of remediated areas.
 All confirmation sampling results were below the cleanup goal. Approved backfill from an off-
- site source was placed and graded to match the existing drainage channel and neighboring
- 893 elevations. The ditch and disturbed construction support areas were revegetated after backfilling
- and grading was completed.
- 895 Surface soil samples were collected in 2011 to address data gaps that were identified in a
- 896 comprehensive assessment of previous environmental data that was conducted to guide future
- remedial and administrative measures at the site (Prudent 2013). The results were compared to
- 898 cleanup goals for National Guard trainee and resident adult farmer receptors presented in the
- 899 Final Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant
- 900 (SAIC 2010a). These activities were not identified in the ROD.

- 902 Load Line 12 is currently undergoing a FS addendum to evaluate the need for additional soil and
- 903 dry sediment remediation to achieve less restrictive use (residential and commercial/industrial)
- 904 of the site. This activity was not identified in the ROD. It is being performed to remove the
- 905 need for access restrictions and site controls that would hamper future military training activities.
- 906 The final FS addendum has not been released. A ROD amendment will be prepared to address
- 907 any additional remediation needed to achieve unrestricted use of the site (ARNG 2016).
- LUCs, including site inspections and preparation of a LUC monitoring report, have not beenofficially implemented.

910 **4.2.3** Maintenance and Monitoring

- 911 No maintenance and monitoring activities associated with the ROD have been conducted at the
- 912 site since the remedy was implemented in 2010. The site has not been used for military training
- since the ROD was issued.

914 4.3 WINKLEPECK BURNING GROUNDS

Two separate remedies were selected for the site. They represent remedial actions identified in a
ROD (2008) and in a subsequent ESD (2015).

917 4.3.1 Remedy Selection

- 918 4.3.1.1 ROD Remedy
- 919 The RAO identified in the 2008 ROD was established to prevent exposure of a National Guard
- 920 range maintenance soldier to contaminants in soil and dry sediment exceeding risk based cleanup
- goals to a maximum depth of 4 ft bgs. These cleanup goals are listed in Table 6.

Table 6 Winklepeck Burning Grounds Soil Cleanup Goals for 2008 ROD Remedial Action

COC	Cleanup Goal (mg/kg) ^{5,6}
Expl	losives
RDX	617
SV	<i>OCs</i>
Benz(a)anthracene	75
Benzo(a)pyrene	7.5
Benzo(b)fluoranthene	75
Dibenz(a,h)anthracene	7.5
Indeno(1,2,3-cd)pyrene 75	

- 922 The selected remedy for former burning pads 61, 61A, and 67 was removal and off-site disposal
- 923 of chemically contaminated soil and dry sediment concurrent with munitions and explosives of
- 924 concern (MEC) removal. The selected remedy for former burning pad 70 was ACM removal.
- 925 These remedies included the following components (SAIC 2008):
- Clearing of vegetation

⁵ Soil 0 to 4 ft bgs, National Guard range maintenance soldier

⁶ Cleanup goals are based on a cumulative ILCR greater than 10⁻⁵ to an OHARNG range maintenance soldier

- 927 • Geophysical surveys and visual inspections to identify metal debris 928 • Removal of transite and friable asbestos from the surface and subsurface within the 929 footprint of pad 70 930 • Excavation of contaminated soil by layers to depths of 1 to 4 ft 931 • Screening (sifting) of the excavated soil for metal debris (potential MEC) 932 • Confirmation sampling to determine chemical characteristics of the remaining soil and to 933 verify the absence of visible asbestos within the sides and bottom of the excavation 934 • Multi-increment sampling and testing of sifted soil to determine disposal requirements 935 • Disposal of contaminated soil at an approved off-site facility 936 • Backfilling the excavations using material from a source approved by the U.S. Army and 937 Ohio EPA 938 • Site restoration 939 Implementing LUCs for the AOC •
- LUC details were provided in the *Final Remedial Action Work Plan [for] Winklepeck Burning Grounds* (MKM 2008). The LUC performance objectives included:
- Maintenance of the Camp Ravenna perimeter fence

955

- Restricting future land use as a small arms weapons range
- Limiting activities to target practice; maintenance of targetry and associated lifting
 mechanisms; range maintenance, compatible natural resource management activities, and
 other activities that are consistent with a range maintenance soldier exposure scenario
- 947 Prohibiting digging or excavation at the AOC outside of any unexploded ordnance 948 (UXO)/MEC/discarded military munitions
- The remedial action work plan (MKM 2008) also established the following actions to ensure thatthe LUC objectives are met:
- Preparing GIS data and a map indicating the location and dimensions of the AOC and the known extent of soil contamination with the LUC location. Signage and/or fencing
 would be placed in locations that do not conflict with the range impact area to identify the areas of known soil contamination.
 - Incorporating an environmental overlay and appropriate procedures into the PMP
- Through the PMP, prohibiting all digging or excavation activities except for routine
 maintenance of roads, ditches, and culverts; ground surface repairs by authorized range
 personnel in support of range activities; and digging along target array areas by
 authorized range personnel to a depth of 1 ft bgs
- Through the PMP, maintaining the Camp Ravenna perimeter fence and restricting land use of the AOC as a small arms weapons range
- LUCs concerning disturbance of soil in the AOC outside of UXO/MEC-cleared areas are
 expected to remain in place indefinitely. LUCs restricting use of the range are expected to
 remain in place indefinitely unless further action is taken to reduce the concentrations of
 hazardous substances in soil to levels that allow for UU/UE.
- Periodic monitoring of the LUCs is required. It consists of conducting site inspections toconfirm whether the LUCs remain effective and meet objectives for continued remedy

968	protectiveness. The frequency of the inspections is not less than once per quarter and as
969	necessary. Monitoring results are to be included in an annual LUC monitoring report that is
970	provided to the Ohio EPA and used for five-year reviews. The LUC monitoring reports require
971	written certification stating whether or not the LUCs remain in place and are effective.

- 972 4.3.1.2 ESD Remedy
- 973 An ESD (USACE 2015a) was prepared to enable using the site as a Multi-Purpose Machine Gun
- 974 range, which requires more flexibility for training than currently allowed for the Mark 19
- 975 Grenade Machine Gun range. A RAO was identified in the Remedial Design for Post ROD
- Changes to the Remedy at RVAAP-05 Winklepeck Burning Grounds (USACE 2015c) as: 976
- 977 "Prevent exposure to soils with contaminant concentrations greater than cleanup goals 978 which are based on USEPA Industrial RSLs."
- 979 COCs and cleanup goals identified in the 2015 ESD include PAHs, RDX, and TNT at
- 980 concentrations that meet the 10⁻⁵ cumulative excess lifetime cancer risk and a non-cancer HI of 1
- for a full-time military workers (commercial industrial land use). Remedial action requirements 981
- 982 for these COCs are expressed in terms of areas, depths, and volumes of contaminated soil to be
- 983 removed. The Draft Remedial Investigation/Feasibility Study Supplement for RVAAP-05
- 984 Winklepeck Burning Grounds (USACE 2014) provides COC concentrations corresponding to 985
- these cleanup goals, which are listed in Table 7.

Table 7 Winklepeck Burning Grounds Soil Cleanup Goals for 2015 ESD Remedial Action

COC	Cleanup Goal (mg/kg)	Basis ⁷
Explosives		
RDX	240	1
2,4,6-TNT	420	2
SVOCs		
Benzo(a)pyrene	2.1	1

- 1 Target cancer cumulative risk = 10^{-5}
- 2 Total hazard quotient = 1
- The remedy requires removal of approximately 5,280 cubic yards (yd³) of contaminated soil 986 987 from former burning pads 38, 61/61A, and 66/67.

988 4.3.2 **Remedy Implementation**

- 989 4.3.2.1 ROD Remedy
- 990 4.3.2.1.1 Soil Excavation
- 991 The ROD remedy was implemented in 2008 and 2009. A total of 7,384 yd³ of soil was removed 992 and disposed off-site (Table 8). The excavated areas are illustrated in Figure 8.

⁷ USEPA Industrial Soil Risk Screening Levels

Location	Excavated Soil and Dry Sediment (yd ³)
Pad 61	2,334
Pad 61 Berm	2,000
Pad 61A	2,160
Pad 67	90
Pad 70	800
Total	7,384

Table 8 Volume of Excavated Soil and Dry Sediment from Winklepeck Burning Grounds

A total of 19 MEC items were recovered and demolished during the remedial action, which

994 included Mark II hand grenades, 40-millimeter practice grenades, point detonating fuses, point

detonating device M52B1, grenade fuses, and a base detonating fuse. Recovered scrap metal

was inspected to ensure that explosive materials were absent. It was subsequently shipped off-

site for recycling.

ACM was discovered during excavation activities at burning pads 61 and 61A. Work was

999 paused while health and safety concerns were addressed; the excavation was then resumed as

1000 planned. All confirmation samples from the excavations were below the site cleanup goals.

1001 4.3.2.1.2 LUCs

1002 A final PMP was issued in 2012 (USACE 2012b). It describes LUCs and restrictions for AOCs

at Camp Ravenna. Land use and engineering controls for Winklepeck Burning Grounds are provided in an appendix to the PMP that includes:

- A description of land use and activities
- A map showing the location and dimensions of the AOC
- A description of the LUCs
- Monitoring and reporting requirements
- 1009 4.3.2.2 ESD Remedy
- 1010 The ESD remedial action was started in November 2016.

10114.3.3Maintenance and Monitoring

- 1012 Quarterly LUC inspections have been conducted at Winklepeck Burning Grounds since February1013 2013. They included:
- A review of training applicable to the site-specific LUCs
- An inspection of the Camp Ravenna perimeter fence to ensure that it is maintained in a manner that is protective and deters trespassers
- A review of current land uses at the site to determine if they are in compliance with the LUCs
- A description of any noted LUC deficiencies, any corrective actions taken to remedy the deficiencies, and/or any recommended corrective action
- 1021 Annual and quarterly reports have been issued since 2013. Results are summarized below.

- LUC awareness training and refresher training has been provided annually to all Camp Ravenna staff and tenant units at Camp Ravenna. Military units have also been briefed prior to using the range.
- The entire Camp Ravenna perimeter fence has been inspected quarterly. Breaches in the fence that would allow an adult unlawful access to the installation were documented and compiled on GIS-based figures. Overall, the fence has been intact and in good condition.
 The ARNG has been notified of any breaches and subsequent LUC inspections checked these areas to verify whether required repairs have been made.
- Land use has been consistent with LUC requirements
- Quarterly and annual LUC monitoring reports have been prepared in accordance with the requirements
- 1033 4.4 RAMSDELL QUARRY LANDFILL

1034 4.4.1 Remedy Selection

- 1035 Two separate remedies were selected and implemented at the site. They represent remedial 1036 actions identified in a ROD and in a subsequent ROD amendment.
- 1037 4.4.1.1 ROD Remedy
- 1038 The ROD for soil and dry sediment at Ramsdell Quarry Landfill was issued in March 2009
- 1039 (SAIC 2009b). The RAO was to prevent security guard/maintenance worker exposure to
- 1040 contaminants in soil and dry sediment that exceeded cleanup goals listed in Table 9 to a depth of
- 1041 1 ft bgs.

COC	Cleanup Goal (mg/kg)
Benz(a)anthracene	13
Benzo(a)pyrene	1.3
Benzo(b)fluoranthene	13
Dibenz(a,h)anthracene	1.3
Indeno(1,2,3-cd)pyrene	13

Table 9 Ramsdell Quarry Landfill Cleanup Goals

- 1042 The selected remedy involved excavation and off-site disposal of contaminated soil and dry
- sediment that exceeded cleanup goals for reasonably anticipated activities performed at the site.The remedy included the following components:
- To the femeral mendeed the following components.
- 1045• Preparation of a remedial design plan
- Excavation of contaminated soil and dry sediment
- Handling of excavated materials
- Off-site disposal
- Confirmatory sampling
- 1050 Site restoration
- 1051 LUCs

1052 Post-closure care and maintenance of the landfill would continue in accordance with Ohio solid

1053 waste regulations.

1054 LUC details were provided in the *Revised Final Remedial Design* (SAIC 2010b). The LUC performance objectives included: 1055 1056 Maintenance of the Camp Ravenna perimeter fence 1057 • Restricting future land use as "restricted access" • Maintaining a LUC training program 1058 1059 • Limiting site activities to those that are consistent with the security guard/maintenance 1060 worker exposure scenario, which includes site security, safety, natural resources 1061 management, and landfill management • Wetland monitoring for a minimum of five years after completion of the remedial action 1062 Prohibiting digging or excavation within the AOC boundary with the exception of the 1063 • 1064 sanitary landfill where post-closure care and maintenance activities would be governed by Ohio solid waste regulations 1065 1066 The remedial design established the following actions to ensure that the LUC objectives were 1067 met: 1068 Preparing GIS data and a map identifying the AOC boundary and the LUC location • signage/markers would be placed in locations to identify the areas where the LUCs apply 1069 1070 • Incorporating an environmental overlay and appropriate notice procedures into the PMP 1071 • Through the PMP, prohibiting all digging or excavation activities except for ground surface repairs by authorized personnel in support of landfill cap integrity 1072 1073 • Through the PMP, maintaining the Camp Ravenna perimeter fence and restricted access 1074 land use of the landfill 1075 Through the PMP, implementing wetlands monitoring for a minimum of five years after • 1076 the completion of the remedial action, which would include: Weekly monitoring of the site until storm water pollution prevention plan 1077 0 (SWPPP) requirements were met 1078 1079 • Quarterly monitoring of the mitigated wetland once the SWPPP controls were 1080 achieved 1081 • Removal of invasive species to ensure that no more than 25 percent invasive 1082 species were present in the established wetland 1083 • Preparation of an annual report that summarizes quarterly monitoring activities 1084 LUCs would be maintained until the contaminant concentrations in soil and groundwater were 1085 reduced to levels that allow for unrestricted use. Wetland monitoring may be discontinued after 1086 a minimum five year period. 1087 4.4.1.2 **ROD** Amendment Remedy 1088 An engineering evaluation (SAIC 2011b) was performed to address friable ACM that was 1089 encountered during implementation of the remedial action. A ROD amendment (SAIC 2013) 1090

- 1090 was issued in May 2013 because the presence of friable ACM was considered a fundamental 1091 change to the basic features of the remedy selected in the ROD with respect to scope,
- 1092 performance, or cost. The following RAO for this amended remedial action was presented in the
- 1093 Final Remedial Design for Soil and Dry Sediment at RVAAP-01 Ramsdell Quarry Landfill
- 1094 (Leidos 2014b):

- Protect future receptors from remaining COCs in soil above site cleanup goals and residual asbestos by restricting access to the AOC.
- 1097 The amended remedy consisted of:
- A fence at the perimeter of the site to encompass the closed landfill, quarry bottom, and wetlands
- Implementing best management practices to remove surficial ACM through nonintrusive/no-digging methods
- 11024.4.2Remedy Implementation
- 1103 4.4.2.1 ROD Remedy
- 1104 The remedial action was started in 2010 with the excavation of soil and dry sediment in the 1105 quarry bottom at the northeastern section of the site. Debris was encountered in the excavation 1106 that included construction and miscellaneous material that was suspected ACM. ACM was not 1107 identified as a COC in the ROD and the following actions were taken:
- Samples were collected to verify the waste profile, which confirmed that friable ACM was present
- A plan was developed to handle, transport, and dispose of the soil/ACM
- 1111 The excavation was continued until ACM was no longer visible
- 1112 The area was restored
- 1113 Approximately 1,100 tons of soil and construction debris (considered friable ACM) was
- 1114 removed and disposed off-site. The excavation area encompassed approximately 10,000 square
- 1115 feet (ft^2) and extended approximately 5,800 ft^2 beyond the delineated excavation area. Figure 9
- 1116 shows the location of the excavation area. The remedial action was not completed because the
- 1117 presence of ACM in the quarry bottom was considered an appreciable change in scope,
- 1118 performance, and cost of attaining the remedy for soil and dry sediment.
- 1119 LUCs were instituted in December 2014, they consisted of:
- Prohibiting all digging or excavation within the quarry bottom
- Installation and maintenance of permanent warning signs, every 300 ft, on the landfill
 perimeter fences and gates in accordance with Ohio Administrative Code (OAC) 3745 20-07(B)(1)(b)
- A requirement to brief any personnel entering the quarry bottom on the asbestos hazards and a requirement to sign an access log sheet for each entry/exit
- 11264.4.2.2ROD Amendment Remedy
- 1127 The ROD amendment remedy was implemented in August to November 2014. It consisted of:
- Installation of 914 ft of chain-link security fence at the landfill boundary with Ramsdell
 Road
- Installation of five-strand high tensile wire fence at the eastern, southern, and western
 perimeter of the landfill
- Placement of asbestos warning signs on the perimeter fences at 300 ft centers
- Removal of approximately 200 pounds of ACM from the ground surface,
 containerization, and off-site disposal

1135 Figure 9 shows the location of the perimeter fence.

1136 4.4.3 Maintenance and Monitoring

- 1137 Inspections are conducted annually to confirm that the LUCs are effective. They consist of:
- A review of LUC training, correspondence, maintenance logs, access logs, and other documentation applicable to the site
- An evaluation of site activities to ensure that established digging restrictions and exposure limits (i.e. one hour per day for 250 days per year for 25 years) are being complied with
- Inspection of the warning signs, fencing, and gates
- 1144 Any LUC deficiencies or inconsistent land uses will be identified on an inspection form and 1145 reported to ANRG and OHARNG.
- 1146 One annual inspection has been performed since the LUCs were instituted in December 2014.
- 1147 Results were documented in a 2015 Annual Land Use Control Monitoring Report (Vista 2016a) 1148 and are summarized below. No deficiencies were noted.
- Land use has not changed at the site
- Repairs to the high tensile wire fence were made (single strand wire breaks)
- Eroded areas outside of the landfill cap were repaired
- Annual mowing was conducted in October 2015
- Weekly inspections of the landfill were performed in accordance with state of Ohio solid
 waste regulations and the *Director's Final Findings and Orders*
- Exposures to personnel entering the site were tracked on sign in/out sheets
- The warning signs were present and in good condition
- The perimeter fences and gates were intact and in good condition; no deficiencies were noted
- Annual LUC training was provided to Camp Ravenna staff and tenants in March 2015
- A "LUC brief for contractors/personnel" was conducted for all individuals that entered the site

1162**5.0PROGRESS SINCE LAST REVIEW**

The first five-year review of Load Lines 1-4, Load Line 12, Winklepeck Burning Grounds, and
Ramsdell Quarry Landfill was performed and a report was issued in August 2012. The following
protectiveness statements were provided in the first five-year review report:

- Load Lines 1, 2, and 4 (Protective) The remedies at Load Lines 1, 2, and 4 are protective of a OHARNG trainee engaged in mounted training with no digging because contaminated soil and dry sediment exceeding cleanup levels has been excavated and disposed off-site.
- 1170 **Load Line 3** (Short-term protective) The remedy at Load Line 3 currently • protects an OHARNG trainee engaged in mounted training with no digging because the 1171 1172 site is fenced and OHARNG has not used the site. However, in order for the remedy to be protective in the long-term, environmental data should be evaluated to determine if 1173 1174 additional sampling and/or remediation is needed to address the presence of benzo(a)pyrene, Aroclor-1254, and manganese above cleanup levels specified in the 1175 1176 Interim ROD.
- Load Line 12 (Short-term protective) The remedy at Load Line 12 currently protects an OHARNG trainee engaged in mounted training with no digging because contaminated soil and dry sediment exceeding the cleanup level has been excavated and disposed off-site. The site is not used by OHARNG and access is restricted by a perimeter fence. However, in order for the remedy to be protective in the long-term, LUCs must be officially implemented through a PMP.
- Winklepeck Burning Grounds (Short-term protective) The remedy at Winklepeck Burning Grounds currently protects the OHARNG range maintenance soldier because contaminated soil and dry sediment exceeding cleanup levels at former burning pads 61, 61A, 67, and 70 has been excavated and disposed offsite. The site is used by OHARNG as a firing range and access is restricted by OHARNG. However, in order for the remedy to be protective in the long-term, LUCs must be officially implemented through a PMP.
- Ramsdell Quarry Landfill (Not protective) The remedy at Ramsdell Quarry is not protective because the remedial action was not completed. It does not protect a current or future security guard/maintenance worker from contaminated soil and dry sediment that are present at the site.
- 1193
- 1194
- 1195
- 1196
- 1197
- 1198
- 1100
- 1199
- 1200

1201 Table 10 lists issues and recommendations identified in the first five-year review.

Issue		Recommendation	Affects Protectiveness?	
	Issue	Kecommendation	Short- term	Long- term
1.	LUCs have not been officially implemented through a PMP on Load Line 12, Winklepeck Burning Grounds, and the Ramsdell Quarry Landfill.	Complete the Facility-Wide PMP currently being drafted for each of the RVAAP sites to ensure future protectiveness and officially implement the LUCs	No	Yes
2.	Benzo(a)pyrene, Aroclor-1254, and manganese were detected in soil and dry sediment at Load Line 3 at concentrations that exceeded the cleanup goals specified in the Interim ROD	Evaluate current environmental data and determine if additional sampling and/or remediation is needed at Load Line 3 to address the presence of benzo(a)pyrene, Aroclor-1254, and manganese above the cleanup levels specified in the Interim ROD	No	Yes
3.	The remedial action was not completed at Ramsdell Quarry Landfill due to the presence of ACM in the subsurface	Reevaluate remedial alternatives for Ramsdell Quarry Landfill due to the fundamental change resulting from the presence of friable ACM encountered during the remedial action	Yes	Yes

Table 10 Issues Identified and Recommendations Provided in the First Five-Year Review

1202 The status of these recommendations and actions taken since the last five-year review to address1203 them are discussed below.

1204 1205 1206 1207 1208 1209 1210 1211	<u>Issue 1</u> :	A facility-wide PMP was issued in August 2012. It identifies LUCs and restrictions for Winklepeck Burning Grounds and provides mechanisms to implement and manage those LUCs. LUCs for Ramsdell Quarry Landfill and Load Line 12 have not been added to the PMP. LUC details for Ramsdell Quarry Landfill are provided in the remedial design report (SAIC 2010b) and have been implemented since December 2014. LUCs for Load Line 12 will be incorporated into the PMP in 2017. This site has not been used since the previous five-year review.
1212 1213 1214	<u>Issue 2</u> :	Environmental data has been collected and is being evaluated in a FS Addendum; a draft report was issued in November 2016. Load Line 3 has not been used since the previous five-year review.
1215 1216	Issue 3:	Remedial alternatives were reevaluated in a ROD amendment that was issued in 2013. The revised remedy was implemented in 2014.
1217	There were no	other prior issues at these sites.

12186.0FIVE-YEAR REVIEW PROCESS

1219 6.1 Administrative Components

- 1220 The following activities were performed for the five-year review:
- Potentially interested parties and the local community were notified of the start of the five-year review
- Documents and site data were reviewed
- Site inspections were performed
- Interviews were conducted with ARNG, Camp Ravenna employees and contractors,
 USACE Louisville District employees, Ohio EPA, and a community Restoration
 Advisory Board (RAB) member
- 1228 This five-year review report was conducted and written by staff of the USACE Buffalo District.
- 1229 Laura Allen, Environmental Engineer
- Michelle Barker, FE, PMP, HTRW Regional Technical Specialist
- Karen Keil, PhD, Environmental Toxicologist
- 1232 Jim Stachowski, PE, Environmental Engineer
- 1233 Staff from Camp Ravenna also provided assistance.
- Kevin Sedlak, Restoration Project Manager
- Katie Tait, Environmental Specialist
- 1236 6.2 COMMUNITY NOTIFICATION AND INVOLVEMENT
- 1237 A public notice was issued to potentially interested parties and community RAB members that

the five-year review process had begun. The notice was published in two local newspapers, the
Akron Beacon Journal (August 21, 2016) and the Record-Courier (August 28, 2016). Copies of
the notice and newspaper articles are provided in Attachment 9.

- 1241 The five-year review report will be made available to the public once it has been finalized.
- 1242 Copies of the report will be placed in the repositories identified below.
- 1243 Reed Memorial Library
- 1244 167 East Main Street
- 1245 Ravenna, Ohio 44266
- 1246 Newton Falls Public Library
- 1247 204 South Canal Street
- 1248 Newton Falls, Ohio 44444
- 1249 An electronic copy will also be available at <u>http://www.rvaap.org</u>.
- 1250 Upon completion of the five-year review report, a public notice will be placed in the Akron
- Beacon Journal, the Record-Courier, and the Tribune Chronicle to announce availability of the report in the document repositories
- report in the document repositories.

1253 6.3 DOCUMENT REVIEW

1254 Relevant, site-related documents were reviewed, including the RODs, remedial design reports,

- ESD, remedial action completion reports, PMP, and monitoring/inspection reports. A complete list of documents reviewed is provided in Attachment 2.
- 1257 **6.4 DATA REVIEW**

1258 **6.4.1 Load Lines 1 Through 4**

- 1259 6.4.1.1 Soil and Dry Sediment
- 1260 New soil and dry sediment data since the previous five-year review is documented in the *Final*
- 1261 Characterization Sampling Report of Surface and Subsurface Incremental Sampling
- 1262 Methodology at RVAAP-08, 09, 10, 11, and 12, Load Lines 1, 2, 3, 4 and 12 (Prudent 2013) and
- 1263 the Draft Feasibility Study Addendum for Soil, Sediment, and Surface Water at RVAAP Load
- 1264 Lines 1, 2, 3, 4, and 12 (Leidos 2016j). This five-year review compared analytical results to the
- 1265 Interim ROD cleanup goals (Table 4). Concentrations that exceed these cleanup goals are
- summarized below. Data summary tables from the reports are provided in Attachment 11.
- 1267 6.4.1.1.1 Load Line 1
- 1268 Interim ROD cleanup goals were exceeded at sample location LL1SB-638M13, which was
- situated near former building CB-4A. A discrete sample from 1.0 to 5.0 ft bgs contained RDX at
 1,500 mg/kg and 2,4,6-TNT at 2,700 mg/kg.
- 1271 6.4.1.1.2 Load Line 2
- 1272 An Interim ROD cleanup goal was exceeded at sample location LL2SD-631, which was situated
- in drainage channel. A discrete sample from 0 to 1 ft bgs contained benzo(a)pyrene at 23.6mg/kg.
- 1275 6.4.1.1.3 Load Line 3
- 1276 Interim ROD cleanup goal exceedances were identified in the previous five-year review at three1277 sample locations:
- LL3SB-414M-0102-SO, situated near former building EB-10A. An incremental sample from 3.0 to 5.0 ft bgs contained benzo(a)pyrene at 47 mg/kg.
- LL3SB-413M-0101-SO, situated near former building EB-4. An incremental sample from 1.0 to 3.0 ft bgs contained Aroclor 1254 at 100 mg/kg.
- LL3SD-416-001-SO, situated in a creek bed at the southwest section of the site. A
 discrete sample from 0 to 0.5 ft bgs contained manganese at 3,700 mg/kg. This location
 also includes co-located quality control and quality assurance samples LL3SD-417M 001-SO (3,400 mg/kg) and LL3SD-418M-001-SO (4,880 mg/kg).
- 1286 Exceedances of the Interim ROD cleanup goals were not identified in soil and dry sediment data1287 obtained since the previous five-year review.
- 1288 6.4.1.2 Load Line 4

1289 An Interim ROD cleanup goal was exceeded at sample location LL4SB-402M07, which was

1290 situated near former building G-8. A sample from 1 to 7.0 ft bgs contained benzo(a)pyrene at 51 1291 mg/kg.

1292 6.4.1.3 Groundwater

1293 Groundwater data from monitoring wells at Load Lines 1-4 was evaluated in this five-year

1294 review to determine whether the remedial activities impacted groundwater and to determine pre-

1295 remedial groundwater conditions. Groundwater sampling has been performed under the Facility-

1296 Wide Groundwater Monitoring Program and did not follow the frequencies identified in the

1297 Interim ROD. Table 11 provides a summary of pre-remedial groundwater conditions. Results of

1298 the data evaluation are provided in Attachment 10 and discussed below.

1299 6.4.1.3.1 Load Line 1

1300 Analytical data for Interim ROD COCs from monitoring wells LL1mw-067, -078, -081, -082, -

- 1301 084, and -085 was evaluated. Information provided in Attachment 10, Table A10-1 (Load Line 1
 1302 Groundwater Data Summary) and Table A10-3 (Load Line 1 Groundwater Trend Plots) indicates
 1303 that no impacts were observed.
- All PCB and PAH results since the remedial action have been non-detect.
- Most explosives results were non-detect. Trend plots for well LL1mw-084 show no apparent trends for 2,4,6-TNT and RDX.
- Many of the inorganic COC results were non-detect. Trend plots for wells that contained detectable concentrations of inorganic COCs and Mann-Kendall trend analysis (where appropriate) show no apparent trends or downward trends.
- 1310 6.4.1.3.2 Load Line 2

1311 Analytical data for Interim ROD COCs from monitoring wells LL2mw-262, -263, -266, -267,

1312 and -269 was evaluated. Information provided in Attachment 10, Table A10-4 (Load Line 2

1313 Groundwater Data Summary) and Table A10-6 (Load Line 2 Groundwater Trend Plots) indicates

- 1314 that no impacts were observed.
- All PCB and PAH results since the remedial action have been non-detect.
- Explosives results for wells LL2mw-262, -263, -266, -267, and -269 were non-detect.
 Trend plots and Mann-Kendall trend analysis for 2,4,6-TNT and RDX at LL2mw-267 show no trend.
- Many of the inorganic COC results were non-detect. Trend plots for wells that contained detectable concentrations of inorganic COCs and Mann-Kendall trend analysis (where appropriate) show no apparent trends or downward trends.
- 1322 6.4.1.3.3 Load Line 3

1323 Analytical data for Interim ROD COCs from monitoring wells LL3mw-236, -238, and -239 was

evaluated. Information provided in Attachment 10, Table A10-7 (Load Line 3 Groundwater

- 1325 Data Summary) and Table A10-9 (Load Line 3 Groundwater Trend Plots) indicates that no
- 1326 impacts were observed.
- All PCB and PAH results since the remedial action have been non-detect.
- Trend plots and Mann-Kendall trend analysis for 2,4,6-TNT and RDX at LL3mw-236
 and -238 were either non-detect or showed downward trends. Trends at LL3mw-239
 were downward for 2,4,6-TNT and upward for RDX. The RDX trend plot shows that

1331post remedial action groundwater sampling was first conducted approximately three years1332after the contaminated soil was excavated. It is unlikely that the excavations at former1333building EB-4A (nearest area remediated) is the cause of the apparent upward trend for1334RDX.

- Many of the inorganic COC results were non-detect. Trend plots for wells that contained detectable concentrations of inorganic COCs and Mann-Kendall trend analysis (where appropriate) show no apparent trends or downward trends.
- 1338 6.4.1.3.4 Load Line 4

Analytical data for Interim ROD COCs from monitoring wells LL4mw-196, -197, and -198 was
evaluated. Information provided in Attachment 10, Table A10-10 (Load Line 4 Groundwater
Data Summary) and Table A10-12 (Load Line 4 Groundwater Trend Plots) indicates that no
impacts were observed.

- All PCB and PAH results since the remedial action have been non-detect.
- All RDX results and most 2,4,6-TNT results were non-detect.
- Many of the inorganic COC results were non-detect. Trend plots for wells that contained detectable concentrations of inorganic COCs and Mann-Kendall trend analysis (where appropriate) show no apparent trends.
- 1348 **6.4.2 Load Line 12**
- No exceedances of the arsenic cleanup goal were identified in new soil and dry sediment datasince the previous five-year review.
- 13516.4.3Winklepeck Burning Grounds
- 1352 No new soil and dry sediment data were available for review since the previous five-year review.

13536.4.4Ramsdell Quarry Landfill

1354 No new soil and dry sediment data were available for review since the previous five-year review.

[This page intentionally left blank]

Well	Date	COC													
		2,4,6-TNT	RDX	Benz(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoroanthene	Dibenz(a,h)anthracene	PCB-1254	Aluminum	Antimony	Arsenic	Barium	Cadmium	Lead	Manganese
Load Line 1															
LL1-MW-067	8/1/2007	0.001	0.001	0.00549	0.00549	0.00549	0.00549	0.00051	0.1	0.00088	0.001	0.0203	0.01	0.001	0.0454
LL1-MW-078	8/2/2007	0.00102	0.00102	0.0051	0.0051	0.0051	0.0051	0.0005	0.1	0.000385	0.001	0.0115	0.01	0.001	0.0559
LL1-MW-081	8/2/2007	0.00102	0.00102	0.0051	0.0051	0.0051	0.0051	0.0005	0.1	0.001	0.00102	0.0236	0.01	0.001	2.09
LL1-MW-082	8/2/2007	0.001	0.001	0.0051	0.0051	0.0051	0.0051	0.0005	0.1	0.001	0.00191	0.0103	0.01	0.001	0.693
LL1-MW-084	8/2/2007	0.00918	0.00242	0.0051	0.0051	0.0051	0.0051	0.000538	1.59	0.000322	0.001	0.0166	0.01	0.00281	0.306
LL1-MW-085	8/2/2007	0.00105	0.00105	0.005	0.005	0.005	0.005	0.00051	1.59	0.000322	0.001	0.0166	0.01	0.00281	0.306
Load Line 2															
LL2mw-262	8/1/2007	0.00105	0.00105	0.00538	0.00538	0.00538	0.00538	0.000526	0.1	0.000315	0.000312	0.0151	0.01	0.001	0.291
LL2mw-263	8/1/2007	0.00102	0.00102	0.00538	0.00538	0.00538	0.00538	0.000521	0.1	0.001	0.0104	0.0311	0.01	0.001	0.837
LL2mw-266	8/1/2007	0.00103	0.00103	0.00532	0.00532	0.00532	0.00532	0.000549	0.1	0.000452	0.00488	0.0215	0.01	0.001	1.12
LL2mw-267	8/1/2007	0.00104	0.00104	0.005	0.005	0.005	0.005	0.000532	0.1	0.000525	0.00438	0.0241	0.01	0.001	0.594
LL2mw-269	7/31/2007	0.00104	0.00104	0.00521	0.00521	0.00521	0.00521	0.00051	0.1	0.001	0.000623	0.263	0.01	0.000423	1.78
Load Line 3															
LL3mw-236	7/31/2007	0.00105	0.00105	0.00526	0.00526	0.00526	0.00526	0.000562	0.1	0.001	0.000277	0.01	0.01	0.001	0.599
LL3mw-238	7/31/2007	0.0642	0.00842	0.0051	0.0051	0.0051	0.0051	0.00051	0.1	0.001	0.000434	0.01	0.01	0.001	0.01
LL3mw-239	7/30/2007	0.00105	0.00105	0.00521	0.00521	0.00521	0.00521	0.000532	0.1	0.00053	0.000981	0.0133	0.01	0.001	0.413
						Load	Line 4								
LL4mw-196	7/30/2007	0.00102	0.00102	0.0051	0.0051	0.0051	0.0051	0.00051	0.1	0.001	0.000709	0.0284	0.01	0.001	0.115
LL4mw-197	7/30/2007	0.00102	0.00102	0.0051	0.0051	0.0051	0.0051	0.00051	0.1	0.000333	0.000268	0.00397	0.01	0.000333	0.01
LL4mw-198	7/30/2007	0.00102	0.00102	0.00556	0.00556	0.00556	0.00556	0.0005	0.1	0.001	0.000421	0.00941	0.01	0.001	1.23

Table 11 Pre-remedial Groundwater Conditions at Load Lines 1 Through 4 1

1355 1

All results are mg/L

[This page intentionally left blank]

1356 6.5 SITE INSPECTIONS

Site inspections were conducted by USACE on August 10, 2016 to obtain familiarity with the
sites, review records, examine the remediated areas, and assess protectiveness of the remedies.
Observations are summarized below. Completed site inspection checklist forms are provided in

1360 Attachment 4 and site photographs are provided in Attachment 5.

1361 **6.5.1 Load Lines**

1362 Site conditions have not changed since the first five-year review. No additional remedial

1363 activities have occurred and the sites have not been used for military training. Load Lines 1, 2,

1364 3, 4 and 12 are surrounded by perimeter fences with warning signs and reflective tape placed in

1365 strategic areas to prevent access by OHARNG personnel. The former buildings, including floor 1366 slabs, have been removed and the building footprints consist of grass-covered, open areas.

1367 Concrete walkways that previously connected these buildings are present. Railroad tracks and

1368 site roads have been removed and their corridors are now used to provide access for site

1369 maintenance and environmental sampling. The remainder of the sites consists of open grassland,

1370 scrub-brush, and forested areas. Remedial action areas have been backfilled to surrounding

1371 grades and revegetated. There was no evidence of unauthorized access or use of the sites. The

1372 monitoring wells were observed to be secure and in good condition.

13736.5.2Winklepeck Burning Grounds

Winklepeck Burning Grounds is an active firing range used by OHARNG. The site consists of open grass-covered land with gently undulating topography. East-west trending gravel or dirt roads traverse the site and are connected on each end by north-south trending roadways. An observation/control building is located at the western end of the site and other range infrastructure is present. Evidence of the former burning pads was not apparent. Remediated areas have been backfilled to surrounding grades and re-vegetated. Site access is restricted by

1380 OHARNG due to its use as a firing range.

13816.5.3Ramsdell Quarry Landfill

1382 Ramsdell Quarry Landfill is a closed landfill located within a former quarry. The site is bounded to the north by Ramsdell Road and to the south by a rail line. The landfill surface slopes to the 1383 1384 quarry bottom from the south and west. A wetland is present in the quarry bottom. The landfill 1385 cap is a grass-covered, maintained surface that appeared to be intact with no evidence of erosion 1386 or slope failure. Monitoring wells are secure and in good condition. The remediated area has 1387 been backfilled and revegetated. The landfill is surrounded by a perimeter fence that consists of 1388 a chain link fence at the boundary with Ramsdell Road and a five-strand wire fence at the 1389 eastern, southern, and western perimeter. Two types of warning signs are posted on the fences, 1390 an asbestos warning sign and a "danger unauthorized personnel keep out" sign. Two fence gates 1391 along Ramsdell Road were locked and a sign in/out form was available for authorized personnel 1392 who access the site. There was no evidence of trespass or OHARNG use. No significant 1393 maintenance issues were identified during the site inspection.

1394 **6.6 INTERVIEWS**

1395 Interviews were conducted with ARNG, OHARNG (Camp Ravenna), USACE (Louisville

- 1396 District), Vista Sciences Corporation, Ohio EPA, and the RVAAP RAB to provide additional
- 1397 information about the status of sites evaluated in the five-year review. A summary of relevant

issues from the interviews is provided below. Complete interview records are provided inAttachment 6.

- 14006.6.1Army National Guard Directorate
- 1401 Mark Leeper, ARNG Environmental Cleanup Program Manager, did not identify any
- 1402 complaints, violations, or other incidents at the sites that required a response by his office. He
- 1403 was also not aware of any information that could call into question the protectiveness of the1404 remedies.

1405 **6.6.2 Camp Ravenna**

- 1406 Kevin Sedlak, Camp Ravenna Restoration Program Manager, and Katie Tait, OHARNG1407 Environmental Specialist, were interviewed.
- 1408 Kevin's interview provided the following relevant information:
- The load line sites could not be used for military training after the removal actions were
 performed because of restrictions placed on their use. Additional samples have been
 collected and a FS addendum is being prepared.
- LUCs for Ramsdell Quarry Landfill will be incorporated into an upcoming version of the PMP.
- ESD removal actions are ongoing at Winklepeck Burning Grounds and are expected to be completed by the end of November 2016.
- 1416 Katie's interview provided the following relevant information:
- A FS addendum is being performed for Load Lines 1, 2, 3, 4, and 12 to evaluate any additional remedial options that may be required to clean up the sites to a residential or commercial/industrial standard. The sites are being maintained for restricted access and perimeter gates are kept locked. A Camp Ravenna annual training memo identifies these areas as "restricted access".
- A paper copy of the PMP at Camp Ravenna has been updated to include the LUC requirements for Ramsdell Quarry Landfill.
- The ESD remedy at Winklepeck Burning Grounds is ongoing (November 2016).
 Pursuant to agreement with Ohio EPA, the Camp Ravenna perimeter fence will no longer be inspected during the routine Winklepeck Burning Grounds LUC inspections.
- 1427 **6.6.3 USACE Louisville District**
- Gregory Moore, Project Manager, Nathaniel Peters, Environmental Engineer, and Angela
 Schmidt, Risk Assessor, were interviewed.
- 1430 Greg's interview provided the following relevant information:
- LUCs at the load line sites, as interpreted by Ohio EPA, have been too restrictive. The sites are currently undergoing a soil optimization study to eliminate the need for full cleaning of military vehicles during training.
- LUCs for Ramsdell Quarry Landfill will be incorporated into an upcoming version of the
 PMP. (Planned for fiscal year 2017).

- Soil removal actions at Winklepeck Burning Grounds will occur in November 2016.
- 1437 Nathaniel's interview provided the following relevant information:
- A FS addendum is being prepared to assess the need for additional remediation to achieve residential or commercial/industrial land use standards. The document will incorporate environmental actions that have occurred at the sites since the Interim ROD remedial actions (Load Lines 1 4) and the ROD remedial action (Load Line 12).
- LUC monitoring and maintenance activities have been implemented at Ramsdell Quarry
 Landfill and an update to the PMP, which includes these LUCs, is draft form.
- The ESD for Winklepeck Burning Grounds changed the LUC requirements and
 inspection of the Camp Ravenna perimeter fence is no longer necessary. This change
 will be in effect after the ESD remedial action is completed.
- 1447 Angela indicated that the load line sites cannot be used as intended (military training, vehicle
- 1448 maneuver area) due to monitoring requirements that would be implemented during the training.
- Additional sampling and analysis is ongoing and the sites will be remediated to residential or
- 1450 commercial/industrial land use criteria. A FS addendum is being prepared.
- 14516.6.4Vista Sciences Corporation
- 1452 Allan Brillinger, Program Manager for Vista Sciences Corporation, (Camp Ravenna monitoring
- and maintenance contractor) indicated quarterly inspections of the Ramsdell Quarry Landfill will
- be started in September 2016 using a *Closed Municipal Solid Waste Landfill Inspection*
- 1455 checklist. The completed checklists and an annual report will be submitted to Ohio EPA to
- 1456 comply with Ohio regulations for closed municipal solid waste landfills.

1457 **6.6.5 Ohio EPA**

- 1458 Interview responses were provided by Ohio EPA employees Rodney Beals, Sue Watkins, and
- 1459 Nicholas Roope. Relevant information is summarized below.
- 1460 6.6.5.1 Load Lines 1 Through 4
- Ohio EPA would like more detail about the status of ongoing activities (particularly sampling) atthese sites.
- 1463 6.6.5.2 Load Line 12
- 1464 Ohio EPA would like more detail about the status of ongoing activities (particularly sampling) at1465 this site.
- 14666.6.5.3Winklepeck Burning Grounds
- 1467 The Camp Ravenna fence will no longer be needed as a LUC after remedial activities outlined in1468 the 2015 ESD are completed.
- 14696.6.5.4Ramsdell Quarry Landfill
- 1470 Solid waste and ACM were observed at the quarry bottom during an inspection conducted when
- the water level in the pond was low. The waste and ACM are uncapped and may result in
- 1472 environmental impact and human exposure.

14736.6.6Restoration Advisory Board

- 1474 Tom Tadsen, RVAAP RAB Co-Chair, indicated that the surrounding communities are concerned
- about potential contamination leaving the installation (Camp Ravenna) via groundwater. The
- 1476 communities have also expressed concerns about perceived increased cancer incidences, and the
- 1477 establishment and enforcement of LUCs at Camp Ravenna. He suggested that OHARNG
- 1478 provide an update regarding intended range (Winklepeck Burning Grounds) modifications,
- 1479 environmental considerations, and any potential problems. Infrequent instances of trespassing
- 1480 and vandalism have occurred at Camp Ravenna.

1481 7.0 TECHNICAL ASSESSMENT

1482 **7.1 LOAD LINES 1 THROUGH 4**

1483 **7.1.1 Question A:**

- 1484 *Is the Remedy Functioning as Intended by the Decision Document?*
- 1485 Yes, the remedy is functioning as intended by the Interim ROD.
- 1486 The soil removal action was implemented and is complete. Closure report documentation and
- site observations indicate that the remedy was properly executed and satisfied the RAO.
- 1488 Contaminated soil and dry sediment was removed in accordance with the Interim ROD and
- 1489 disposed off-site.
 - 1490 Analytical data for Interim ROD COCs from wells identified in the *Final Remedial Action Work*
 - 1491 Plan of Soils at Load Lines 1, 2, 3, and 4 (Shaw 2007) showed no impacts to groundwater from
 - the remedial action. Groundwater monitoring has been conducted in accordance with a facility-
 - 1493 wide monitoring program, which obeys the spirit of the Interim ROD.
 - There are no operation, maintenance, and monitoring activities associated with the soil/dry
 sediment remedy. Groundwater monitoring at the sites is conducted on a facility-wide basis that
 is not included in the Interim ROD.
 - There are no early indicators of potential problems. The five-year review did not identifyopportunities for optimization.

1499 **7.1.2 Question B:**

Are the Exposure Assumptions, Toxicity Data, Cleanup Levels, and Remedial Action Objectives
Used at the Time of the Remedy Still Valid?

- The exposure assumptions used at the time of the remedy are not valid. The building slabs were
 removed in 2008 and contaminated soil beneath and adjacent to the slabs was subsequently
 removed.
- 1505 The toxicity data, cleanup levels, and RAO used at the time of the remedy selection are still
- 1506 valid. The USEPA's current recommended default exposure factor values are generally less
- 1507 conservative than what was used to initially assess risk and develop site-specific cleanup goals,
- 1508 so the basis of the exposure assessment remains protective. There have been no changes in land
- 1509 use since the Interim ROD was issued and exposures are not occurring at the site. No new
- 1510 toxicity criteria changes have occurred since the previous five-year review that would affect the
- 1511 protectiveness of the cleanup goals. A more complete risk assessment and toxicology evaluation
- 1512 is provided in Attachment 8.
- No chemical-specific applicable or relevant and appropriate requirements (ARARs) wereidentified in the Interim ROD. Attachment 7 provides a comprehensive ARAR evaluation.
- 1515 **7.1.3 Question C:**
- Has any Other Information Come to Light That Could Call Into Question the Protectiveness ofthe Remedy?
- 1518 Yes, information has come to light that could call into question the protectiveness of the remedy.
- 1519 Results of soil/dry sediment sampling conducted after the Interim ROD remedial action indicate

- 1520 that soil/dry sediment contamination above the cleanup goals is present at one location on Load
- 1521 Line 1, one location on Load Line 2, three locations on Load Line 3, and one location on Load
- Line 4. Exceedances were documented for 2,4,6-TNT, RDX, benzo(a)pyrene, Aroclor-1254, and manganese.
- 1524 Natural disasters have not occurred since the remedial action was conducted in 2007.

1525 **7.1.4 Summary**

- 1526 The remedy is functioning as intended by the Interim ROD; it was implemented and is complete.
- 1527 Closure report documentation and site observations indicate that the remedy was properly
- executed and satisfies the RAO. No impacts to groundwater from the remedial action wereobserved.
- 1530 Additional investigations and remedial actions have been conducted since the remedy was
- 1531 implemented. Results of soil/dry sediment sampling conducted after the Interim ROD remedial
- 1532 action indicate that soil/dry sediment contamination above the cleanup goals is present. The sites
- are currently undergoing a FS addendum to evaluate the need for additional soil and dry
- 1534 sediment remediation to enable less restrictive use. These activities were not identified in
- 1535 Interim ROD.
- 1536 The exposure assumptions used at the time of the remedy are not valid, although land use has not
- 1537 changed since the Interim ROD was issued and exposures are not occurring. The toxicity data,
- 1538 cleanup levels, and RAO used at the time of the remedy selection are still valid. No chemical-
- 1539 specific ARARs were identified in the Interim ROD.
- 1540 No other information has come to light that could call into question the protectiveness of the1541 remedy.
- 1542 **7.2** LOAD LINE 12

1543 **7.2.1 Question A:**

- 1544 Is the Remedy Functioning as Intended by the Decision Document?
- 1545 Yes, the remedy is functioning as intended by the ROD.
- 1546 The removal action was implemented and is complete. Closure report documentation and site
- 1547 observations indicate that the remedy was properly executed and satisfied the RAO.
- 1548 Contaminated soil and dry sediment was removed in accordance with the ROD and disposed off-1549 site.
- 1550 LUCs have not been implemented. Access to the site is restricted by a perimeter fence and
- 1551 warning signs. OHARNG is not using the site and does not permit troop training in this area.
- 1552 The five-year review site inspection did not identify evidence of site use or trespass. Camp
- 1553 Ravenna is planning to implement LUCs at the site after additional remediation (if needed) to
- 1554 attain less restrictive use is completed. This is scheduled for 2017.
- 1555 There are no early indicators of potential problems. The five-year review did not identify
- 1556 opportunities for optimization.

1557 **7.2.2 Question B:**

Are the Exposure Assumptions, Toxicity Data, Cleanup Levels, and Remedial Action Objectives
Used at the Time of the Remedy Still Valid?

- 1560 Yes, the exposure assumptions, toxicity data, cleanup levels, and RAO used at the time of the
- 1561 remedy selection for soil and dry sediment are still valid. The USEPA's current recommended
- 1562 default exposure factor values are generally less conservative than what was used to initially
- 1563 assess risk and develop site-specific cleanup goals. The basis of the exposure assessment used to
- 1564 develop site cleanup goals remains protective. There have been no changes in the exposure
- 1565 pathways and land use since the ROD was issued and exposures are not currently occurring at 1566 the site. No new toxicity criteria changes have occurred since the previous five-year review that
- 1567 would affect the protectiveness of the cleanup goals. A more complete risk assessment and
- 1568 toxicology evaluation is provided in Attachment 8.
- 1569 No chemical-specific ARARs were identified in the ROD. Attachment 7 provides a 1570 comprehensive ARAR evaluation.

7.2.3 1571 **Question C:**

1572 Has any Other Information Come to Light That Could Call Into Question the Protectiveness of 1573 the Remedy?

- 1574 No other information has come to light that could call into question the protectiveness of the
- 1575 remedy. Additional characterization of wet sediment and surface water indicated that there are
- 1576 no COCs that pose an unacceptable risk to human health or the environment in these media at
- 1577 this site. The Phase III RIR determined that quantitative ecological cleanup goals were not
- required (SAIC 2012a). Natural disasters have not occurred since the remedial action was 1578
- 1579 conducted in 2010.

1580 7.2.4 **Summary**

1581 The remedy is functioning as intended by the ROD; it was implemented and is complete.

- 1582 Closure report documentation and site observations indicate that the remedy was properly
- 1583 executed and satisfies the RAO. Additional investigations have been conducted since the
- 1584 remedy was implemented. These activities were not identified in the ROD.
- 1585 There is no unacceptable risk and the remedy remains protective of human health and the
- 1586 environment. The exposure assumptions, toxicity data, cleanup levels, and RAO used at the time 1587
- of the remedy selection are still valid. There have been no changes in toxicity criteria or
- 1588 potential exposures to soil COCs since the cleanup goals were presented in the ROD. The 1589
- soil/dry sediment risk-based cleanup goals are protective for a National Guard Trainee to a depth 1590 of 4 ft bgs. The site has not changed since the remedy was implemented; it is not being used and
- 1591 unauthorized access is prevented by a perimeter fence. No chemical-specific ARARs were
- 1592 identified in the Interim ROD.
- 1593 No other information has come to light that could call into question the protectiveness of the 1594 remedy.
- 1595 7.3 WINKLEPECK BURNING GROUNDS
- 1596 7.3.1 **Question A:**
- 1597 *Is the Remedy Functioning as Intended by the Decision Document?*
- 1598 Yes, the remedy is functioning as intended by the ROD.
- 1599 The removal action was implemented and is complete. Closure report documentation and site 1600 observations indicate that the remedy was properly executed and satisfies the RAO. An ESD

- was prepared to enable use of the site as a Multi-Purpose Machine Gun range. The ESD remedy 1601 has not been completed. 1602
- 1603 LUCs have been implemented in accordance with the ROD. Quarterly monitoring and
- 1604 inspections have documented that LUC awareness training, access restrictions, and land uses are
- 1605 being performed/maintained consistent with the ROD. The five-year review site inspection did
- 1606 not identify any unauthorized uses of the site.
- 1607 There are no early indicators of potential problems. Opportunities for optimization were not 1608 identified.

1609 7.3.2 **Question B:**

- 1610 Are the Exposure Assumptions, Toxicity Data, Cleanup Levels, and Remedial Action Objectives Used at the Time of the Remedy Still Valid? 1611
- 1612 Yes, the exposure assumptions, toxicity data, cleanup levels, and RAOs used at the time of the
- 1613 remedy selection (2008 ROD and 2015 ESD) are still valid. There have been no changes in land
- 1614 use and no new exposure pathways since the ESD. A more complete risk assessment and
- 1615 toxicology evaluation is provided in Attachment 8.
- No chemical-specific ARARs were identified in the ROD or ESD. Attachment 7 provides a 1616 1617 comprehensive ARAR evaluation.
- 1618 7.3.3 **Ouestion C:**
- 1619 Has any Other Information Come to Light That Could Call Into Question the Protectiveness of 1620 the Remedy?
- No other information has come to light that could call into question the protectiveness of the 1621
- 1622 remedy. The ROD indicated that mitigation of risks to ecological receptors will be achieved
- 1623 through remediation to protect a range maintenance soldier. Natural disasters have not occurred
- 1624 since the remedial action was implemented in 2008 and 2009.

1625 7.3.4 **Summary**

- 1626 The remedy is functioning as intended by the ROD; it was implemented and is complete.
- 1627 Closure report documentation and site observations indicate that the remedy was properly
- 1628 executed and satisfies the RAO. Quarterly monitoring indicates that the LUCs have been
- 1629 implemented and are maintained consistent with the ROD. An ESD was prepared to enable use
- 1630 of the site as a Multi-Purpose Machine Gun Range.
- 1631 There is no unacceptable risk and the remedy remains protective of human health and the
- 1632 environment. The exposure assumptions, toxicity data, cleanup levels, and RAO used at the time
- 1633 of the remedy selection are still valid. There have been no changes in toxicity criteria or
- 1634 potential exposures to soil COCs since the cleanup goals were presented in the ROD. The
- soil/dry sediment risk-based cleanup goals are protective for a National Guard Trainee to a depth 1635
- 1636 of 4 ft bgs. Additional removal actions identified in the ESD will remediate COCs exceeding
- 1637 USEPA commercial/industrial risk-based screening levels. This remedial action is currently
- 1638 ongoing.
- 1639 No other information has come to light that would call into question the protectiveness of the 1640
- remedy.

1641 7.4 RAMSDELL QUARRY LANDFILL

1642 **7.4.1 Question A:**

- 1643 Is the Remedy Functioning as Intended by the Decision Document?
- 1644 Yes, the remedy is functioning as intended by the ROD and ROD amendment.

1645 The removal action was implemented and is complete. Closure report documentation indicates

1646 that the soil removal action was partially executed and terminated due to the presence of friable

1647 ACM in the subsurface. A perimeter fence with warning signs was installed and surficial ACM

- 1648 was removed by non-intrusive/no-digging methods. The RAOs identified in the ROD and ROD
- amendment have been attained.
- 1650 According to Ohio EPA, solid waste and ACM were observed at the quarry bottom during an
- 1651 inspection conducted when the water level in the pond was low. This five-year review has
- 1652 determined that the perimeter fence and LUCs protect human receptors from any remaining
- 1653 COCs in soil above site cleanup goals and residual asbestos by restricting access to the area.
- 1654 LUCs have been implemented in accordance with the ROD. The first annual inspection has
- 1655 documented that LUC training, access restrictions, and land uses are being performed/maintained
- 1656 consistent with the ROD. The LUCs have not been officially incorporated into the PMP,
- although this will be completed in the next version of the PMP. The five-year review site
- 1658 inspection did not identify any unauthorized uses of the site.

1659 **7.4.2 Question B:**

Are the Exposure Assumptions, Toxicity Data, Cleanup Levels, and Remedial Action Objectives
Used at the Time of the Remedy Still Valid?

Yes, the RAOs identified in the ROD and ROD amendment were established to eliminate exposure to site contaminants. Fencing was installed, LUCs were implemented, and training activities are not allowed on the site. There have been no changes in land use or exposure pathways since these decision documents were issued. The RAOs used at the time of remedy selection are still valid and functioning to eliminate the exposure that could lead to unacceptable

risks. A more complete risk assessment and toxicology evaluation is provided in Attachment 8.

1668 **7.4.3 Question C:**

- Has any Other Information Come to Light That Could Call Into Question the Protectiveness ofthe Remedy?
- 1671 No other information has come to light that would call into question the protectiveness of the
- 1672 remedy. The ROD indicated that remediation to meet human health cleanup goals will reduce
- 1673 the overall contaminant concentrations and ecological risk. Natural disasters have not occurred
- since the remedial actions were implemented in 2010 and 2014.

1675 **7.4.4 Summary**

- 1676 The remedy is functioning as intended by the ROD and ROD amendment; it is complete.
- 1677 Closure report documentation and site observations indicate that they satisfy the RAOs. Annual
- 1678 LUC inspection indicates that training, access restrictions, and land uses are consistent with 1679 ROD requirements
- 1679 ROD requirements.

1680 **8.0 ISSUES**

1681 Table 12 summarizes issues that affect protectiveness for sites evaluated in this five-year review.

Issue	Affects Current Protectiveness (Yes or No)	Affects Future Protectiveness (Yes or No)
Contaminated soils and dry sediment are present above site cleanup goals at Load Lines 1 - 4 and may be accessible to installation personnel during future military training activities	No	Yes

Table 12 Current Issues for the Camp Ravenna Sites That Affect Protectiveness

16829.0RECOMMENDATIONS AND FOLLOW-UP ACTIONS

1683 Table 13 provides recommendations to address issues that affect protectiveness at Camp

1684 Ravenna sites evaluated in this five-year review.

Table 13 Recommendations to Address Issues That Affect Protectiveness at Camp Ravenna Sites

Issue	Recommendations/Follow-up	Recommendations/Follow-up Party Oversight Actions Responsible Agency	Oversight	Milestone	Affects Protectiveness?	
	Actions		Agency	Date	Current	Future
1	Determine if unacceptable risk associated with remaining contaminated soils at Load Lines 1 - 4 exists and remediate in a manner consistent with the Interim ROD, if necessary to mitigate risk.	Camp Ravenna/ NGB	Ohio EPA	September 2017	No	Yes

1685 Table 14 provides recommendations to address concerns that do not affect protectiveness at1686 Camp Ravenna sites evaluated in this five-year review.

Table 14 Recommendations for Concerns That Do Not Affect Protectiveness at Camp Ravenna Sites

Concern	Recommendations/ Follow-up Actions			
Load Line 12				
LUCs have not been implemented in accordance with the ROD	Incorporate LUCs into the PMP and fully implement them after actions to achieve residential or commercial/industrial use of the site are achieved. In the interim, do not use the site or provide access to the site for activities other than environmental monitoring and remediation.	Camp Ravenna/NGB		
Ramsdell Quarry Landfill				
LUCs have not been incorporated into the PMP	nto Incorporate LUCs into the PMP. Camp Ravenna/N			

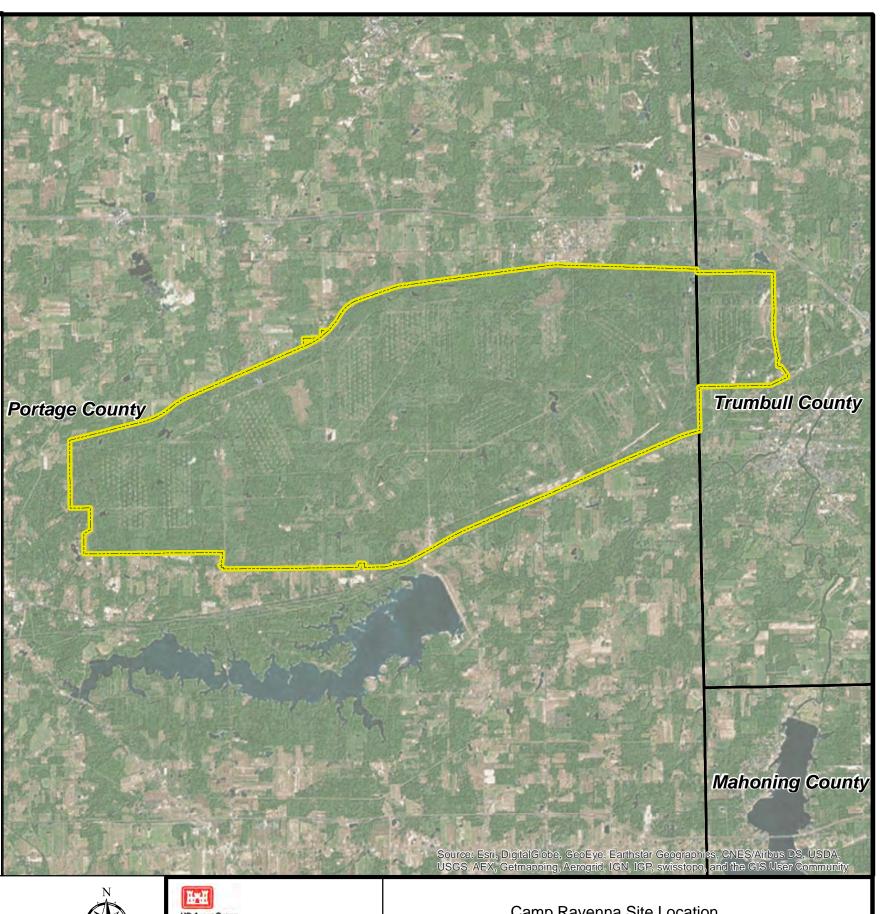
1687 10.0 PROTECTIVENESS STATEMENTS

1688 **10.1 LOAD LINES 1 THROUGH 4**

- 1689 The remedy at Load Lines 1 4 currently protects human health and the environment because:
- Contaminated soil/dry sediment identified in the Interim ROD was remediated
- However, in order for the remedy to be protective in the long-term, the following action needs tobe taken to ensure protectiveness:
- Determine if unacceptable risk associated with remaining contaminated soils at Load
 Lines 1 4 exists and remediate in a manner consistent with the Interim ROD, if
 necessary to mitigate risk
- 1696 **10.2** LOAD LINE 12
- 1697 The remedy at Load Line 12 is protective of human health and the environment because:
- Contaminated soil/dry sediment identified in the ROD was remediated
- The site is not being used and access is restricted by a perimeter fence with warning signs

1700 **10.3 WINKLEPECK BURNING GROUNDS**

- 1701 The remedy at Winklepeck Burning Grounds is protective of human health and the environment1702 because:
- Contaminated soil/dry sediment identified in the ROD was remediated
- LUCs have been implemented; they are being employed and maintained in accordance with the ROD
- 1706 10.4 RAMSDELL QUARRY LANDFILL
- 1707 The remedy at Ramsdell Quarry Landfill is protective of human health and the environment1708 because:
- Contaminated soil/dry sediment was partially remediated
- A perimeter fence with warning signs was installed and surficial ACM was removed by non-intrusive/no-digging methods in accordance with the ROD amendment
- LUCs have been implemented; training, access restrictions, and land uses are being performed/maintained consistent with the ROD

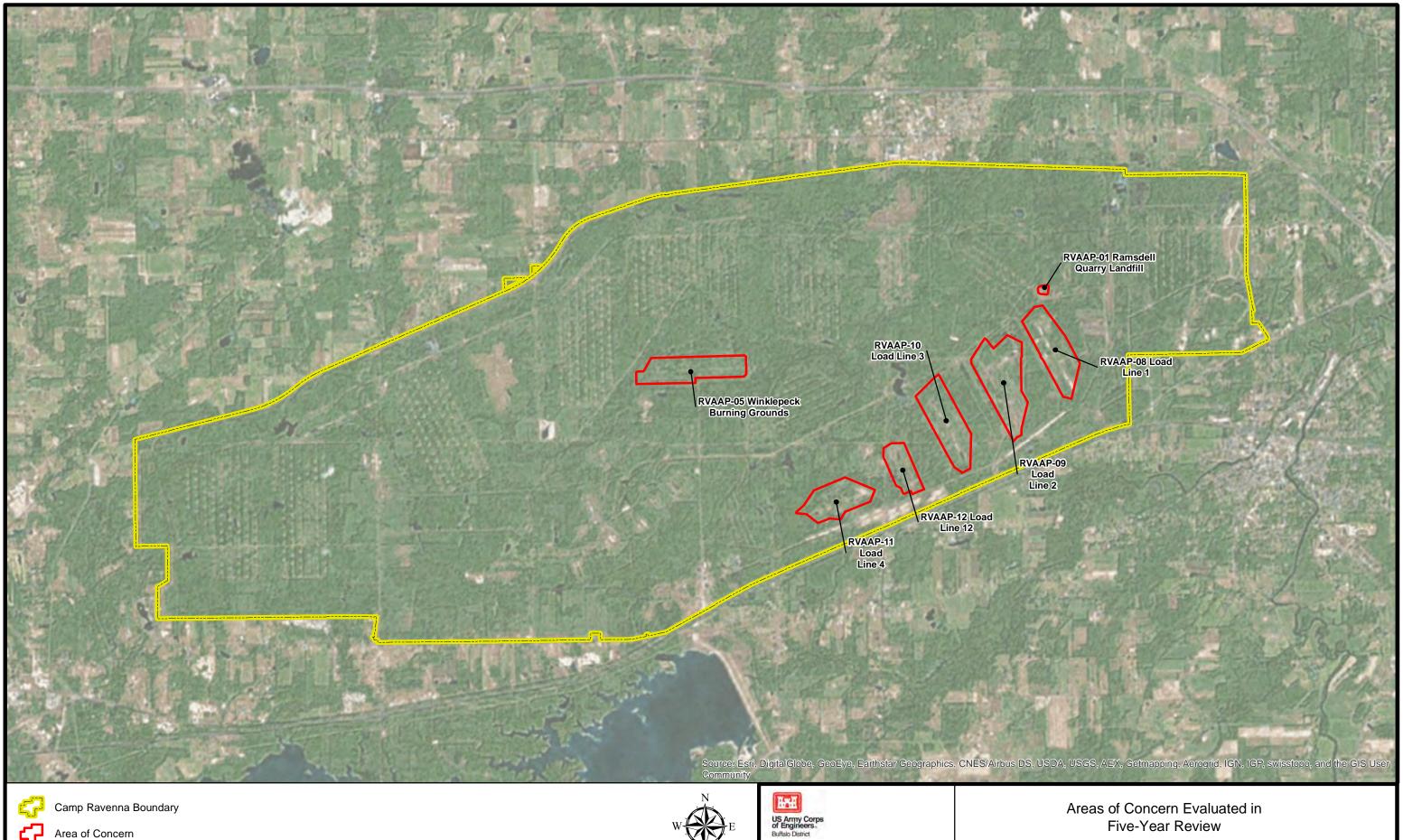

1714 **11.0 NEXT REVIEW**

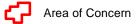
- 1715 The next five-year review of Camp Ravenna sites addressed in this report will be conducted by
- 1716 August 31, 2022.

ATTACHMENT 1

Figures

US Army Corps of Engineers Buffalo District


Document Name: RVAAP_Site_FIG_1.mxd Drawn By: H5TDEEMP Date Saved: 27 Oct 2016 Time Saved: 1:57:26 PM

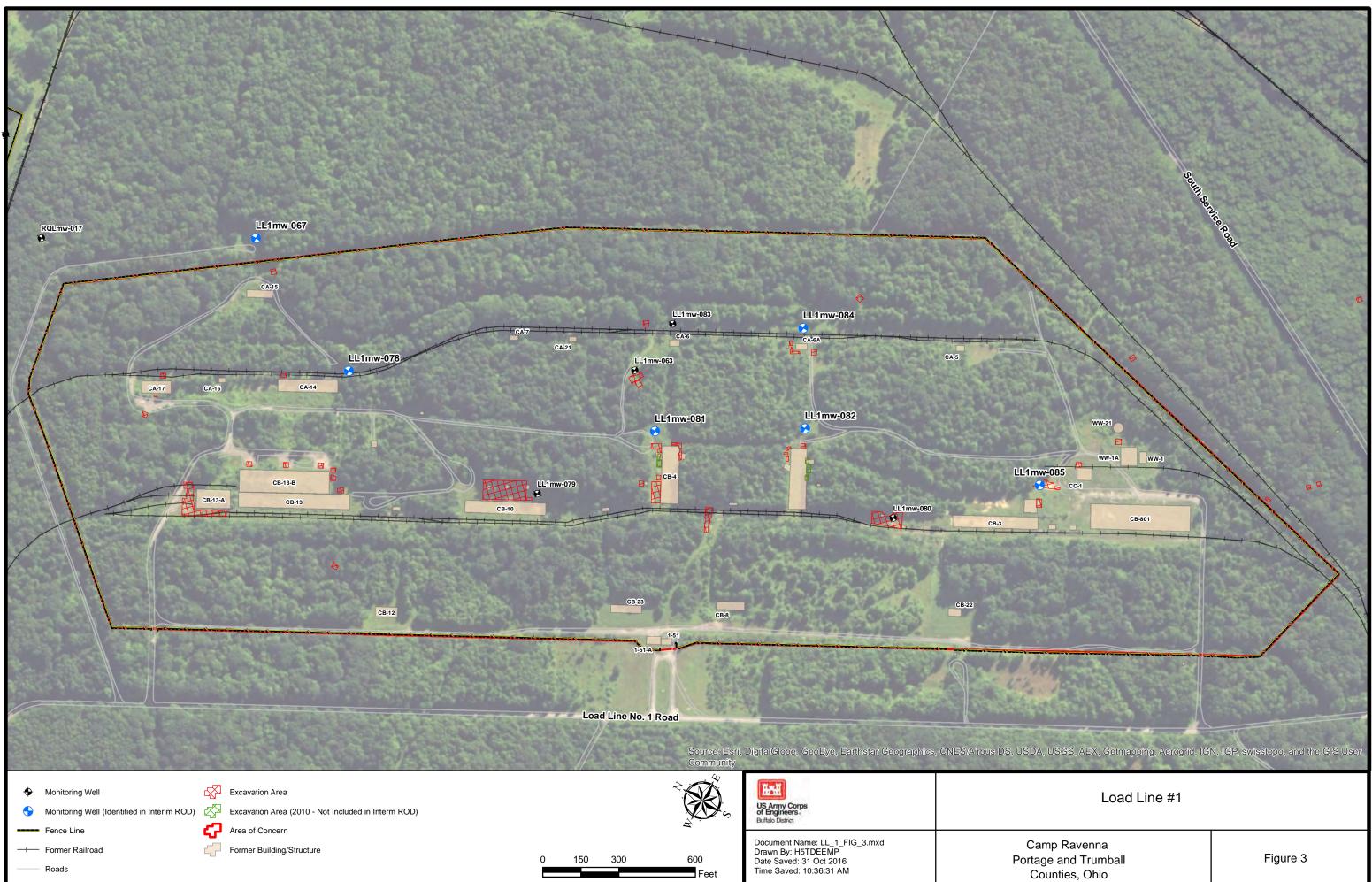


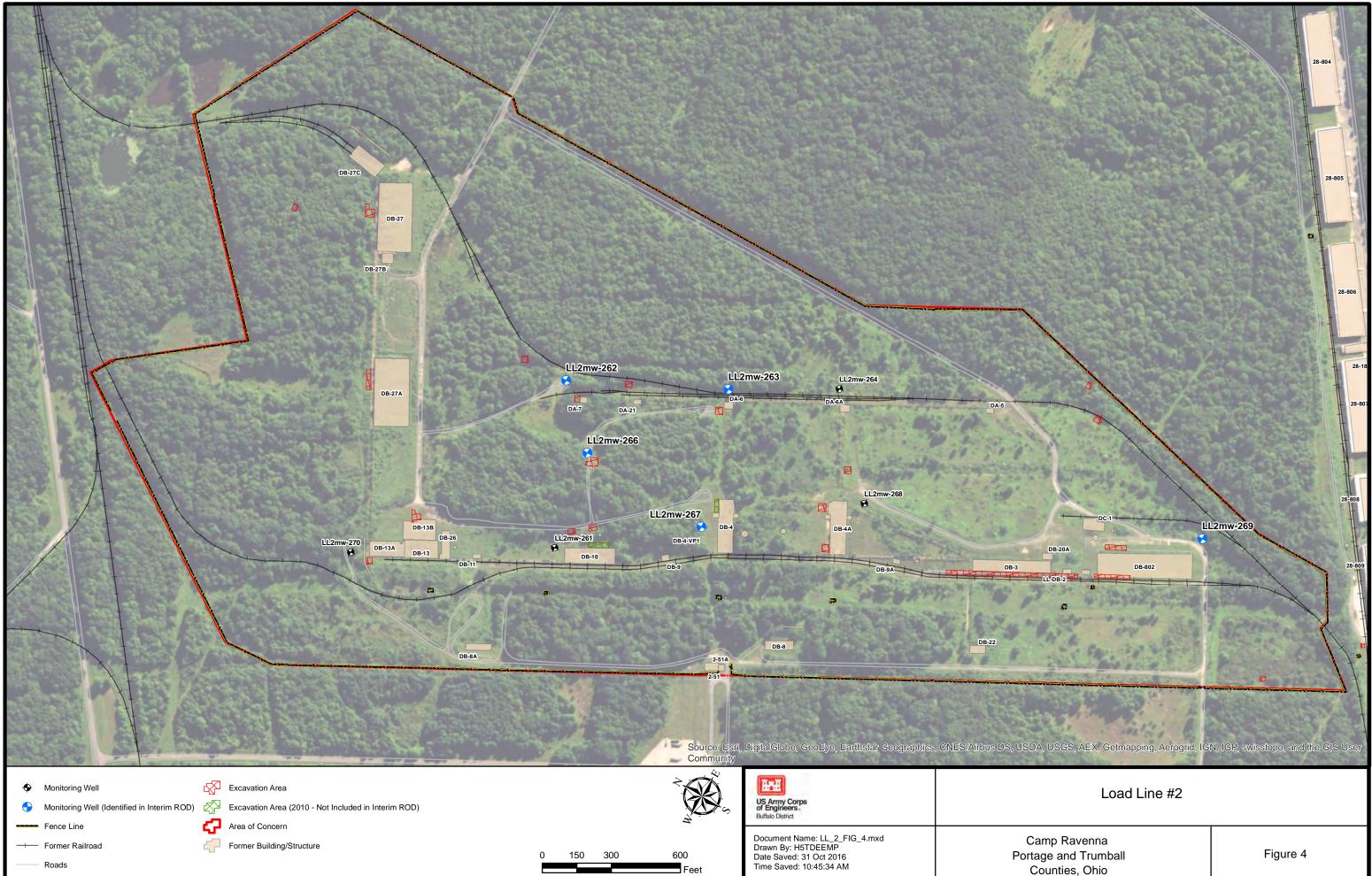
Camp Ravenna Site Location

Camp Ravenna Portage and Trumball Counties, Ohio

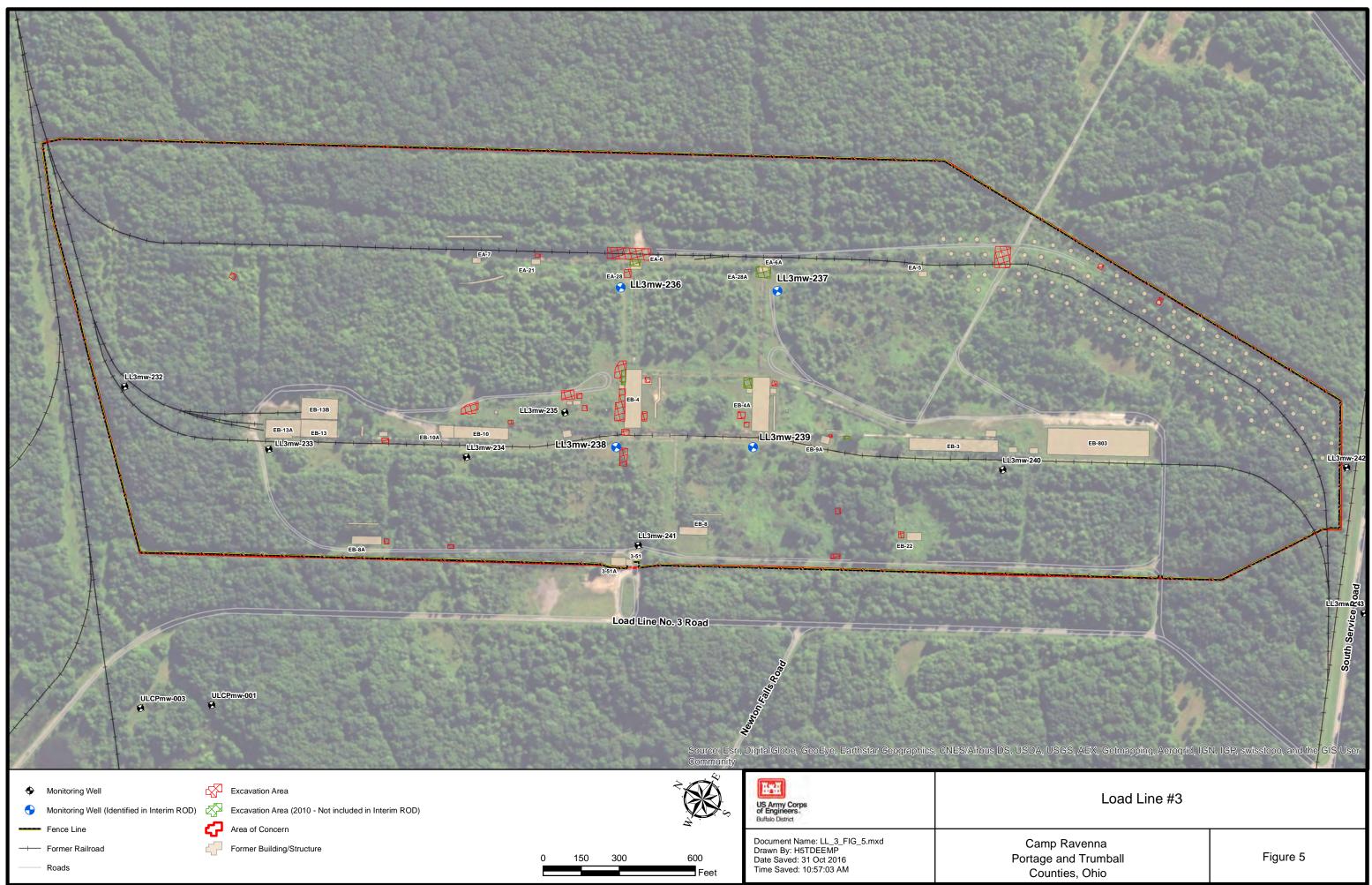
Figure 1

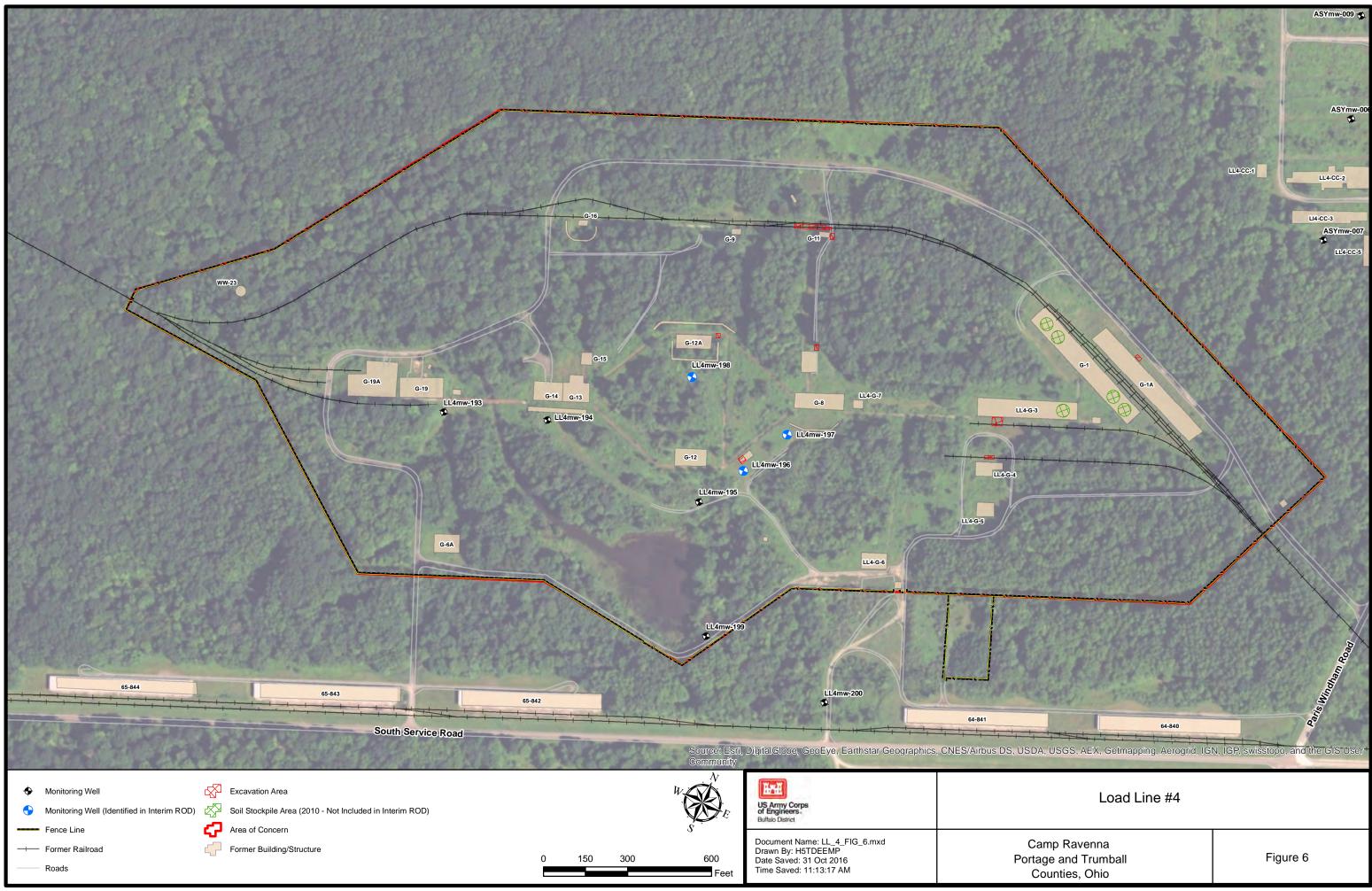
2

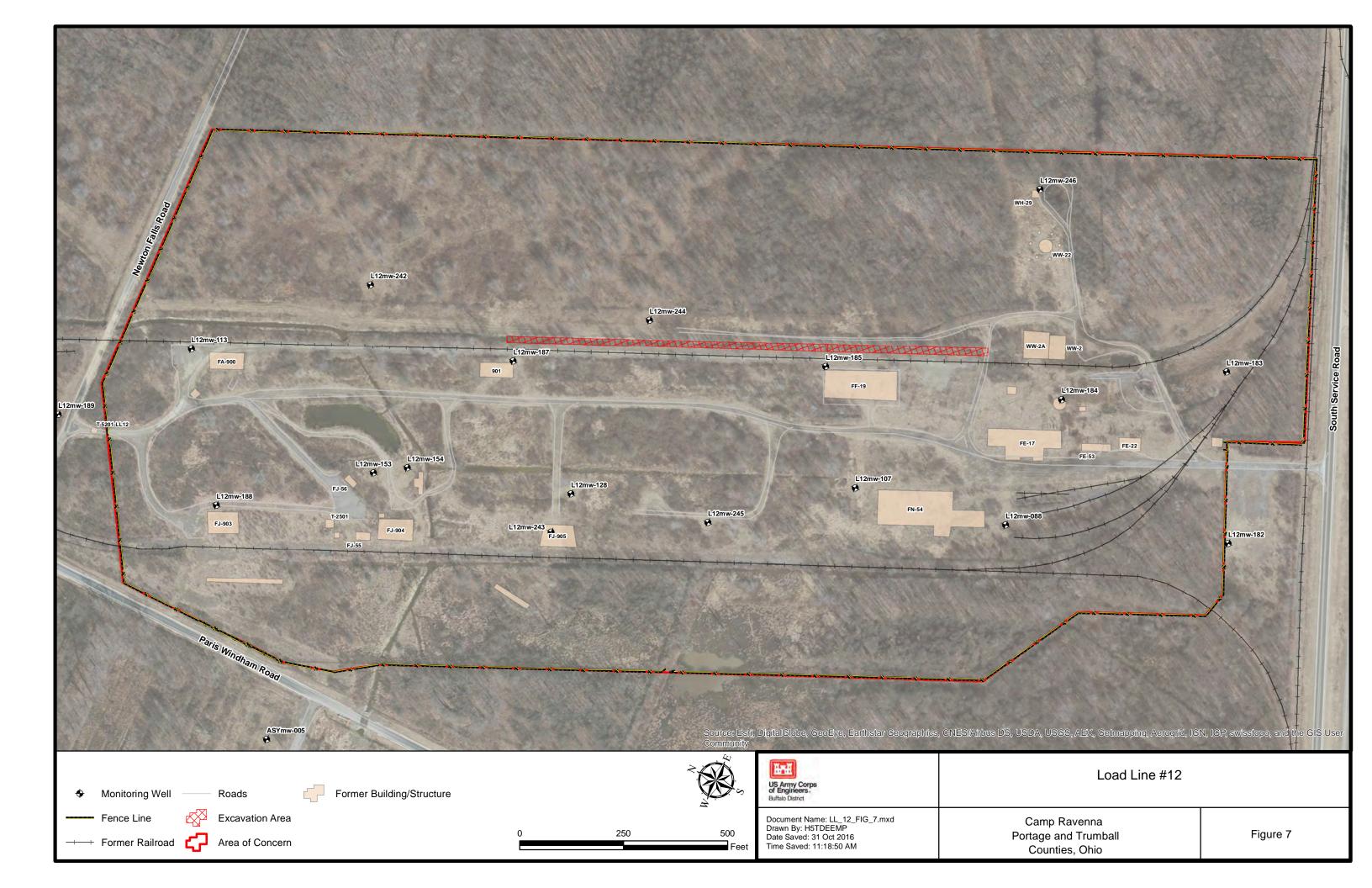

Miles


Document Name: RVAAP_AOC_FIG_2.mxd Drawn By: H5TDEEMP Date Saved: 31 Oct 2016 Time Saved: 10:22:06 AM

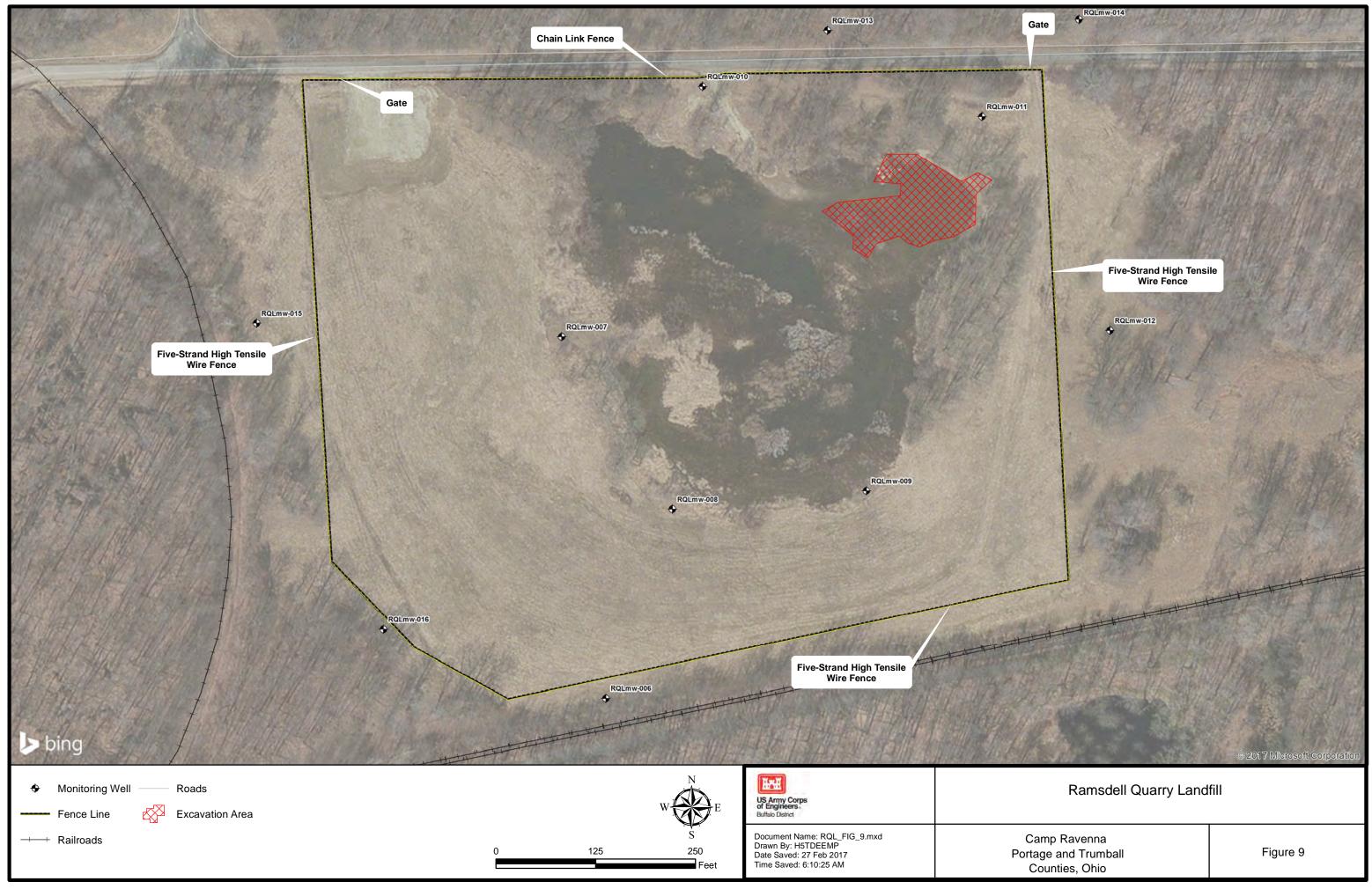
Five-Year Review


Camp Ravenna Portage and Trumball Counties, Ohio


Figure 2



Counties, Ohio



							<u> </u>
		0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.54	6. S.	LNWmw	-027
		1.5 . 3	A. B. Salar			•	S. C.S.
		19 - 19 A. 19					5 1 1 5 5 1
A 35 (4) (4)		225 6 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			10.000	112 万元 ある
	The second s	1.181 1.18	Cont Partition	310	12	1. 2. 2. A.	2
					S JA Guden		and the second
and the second		S. S. Sala	Carl State State	100	Strate 1	and the second	514
1 . We A 2 .					S 6 6 7 7 1 1		
Section Market	AND	1. 1. 1. 1. 1. 1.	1 . S		A State States	- 100 P	189. 60
AS SALAND	seene tool	S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	S.P. L	g	1	3 2 4 3 L B	
			10000	George Road			
	5°		B. Berger	orge			Carlo Chilling Sh
			3.475 - 52	Geo		B > B	a start
3 53 J		200	3. A. S.	1.00		2 h 3.12	Sec. Participation
328 1		and the second second		26.12		St. Alle	
	and the second	N. 16 15 15 15	57 3 3 2 1 3 S		CONTRACTOR OF	THE ROLL	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
		Pallet	WBGmw-005	242		and the second s	and a stand and
13. A. A. A. A.		Road	WBGmw-005		80.00	A TONIA	WBGmw-006
	WBGmw-010	E West	The There is	and the	and the second second	Contraction (1997	and the second second
		PASSING AND AND		8.6			
and she alter		m	J_1 J		Л	Л	Road D
SA CARAS	WBGmw-011 + Pallet Road D	Л		\checkmark	, (East
5 N. 50 . 304	West			6100		OBG-1	Pallet
1. 1. 1. 1. Car	Pallet					· •	Pallet OBG-2 Road
WBGmw-012	Pallet Road C West		1 PALL STATE				C East OBG-3
WBGmw-012		a california	Caracter	1000		OBG-4	and the state is the
West Connecting Road		Concerne The		1000			
Wes nnec	Starke and a start of the start		0		-		Pallet Road
S		J.T.		-			B East
	Pallet Road B West			1000			11-
				-		and the second s	11 Sta 223
	Pallet		WBGmw-009	11	N DERAM		
	Road A West				- 2 4 1 K 1 1	S. Sugar	N 53 3 1
	↓ WBGmw-013	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	AND STREAM			2 - A . A . A	See a
States and		Jugar La San P		and and	No. 1	1. 1. 1. 1. 1. 1.	
					23	$\mathbf{x} = \mathbf{y}$	Sec. 23.2
5 B		Martin Carlo	State State of L		Contraction (Pro	States and	
	mw-104			2 33	Barries-	S ALCON	
							(T) 1
505 4		N. S. S. S. S. S.	So	ource: Esri, l	DigitalGlobe, GeoEy	ye, Earthstar Geograp	hics, CNES/Airbus DS
7. H. J.		TS TON A 2 TO US AND	Co	ommunity	Section and the section of the secti	1999 - A.	AND MARKING AND IN
Monitoring Well	Former Burn Pad Scheduled for MEC Removal and Environmental Remediation		N M	4	Hert		
Fence Line	Area Cleared of MEC to 1ft BGS		w	$\Delta_{\rm E}$	US Army Corps of Engineers Buffalo District		
	Excavation Area			У-			
	Area of Concern		Ś		Document Name: W	/PBG_FIG_8.mxd MP	
Former Burn Pad Surface Cleared of MEC	Former Building/Structure	0 5	500 1,0	00 Feet	Document Name: W Drawn By: H5TDEE Date Saved: 01 Nov Time Saved: 9:55:19	2016 9 AM	
				1001	11110 Javed. 3.00.13		

Camp Ravenna Portage and Trumball Counties, Ohio

Figure 8

ATTACHMENT 2 Documents Reviewed

1

DOCUMENTS REVIEWED

- 2 Alliant Corporation (Alliant) 2015. Draft Work Plan for a Pilot Study and Feasibility Study at
- 3 Atlas Scrap Yard. October 14
- 4 Army National Guard (ARNG) 2015. Memorandum for Administrative File: *Finalization of*
- 5 "Summary of the Findings of the Historical Review and Risk Evaluation of the Storage
- 6 Magazines and Appended Information Paper for the Former Ravenna Army Ammunition Plant,
- 7 *Dated January 29, 2015.*" June 30
- 8 ARNG 2016. FY2015 Ravenna Army Ammunition Plant Army Defense Environmental
- 9 Restoration Program Installation Action Plan. March
- 10 CB&I Federal Services LLC (CB&I) 2014a. Final Remedial Investigation Report for RVAAP-
- 11 002-R-01 Erie Burning Grounds MRS. August 27
- 12 CB&I 2014b. Final Remedial Investigation Report for RVAAP-050-R-01 Atlas Scrap Yard MRS.
- 13 August 25
- CB&I 2014c. Final Remedial Investigation Report for RVAAP-008-R-01 Load Line #1A MRS.
 August 28
- CB&I 2015a. Final Remedial Investigation Report for RVAAP-001-R-01 Ramsdell Quarry
 Landfill MRS. January 27
- CB&I 2015b. Final Remedial Investigation Report for RVAAP-004-R-01 Open Demolition Area
 #2 MRS. February 27
- 20 CB&I 2015c. Final Remedial Investigation Report for RVAAP-019-R-01 Landfill North of
- 21 Winklepeck MRS and RVAAP-060-R-01 Block D Igloo MRS. March 4
- CB&I 2015d. Final Remedial Investigation Report for RVAAP-032-R-01 40mm Firing Range
 MRS. April 30
- 24 CB&I 2015e. Final Remedial Investigation Report for RVAAP-063-R-01 Group 8 MRS. May 19
- CB&I 2015f. Final Remedial Investigation Report for RVAAP-016-R-01 Fuze and Booster
 Quarry MRS. June 5
- 27 CB&I 2015g. Final No Further Action Record of Decision for RVAAP-008-R-01 Load Line #1A
- 28 Munitions Response Site. August 14
- 29 CB&I 2015h. Final No Further Action Record of Decision for RVAAP-033-R-01 Firestone Test
- 30 Facility Munitions Response Site. August 14

- 31 CB&I 2015i. Final No Further Action Record of Decision for RVAAP-034-R-01 Sand Creek
- 32 Dump Munitions Response Site. September 29
- 33 CB&I 2015j. Final No Further Action Record of Decision for RVAAP-062-R-01 Water Works
- 34 *#4 Dump Munitions Response Site*. September 29
- 35 Department of the Army 2016. Memorandum for Department of Defense Explosives Safety
- 36 Board (DDESB-PE/Ms Bige), subject: Request DDESB Acknowledgement of No Further Action
- 37 (NOFA) Explosives Safety Submission (ESS) Military Munitions response Program for Load
- 38 Line #1A, Military Munitions Response Site (MRS) RVAAP-008-R-01, Ravenna Army
- 39 Ammunition Plant, Ohio, March 2016, UISATCES MEC File Number 1474. March 15
- 40 Department of the Army Base Realignment and Closure Division (BRACD) 2008. Letter to
- 41 Bonnie Buthker, Ohio EPA. January 7
- 42 Department of the Army National Guard Bureau (NGB) 2014. Memorandum for Nancy
- 43 Zikmanis Environmental Supervisor, Ohio Environmental Protection Agency (Ohio EPA),
- 44 DERR-NEDO, Northeast District Office, 2110 East Aurora Road, Twinsburg, Ohio 44087:
- 45 FINAL TECHNICAL MEMORANDUM: Land Uses and Revised Risk Assessment Process for the
- 46 Ravenna Army Ammunition Plant (RVAAP) Installation Restoration Program, Portage/Trumball
- 47 *Counties, Ohio.* February 4
- 48 Department of Defense (DoD) 2012. Department of Defense Manual Number 4715.20, Defense
- 49 Environmental Restoration Program (DERP) Management. March 9
- 50 DoD 2014. Memorandum to Assistant Secretary of the Army, Five-Year Review Procedures -
- 51 Update to DoD Manual (DoDM) 4715.20, "Defense Environmental Restoration Program
- 52 (DERP) Management," March 9, 2012. June
- 53 Environmental Chemical Corporation (ECC) 2015a. *Final Site Inspection Report CC RVAAP-77*
- 54 Building 1037 Laundry Waste Water Sump. February 11
- 55 ECC 2015b. Final Site Inspection Report CC RVAAP-71 Barn No. 5 Petroleum Release.
- 56 February 12
- 57 ECC 2015c. Final Site Inspection Report CC RVAAP-83 Former Buildings 1031 and 1039.
 58 June 15
- ECC 2015d. Final Site Inspection Report CC RVAAP-72 Facility-Wide Underground Storage
 Tanks. July 8
- 61 ECC 2015e. Draft Site Inspection Report CC RVAAP-70 East Classification Yard. July 21

- ECC 2016. Final Site inspection Report CC RVAAP-75 George Road Sewage Treatment Plant.
 January 29
- 64 ECC and AMEC Environment and Infrastructure, Inc. (AMEC) 2013. Draft Remedial
- 65 Investigation/Feasibility Study CC RVAAP-76. June 17
- 66 ECC and AMEC 2014a. Preliminary Draft Remedial Investigation CC RVAAP-79 DLA Ore
- 67 Storage Sites Main Storage Area. April 11
- 68 ECC and AMEC 2014b. Preliminary Draft Remedial Investigation CC RVAAP-79 DLA Ore
- 69 Storage Sites Remaining Ore Sites. April 25
- 70 ECC and AMEC 2015. Draft Remedial Investigation Report CC RVAAP-74 Building 1034
- 71 Motor Pool Hydraulic Lift. March 6
- ECC and AMEC 2015. Draft Remedial Investigation Report CC RVAAP-73 Facility-Wide Coal
 Storage. August 18
- 74 Environmental Consulting and Training Services, Inc. and NewFields 2008. *Ravenna Army*
- 75 Ammunition Plant Facility-Wide Groundwater Monitoring Program Background Calculation
- 76 Update Final Report Ravenna Army Ammunition Plant, Ravenna, Ohio. October
- 77 Environmental Quality Management, Inc. (EQM) 2008. *Final Facility-Wide Groundwater*
- 78 Monitoring Program Annual Report for 2007 Ravenna Army Ammunition Plant, Ravenna, Ohio.
- 79 March
- 80 EQM 2009. Final Facility-Wide Groundwater Monitoring Program Annual Report for 2008
- 81 Ravenna Army Ammunition Plant, Ravenna, Ohio. March
- 82 EQM 2010a. Final Facility-Wide Groundwater Monitoring Program Annual Report for 2009
- 83 Ravenna Army Ammunition Plant, Ravenna, Ohio. March
- 84 EQM 2010b. Final Work Plan for the Geochemical Evaluation of Metals in Groundwater at
- 85 Ravenna Army Ammunition Plant, Ravenna, Ohio, Revision 1.0. March
- EQM 2011a. Final Facility-Wide Groundwater Monitoring Program Annual Report for 2011.
 February 23
- 88 EQM 2011b. Final Facility-Wide Groundwater Monitoring Program Annual Report for 2010
- 89 Ravenna Army Ammunition Plant, Ravenna, Ohio. March 11
- 90 EQM 2011c. Final Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-
- 91 Wide Groundwater Project Management Plan. November

- 92 EQM 2012a. Final Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-
- 93 Wide Groundwater Addendum, Ravenna Army Ammunition Plant, Ravenna, Ohio. January
- 94 EQM 2012b. Final Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-
- 95 Wide Groundwater Semiannual Monitoring Addendum, Ravenna Army Ammunition Plant,
- 96 Ravenna, Ohio. January
- EQM 2013. Final Facility-Wide Groundwater Monitoring Program RVAAP-66 Facility-Wide
 Groundwater Annual Report for 2012. October 31
- 99 EQM 2014. Final Facility-Wide Groundwater Monitoring Program RVAAP-66 Facility-Wide
- 100 *Groundwater Annual Report for 2013.* March 6
- EQM 2015a. Final Facility-Wide Groundwater Monitoring Program RVAAP-66 Facility-Wide
 Groundwater Annual Report for 2014. March 30
- EQM 2015b. Final Facility-Wide Groundwater Monitoring Program RVAAP-66 Facility-Wide
 Groundwater Report on the March 2015 Sampling Event. September 21
- 105 EQM 2016. Final Facility-Wide Groundwater Monitoring Program RVAAP-66 Facility-Wide
- 106 Groundwater Report on the July 2015 Sampling Event. January 13
- Leidos Engineering of Ohio, Inc. (Leidos) 2012. Final Remedial Investigation/Feasibility Study
 Report for Soil, Sediment, and Surface Water at the RVAAP-48 Anchor Test Area. January 18
- Leidos 2013. Final Proposed Plan for Soil, Sediment, and Surface Water at RVAAP-48 Anchor
 Test Area. May 28
- 111 Leidos 2014a. Final Record of Decision for Soil, Sediment, and Surface Water at RVAAP-48
- 112 Anchor Test Area. March 18
- Leidos 2014b. Final Remedial Design for Soil and Dry Sediment at RVAAP-01 Ramsdell
 Quarry Landfill. April 9
- 115 Leidos 2014c. Final Remedial Design for Soil, Sediment, and Surface Water at RVAAP-13
- 116 Building 1200 and RVAAP-48 Anchor Test Area. August 22
- Leidos 2015a. Final Remedial Action Report for Soil and Dry Sediment at RVAAP-01 Ramsdell
 Quarry Landfill. January 30
- Leidos 2015b. Final Remedial Action Report for Soil, Sediment, and Surface Water at RVAAP-*13 Building 1200.* May 14

- 121 Leidos 2015c. Final Remedial Investigation Report for Soil, Sediment, and Surface Water at
- 122 *RVAAP-43 Load Line 10.* June 26
- 123 Leidos 2015d. Final Remedial Investigation Report for Soil, Sediment, and Surface Water at
- 124 RVAAP-50 Atlas Scrap Yard. June 26
- 125 Leidos 2016a. Draft Remedial Investigation/Feasibility Study Report for Soil, Sediment, and
- 126 Surface Water at RVAAP-40 Load Line 7. January 27
- 127 Leidos 2016b. Draft Phase II Remedial Investigation Report and Feasibility Study for Soil,
- 128 Sediment, and Surface Water at RVAAP-42 Load Line 9. February 10
- 129 Leidos 2016c. Revised Draft Remedial Investigation Report for Soil, Sediment, and Surface
- 130 Water at RVAAP-39 Load Line 5. April 7
- 131 Leidos 2016d. Final PBA13 Sample and Analysis Plan Addendum for Surface Water and
- 132 Sediment at Load Lines 1, 2, 3, and 4. April 8
- Leidos 2016e. *Final Remedial Action Report for Soil, Sediment, and Surface Water at RVAAP-*48 Anchor Test Area. April 16
- Leidos 2016f. Draft Proposed Plan for Soil, Sediment, and Surface Water at RVAAP-43 Load
 Line 10. May 6
- Leidos 2016g. *Revised Draft Remedial Investigation Report for Soil, Sediment, and Surface*Water at RVAAP-41 Load Line 8. May 10
- Leidos 2016h. *Revised Draft Phase II Remedial Investigation Report for Soil, Sediment, and Surface Water at RVAAP-44 Load Line 11.* June 22
- 141 Leidos 2016i. Draft Engineering Evaluation/Cost Analysis for RVAAP-67 Facility-wide Sewers:
- 142 Load Line 2 Functional Area and CC-RVAAP-75 George Road Sewage Treatment Plant
- 143 *Mercury Spill.* September 21
- 144 Leidos 2016j. Draft Feasibility Study Addendum for Soil, Sediment, and Surface Water at
- 145 *RVAAP Load Lines 1, 2, 3, 4, and 12.* November 22
- 146 MacDonald and Mack Partnership 1984. *Historic Properties Report, Ravenna Army*
- 147 Ammunition Plant, Ravenna, Ohio. August
- 148 MKM Engineers, Inc. (MKM) 2004a. Final Report LL-11 Interim Removal Action. March
- 149 MKM 2004b. Remedial Design/Removal Action Plan for Paris-Windham Road Dump. March

- 150 MKM 2005. Final Report for the Remedial Investigation at Load Line 11 (AOC 44). September
- 151 MKM 2007a. Final Characterization of 14 AOCs at Ravenna Army Ammunition Plant. March
- MKM 2007b. *Final Report for the Phase I Remedial Investigation at Load Line 9 (RVAAP 42).*August
- MKM 2008. Final Remedial Action Work Plan Winklepeck Burning Grounds Ravenna Army
 Ammunition Plant, Ravenna, Ohio. July
- 156 MKM 2009. Final Remedial Action Completion Report for RVAAP-05 Winklepeck Burning
- 157 *Grounds Pads 61/61A, 67, and 70.* November
- 158 MKM 2010. *Final Construction Completion Report for the Demolition of RVAAP-09 Load Line* 159 2, *RVAAP-10 Load Line 3, and RVAAP-11 Load Line 4.* July
- 160 Ohio Army National Guard (OHARNG) 2014. Updated Integrated Natural Resources
- 161 Management Plan (INRMP) At The Camp Ravenna Joint Military Training Center Portage and
- 162 *Trumball Counties, Ohio.* December
- 163 Ohio Environmental Protection Agency (Ohio EPA) 1999. Letter to Ravenna Army Ammunition
- 164 Plant re: Completion of Partial Closure (for the Open Burning Ground Facility). May
- 165 Ohio EPA 2004. Director's Final Findings and Orders in the Matter of United States
- 166 Department of the Army Ravenna Army Ammunition Plant 8451 State Route 5 Ravenna, Ohio
- 167 *44244-9297*. June 10
- 168 Ohio EPA 2015. Letter to Mr. Mark Leeper, P.G., MBA Army National Guard Directorate;
- 169 subject: Approval for the "Final Remedial Action Report for Soil and Dry Sediment at the
- 170 RVAAP-01 Ramsdell Quarry Landfill, at the Ravenna Army Ammunition Plant, Ravenna, Ohio,"
- 171 Dated January 30, 2015, Ohio EPA ID #267-000859-130. February 27
- 172 PIKA International, Inc. (PIKA) 2009. Final Removal Action Report for the Time Critical
- 173 Removal Action (TCRA) at the Rocket Ridge Area (RRA) Within RVAAP-004-R-01 Open
- 174 *Demolition Area #2 MRS.* December 17
- 175 PIKA 2010. Final Construction Completion Report Removal of Buildings and Concrete Floor
- 176 Slabs at RVAAP-08 Load Line 1, & Other Miscellaneous Buildings and Removal & Disposal of
- 177 Pallets Version 1.0 Ravenna Army Ammunition Plant (RVAAP) Ravenna, Ohio. July
- 178 PIKA 2016. Preliminary Draft Report Site Investigation at Compliance Restoration Site CC
- 179 RVAAP-80 Group 2 Propellant Can Tops. August 8

- 180 Prudent Technologies, Inc. (Prudent) 2010. *Final Project Management Plan for Sampling and*
- 181 Closure of Load Lines 1, 2, 3, 4, 12 (RVAAP-08, 09, 10, 11, and 12) and Other Areas of Concern
- 182 Ravenna Army Ammunition Plant Ravenna, Ohio. July
- 183 Prudent 2011. Final Sampling Report of Surface and Subsurface Incremental Sampling
- 184 Methodology at Load Lines 1, 2, 3, and 4 (RVAAP-08, 09, 10, and 11) Ravenna Army
- 185 Ammunition Plant Ravenna, Ohio. March
- 186 Prudent 2013. Final Characterization Sampling Report of Surface and Subsurface Incremental
- 187 Sampling Methodology at RVAAP-08, 09, 10, 11, and 12, Land Lines 1, 2, 3, 4 and 12. March
- 188 29
- 189 Science Applications International Corporation (SAIC) 1998. Final Phase I Remedial
- 190 Investigation Report for the Phase I Remedial Investigation of High Priority Areas of Concern at
- 191 the Ravenna Army Ammunition Plant, Ravenna, Ohio... February
- 192 SAIC 1998. Final RCRA Closure Field Investigation Report for the Deactivation Furnace Area,
- 193 *Open Detonation Area, Building 1601, and Pesticides Building Ravenna Army Ammunition*
- 194 Plant, Ravenna, Ohio. June
- 195 SAIC 2001a. Final Phase II Remedial Investigation Report for the Winklepeck Burning Grounds
- 196 at the Ravenna Army Ammunition Plant, Ravenna, Ohio. April
- 197 SAIC 2001b. Final Phase I Remedial Investigation Report for the NACA Test Area at the
- 198 Ravenna Army Ammunition Plant. December
- 199 SAIC 2002. Revised Final Technical Memorandum Human Health and Ecological Risk
- 200 Assessment Approach for the Load Line 1 and Load Line 12 Phase II Remedial Investigations,
- 201 Ravenna Army Ammunition Plant, Ravenna, Ohio. August
- 202 SAIC 2004. Final Phase II Remedial Investigation Report for Load Line 12 at the Ravenna
- 203 Army Ammunition Plant, Ravenna, Ohio. March
- SAIC 2005a. Revised Final Focused Feasibility Study for the Winklepeck Burning Grounds at
 the Ravenna Army Ammunition Plant, Ravenna, Ohio. March
- 206 SAIC 2005b. Final Phase I Remedial Investigation December 2004 Follow-on Groundwater
- 207 Sampling at the Ramsdell Quarry Landfill at the Ravenna Army Ammunition Plant Ravenna,
 208 Ohio. June
- 209 SAIC 2005c. Final Phase I Remedial Investigation Report for Ramsdell Quarry Landfill at the
- 210 Ravenna Army Ammunition Plant, Ravenna, Ohio. September

- 211 SAIC 2005d. Phase II Remedial Investigation Supplemental Report for Load Line 12 (RVAAP-
- 212 *12) at the Ravenna Army Ammunition Plant, Ravenna, Ohio.* November
- 213 SAIC 2006a. Final Supplemental Human Health Risk Assessment for Revised Range
- 214 Maintenance Soldier at the Former Winklepeck Burning Grounds. May
- SAIC 2006b. Final Feasibility Study for Load Line 12 (RVAAP-12), Ravenna Army Ammunition
 Plant Ravenna, Ohio. July
- SAIC 2006c. Final Feasibility Study for Ramsdell Quarry Landfill (RVAAP-01) Ravenna Army
 Ammunition Plant Ravenna, Ohio. October
- 219 SAIC 2008. Final Record of Decision for Soil and Dry Sediment at the RVAAP-05 Winklepeck
- 220 Burning Grounds at the Ravenna Army Ammunition Plant, Ravenna, Ohio. August
- 221 SAIC 2009a. Final Record of Decision for Soil and Dry Sediment for the RVAAP-12 Load Line
- 222 12 Ravenna Army Ammunition Plant Ravenna, Ohio. March
- 223 SAIC 2009b. Final Record of Decision for Soil and Dry Sediment for the RVAAP-01 Ramsdell
- 224 Quarry Landfill Ravenna Army Ammunition Plant Ravenna, Ohio. March 24
- 225 SAIC 2009c. Final Remedial Design for the RVAAP-12 Load Line 12 Ravenna Army
- 226 Ammunition Plant Ravenna, Ohio. October
- SAIC 2010a. Final Facility-Wide Human Health Cleanup Goals for the Ravenna Army
 Ammunition Plant Ravenna, Ohio. March
- 229 SAIC 2010b. Revised Final Remedial Design for the RVAAP-01 Ramsdell Quarry Landfill
- 230 Ravenna Army Ammunition Plant Ravenna, Ohio. June 17
- SAIC 2010c. Final Remedial Action Report for the RVAAP-12 Load Line 12 Ravenna Army
 Ammunition Plant Ravenna, Ohio. August
- 233 SAIC 2011a. Final Facility-Wide Safety and Health Plan for Environmental Investigations
- 234 *Revision 0 Ravenna Army Ammunition Plant Ravenna Ohio.* February
- SAIC 2011b. Final Engineering Evaluation for Soil and Dry Sediment at RVAAP-01 Ramsdell
 Quarry Landfill Version 1.0 Ravenna Army Ammunition Plant Ravenna, Ohio. September 2
- 237 SAIC 2011c. Draft Remedial Investigation Report for Soil, Sediment, and Surface Water at
- 238 RVAAP-45 Wet Storage Area. November 23
- 239 SAIC 2011d. Draft Remedial Investigation Report for Soil, Sediment, and Surface Water at
- 240 *RVAAP-46 Buildings F-15 and F-16.* November 23

- 241 SAIC 2011e. Final Historical Records Review Report for the 2010 Phase I Remedial
- 242 Investigation Services at Compliance Restoration Sites (9 Areas of Concern). December 22
- 243 SAIC 2011f. Draft Remedial Investigation/Feasibility Study Report for Soil, Sediment, and
- 244 Surface Water at RVAAP-06 C Block Quarry. December 27
- SAIC 2012a. Draft Phase III Remedial Investigation Report for Wet Sediment and Surface
 Water at RVAAP-12 Load Line 12. February 3.
- 247 SAIC 2012b. Draft Remedial Investigation/Feasibility Study Report for Soil, Sediment, and
- 248 Surface Water at RVAAP-19 Landfill North of Winklepeck Burning Grounds. February 17
- 249 SAIC 2012c. Draft Phase II Remedial Investigation and Feasibility Study Report for Soil,
- 250 Sediment, and Surface Water at RVAAP-38 NACA Test Area. February 17
- 251 SAIC 2012d. Draft Remedial Investigation/Feasibility Study Report for ft Phase II Remedial
- 252 Investigation Report for Soil, Sediment, and Surface Water at RVAAP-33 Load Line 6. March 11
- 253 SAIC 2012e. Draft Phase III Remedial Investigation Report and Feasibility Study for Soil,
- 254 Sediment and Surface Water at RVAAP-29 Upper and Lower Cobbs Ponds. March 30
- SAIC 2012f. Revised Final Modified Proposed Plan for Soil and Dry Sediment at the RVAAP01 Ramsdell Quarry Landfill. June 6
- 257 SAIC 2012g. Draft Remedial Investigation/Feasibility Study Report for RVAAP-67 Facility-
- Wide Sewers, Ravenna Army Ammunition Plant Ravenna Ohio (Excerpted Sections). September
 7
- SAIC 2013. Final Record of Decision Amendment for Soil and Dry Sediment at the RVAAP-01
 Ramsdell Quarry Landfill. May 24
- SAIC 2015a. *Revised Draft Proposed Plan for Soil, Sediment, and Surface Water for RVAAP-51 Dump Along Paris-Windham Road.* December 10
- SAIC 2015b. Final Site Characterization and Focused Feasibility Study for the RVAAP-51
 Dump Along Paris-Windham Road. December 15
- 266 Shaw E&I (Shaw) 2004a. Final Supplemental Baseline Human Health Risk Assessment for Load
- 267 *Line 1 Alternative Receptors at the Ravenna Army Ammunition Plant, Ravenna, Ohio.* July
- Shaw 2004b. Phase II Remedial Investigation Report for Load Line 2 at the at the Ravenna
 Army Ammunition Plant, Ravenna, Ohio. July

- 270 Shaw 2004c. Proposed Remedial Goal Options for Soil at Load Lines 1, 2, 3, and 4 at the
- 271 Ravenna Army Ammunition Plant, Ravenna, Ohio. September
- 272 Shaw Environmental, Inc. (Shaw) 2005a. *Final Focused Feasibility Study for the Remediation*
- 273 of Soils at Load Lines 1 through 4 at the Ravenna Army Ammunition Plant Ravenna, Ohio. May
- 274 Shaw 2005b. Proposed Plan for the Remediation of Soils at Load Lines 1 through 4 at the
- 275 Ravenna Army Ammunition Plant Ravenna, Ohio. July
- 276 Shaw 2007. Final Remedial Action Work Plan Remediation of Soils at Load Lines 1, 2, 3, and 4
- 277 Ravenna Army Ammunition Plant Ravenna Ohio. April
- 278 Shaw 2008. Final Remedial Action Completion Report for the Remediation of Soils and Dry
- 279 Sediments at RVAAP 08-11 (Load Lines 1-4) Ravenna Army Ammunition Plant Ravenna, Ohio.
- 280 June
- 281 Shaw 2010. Final Work Plan for the Geochemical Evaluation of Metals in Groundwater at
- 282 Ravenna Army Ammunition Plant, Ravenna, Ohio Version 1.0. March
- 283 Shaw 2011a. Final Data Quality Objectives Report for RVAAP-05 Winklepeck Burning Grounds
- 284 Version 1.0 Ravenna Army Ammunition Plant Ravenna, Ohio. June
- Shaw 2011b. Final Geochemical Evaluation of Metals in Groundwater at the Ravenna Army
 Ammunition Plant Version 1.0 Ravenna Army Ammunition Plant Ravenna, Ohio. June
- Shaw 2012. Draft Phase I Remedial Investigation for RVAAP-34 Sand Creek Disposal Road
 Landfill. July 19
- Shaw 2013a. Draft Feasibility Study for RVAAP-34 Sand Creek Disposal Road Landfill.
 September 16
- Shaw 2013b. Draft Proposed Plan for RVAAP-34 Sand Creek Disposal Road Landfill.
 September 16
- 293 TEC-Weston Joint Venture (TEC-Weston) 2016. Draft Final Facility-Wide Groundwater
- Monitoring Program RVAAP-66 Facility-Wide Groundwater Annual Report for 2015. February
 12
- 296 U.S. Army Corps of Engineers (USACE) 1998. Phase I Remedial Investigation Report for the
- 297 Phase I Remedial Investigation of High Priority Areas of Concern at the Ravenna Army
- 298 Ammunition Plant, Ravenna, Ohio. February
- 299 USACE 2003. Final RVAAP Facility Wide Ecological Risk Work Plan. April

- 300 USACE 2004. Final Facility-Wide Groundwater Monitoring Program Plan for the Ravenna
- 301 Army Ammunition Plant Ravenna, Ohio. September
- 302 USACE 2005. *RVAAP's Facility Wide Human Health Risk Assessor Manual, Amendment 1.*303 December 1
- 304 USACE. 2007. Final Interim Record of Decision for the Remediation of Soils at Load Lines 1
- 305 Through 4 at the Ravenna Army Ammunition Plant Ravenna, Ohio. January
- 306 USACE 2009. Final Investigation of the Under Slab Surface Soils Post Slab and Foundation
- 307 *Removal at RVAAP-39 Load Line 5, RVAAP-40 Load Line 7, RVAAP-41 Load Line LL8, and*308 *RVAAP-43 Load Line 10.* January 5
- 309 USACE 2012a. Final (Revised) Ravenna Army Ammunition Plant (RVAAP) Position Paper for
- 310 *the Application and Use of Facility-Wide Human Health Cleanup Goals.* February
- 311 USACE 2012b. Final Property Management Plan for the Designated Areas of Concerns and
- 312 Munitions Response Sites Volume One. August
- 313 USACE 2012c. Final First Installation-Wide Five-Year Review Report for RVAAP-01 Ramsdell
- 314 *Quarry Landfill RVAAP-05 Winklepeck Burning Grounds, RVAAP-08 Load Line 1 RVAAP-09*
- 315 Load Line 2 RVAAP-10 Load Line 3 RVAAP-11 Load Line 4 RVAAP-12 Load Line 12. August
- 316 USACE 2013a. EM 200-1-16 Environmental Statistics. May 31
- 317 USACE 2013b. Final Risk Assessment Assumptions Document (RAAD) Addendum to the Work
- 318 Plan for the Additional Evaluation of the RVAAP-05 Winklepeck Burning Grounds. July 24
- 319 USACE 2013c. Draft Sampling and Risk Assessment Report for the Additional Evaluation of
- 320 RVAAP-05 Winklepeck Burning Grounds. August 15
- 321 USACE 2014. Draft Remedial Investigation/Feasibility Study Supplement for RVAAP-05
 322 Winklepeck Burning Grounds. January 10
- 323 USACE 2015a. Final Explanation of Significant Differences for Post-ROD Changes to the
- 324 *Remedy at RVAAP-05 Winklepeck Burning Grounds*. March
- 325 USACE 2015b. Final Site Inspection Report for RVAAP-28 Suspected Mustard Agent Burial
 326 Site. April 27
- 327 USACE 2015c. Final Remedial Design for the Post-ROD Changes to the Remedy ay RVAAP-05
 328 Winklepeck Burning Grounds. August 27

- USACE 2015d. Final Action Memorandum Time-Critical Removal Action RVAAP-004-R-01
 Open Demolition Area #2. October 30
- USACE 2016a. Draft Revised Site Inspection for CC RVAAP-78 Quarry Pond Surface Dump.
 May 20
- 333 USACE 2016b. Draft Addendum for the Remedial Design for the Post-ROD Changes to the
- 334 *Remedy at RVAAP-05 Winklepeck Burning Grounds.* June 2
- USACE 2016c. Draft Engineering Evaluation/Cost Analysis: RVAAP-28 Suspected Mustard
 Agent Burial Site at Camp Ravenna Joint Military Training Center. August 22
- 337 U.S. Army Toxic and Hazardous Materials Agency (USATHMA) 1976. Installation Assessment
- 338 of Ravenna Army Ammunition Plant, Report No. 132. November
- 339 USEPA 1990. National Oil and Hazardous Substances Pollution Contingency Plan Final Rule,
- 340 FR Vol. 55, No. 46, March 8. Available from U.S. Government Printing Office, Washington,
- 341 D.C.
- 342 USEPA 2001. EPA 540-R-01-007, Comprehensive Five-Year Review Guidance. June
- 343 USEPA 2012. Clarifying the Use of Protectiveness Determinations for Comprehensive
- 344 Environmental Response, Compensation, and Liability Act Five-Year Reviews, OSWER 9200.2-
- 345 *111*. September
- 346 USEPA 2015. *Integrated Risk Information System (IRIS)*, National Center for Environmental
 347 Assessments. http://www.epa.gov/iris/
- 348 URS Corporation (URS) 2009. Final Multi-Increment Sampling and Analysis of Soils Below
- 349 Floor Slabs at RVAAP-09 Load Line 2, RVAAP-10 Load Line 3, and RVAAP-11 Load Line 4.
- 350 December
- 351 URS 2010a. Final Sampling and Analysis of Soils Below Floor Slabs at RVAAP-08 Load Line 1
 352 and Other Building Locations. September
- 353 URS 2010b. Final Remedial Action Completion Report Sub-Slab Soils at RVAAP-09 Load Line
 354 2, RVAAP-10 Load Line 3, and RVAAP-11 Load Line 4. December
- 355 URS 2011. Final Remedial Action Completion Report Sub-Slab Soils at RVAAP-08 Load Line 1.
 356 March
- 357 Vista Sciences Corporation (Vista) 2014a. *Final FY 2013 Annual Report for the Quarterly Land*
- 358 Use Control Inspections, RVAAP-05 Winklepeck Burning Grounds. July 16

- Vista 2014b. Final FY 2014 First Quarter Land Use Control Inspection, RVAAP-05 Winklepeck
 Burning Grounds. July 18
- 361 Vista 2014c. Final FY 2014 Second Quarter Land Use Control Inspection, RVAAP-05
 362 Winklepeck Burning Grounds. July 22
- 363 Vista 2014d. Final FY 2014 Third Quarter Land Use Control Inspection, RVAAP-05
- 364 Winklepeck Burning Grounds. October 8
- 365 Vista 2014e. Final FY 2014 Fourth Quarter Land Use Control Inspection, RVAAP-05
 366 Winklepeck Burning Grounds. October 10
- 367 Vista 2015a. Final FY 2014 Annual Land Use Control Inspections, RVAAP-05 Winklepeck
 368 Burning Grounds. January 8
- 369Vista 2015b. Final FY 2015 First Quarter Land Use Control Inspection, RVAAP-05 Winklepeck
- 370 Burning Grounds. April 3
- 371 Vista 2015c. Final FY 2015 Second Quarter Land Use Control Inspection, RVAAP-05
 372 Winklepeck Burning Grounds. July 23
- 373 Vista 2015d. Final FY 2015 Third Quarter Land Use Control Inspection, RVAAP-05
- 374 Winklepeck Burning Grounds. October 30
- 375 Vista 2015e. Final FY 2015 Fourth Quarter Land Use Control Inspection, RVAAP-05
- 376 Winklepeck Burning Grounds. December 18
- 377 Vista 2016a. Final 2015 Annual Land Use Control Monitoring Report, RVAAP-01 Ramsdell
- 378 *Quarry Landfill and RVAAP-05 Winklepeck Burning Grounds.* January 27
- 379 Vista 2016b. Draft FY 2016 First Quarter Land Use Control Inspection RVAAP-05 Winklepeck
 380 Burning Grounds. January 29
- 381 Vista 2016b. Draft Site Safety & Health Plan Camp Ravenna Environmental Program Support
 382 Services. February 2
- 383 Vista 2016c. Draft FY 2016 Second Quarter Land Use Control Inspection RVAAP-05
 384 Winklepeck Burning Grounds. March 3
- Vista 2016d. Draft FY 2016 Third Quarter Land Use Control Inspection RVAAP-05 Winklepeck
 Burning Grounds. June 29

ATTACHMENT 3

Decision Document Summaries

Component: Background/Basis for Taking Action - Load Lines 1 Through 4			
Decision Document Titles	 Interim Record of Decision for the Remediation of Soils at Load Lines 1 Through 4 at the Ravenna Army Ammunition Plant (IROD) (January 2007) Department of the Army letter to Ohio EPA-Southwest District Office regarding removal of building slabs at Load Lines 1 through 4. (January 7, 2008) 		
Regulatory Framework	CERCLA Non-NPL		
Remedy Chosen	 Alternative Soil and Dry Sediment 3 (SDS3) – Excavation and Off- site Disposal (IROD) Building slab removal (January 7, 2008 letter) 		
Media of Concern	Surface and subsurface soils and dry sediment		
Constituents of Concern (COCs)	Inorganics:aluminum, antimony, arsenic, barium, cadmium, hexavalent chromium, manganese, and leadExplosives:2,4,6-TNT and RDXPCBs:Aroclor-1254SVOCs:benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and dibenz(a,h)anthraceneCOCs identified in soil at load lines 1-4 are presented in tables 2 and 3 of the IROD. (Pgs. 8 & 11)		
Land Use	Current:Not used, vacantFuture:National Guard mounted training, no digging		
Receptors	National Guard Trainee (IROD pg. 9)		
Exposure Pathway	Inhalation, ingestion or direct contact (IROD pg. 9)		
Ecological Risk	"Based on the expected impact to site conditions at LLs 1-4 from remediation associated with achieving human health clean-up goals and proposed vehicular training activities (e.g., soil compaction, vegetation damage, etc.), ecologically based clean-up goals have been determined to be unnecessary." (IROD pg. 10)		

Table A3-1 Decision Document SummaryComponent: Background/Basis for Taking Action - Load Lines 1 Through 4

Table A3-2 Decision Document SummaryComponent: Remedial Action - Load Lines 1 Through 4Page 1 of 2

Decision Document Titles	 Interim Record of Decision for the Remediation of Soils at Load Lines 1 Through 4 at the Ravenna Army Ammunition Plant (IROD) (January 2007) Department of the Army letter to Ohio EPA-Southwest District Office regarding removal of building slabs at Load Lines 1 through 4. (January 7, 2008)
Remedy Chosen	 Alternative Soil and Dry Sediment 3 (SDS3) – Excavation and Off- site Disposal (IROD) Building slab removal (January 7, 2008 letter)
Remedial Action Objective (RAO)	Prevent the ingestion, inhalation, or direct contact with COCs exceeding cleanup goals for soil and dry sediment.
Clean-Up Goals	"Clean-up goals for surface and subsurface soils and dry sediment at LLs 1-4 at RVAAP were determined based on risk-based and site- specific considerations, including background concentrations, duration of reasonable maximum human exposures, and reasonably anticipated future land use (National Guard mounted training, no digging). The resulting clean-up goals for the National Guard Trainee for soil at LLs 1-4 are presented in Table 3." (IROD pgs.10 &11)
Applicable or Relevant and Appropriate Requirements (ARARs)	There are no chemical-specific ARARs. Action- and location-specific ARARs for each alternative are varied and numerous. They are identified for the selected remedy in IROD Attachment 1 (Pg.14).

Table A3-2 Decision Document Summary Component: Remedial Action - Load Lines 1 Through 4 Page 2 of 2

Components of the Remedy	 IROD Excavation of discrete areas of contaminated surface and subsurface soils and dry sediment with concentrations of contaminants exceeding clean-up goals Temporary on-site storage via stockpiling for characterization Off-site disposal of soils at a permitted solid waste landfill and, as needed, disposal at a TSCA and/or RCRA permitted hazardous waste landfill Replacement of excavated material with clean compacted backfill Groundwater monitoring to ensure the Selected Remedy did not impact groundwater Maintenance of building slabs and foundations January 7, 2008 letter Building slab removal
-----------------------------	---

Table A3-3 Decision Document SummaryComponent: Background/Basis for Taking Action - Load Line 12

Decision Document Title	Final Record of Decision for Soil and Dry Sediment for the RVAAP-12 Load Line 12 (March 2009)			
Regulatory Framework	CERCLA Non-NPL			
Remedy Chosen	Alternative 3: Excavation and Off-site Disposal – National Guard Trainee Land Use			
Media of Concern	Soil and dry sediment			
COCs	<i>Inorganics:</i> arsenic ROD Part II, Table 2 (Pg. 12)			
Land Use	Current:Not used, vacantFuture:National Guard mounted training, no digging			
Receptors	National Guard Trainee (ROD pg. 10)			
Exposure Pathway	 ROD: "The Baseline Risk Assessment (BRA) identifies the exposure pathways, COCs, if any, and provides a basis for the remedial decisions." (Pg. 10) BRA: Inhalation, ingestion, and dermal contact (Phase II RI, Section 6.3.2) 			
Ecological Risk	"The Feasibility Study presents a weight-of-evidence evaluation that no quantitative ecological clean-up goals be developed at LL12." (ROD pg. 11)			

Table A3-4	Decision Document Summary
Component:	Remedial Action - Load Line 12

Decision Document Title	Final Record of Decision for Soil and Dry Sediment for the RVAAP-12 Load Line 12 (March 2009)				
Remedy Chosen	Alternative 3: Excavation and Off-site Disposal – National Guard Trainee Land Use				
RAO	Prevent National Guard Trainee exposure to contaminants in soil and dry sediment that exceed the clean-up goals to a depth of 4 ft bgs. (ROD pg. 11)				
Clean-Up Goal	Arsenic – 31 mg/kg (ROD Part II, Table 2, pg. 12)				
ARARs	"There are no identified chemical-specific or location-specific applicable and relevant or appropriate requirements (ARARs)." "Action-specific ARARs were identified for Alternative 3." (ROD pg. 16)				
Components of the Remedy	 Remedial design plan Excavation Handling of waste materials Off-site disposal Confirmatory sampling Restoration Land-use controls Institutional Control Components: <i>"Land use controls (LUCs) shall be maintained until the concentrations of hazardous substances in the soil and groundwater are reduced to levels that allow for unrestricted use. The Remedial Design (RD) shall include a LUC component describing the details of LUC implementation and maintenance, including periodic inspections."</i> (ROD pg. 21) 				

Table A3-5 Decision Document Summary Component: Background/Basis for Taking Action – Winklepeck Burning Grounds Page 1 of 2

Decision Document Titles	 Record of Decision (ROD) for Soil and Dry Sediment at the RVAAP- 05 Winklepeck Burning Grounds (August 2008) Final Explanation of Significant Differences (ESD) for Post-ROD Changes to the Remedy at RVAAP-05 Winklepeck Burning Grounds (March 2015) 		
Regulatory Framework	CERCLA Non-NPL		
Remedy Chosen	 <i>ROD:</i> Alternative 2: Chemical Contamination Removal Concurrent with MEC Removal Action – Excavation, Screen for Potential MEC, Composite Sampling, and Disposal. (ROD pg. II-27) <i>ESD:</i> Removal of contaminated soil at Pad 38, Pad 61/61A, and Pad 66/67 (ESD pg. 10) 		
Media of Concern	Soil and dry sediment		
COCs	 ROD (Table II, Pg. II-4) <i>Explosives:</i> RDX <i>SVOCs:</i> benzo(a)pyrene, dibenz(a,h)anthracene, benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene ESD (Table 1, Pg. 10) <i>Explosives:</i> RDX & TNT <i>SVOCs:</i> PAHs 		
Land Use	Current:Military training, Mark 19 Grenade Machine Gun rangeFuture:Military training, Mark 19 Grenade Machine Gun range & Multi-Purpose Machine Gun range (ESD pgs. 3 & 9)		
Receptors	Range Maintenance Soldier (ROD pg. II-12) Full-time military worker (ESD pg. 10)		
Exposure Pathway	Inhalation, ingestion, or direct contact (Phase II RI, Section 6 Baseline Risk Assessment)		

Table A3-5 Decision Document Summary Component: Background/Basis for Taking Action – Winklepeck Burning Grounds Page 2 of 2

Ecological Risk	"Mitigation of relatively small current risks to ecological resources will be achieved through remediation and any concurrent MEC removal to
	protect the Range Maintenance Soldier." (ROD pg. II-13).

Table A3-6 Decision Document Summary Component: Remedial Action - Winklepeck Burning Grounds Page 1 of 2

Decision Document Titles	 Record of Decision (ROD) for Soil and Dry Sediment at the RVAAP-05 Winklepeck Burning Grounds (August 2008) Final Explanation of Significant Differences (ESD) for Post-ROD Changes to the Remedy at RVAAP-05 Winklepeck Burning Grounds (March 2015)
Remedy Chosen	 <i>ROD:</i> Alternative 2: Chemical Contamination Removal Concurrent with MEC Removal Action – Excavation, Screen for Potential MEC, Composite Sampling, and Disposal. (ROD pg. II-27) <i>ESD:</i> Removal of contaminated soil at Pad 38, Pad 61/61A, and Pad 66/67 (ESD pg. 10)
RAOs	 <i>ROD:</i> Prevent exposure of the National Guard Range Maintenance Soldier to contaminants in soil that exceeding risk-based cleanup goals extending to a maximum depth of 4 ft below ground surface. (ROD section 4.0, pgs. II-5 & II-6). <i>ESD:</i> Prevent exposure to soils with contaminant concentrations greater than cleanup goals which are based on USEPA Industrial RSLs.
Clean-Up Goals	 <i>ROD:</i> RDX (617 mg/kg), benz(a)anthracene (75 mg/kg), benzo(a)pyrene (7.5 mg/kg), benzo(b)flouranthene (75 mg/kg), dibenz(a,h)anthracene (7.5 mg/kg), and indeno(1,2,3-cd)pyrene (75 mg/kg) (ROD Table II, pg. II-4) <i>ESD:</i> TNT (420 mg/kg), RDX (240 mg/kg) (Remedial Design, Sec. 4.3) and benzo(a)pyrene (2.1 mg/kg) (draft RI/FS Supplement, Table 2-2)
ARARs	"There are no identified chemical-specific ARARs for WBG soil remediation alternatives. Location- and action-specific ARARS for alternatives are listed in Table 4." (ROD pg. II-17)

Table A3-6 Decision Document SummaryComponent: Remedial Action - Winklepeck Burning GroundsPage 2 of 2

	1.	ROD:		
		٠	Clearing of vegetation	
		•	Geophysical surveys and visual inspections for identifying metal debris	
			•	Removal or transite and friable asbestos from the surface and subsurface within the footprint of Pad 70
			•	Excavation of contaminated soil by layers to a depth of 0.3 to 1.2 m (1 to 4 ft)
		•	Screening (sifting) of the excavated soil for metal debris (potential MEC)	
Components of the Remedies		•	Confirmation sampling of the chemical characteristics of the remaining soil and for the absence of visible asbestos within the sides and bottom of the excavation	
		•	Multi-increment sampling and testing of sifted soil to determine disposal requirements	
		•	Disposal of contaminated soil (above remediation goals) at an approved off-site facility	
		•	Backfill of the excavations using fill material from a source approved by the U.S. Army and Ohio EPA	
		•	Site restoration	
		•	Implementation of LUCs for the AOC	
	2.	ESD:		
		•	Removal of contaminated soil at pads 38, 61/61A, and 66/67 in accordance with ESD Table 1 (Pg. 10)	
		•	Revised restrictions/land use controls (Secs. 4.4 – 4.6, pgs. 13 - 14)	

Table A3-7 Decision Document SummaryComponent: Background/Basis for Taking Action – Ramsdell Quarry LandfillPage 1 of 2

Decision Document Titles	 Final Record of Decision for Soil and Dry Sediment for the RVAAP- 01 Ramsdell Quarry Landfill (ROD) (March 2009) Final Record of Decision Amendment for Soil and Dry Sediment at the RVAAP-01 Ramsdell Quarry Landfill (ROD Amendment) (May 2013) 			
Regulatory Framework	CERCLA Non-NPL			
Remedies Chosen	 ROD: Alternative 3 Excavation and Off-site Disposal, Security Guard/Maintenance Worker Land Use. ROD Amendment: Alternative 8 Perimeter Fence – Security Guard/Maintenance Worker with Restricted Land Use 			
Media of Concern	Soil and dry sediment			
COCs	Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, & indeno(1,2,3-cd)pyrene (ROD Table II, part II, pg. 12)			
Land Use	Current:Closed landfill, restricted access for security, maintenance and monitoring activitiesFuture:As above			
Receptors	Security Guard/Maintenance Worker (ROD part II, pg. 10)			
Exposure Pathway	"The BRA identifies the exposure pathways, COCs, if any, and provides a basis for the remedial decisions." (ROD part II, pg. 10) Baseline Risk Assessment (BRA): Inhalation, ingestion, and dermal contact (Phase II RI, Table 6-15)			
Ecological Risk	"Remediation to meet human health cleanup goals will reduce overall contaminant concentrations and ecological risk." (ROD Part II, pg. 11)			

Table A3-8 Decision Document Summary Component: Remedial Action – Ramsdell Quarry Landfill Page 1 of 2

Decision Document Titles	 Final Record of Decision for Soil and Dry Sediment for the RVAAP-01 Ramsdell Quarry Landfill (ROD) (March 2009) Final Record of Decision Amendment for Soil and Dry Sediment at the RVAAP-01 Ramsdell Quarry Landfill (ROD Amendment) (May 2013) 		
Remedies Chosen	 <i>ROD:</i> Alternative 3 Excavation and Off-site Disposal, Security Guard/Maintenance Worker Land Use. <i>ROD Amendment:</i> Alternative 8 – Perimeter Fence – Security Guard/Maintenance Worker with Restricted Land Use 		
RAOs	 <i>ROD:</i> Prevent National Guard Security Guard/Maintenance Worker exposure to contaminants in soil and dry sediment that exceed clean- up goals to a depth of 1 ft bgs. (ROD Part II pg. 12) <i>ROD Amendment:</i> Protect future receptors from remaining COCs in soil above cleanup goals and residual asbestos by restricting access to the AOC. (Remedial Design, section 4.0, page 4-1) 		
Clean-Up Goals	Benz(a)anthracene (13 mg/kg), benzo(a)pyrene (1.3 mg/kg), benzo(b)fluoranthene (13 mg/kg), dibenz(a,h)anthracene (1.3 mg/kg), and indeno(1,2,3-cd)pyrene (13 mg/kg). (ROD Part II. Pg. 23)		
ARARs	There are no location and chemical specific ARARS. "The selected remedy will comply with the action-specific ARARs listed in Attachment A." (ROD Part II Pg 23) "The presence of ACM within the contaminated area triggers a relevant and appropriate requirement for this activity under OAC 3745-20- 07(A)(2) to cover asbestos-containing waste material with a least six inches of compacted non-ACM, and grow and maintain a cover of vegetation on the area adequate to prevent exposure of the asbestos- containing material." (Final Engineering Evaluation, section 5.4.2.2, pgs. 5-6 & 5-7).		

Table A3-8 Decision Document SummaryComponent: Remedial Action – Ramsdell Quarry LandfillPage 2 of 2

Components of the Remedies	 ROD (Part II, pg.19): Preparation of a remedial design plan Excavation Handling of waste materials Off-site disposal Confirmatory sampling Site restoration Land use controls ROD Amendment (Part IV, pg. 11): [Installation of] a fence at the perimeter of the site to encompass the closed landfill, quarry bottom, and wetlands Implementing best management practices to remove surficial ACM through non-intrusive/no-digging methods
-------------------------------	---

ATTACHMENT 4 Site Inspection Checklists

I. SITE INFORMATION		
Site name: Camp Ravenna Joint Military Training Center Load Line 1 (RVAAP-08)	Date of inspection: August 10, 2016	
Location and Region: Portage and Trumball Counties Ohio	EPA ID: <i>OH5210020736 (CERCLIS)</i>	
Agency, office, or company leading the five-year review: US Army Corps of Engineers, Buffalo District	Weather/temperature: ~85°F, partly cloudy, humid	
Access controls	ne Interim Record of Decision for the Remediation	
Attachments: Inspection team roster attached	Site map attached (Attachment 1)	
II. INTERVIEWS (Chec	ek all that apply)	
1. O&M site manager Al Brillinger (Vista Environme Name Interviewed □ at site □ at office > by email Problems, suggestions; □ Report attached	ntal Services) <u>Program Manager</u> <u>11/07/16</u> Title Date Phone no. <u>(502) 315-6892</u>	
2. O&M staff Name Interviewed at site at office by phone Problems, suggestions; Report attached	Title Date Phone no.	
3. Local regulatory authorities and response agencies office, police department, office of public health or endeeds, or other city and county offices, etc.) Fill in al	nvironmental health, zoning office, recorder of 1 that apply.	
Agency Ohio Environmental Protection Agency Contact Rodney Beals	<u>(330) 963-1218</u>	
Name Problems; suggestions; 🛛 Report attached	Title Date Phone no.	
4. Other interviews (optional) 🛛 Reports attached. (A	ttachment 6)	
• Mark Leeper, PG, MBA, Army National Guard Direc	torate, Environmental Cleanup Program Manager	
Kevin Sedlak, National Guard Bureau, Restoration Pr	oject Manager	
• Katie Tait, Ohio Army National Guard (OHARNG), I	Environmental Specialist 2	

•	Gregory Moore, USACE Louisville Distric	t Project Manager		
•	Nathaniel Peters, USACE Louisville District Environmental Engineer			
•	Angela Schmidt, USACE Louisville District Risk Assessor			
•	Allan Brillinger, Vista Environmental Scien	nces Program Manager		
•	Rodney Beals, Sue Watkins, and Nicholas	Roope, Ohio EPA		
•	Tom Tadsen, RAB Co-Chair			
	III. ON-SITE DOCUMENTS & R	RECORDS VERIFIED (Check all that apply	y)
1.	O&M Documents ☐ O&M manual ⊠ As-built drawings ☐ Maintenance logs Remarks: <u>Remedial action completion d</u> <u>Report for the Remediation of Soils and Dr</u> <u>Final Construction Completion Report – Re</u> <u>Load Line 1 & Other Miscellaneous Buildi</u> <u>Final Remediation Completion Report Sub-</u>	☐ Readily available lrawings are provided in Fr y Sediments at RVAAP 08- emoval of Buildings and C ngs and Removal & Dispos	<u>11 (Load Lines 1-4 oncrete Floor Slab</u> sal of Pallets (July	<u>4) (June 2008),</u> os at RVAAP-08 14, 2010), and
2.	Site-Specific Health and Safety Plan Contingency plan/emergency response p Remarks: <u>Draft Site Safety & Health Pla</u> Portage and Trumball Counties, Ohio (Visu	olan 🔲 Readily available an Camp Ravenna Environ	e Up to date mental Program S	□ N/A ☑ N/A Support Services
3.	O&M and OSHA Training Records Remarks:	Readily available	Up to date	N/A
4.	Permits and Service Agreements Air discharge permit Effluent discharge Waste disposal, POTW Other permits Remarks:	 Readily available Readily available Readily available Readily available 	 Up to date 	⊠ N/A ⊠ N/A ⊠ N/A ⊠ N/A
5.	Gas Generation Records Remarks:	Readily available	Up to date	N/A
6.	Settlement Monument Records Remarks :	Readily available	Up to date	N/A
7.	Groundwater Monitoring Records Remarks: <u>Groundwater monitoring at Carecent available report is Final Facility-Wide</u> <u>Wide Groundwater Report on the March 20</u> <u>Portage and Trumball Counties, Ohio (Sep</u>	de Groundwater Monitorin 215 Sampling Event Forme	g Program RVAA	P-66 Facility-

8.	Leachate Extraction Records Remarks	Readily availabl	e 🗌 Up to date	N/A
9.	Discharge Compliance Records Air Water (effluent) Remarks:	☐ Readily availabl ☐ Readily availabl		⊠ N/A ⊠ N/A
10.	Daily Access/Security Logs Remarks: <u>Daily access/security logs</u>	Readily availabl Readily availabl	e 🗌 Up to date	N/A
]	IV. O&M COSTS		
1.	O&M Organization			
	PRP in-house	Contractor for State Contractor for PRP Contractor for Federal Fa	cility (Vista Sciences C	Corporation)
2.	O&M Cost Records			
	☐ Readily available ☐ Up to da ☐ Funding mechanism/agreement in p Original O&M cost estimate: <u>No</u> Total annual cost by year for review pe	lace t applicable [] Breakdown attached lable)	
3.	Unanticipated or Unusually High O	&M Costs During Review	w Period	
	Describe costs and reasons: <u>No</u>	t applicable		
	V. ACCESS AND INSTITUTIO	DNAL CONTROLS] Applicable	N/A
А.	Fencing			
1.	Fencing damaged Location	shown on site map	Gates secured	N/A
	Remarks: <u>Access controls are not payout the locked gate.</u> The fence appears to show signs of distress. Camp Ravenna chain link fence fabric with steel I-bear Annual LUC inspection reports for Wi document any major defects in the period.	be intact, although some is surrounded by a perim m shaped posts set on 10 nklepeck Burning Ground	isolated areas are in po- eter fence that consists to 12 feet centers set in ls and Ramsdell Quarry	or condition and of six feet high concrete footers. Landfill

B.	Other Access Restrictions
1.	Signs and other security measures
	Remarks: <u>Access controls are not part of the remedy</u> . The Load Line 1 fence is absent at a former Gate House building. Access at this location is restricted using warning signs and a cable barricade with reflective tape markers. Warning signs restricting access are also posted at the site entrance gate.
C.	Institutional Controls (ICs)
1.	Implementation and enforcementSite conditions imply ICs not properly implementedSite conditions imply ICs not being fully enforcedYesNoYesNoNA
	Type of monitoring (e.g., self-reporting, drive by) None Frequency
	Contact
	Name Title Phone no.
	Reporting is up-to-date \Box Yes \Box No \boxtimes N/AReports are verified by the lead agency \Box Yes \Box No \boxtimes N/A
	Specific requirements in deed or decision documents have been met Image: Yes No N/A Violations have been reported Image: Yes No N/A Other problems or suggestions: Image: Report attached Image: No Image: No Image: No ICs are not part of the remedy. Image: No Image: No Image: No Image: No Image: No
2.	Adequacy ICs are adequate ICs are inadequate N/A
D.	General
1.	Vandalism/trespassing Location shown on site map No vandalism evident Remarks
2.	Land use changes on site N/A Remarks: The site is not used for activities other than environmental monitoring, sampling, and remediation.
3.	Land use changes off site N/A Remarks:
	VI. GENERAL SITE CONDITIONS
А.	Roads Applicable \Box N/A
1.	Roads damaged Image: Comp Ravenna roads outside of the site consist of bituminous concrete pavement. Site roads are unpaved and adequate for environmental monitoring activities.

B.	Other Site Conditions			
	RemarksThe former buildings, including floor slabs, have been removed. Elevated concrete walkways between the former buildings remain in place. The site consists of open grass-covered areas and areas containing trees and brush. Monitoring wells are present.			
Note:	Sections VII through IX were removed from this checklist because they are not applicable			
	X. OTHER REMEDIES			
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.			
	Remarks : There are no other remedies at the site.			
	XI. OVERALL OBSERVATIONS			
A.	Implementation of the Remedy			
	Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).			
	The remedy was implemented to protect human health and the environment from exposure to contaminants (inorganics, explosives, PCBs, and SVOCs) attributed to former site operations associated with the assembly and demilitarization of large caliber projectiles, general-purpose bombs, and parts from these munitions. The remedy consisted of excavation and off-site disposal of contaminated surface and subsurface soil and dry sediment that exceeded cleanup goals identified in the Interim ROD. Clean soils were backfilled in the excavations and graded. The former buildings, including floor slabs, were subsequently removed. The site inspection did not identify evidence of trespass or OHARNG training.			
	The remedy is effective and functioning as designed.			
B.	Adequacy of O&M			
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.			
	Maintenance activities consist of keeping site gates closed, keeping site roads passable (i.e. snow plowing), culvert maintenance, mowing (once per year), and clearing vegetation. Inspection and maintenance of building slabs, prescribed in the Interim ROD, is no longer required because the slabs and contaminated soil beneath the slabs were removed and disposed offsite.			
	Monitoring activities consist of quarterly sampling and analysis of groundwater for VOCs, SVOCs, PCBs, pesticides, explosives, propellants, inorganics, and cyanide. All monitoring wells are properly secured/locked, in good condition, and routinely sampled. Subsequent sampling and analysis has been conducted to evaluate the presence and extent of contamination in sub slab soils and underground utility lines.			
C.	Early Indicators of Potential Remedy Problems			
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs that suggest that the protectiveness of the remedy may be compromised in the future.			
	No issues or observations were identified that would suggest the protectiveness of the remedy may be compromised in the future.			

D.	Opportunities for Optimization
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.
	Opportunities for optimization were not identified.

I. SITE INFORMATION		
Site name: Camp Ravenna Joint Military Training Center Load Line 2 (RVAAP-09)	Date of inspection: August 10, 2016	
Location and Region: Portage and Trumball Counties Ohio	EPA ID: <i>OH5210020736 (CERCLIS)</i>	
Agency, office, or company leading the five-year review: US Army Corps of Engineers, Buffalo District	Weather/temperature: ~85°F, partly cloudy, humid	
Access controls	ne Interim Record of Decision for the Remediation	
Attachments: Inspection team roster attached	Site map attached (Attachment 1)	
II. INTERVIEWS (Chec	ek all that apply)	
1. O&M site manager Al Brillinger (Vista Environme) Name Interviewed □ at site □ at office ⊠ by email Problems, suggestions; ☑ Report attached	ntal Services) Program Manager <u>11/07/16</u> Title Date Phone no. <u>(502) 315-6892</u>	
2. O&M staff Interviewed at site at office by phone Problems, suggestions; Report attached	Title Date Phone no.	
3. Local regulatory authorities and response agencies office, police department, office of public health or er deeds, or other city and county offices, etc.) Fill in al	nvironmental health, zoning office, recorder of 1 that apply.	
Agency Ohio Environmental Protection Agency Contact Rodney Beals	<u>(330) 963-1218</u>	
Name Problems; suggestions; 🛛 Report attached	Title Date Phone no.	
4. Other interviews (optional) 🛛 Reports attached. (A	ttachment 6)	
Mark Leeper, PG, MBA, Army National Guard Direc	torate, Environmental Cleanup Program Manager	
Kevin Sedlak, National Guard Bureau, Restoration Pr	oject Manager	
Katie Tait, Ohio Army National Guard (OHARNG), 1	Environmental Specialist 2	

•	Gregory Moore, USACE Louisville Distric	ct Project Manager		
•	Nathaniel Peters, USACE Louisville Distr	ict Environmental Engineer		
•	Angela Schmidt, USACE Louisville Distri	ict Risk Assessor		
•	Rodney Beals, Sue Watkins, and Nicholas	Roope, Ohio EPA		
•	Allan Brillinger, Vista Environmental Scie	ences Program Manager		
•	Tom Tadsen, RAB Co-Chair			
	III. ON-SITE DOCUMENTS & I	RECORDS VERIFIED (C	Check all that appl	y)
1.	O&M Documents □ O&M manual ⊠ As-built drawings □ Maintenance logs Remarks: <u>Remedial action completion of Report for the Remediation of Soils and D and Final Remedial Action Completion Re Load Line 3, and RVAAP-11, Load Line 4</u>	ry Sediments at RVAAP 08- port Sub-Slab Soils at RVA	11 (Load Lines 1-	<u>4) (June 2008)</u>
2.	Site-Specific Health and Safety Plan Contingency plan/emergency response Remarks: <u>Draft Site Safety & Health Plan</u> Portage and Trumball Counties, Ohio (Vis	lan Camp Ravenna Environ	Up to date mental Program S	□ N/A ⊠ N/A Support Services
3.	O&M and OSHA Training Records Remarks:	Readily available	Up to date	N/A
4.	Permits and Service Agreements Air discharge permit Effluent discharge Waste disposal, POTW Other permits	 Readily available Readily available Readily available Readily available 	Up to date Up to date Up to date Up to date	⊠ N/A ⊠ N/A ⊠ N/A ⊠ N/A
5.	Gas Generation Records Remarks:	Readily available	Up to date	N/A
6.	Settlement Monument Records Remarks :	Readily available	Up to date	N/A
7.	Groundwater Monitoring Records Remarks: <u>Groundwater monitoring at C</u> recent available report is <i>Final Facility-Wi</i> <i>Wide Groundwater Report on the March 2</i> <i>Portage and Trumball Counties, Ohio (Sep</i>	ide Groundwater Monitorin 2015 Sampling Event Forme	g Program RVAA	P-66 Facility-

8.	Leachate Extraction Records Remarks	Readily available	Up to date	N/A
9.	Dischange Compliance Descende			
9.	Discharge Compliance Records Air Water (effluent) Remarks:	☐ Readily available ☐ Readily available		⊠ N/A ⊠ N/A
10.	Daily Access/Security Logs Remarks:	Readily available	Up to date	⊠ N/A
	I	V. O&M COSTS		
1.	O&M Organization			
	PRP in-house	Contractor for State Contractor for PRP Contractor for Federal Fac	ility (Vista Sciences C	Corporation)
2.	O&M Cost Records			
	☐ Readily available ☐ Up to dat ☐ Funding mechanism/agreement in p Original O&M cost estimate:No	lace	Breakdown attached	
	Total annual cost by year for review per	riod if available <u>(not availa</u>	able)	
3.	Unanticipated or Unusually High O8	M Costs During Review	Period	
		t applicable		
	V. ACCESS AND INSTITUTIO	NAL CONTROLS	Applicable	□ N/A
А.	Fencing			
1.	Fencing damaged Location	shown on site map	Gates secured	□ N/A
	Remarks: <u>Access controls are not pa</u> with locked gate. The fence appears to show signs of distress. Camp Ravenna chain link fence fabric with steel I-bear Annual LUC inspection reports for Wir document any major defects in the period	be intact, although some i is surrounded by a perime n shaped posts set on 10 to aklepeck Burning Grounds	solated areas are in po- ter fence that consists o 12 feet centers set in and Ramsdell Quarry	or condition and of six feet high concrete footers. / Landfill

B.	Other Access Restrictions
1.	Signs and other security measures \Box Location shown on site map \Box N/A
	Remarks: <u>The Load Line 2 fence is absent at a former Gate House building</u> . Access at this location is restricted using warning signs and a cable barricade with reflective tape markers. Warning signs restricting access are also posted at the site entrance gate.
C.	Institutional Controls (ICs)
1.	Implementation and enforcement Site conditions imply ICs not properly implemented Site conditions imply ICs not being fully enforced Yes No XIA
	Type of monitoring (e.g., self-reporting, drive by) None Frequency
	Contact
	Name Title Phone no.
	Reporting is up-to-date \Box Yes \Box No \boxtimes N/AReports are verified by the lead agency \Box Yes \Box No \boxtimes N/A
	Specific requirements in deed or decision documents have been met Image: Yes No N/A Violations have been reported Image: Yes No N/A Other problems or suggestions: Image: Report attached Image: Yes No N/A ICs are not part of the remedy for Load Line 2. Image: Yes Image: Yes
2.	Adequacy ICs are adequate ICs are inadequate N/A
D.	General
1.	Vandalism/trespassing Location shown on site map No vandalism evident Remarks
2.	Land use changes on site N/A Remarks: <u>The site is not used for activities other than environmental monitoring, sampling, and</u> remediation.
3.	Land use changes off site 🖾 N/A Remarks:
	VI. GENERAL SITE CONDITIONS
А.	Roads 🖾 Applicable 🗌 N/A
1.	Roads damaged Image: Location shown on site map Image: Roads adequate Image: N/A Remarks: Camp Ravenna roads outside of the site consist of bituminous concrete pavement. Site roads are unpaved and adequate for range operations and environmental monitoring activities. N/A

B.	Other Site Conditions			
	RemarksThe former buildings, including floor slabs, have been removed. Elevated concrete walkways between the former buildings remain in place. The site consists of open grass-covered areas and areas containing trees and brush. Monitoring wells are present.			
Note	Sections VII through IX were removed from this checklist because they are not applicable			
	X. OTHER REMEDIES			
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.			
	Remarks : There are no other remedies at the site.			
	XI. OVERALL OBSERVATIONS			
A.	Implementation of the Remedy			
	Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).			
	The remedy was implemented to protect human health and the environment from exposure to contaminants (inorganics, explosives, PCBs, and SVOCs) attributed to former site operations associated with the assembly and demilitarization of large caliber projectiles, general-purpose bombs, and parts from these munitions. The remedy consisted of excavation and off-site disposal of contaminated surface and subsurface soil and dry sediment that exceeded cleanup goals identified in the Interim ROD. Clean soils were backfilled in the excavations and graded. The former buildings, including floor slabs, were subsequently removed. The site inspection did not identify evidence of OHARNG use or trespass by the public. Groundwater monitoring is performed under a facility-wide program.			
	The remedy is effective and functioning as designed.			
B.	Adequacy of O&M			
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.			
	Maintenance activities consist of keeping site gates closed, keeping site roads passable (i.e. snow plowing), culvert maintenance, mowing (once per year), and clearing vegetation. Inspection and maintenance of building slabs, prescribed in the Interim ROD, is no longer required because the slabs and contaminated soil beneath the slabs were removed and disposed offsite.			
	Monitoring activities consist of quarterly sampling and analysis of groundwater for VOCs, SVOCs, PCBs, pesticides, explosives, propellants, inorganics, and cyanide. All monitoring wells are properly secured/locked, in good condition, and routinely sampled. Subsequent sampling and analysis has been conducted to evaluate the presence and extent of contamination in sub slab soils and underground utility lines.			

C.	Early Indicators of Potential Remedy Problems	
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs that suggest that the protectiveness of the remedy may be compromised in the future.	
	No issues or observations were identified that would suggest the protectiveness of the remedy may be compromised in the future.	
D.	Opportunities for Optimization	
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.	
	Opportunities for optimization were not identified.	

I. SITE INFORMATION		
Site name: Camp Ravenna Joint Military Training Center Load Line 3 (RVAAP-10)	Date of inspection: August 10, 2016	
Location and Region: Portage and Trumball Counties Ohio	EPA ID: <i>OH5210020736 (CERCLIS)</i>	
Agency, office, or company leading the five-year review: US Army Corps of Engineers, Buffalo District	Weather/temperature: ~90°F, partly cloudy, humid	
Access controls	he Interim Record of Decision for the Remediation	
Attachments: Inspection team roster attached	Site map attached (Attachment 1)	
II. INTERVIEWS (Chec	ek all that apply)	
1. O&M site manager Al Brillinger (Vista Environme) Name Interviewed □ at site □ at office > by email Problems, suggestions; □ Report attached	Title Date	
2. O&M staff Interviewed at site at office by phone Problems, suggestions; Report attached	Title Date Phone no.	
3. Local regulatory authorities and response agencies office, police department, office of public health or er deeds, or other city and county offices, etc.) Fill in al	nvironmental health, zoning office, recorder of 1 that apply.	
Agency Ohio Environmental Protection Agency Contact Rodney Beals	<u>(330) 963-1218</u>	
Name Problems; suggestions; 🛛 Report attached	Title Date Phone no.	
4. Other interviews (optional) 🛛 Reports attached. (A	ttachment 6)	
• Mark Leeper, PG, MBA, Army National Guard Direc	torate, Environmental Cleanup Program Manager	
Kevin Sedlak, National Guard Bureau, Restoration Pr	oject Manager	
Katie Tait, Ohio Army National Guard (OHARNG), 1	Environmental Specialist 2	

•	Gregory Moore, USACE Louisville Distric	et Project Manager		
•	Nathaniel Peters, USACE Louisville District Environmental Engineer			
•	Angela Schmidt, USACE Louisville Distric	ct Risk Assessor		
•	Allan Brillinger, Vista Environmental Scien	nces Program Manager		
•	Rodney Beals, Sue Watkins, and Nicholas	Roope, Ohio EPA		
•	Tom Tadsen, RAB Co-Chair			
	III. ON-SITE DOCUMENTS & R	RECORDS VERIFIED (C	Check all that appl	y)
1.	O&M Documents ☐ O&M manual ⊠ As-built drawings ☐ Maintenance logs Remarks: <u>Remedial action completion of</u> <u>Report for the Remediation of Soils and Dr</u> and Final Remedial Action Completion Rep Load Line 3, and RVAAP-11, Load Line 4 (y Sediments at RVAAP 08- port Sub-Slab Soils at RVA	11 (Load Lines 1-	<u>4) (June 2008)</u>
2.	Site-Specific Health and Safety Plan Contingency plan/emergency response p Remarks: <u>Draft Site Safety & Health Pla</u> Portage and Trumball Counties, Ohio (Visu	an Camp Ravenna Environ	Up to date mental Program S	□ N/A ⊠ N/A Support Services
3.	O&M and OSHA Training Records Remarks:	Readily available	Up to date	X N/A
4.	Permits and Service Agreements Air discharge permit Effluent discharge Waste disposal, POTW Other permits Remarks:	 ☐ Readily available ☐ Readily available ☐ Readily available ☐ Readily available 	 Up to date Up to date Up to date Up to date 	⊠ N/A ⊠ N/A ⊠ N/A ⊠ N/A
5.	Gas Generation Records Remarks:	Readily available	Up to date	N/A
6.	Settlement Monument Records Remarks :	Readily available	Up to date	N/A
7.	Groundwater Monitoring Records Remarks: <u>Groundwater monitoring at C</u> recent available report is <i>Final Facility-Wid</i> <u>Wide Groundwater Report on the March 20</u> <u>Portage and Trumball Counties, Ohio (Sep</u>	de Groundwater Monitorin 015 Sampling Event Forme	g Program RVAA	P-66 Facility-

8.	Leachate Extraction Records Remarks	Readily available	Up to date	N/A
9.	Discharge Compliance Records Air Water (effluent) Remarks:	☐ Readily available ☐ Readily available	Up to date	⊠ N/A ⊠ N/A
10.	Daily Access/Security Logs Remarks:	Readily available	Up to date	N/A
	Г	V. O&M COSTS		
1.	O&M Organization			
	PRP in-house	Contractor for State Contractor for PRP Contractor for Federal Faci	lity (Vista Sciences (Corporation)
2.	O&M Cost Records			
	☐ Readily available ☐ Up to dat ☐ Funding mechanism/agreement in pl Original O&M cost estimate: <u>Not</u>	ace	Breakdown attached	
	Total annual cost by year for review per	riod if available (not available	<u>ble)</u>	
3.	Unanticipated or Unusually High O& Describe costs and reasons: <u>Not</u>	M Costs During Review	Period	
	V. ACCESS AND INSTITUTIO	NAL CONTROLS A	Applicable	□ N/A
А.	Fencing			
1.	Fencing damaged Location	shown on site map	Gates secured	N/A
	Remarks: Access controls are not part of the remedy. Load Line 3 is surrounded by a chain link fence with locked gate. The fence appears to be intact, although some isolated areas are in poor condition and show signs of distress. Camp Ravenna is surrounded by a perimeter fence that consists of six feet high chain link fence fabric with steel I-beam shaped posts set on 10 to 12 feet centers set in concrete footers. Annual LUC inspection reports for Winklepeck Burning Grounds and Ramsdell Quarry Landfill document any major defects in the perimeter fence and actions taken to repair the defects.		oor condition and of six feet high concrete footers. y Landfill	

B.	Other Access Restrictions
1.	Signs and other security measures \Box Location shown on site map \Box N/A
	Remarks:Access controls are not part of the remedy. The Load Line 3 fence is absent at a formerGate House building.Access at this locationis restricted using warning signs and a cable barricadewith reflective tape markers.Warning signs restricting access are also posted at the site entrance gate.
C.	Institutional Controls (ICs)
1.	Implementation and enforcementSite conditions imply ICs not properly implementedSite conditions imply ICs not being fully enforcedYesNoYesNoNA
	Type of monitoring (e.g., self-reporting, drive by) None Frequency
	Contact
	Name Title Phone no.
	Reporting is up-to-date \Box Yes \Box No \boxtimes N/AReports are verified by the lead agency \Box Yes \Box No \boxtimes N/A
	Specific requirements in deed or decision documents have been met Image: Yes No N/A Violations have been reported Image: Yes No N/A Other problems or suggestions: Image: Report attached Image: Yes No N/A ICs are not part of the remedy for Load Line 3. Image: Yes Image: Yes Image: Yes Image: Yes Image: Yes
2.	Adequacy ICs are adequate ICs are inadequate N/A
D.	General
1.	Vandalism/trespassing Location shown on site map No vandalism evident Remarks
2.	Land use changes on site N/A Remarks: <u>The site is not used for activities other than environmental monitoring, sampling, and</u> remediation.
3.	Land use changes off site N/A Remarks:
	VI. GENERAL SITE CONDITIONS
А.	Roads Applicable \Box N/A
1.	Roads damaged Image: Location shown on site map Image: Roads adequate Image: N/A Remarks: Camp Ravenna roads outside of the site consist of bituminous concrete pavement. Site roads are unpaved and adequate for range operations and environmental monitoring activities. N/A

B.	Other Site Conditions			
	Remarks <u>The former buildings, including floor slabs, have been removed. Elevated concrete</u> walkways between the former buildings remain in place. The site consists of open grass-covered areas and areas containing trees and brush. Monitoring wells are present.			
Note:	: Sections VII through IX were removed from this checklist because they are not applicable			
	X. OTHER REMEDIES			
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.			
	Remarks : There are no other remedies at the site.			
	XI. OVERALL OBSERVATIONS			
A.	Implementation of the Remedy			
	Describe issues and observations relating to whether the remedy is effective and functioning as designed Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).			
	The remedy was implemented to protect human health and the environment from exposure to contaminants (inorganics, explosives, PCBs, and SVOCs) attributed to former site operations associated with the assembly and demilitarization of large caliber projectiles, general-purpose bombs, and parts from these munitions. The remedy consisted of excavation and off-site disposal of contaminated surface and subsurface soil and dry sediment that exceeded cleanup goals identified in the Interim ROD. Clean soils were backfilled in the excavations and graded. The former buildings, including floor slabs, were subsequently removed. The site inspection did not identify evidence of OHARNG use or trespass by the public. Groundwater monitoring is performed under a facility-wide program.			
	The remedy is effective and functioning as designed.			
B.	Adequacy of O&M			
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.			
	Maintenance activities consist of keeping site gates closed, keeping site roads passable (i.e. snow plowing), culvert maintenance, mowing (once per year), and clearing vegetation. Inspection and maintenance of building slabs, prescribed in the Interim ROD, is no longer required because the slabs and contaminated soil beneath the slabs were removed and disposed offsite.			
	Monitoring activities consist of quarterly sampling and analysis of groundwater for VOCs, SVOCs, PCBs, pesticides, explosives, propellants, inorganics, and cyanide. All monitoring wells are properly secured/locked, in good condition, and routinely sampled. Subsequent sampling and analysis has been conducted to evaluate the presence and extent of contamination in sub slab soils and underground utility lines.			

C.	Early Indicators of Potential Remedy Problems	
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs that suggest that the protectiveness of the remedy may be compromised in the future.	
	No issues or observations were identified that would suggest the protectiveness of the remedy may be compromised in the future.	
D.	Opportunities for Optimization	
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.	
	Opportunities for optimization were not identified.	

I. SITE INFORMATION		
Site name: Camp Ravenna Joint Military Training Center Load Line 4 (RVAAP-11)	Date of inspection: August 10, 2016	
Location and Region: Portage and Trumball Counties Ohio	EPA ID: <i>OH5210020736 (CERCLIS)</i>	
Agency, office, or company leading the five-year review: US Army Corps of Engineers, Buffalo District	Weather/temperature: ~90°F, partly cloudy, humid	
Access controls	he Interim Record of Decision for the Remediation	
Attachments: Inspection team roster attached	Site map attached (Attachment 1)	
II. INTERVIEWS (Chec	ek all that apply)	
1. O&M site manager Al Brillinger (Vista Environme) Name Interviewed □ at site □ at office > by email Problems, suggestions; ○ Report attached	Title Date	
2. O&M staff Name Interviewed at site at office by phone Problems, suggestions; Report attached	Title Date Phone no.	
3. Local regulatory authorities and response agencies office, police department, office of public health or endeeds, or other city and county offices, etc.) Fill in al	nvironmental health, zoning office, recorder of 1 that apply.	
Agency <u>Ohio Environmental Protection Agency</u> Contact <u>Rodney Beals</u>		
Name Problems; suggestions; 🛛 Report attached	Title Date Phone no.	
4. Other interviews (optional) 🖾 Reports attached. (A	ttachment 6)	
• Mark Leeper, PG, MBA, Army National Guard Direc	torate, Environmental Cleanup Program Manager	
Kevin Sedlak, National Guard Bureau, Restoration Pr	oject Manager	
• Katie Tait, Ohio Army National Guard (OHARNG), 1	Environmental Specialist 2	

•	Gregory Moore, USACE Louisville Distric	et Project Manager		
•	Nathaniel Peters, USACE Louisville District Environmental Engineer			
•	Angela Schmidt, USACE Louisville Distric	ct Risk Assessor		
•	Allan Brillinger, Vista Environmental Scie	nces Program Manager		
•	Rodney Beals, Sue Watkins, and Nicholas	Roope, Ohio EPA		
•	Tom Tadsen, RAB Co-Chair			
	III. ON-SITE DOCUMENTS & F	RECORDS VERIFIED (C	Check all that appl	y)
1.	O&M Documents ☐ O&M manual ⊠ As-built drawings ☐ Maintenance logs Remarks: <u>Remedial action completion of</u> <u>Report for the Remediation of Soils and Dr</u> and Final Remedial Action Completion Rep Load Line 3, and RVAAP-11, Load Line 4	y Sediments at RVAAP 08- port Sub-Slab Soils at RVA	11 (Load Lines 1-	<u>4) (June 2008)</u>
2.	Site-Specific Health and Safety Plan Contingency plan/emergency response p Remarks: <u>Draft Site Safety & Health Pla</u> Portage and Trumball Counties, Ohio (Visu	an Camp Ravenna Environ	Up to date mental Program S	□ N/A ⊠ N/A Support Services
3.	O&M and OSHA Training Records Remarks:	Readily available	Up to date	X N/A
4.	Permits and Service Agreements Air discharge permit Effluent discharge Waste disposal, POTW Other permits Remarks:	 Readily available Readily available Readily available Readily available 	 Up to date Up to date Up to date Up to date 	⊠ N/A ⊠ N/A ⊠ N/A ⊠ N/A
5.	Gas Generation Records Remarks:	Readily available	Up to date	N/A
6.	Settlement Monument Records Remarks :	Readily available	Up to date	N/A
7.	Groundwater Monitoring Records Remarks: <u>Groundwater monitoring at C</u> recent available report is <i>Final Facility-Wid</i> <u>Wide Groundwater Report on the March 20</u> <u>Portage and Trumball Counties, Ohio (Sep</u>	de Groundwater Monitorin 015 Sampling Event Forme	g Program RVAA	P-66 Facility-

8.	Leachate Extraction Records Remarks	Readily available	Up to date	N/A
9.	Discharge Compliance Records Air Water (effluent) Remarks:	 Readily available Readily available 		⊠ N/A ⊠ N/A
10.	Daily Access/Security Logs Remarks:	Readily available	Up to date	N/A
	I	V. O&M COSTS		
1.	PRP in-house	Contractor for State Contractor for PRP Contractor for Federal Faci	lity (Vista Sciences (Corporation)
2.	O&M Cost Records	ace	Breakdown attached <u>ble)</u>	
3.	Unanticipated or Unusually High O& Describe costs and reasons: <u>Not</u>		Period	
	V. ACCESS AND INSTITUTIO	NAL CONTROLS	Applicable	□ N/A
А.	Fencing			
1.	Fencing damaged	rt of the remedy. Load Lin be intact, although some is is surrounded by a periment in shaped posts set on 10 to iklepeck Burning Grounds	solated areas are in po er fence that consists 12 feet centers set in and Ramsdell Quarry	oor condition and of six feet high concrete footers. / Landfill

В.	Other Access Restrictions		
1.	Signs and other security measures \Box Location shown on site map \Box N/A		
	Remarks: Warning signs restricting access are also posted at the site entrance gate.		
C.	Institutional Controls (ICs)		
1.	Implementation and enforcementSite conditions imply ICs not properly implementedSite conditions imply ICs not being fully enforcedYesNoYesNoYes		
	Type of monitoring (e.g., self-reporting, drive by) None Frequency		
	Responsible party/agency		
	Name Title Phone no.		
	Reporting is up-to-date \Box YesNo \boxtimes N/AReports are verified by the lead agency \Box Yes \Box No \boxtimes N/A		
	Specific requirements in deed or decision documents have been met Image: Yes No N/A Violations have been reported Image: Yes No N/A Other problems or suggestions: Image: Report attached Image: Yes No N/A ICs are not part of the remedy for Load Line 4. Image: Yes Image: Yes Image: Yes No Image: Yes		
2.	Adequacy ICs are adequate ICs are inadequate N/A		
D.	General		
1.	Vandalism/trespassing Location shown on site map No vandalism evident Remarks		
2.	Land use changes on site N/A Remarks: The site is not used for activities other than environmental monitoring, sampling, and remediation.		
3.	Land use changes off site N/A Remarks:		
	VI. GENERAL SITE CONDITIONS		
A.	Roads Applicable 🗌 N/A		
1.	Roads damaged Image: Location shown on site map Image: Roads adequate Image: N/A Remarks: Camp Ravenna roads outside of the site consist of bituminous concrete pavement. Site roads are unpaved and adequate for range operations and environmental monitoring activities. N/A		

B.	Other Site Conditions			
	RemarksThe former buildings, including floor slabs, have been removed. Elevated concrete walkways between the former buildings remain in place. The site consists of open grass-covered areas and areas containing trees and brush. Monitoring wells are present.			
Note:	Sections VII through IX were removed from this checklist because they are not applicable			
	X. OTHER REMEDIES			
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.			
	Remarks : There are no other remedies at the site.			
	XI. OVERALL OBSERVATIONS			
A.	Implementation of the Remedy			
	Describe issues and observations relating to whether the remedy is effective and functioning as designed Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).			
	The remedy was implemented to protect human health and the environment from exposure to contaminants (inorganics, explosives, PCBs, and SVOCs) attributed to former site operations associated with the assembly and demilitarization of large caliber projectiles, general-purpose bombs, and parts from these munitions. The remedy consisted of excavation and off-site disposal of contaminated surface and subsurface soil and dry sediment that exceeded cleanup goals identified in the Interim ROD. Clean soils were backfilled in the excavations and graded. The former buildings, including floor slabs, were subsequently removed. The site inspection did not identify evidence of OHARNG use or trespass by the public. Groundwater monitoring is performed under a facility-wide program.			
	The remedy is effective and functioning as designed.			
B.	Adequacy of O&M			
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.			
	Maintenance activities consist of keeping site gates closed, keeping site roads passable (i.e. snow plowing), culvert maintenance, mowing (once per year), and clearing vegetation. Inspection and maintenance of building slabs, prescribed in the Interim ROD, is no longer required because the slabs and contaminated soil beneath the slabs were removed and disposed offsite.			
	Monitoring activities consist of quarterly sampling and analysis of groundwater for VOCs, SVOCs, PCBs, pesticides, explosives, propellants, inorganics, and cyanide. All monitoring wells are properly secured/locked, in good condition, and routinely sampled. Subsequent sampling and analysis has been conducted to evaluate the presence and extent of contamination in sub slab soils and underground utility lines.			

C.	Early Indicators of Potential Remedy Problems	
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs that suggest that the protectiveness of the remedy may be compromised in the future.	
	No issues or observations were identified that would suggest the protectiveness of the remedy may be compromised in the future.	
D.	Opportunities for Optimization	
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.	
	Opportunities for optimization were not identified.	

I. SITE INFORMATION			
Site name: Camp Ravenna Joint Military Training Center Load Line 12 (RVAAP-12)	Date of inspection: August 10, 2016		
Location and Region: Portage and Trumball Counties Ohio	EPA ID: <i>OH5210020736 (CERCLIS)</i>		
Agency, office, or company leading the five-year review: US Army Corps of Engineers, Buffalo District	Weather/temperature: ~90°F, partly cloudy, humid		
Remedy Includes: (Check all that apply) □ Landfill cover/containment □ Monitored natural attenuation ○ Access controls □ Groundwater containment ○ Institutional controls □ Vertical barrier walls □ Groundwater pump and treatment □ Surface water collection and treatment ○ Other Excavation and off-site disposal of contaminated surface and subsurface soil and dry sediment that exceeded cleanup goals identified in the <i>Final Record of Decision for Soil and Dry Sediment for the RVAAP12 Load Line 12 (March 2009)</i> (ROD).			
Attachments: Inspection team roster attached	Site map attached (Attachment 1)		
II. INTERVIEWS (Chec	ek all that apply)		
1. O&M site manager Al Brillinger (Vista Environmental Services) Program Manager 11/07/16 Name Title Date Interviewed at site at office by email Phone no. (502) 315-6892 Problems, suggestions; Report attached			
2. O&M staff Name Title Date Interviewed at site at office by phone Phone no. Problems, suggestions; Report attached Image: Comparison of the state			
3. Local regulatory authorities and response agencies (i.e., State and Tribal offices, emergency response office, police department, office of public health or environmental health, zoning office, recorder of deeds, or other city and county offices, etc.) Fill in all that apply.			
Agency <u>Ohio Environmental Protection Agency</u> Contact <u>Rodney Beals</u>	<u>(330) 963-1218</u>		
Name Problems; suggestions; 🛛 Report attached	Title Date Phone no.		
4. Other interviews (optional) ⊠ Reports attached. (Attachment 6)			
Mark Leeper, PG, MBA, Army National Guard Directorate, Environmental Cleanup Program Manager			
Kevin Sedlak, National Guard Bureau, Restoration Pr	roject Manager		
Katie Tait, Ohio Army National Guard (OHARNG), 1	Environmental Specialist 2		

•	Gregory Moore, USACE Louisville District Project Manager			
•	Nathaniel Peters, USACE Louisville District Environmental Engineer			
•	Angela Schmidt, USACE Louisville District Risk Assessor			
•	Allan Brillinger, Vista Environmental Sc	iences Program Manager		
•	Rodney Beals, Sue Watkins, and Nichola	s Roope, Ohio EPA		
•	Tom Tadsen, RAB Co-Chair			
	III. ON-SITE DOCUMENTS &	RECORDS VERIFIED (C	heck all that appl	y)
1.	O&M Documents ☐ O&M manual ⊠ As-built drawings ☐ Maintenance logs Remarks: <u>Remedial action completion</u> <u>RVAAP-12 Load Line 12 (August 9, 2010</u>	 ☐ Readily available ⊠ Readily available ☐ Readily available 1 drawings are provided in <i>Fir</i> 	Up to date Up to date Up to date Up to date <i>aal Remedial Acti</i>	$ \begin{array}{c} \boxtimes N/A \\ \square N/A \\ \boxtimes N/A \\ \hline \\ $
2.	Site-Specific Health and Safety Plan Contingency plan/emergency response Remarks: <u>Draft Site Safety & Health I</u> Portage and Trumball Counties, Ohio (V	Plan Camp Ravenna Environn	Up to date mental Program S	□ N/A ⊠ N/A Support Services
3.	O&M and OSHA Training Records Remarks:	Readily available	Up to date	N/A
4.	Permits and Service Agreements Air discharge permit Effluent discharge Waste disposal, POTW Other permits	 Readily available Readily available Readily available Readily available 	Up to date Up to date Up to date Up to date Up to date	⊠ N/A ⊠ N/A ⊠ N/A ⊠ N/A
5.	Gas Generation Records Remarks:	Readily available	Up to date	X N/A
6.	Settlement Monument Records Remarks :	Readily available	Up to date	N/A
7.	Groundwater Monitoring Records Remarks: <u>Groundwater monitoring at</u> recent available report is <i>Final Facility-V</i> <u>Wide Groundwater Report on the March</u> <u>Portage and Trumball Counties, Ohio (Sector)</u>	2015 Sampling Event Former	<u>Program RVAA</u>	P-66 Facility-
8.	Leachate Extraction Records Remarks	Readily available	Up to date	N/A

9.	Discharge Compliance Records □ Air □ Readily available □ Up to date ⊠ N/A □ Water (effluent) □ Readily available □ Up to date ⊠ N/A Remarks:		
10.	Daily Access/Security Logs □ Readily available □ Up to date □ N/A Remarks: Daily access/security logs are not maintained.		
	IV. O&M COSTS		
1.	O&M Organization		
	□ State in-house □ Contractor for State		
	PRP in-houseContractor for PRP		
	□ Federal Facility in-house □ Contractor for Federal Facility (Vista Sciences Corporation)		
	□ Other:		
2.	O&M Cost Records		
	 Readily available Up to date Funding mechanism/agreement in place Original O&M cost estimate: <u>Not applicable</u> Breakdown attached 		
	Total annual cost by year for review period if available (not available)		
3.	Unanticipated or Unusually High O&M Costs During Review Period		
	Describe costs and reasons: Not applicable		
	V. ACCESS AND INSTITUTIONAL CONTROLS Applicable		
А.	Fencing		
1.	Fencing damaged \Box Location shown on site map \boxtimes Gates secured \Box N/A		
	Remarks: Load Line 12 is surrounded by a chain link fence with locked gate. The fence appears to be		
	intact, although some isolated areas are in poor condition and show signs of distress. Camp Ravenna is		
	surrounded by a perimeter fence that consists of six feet high chain link fence fabric with steel I-beam		
	shaped posts set on 10 to 12 feet centers set in concrete footers. Annual LUC inspection reports for		
	Winklepeck Burning Grounds and Ramsdell Quarry Landfill document any major defects in the		
	perimeter fence and actions taken to repair the defects.		

В.	Other Access Restrictions	
1.	Signs and other security measures □ Location shown on site map □ N/A	
	Remarks: Warning signs restricting access are also posted at the site entrance gate.	
C.	Institutional Controls (ICs)	
1.	Implementation and enforcementSite conditions imply ICs not properly implementedSite conditions imply ICs not being fully enforcedYesYesNoN/A	
	Type of monitoring (e.g., self-reporting, drive by) None Frequency	
	Responsible party/agency Vista Sciences CorporationContactAl Brillinger NameProgram Manager Title(502) 315-6892 Phone no.	
	Reporting is up-to-date \Box Yes \boxtimes No \Box N/AReports are verified by the lead agency \Box Yes \boxtimes No \Box N/A	
	Specific requirements in deed or decision documents have been met Image: Yes No N/A Violations have been reported Image: Yes No N/A Other problems or suggestions: Image: Report attached Image: Yes No N/A The site is not being used. Image: Yes Image: Y	
2.	Adequacy ICs are adequate ICs are inadequate N/A	
D.	General	
1.	Vandalism/trespassing Location shown on site map No vandalism evident Remarks	
2.	Land use changes on site N/A Remarks: The site is not used for activities other than environmental monitoring, sampling, and remediation.	
3.	Land use changes off site X N/A Remarks:	
	VI. GENERAL SITE CONDITIONS	
А.	Roads 🖂 Applicable 🗌 N/A	
1.	Roads damaged Image: Location shown on site map Image: Roads adequate Image: N/A Remarks: Camp Ravenna roads outside of the site consist of bituminous concrete pavement. Site roads are unpaved and adequate for range operations and environmental monitoring activities. N/A	

B.	Other Site Conditions
	Remarks <u>The former buildings, including floor slabs, have been removed. Elevated concrete</u> walkways between the former buildings remain in place. The site consists of open grass-covered areas and areas containing trees and brush. Monitoring wells are present.
Note:	: Sections VII through IX were removed from this checklist because they are not applicable
	X. OTHER REMEDIES
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction. Remarks : There are no other remedies at the site.
	XI. OVERALL OBSERVATIONS
A.	Implementation of the Remedy
	Describe issues and observations relating to whether the remedy is effective and functioning as designed Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).
	The remedy was implemented to protect human health and the environment from actual or potential exposure to arsenic in soil and dry sediment. The remedy consisted of excavation and off-site disposal of contaminated soil and dry sediment from a ditch on the eastern end of the site that contained arsenic a concentrations above the cleanup goal identified in the ROD. Clean soils were backfilled in the remediated area and graded. Engineering controls consist of a perimeter fence with warning signs. Access by the general public is restricted by a Camp Ravenna facility-wide perimeter fence and security gates. The site inspection did not identify evidence of trespass or OHARNG training.
The remedy is effective and functioning as designed.	
B. Adequacy of O&M	
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.
	Maintenance activities consist of keeping site gates closed, keeping site roads passable (i.e. snow plowing), culvert maintenance, mowing (once per year), and clearing vegetation. Inspection and maintenance of building slabs, prescribed in the Interim ROD, is no longer required because the slabs and contaminated soil beneath the slabs were removed and disposed offsite.
	Monitoring activities consist of quarterly sampling and analysis of groundwater for VOCs, SVOCs, PCBs, pesticides, explosives, propellants, inorganics, and cyanide. All monitoring wells are properly secured/locked, in good condition, and routinely sampled. Subsequent sampling and analysis has been conducted to evaluate the presence and extent of contamination in in soil and dry sediment and underground utility lines (to address data gaps).
C.	Early Indicators of Potential Remedy Problems
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs that suggest that the protectiveness of the remedy may be compromise in the future.
	No issues or observations were identified that would suggest the protectiveness of the remedy may be compromised in the future.

D.	Opportunities for Optimization	
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.	
	Opportunities for optimization were not identified.	

I. SITE INFORMATION		
Site name: Camp Ravenna Joint Military Training Center Winklepeck Burning Grounds (RVAAP-05)	Date of inspection: August 10, 2016	
Location and Region: Portage and Trumball Counties Ohio	EPA ID: <i>OH5210020736 (CERCLIS)</i>	
Agency, office, or company leading the five-year review: US Army Corps of Engineers, Buffalo District	Weather/temperature: ~80°F, partly cloudy, humid	
Remedy Includes: (Check all that apply) Landfill cover/containment Monitored natural attenuation Access controls Groundwater containment Institutional controls Vertical barrier walls Groundwater pump and treatment Surface water collection and treatment Other Excavation and off-site disposal of contaminated soils and dry sediment that exceeded cleanup goals identified in the <i>Final Record of Decision for Soil and Dry Sediment at the RVAAP-05</i> Winklepeck Burning Grounds at the Ravenna Army Ammunition Plant (August 2008) (ROD)		
Attachments:	Site map attached (Attachment 1)	
II. INTERVIEWS (Chea	ck all that apply)	
1. O&M site manager Al Brillinger (Vista Environmental Services) Program Manager 11/07/16 Name Title Date Interviewed at site at office by email Phone no. (502) 315-6892 Problems, suggestions; Report attached		
2. O&M staff		
3. Local regulatory authorities and response agencies (i.e., State and Tribal offices, emergency response office, police department, office of public health or environmental health, zoning office, recorder of deeds, or other city and county offices, etc.) Fill in all that apply. Agency Ohio Environmental Protection Agency Contact Rodney Beals Name Title Problems; suggestions; ⊠ Report attached		
4. Other interviews (optional) 🖾 Reports attached. (Attachment 6)		
Mark Leeper, PG, MBA, Army National Guard Direct	· · · ·	
Kevin Sedlak, National Guard Bureau, Restoration Project Manager		

٠	Katie Tait, Ohio Army National Guard (OHARNG), Environmental Specialist 2			
•	Gregory Moore, USACE Louisville District Project Manager			
•	Nathaniel Peters, USACE Louisville Dist	rict Environmental Engineer		
٠	Angela Schmidt, USACE Louisville Distr	rict Risk Assessor		
٠	Allan Brillinger, Vista Environmental Sci	iences Program Manager		
•	Rodney Beals, Sue Watkins, and Nicholas	s Roope, Ohio EPA		
•	Tom Tadsen, RAB Co-Chair			
	III. ON-SITE DOCUMENTS &	RECORDS VERIFIED (0	Check all that apply	y)
1.	1. O&M Documents □ O&M manual (see remark 1) □ Readily available □ Up to date □ N/A □ As-built drawings (see remark 2) □ Readily available □ Up to date □ N/A □ Maintenance logs (see remark 3) □ Readily available □ Up to date □ N/A Remarks: 1. Land use control (LUC) requirements are provided in <i>Draft Property Management Plan</i> for the Designated Areas of Concerns Ravenna Army Ammunition Plant Ravenna, Ohio (August 10, 2010). 2. Excavation drawings are provided in <i>Final Remedial Action Completion Report for RVAAP-05</i> Winklepeck Burning Grounds Pads 61/61A, 67, and 70 (November 19, 2009). 3. LUC inspection results are provided in quarterly inspection reports and annual LUC monitoring reports.			
2.	Site-Specific Health and Safety Plan Image: Readily available Image: Up to date Image: N/A Image: Contingency plan/emergency response plan Image: Readily available Image: Up to date Image: N/A Remarks: Draft Site Safety & Health Plan Camp Ravenna Environmental Program Support Services Portage and Trumball Counties, Ohio (Vista Sciences Corporation, February 2, 2016).			
3.	O&M and OSHA Training Records Remarks:	Readily available	Up to date	N/A
4.	Permits and Service Agreements Air discharge permit Effluent discharge Waste disposal, POTW Other permits	 Readily available Readily available Readily available Readily available 	Up to date Up to date Up to date Up to date	⊠ N/A ⊠ N/A ⊠ N/A ⊠ N/A
5.	Gas Generation Records Remarks:	Readily available	Up to date	N/A
6.	Settlement Monument Records Remarks :	Readily available	Up to date	N/A
7.	Groundwater Monitoring Records Remarks: Groundwater monitoring at recent available report is <i>Final Facility-W</i> <i>Wide Groundwater Report on the March</i> <i>Portage and Trumball Counties, Ohio (See</i>	Vide Groundwater Monitorin 2015 Sampling Event Forme	g Program RVAA	P-66 Facility-

8.	Leachate Extraction Records Remarks	Readily available	Up to date	N/A
9.	Discharge Compliance Records Air Water (effluent) Remarks:	 Readily available Readily available 	Up to date	⊠ N/A ⊠ N/A
10.	Daily Access/Security Logs Remarks: Winklepeck Burning Grow Grenade Machine Gun Range) by the A	Readily available unds (WBG) is used as a sm Army National Guard. Acce	all arms range (inclu	
	J	IV. O&M COSTS		
1.	O&M Organization			
	State in-house PRP in-house	Contractor for State Contractor for PRP Contractor for Federal Faci	lity (Vista Sciences C	Corporation)
2.	O&M Cost Records			
	 ☐ Readily available ☐ Up to da ☐ Funding mechanism/agreement in p Original O&M cost estimate:No Total annual cost by year for review pe 	lace	Breakdown attached	
3.	Unanticipated or Unusually High O&M Costs During Review Period			
5.		t applicable	renou	
	V. ACCESS AND INSTITUTIO	DNAL CONTROLS A	Applicable	N/A
A.	Fencing			
1.	0 0	ding WBG. The only facili consists of six feet high cha s set in concrete footers. The	in link fence fabric v ne LUC inspection re	vith steel I-beam
В.	Other Access Restrictions			
1.	Signs and other security measures	Location shown of	n site map 🛛 🗌 N	J/A
	-	ea keep out) have been insta	-	ervals.

C.	Institutional Controls (ICs)		
1.	Implementation and enforcementSite conditions imply ICs not properly implemented		
	Type of monitoring (e.g., self-reporting, drive by) Self-reporting Frequency Quarterly Responsible party/agency Camp Ravenna/OHARNG		
	ContactAl Brillinger (Vista Sciences Corporation)Program Manager(502) 315-6892NameTitlePhone no.		
	Reporting is up-to-dateImage: YesImage: NoImage: N/AReports are verified by the lead agencyImage: YesImage: NoImage: N/A		
	Specific requirements in deed or decision documents have been met Image: Yes No N/A Violations have been reported Image: Yes No N/A Other problems or suggestions: Image: Report attached Image: No N/A LUC inspection reports (quarterly inspection reports and annual LUC monitoring reports) are documented in Attachment 2. Image: No Image: No Image: No		
2.	Adequacy ICs are adequate ICs are inadequate N/A		
D.	Camanal		
D. 1.	General Vandalism/trespassing □ Location shown on site map ⊠ No vandalism evident Remarks		
2.	Land use changes on site N/A Remarks: The site is not used for activities other than as a small arms and Mark 19 Grenade Machine Gum range, range maintenance, and environmental monitoring, sampling, and remediation.		
3.	Land use changes off site N/A Remarks:		
	VI. GENERAL SITE CONDITIONS		
А.	Roads 🛛 Applicable 🗌 N/A		
1.	Roads damaged Image: Location shown on site map Image: Roads adequate Image: N/A Remarks: Camp Ravenna roads outside of the site consist of bituminous concrete pavement. Site roads are unpaved and adequate for range operations and environmental monitoring activities. N/A		
В.	Other Site Conditions		
	RemarksThe former WBG encompasses 211.66 acres in the central portion of Camp Ravenna.The site is open and used as a target range by OHARNG. Topography is gently undulating and elevations decrease from west to east. Gravel/dirt roads running east to west are tied together with connecting roads at the eastern and western ends of the site. There are no perennial streams. Monitoring wells are situated throughout the site.		
Note: S	Note: Sections VII through IX were removed from this checklist because they are not applicable		

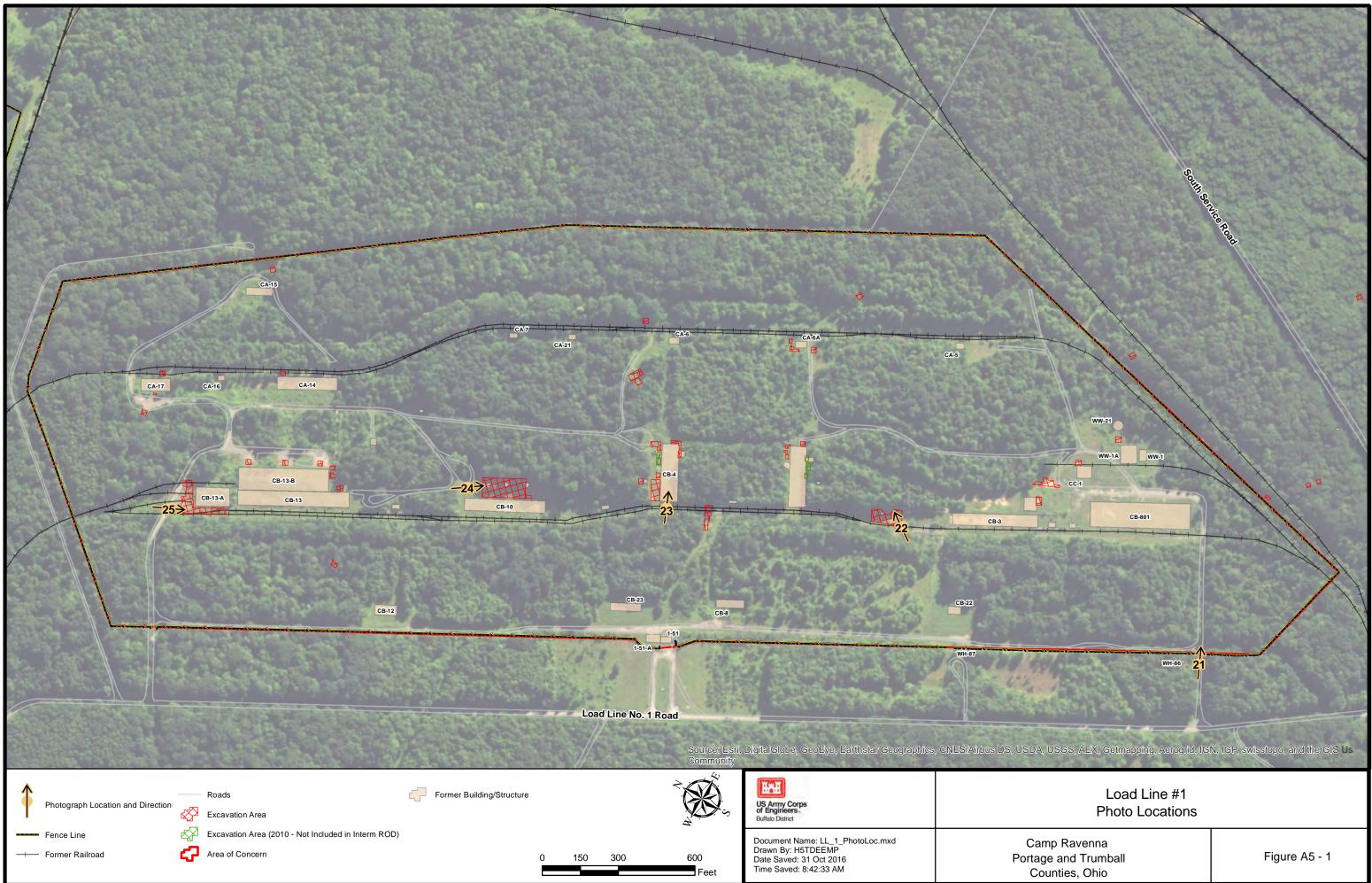
	X. OTHER REMEDIES	
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.	
	Remarks : There are no other remedies at the site.	
	XI. OVERALL OBSERVATIONS	
А.	Implementation of the Remedy	
	Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).	
	The remedy was implemented to protect human health and the environment from exposure to contaminants attributed to former Ravenna Army Ammunition Plant operations at burning pads 61, 61A, 67, and 70. The selected remedy consisted of excavation and off-site disposal of approximately 5,965 cubic yards of soil and dry sediment and LUCs. It was implemented in 2009. An Explanation of Significant Differences (ESD) was prepared in 2015 to enable using the site as a Mark 19 Grenade Machine Gun Range. Implementation of the remedy was started in November 2016.	
	The ROD remedy is effective and functioning as designed. The ESD remedy has not been completed.	
В.	Adequacy of O&M	
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.	
	Range maintenance activities conducted by OHARNG consist of grass cutting, maintenance of targetry and associated mechanisms, and natural resources management activities.	
	Monitoring activities consist of quarterly LUC inspections that include: 1) A review of LUC training and documentation as applicable to WBG, 2) Evaluation of the Camp Ravenna perimeter fence to ensure that it is maintained in a manner that is effective and deters trespassers, 3) Evaluation of activities at WBG to ensure that they are in compliance with OHARNG range safety regulations/standard operating procedures, established digging restrictions, and established exposure limits, and 4) Evaluation to ensure that groundwater activities are being conducted in a manner consistent with established LUCS.	
C.	Early Indicators of Potential Remedy Problems	
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs that suggest that the protectiveness of the remedy may be compromised in the future.	
	No issues or observations were identified that would suggest the protectiveness of the remedy may be compromised in the future.	
D.	Opportunities for Optimization	
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.	
	Opportunities for optimization were not identified.	

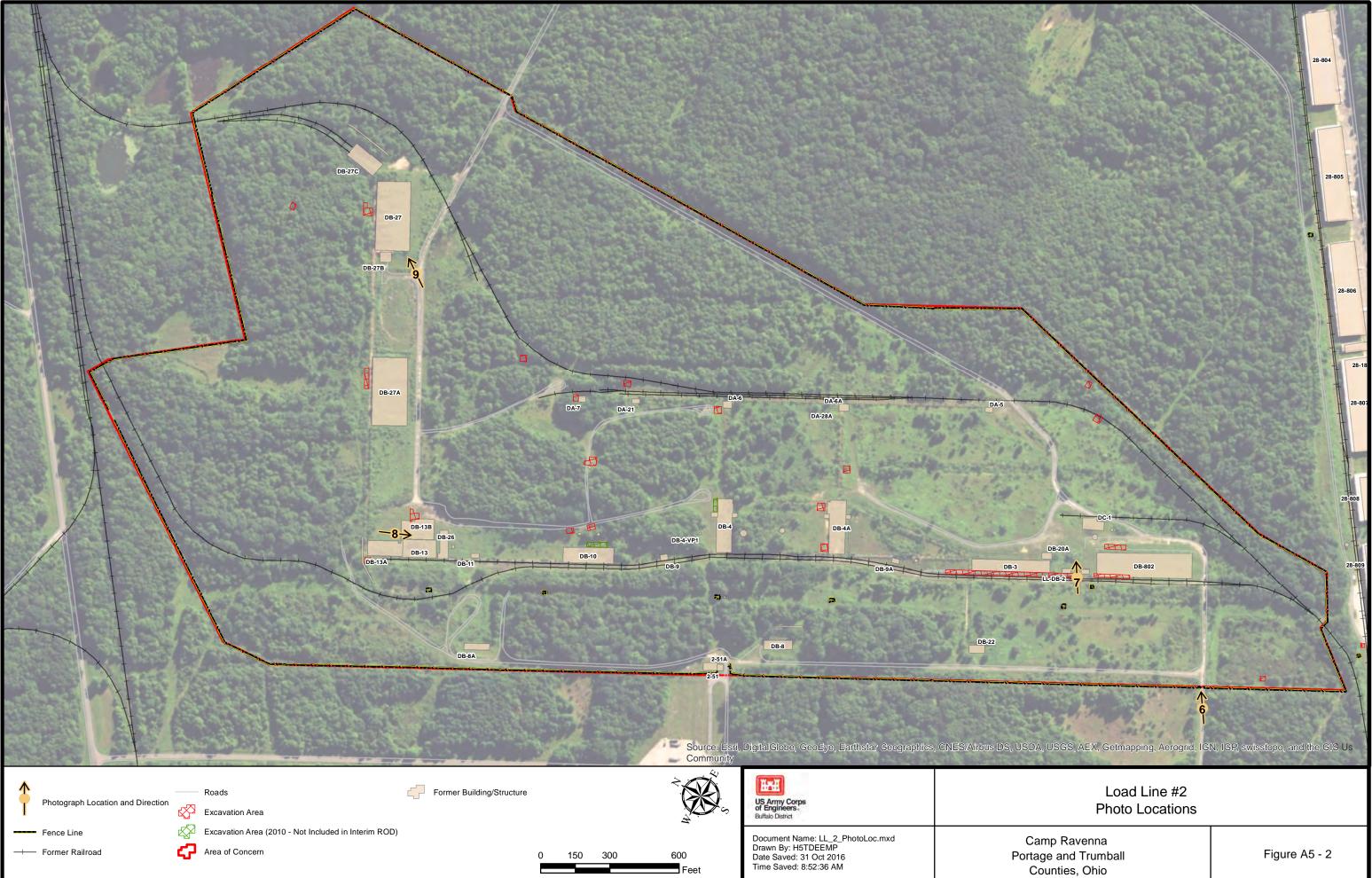
I. SITE INFORMATION		
Site name: Camp Ravenna Joint Military Training Center Ramsdell Quarry Landfill (RVAAP-01)	Date of inspection: August 10, 2016	
Location and Region: Portage and Trumball Counties Ohio	EPA ID: <i>OH5210020736 (CERCLIS)</i>	
Agency, office, or company leading the five-year review: US Army Corps of Engineers, Buffalo District	Weather/temperature: ~90°F, partly cloudy, humid	
Remedy Includes: (Check all that apply) □ Landfill cover/containment □ Monitored natural attenuation □ Access controls □ Groundwater containment □ Institutional controls □ Vertical barrier walls □ Groundwater pump and treatment □ Surface water collection and treatment □ Other Excavation and off-site disposal of contaminated soil and dry sediment that exceeded cleanup goals identified in the <i>Final Record of Decision for Soil and Dry Sediment for the RVAAP-01 Ramsdell Quarry Landfill (March 2009) (ROD).</i>		
Attachments: Inspection team roster attached	Site map attached	
II. INTERVIEWS (Check	all that apply)	
1. O&M site manager Al Brillinger (Vista Environmental Services) Program Manager 11/07/16 Name Title Date Interviewed at site at office by email Phone no. (502) 315-6892 Problems, suggestions; ⊠ Report attached		
2. O&M staff Name Interviewed at site at office by phone Problems, suggestions; Report attached	Title Date Phone no.	
3. Local regulatory authorities and response agencies office, police department, office of public health or env deeds, or other city and county offices, etc.) Fill in all	vironmental health, zoning office, recorder of	
Agency Ohio Environmental Protection Agency Contact Rodney Beals	(330) 963-1218	
Name Problems; suggestions; 🛛 Report attached	Title Date Phone no.	
4. Other interviews (optional) \boxtimes Reports attached.		
Mark Leeper, PG, MBA, Army National Guard Directorate, Environmental Cleanup Program Manager		
Kevin Sedlak, National Guard Bureau, Restoration Project Manager		

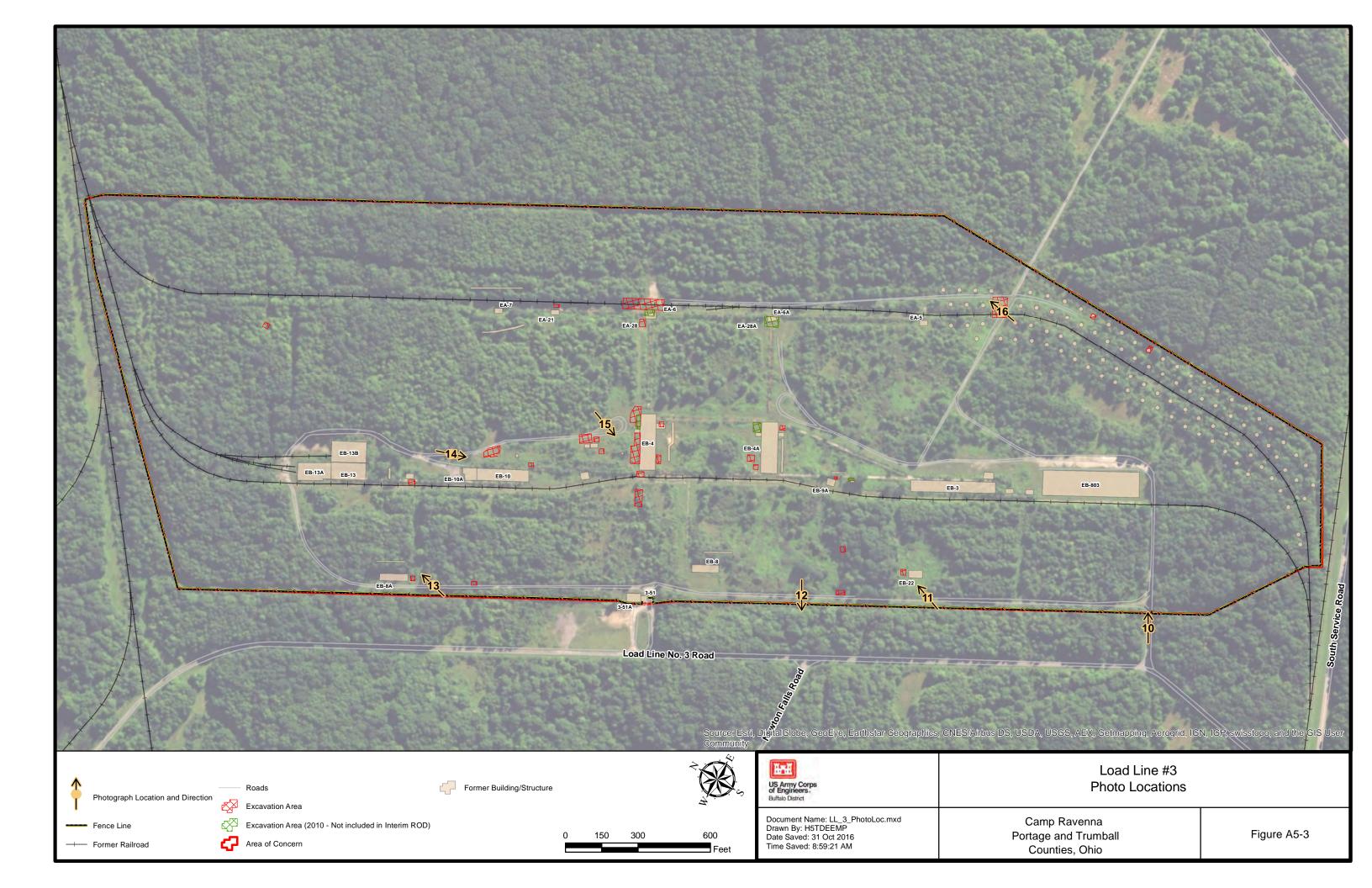
•	Katie Tait, Ohio Army National Guard (OHARNG), Environmental Specialist 2		
٠	Gregory Moore, USACE Louisville District Project Manager		
•	Nathaniel Peters, USACE Louisville District Environmental Engineer		
٠	Angela Schmidt, USACE Louisville District Risk Assessor		
•	Allan Brillinger, Vista Environmental Sciences Program Manager		
٠	Rodney Beals, Sue Watkins, and Nicholas Roope, Ohio EPA		
٠	Tom Tadsen, RAB Co-Chair		
	III. ON-SITE DOCUMENTS & RECORDS VERIFIED (Check all that apply)		
1.	O&M Documents \[\begin{aligned} O&M manual (see remark 1) & \begin{aligned} Readily available & \begin{aligned} Up to date & N/A & V/A & V/		
2.	Site-Specific Health and Safety Plan Image: Readily available Image: Up to date Image: N/A Image: Contingency plan/emergency response plan Image: Readily available Image: Up to date Image: N/A Remarks: Image: Draft Site Safety & Health Plan Camp Ravenna Environmental Program Support Services Portage and Trumball Counties, Ohio (Vista Sciences Corporation, February 2, 2016). Image: N/A		
3.	O&M and OSHA Training Records		
4.	Permits and Service Agreements Air discharge permit Readily available Up to date N/A Effluent discharge Readily available Up to date N/A Waste disposal, POTW Readily available Up to date N/A Other permits Readily available Up to date N/A Remarks:		
5.	Gas Generation Records Readily available Up to date M/A		
6.	Settlement Monument Records Readily available Up to date N/A Remarks :		
7.	Groundwater Monitoring RecordsImage: Readily availableImage: Up to dateImage: N/ARemarks:Base line and quarterly monitoring has been conducted for VOCs, SVOCs, pesticides,PCBs, explosives, propellants, inorganics, cyanide, nitrate, and perchlorate.		

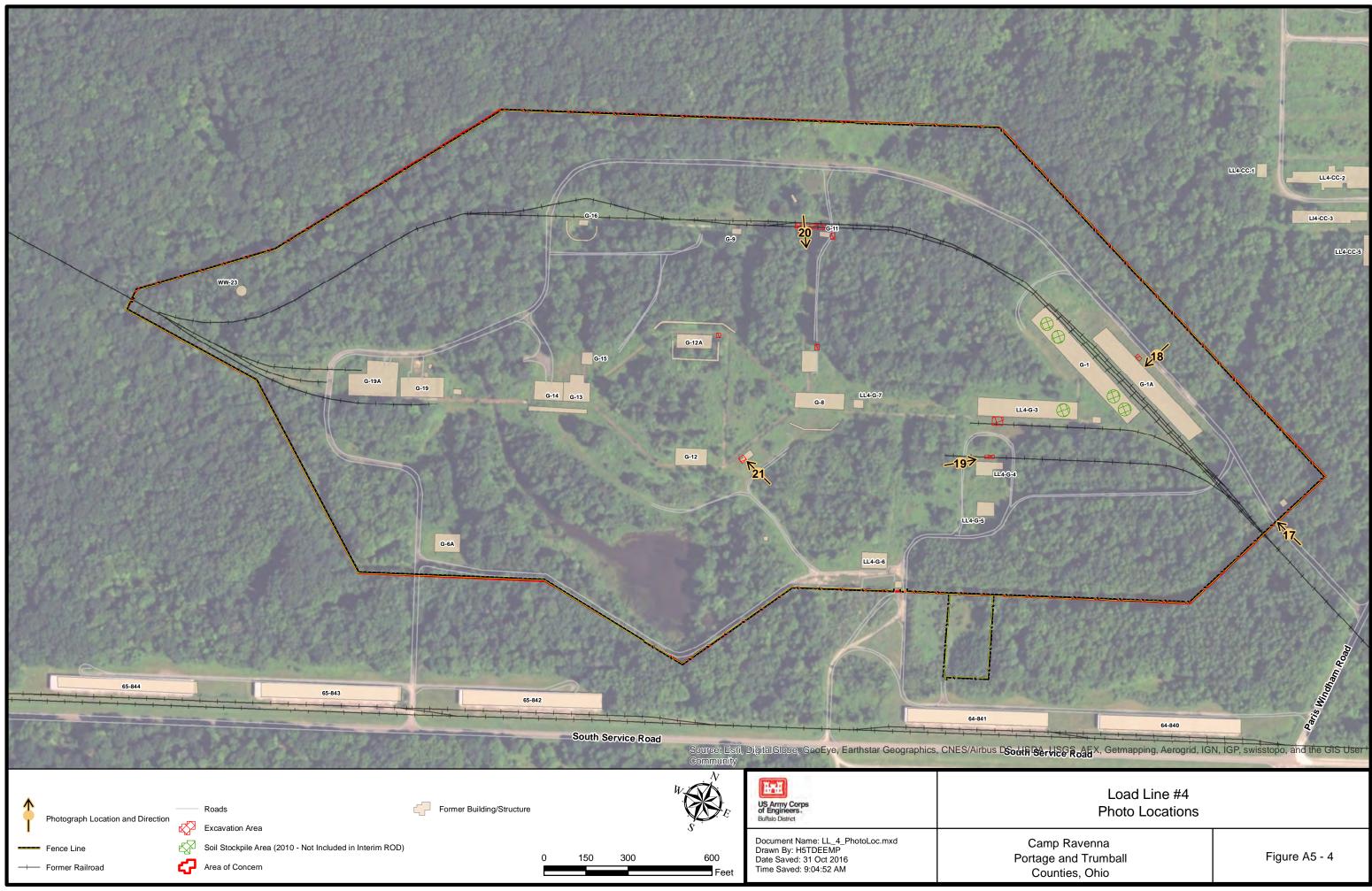
8.	Leachate Extraction Records Remarks	□ Readily available	Up to date	N/A
9.	Discharge Compliance Records Air Water (effluent) Remarks:	☐ Readily available ☐ Readily available	Up to date	⊠ N/A ⊠ N/A
10.	Daily Access/Security Logs Remarks:	⊠ Readily available	Up to date	□ N/A
		IV. O&M COSTS		
1.	PRP in-house] Contractor for State] Contractor for PRP] Contractor for Federal Faci	lity (Vista Sciences C	Corporation)
2.	O&M Cost Records Readily available Up to da Funding mechanism/agreement in p Original O&M cost estimate: <u>No</u> Total annual cost by year for review po	place ot available	Breakdown attached <u>ble)</u>	
3.	Unanticipated or Unusually High O&M Costs During Review Period Describe costs and reasons: Not applicable			
	V. ACCESS AND INSTITUTIO	**	Applicable	□ N/A
А.	Fencing			
1.	8 8 –	Quarry Landfill consists of a hain-link fabric is located on a bottom tension wire. Two d. The landfill fence was observed lso present. It consists of six 12 feet centers set in concret	the Ramsdell Road s locked double-swing served to be in good o x feet high chain link te footers. LUC insp	tide of the site and g steel chain-link condition with no fence fabric with ection reports

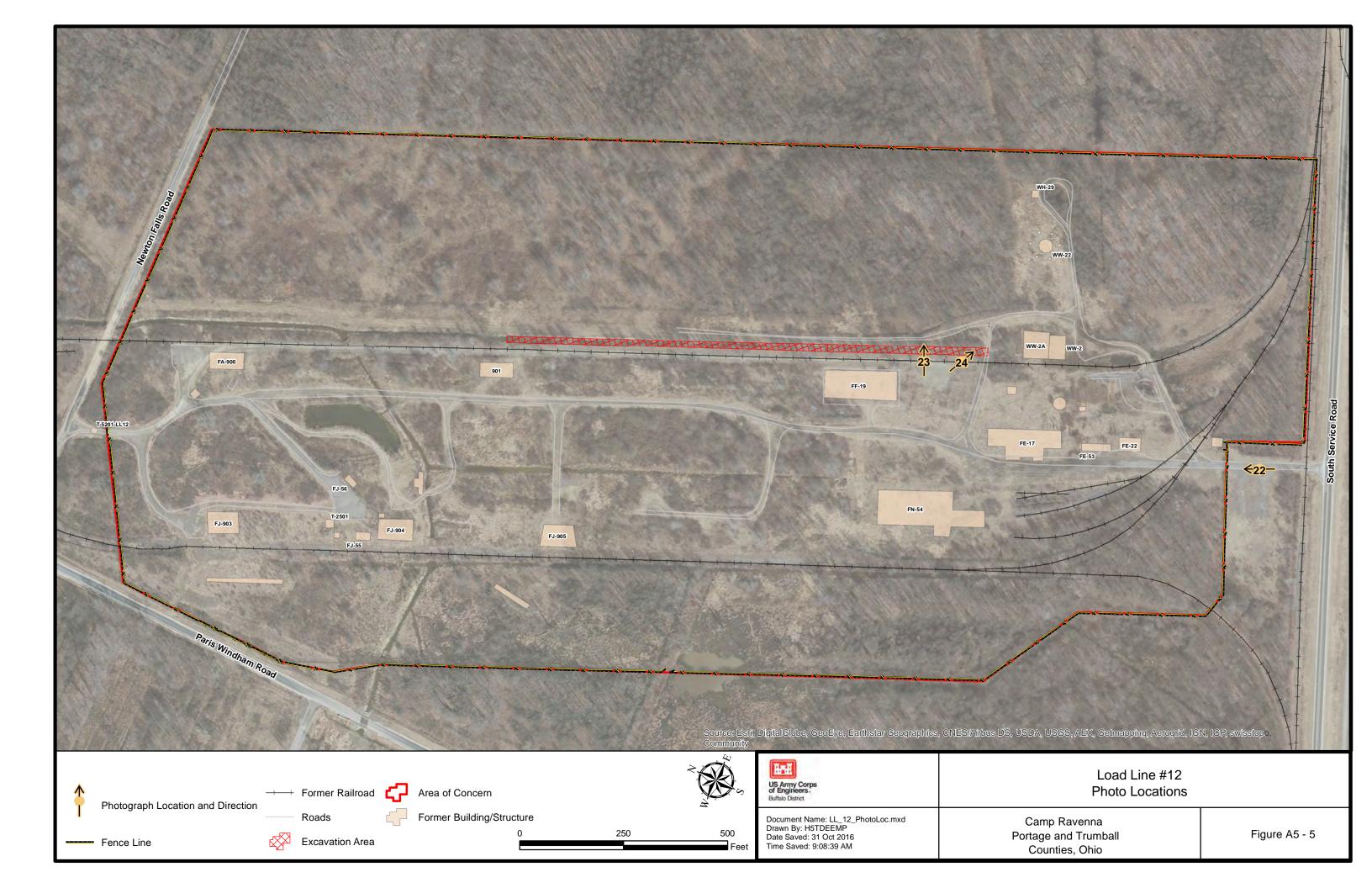
В.	Other Access Restrictions
1.	Signs and other security measures \square Location shown on site map \square N/A
	Remarks:Warning signs (20" by 14") are located every 300 ft on the landfill perimeter fence, "KEEPOUT RESTRICTED ACCESS SITE AUTHORIZED PERSONNEL ONLY. DANGER ASBESTOS WASTEDISPOSAL SITE DO NOT CREATE DUST BREATHING ASBESTOS IS HAZARDOUS TO YOURHEALTH."
C.	Institutional Controls (ICs)
1.	Implementation and enforcementSite conditions imply ICs not properly implementedSite conditions imply ICs not being fully enforcedYesYesNoN/A
	Type of monitoring (e.g., self-reporting, drive by) Self-reporting Frequency Annual Responsible party/agency Camp Ravenna/OHARNG Contact Al Brillinger (Vista Sciences Corporation) Program Manager (502) 315-6892 Name Title Phone no.
	Reporting is up-to-dateImage: YesImage: NoImage: N/AReports are verified by the lead agencyImage: YesImage: NoImage: N/A
	Specific requirements in deed or decision documents have been met Image: Yes No N/A Violations have been reported Image: Yes No N/A Other problems or suggestions: Image: Report attached Image: Yes No N/A LUC monitoring reports) are documented in Attachment 2. Image: Yes Image:
2.	Adequacy ICs are adequate ICs are inadequate N/A
D.	General
1.	Vandalism/trespassing Location shown on site map No vandalism evident Remarks
2.	Land use changes on site N/A Remarks: The site is not used for activities other than landfill cap maintenance, environmental monitoring and sampling.
3.	Land use changes off site 🖾 N/A Remarks:
	VI. GENERAL SITE CONDITIONS
А.	Roads Applicable \Box N/A
1.	Roads damaged Isocation shown on site map Isocation Roads adequate N/A Remarks: Camp Ravenna roads outside of the site consist of bituminous concrete pavement. Site roads are unpaved and adequate for range operations and environmental monitoring activities. N/A

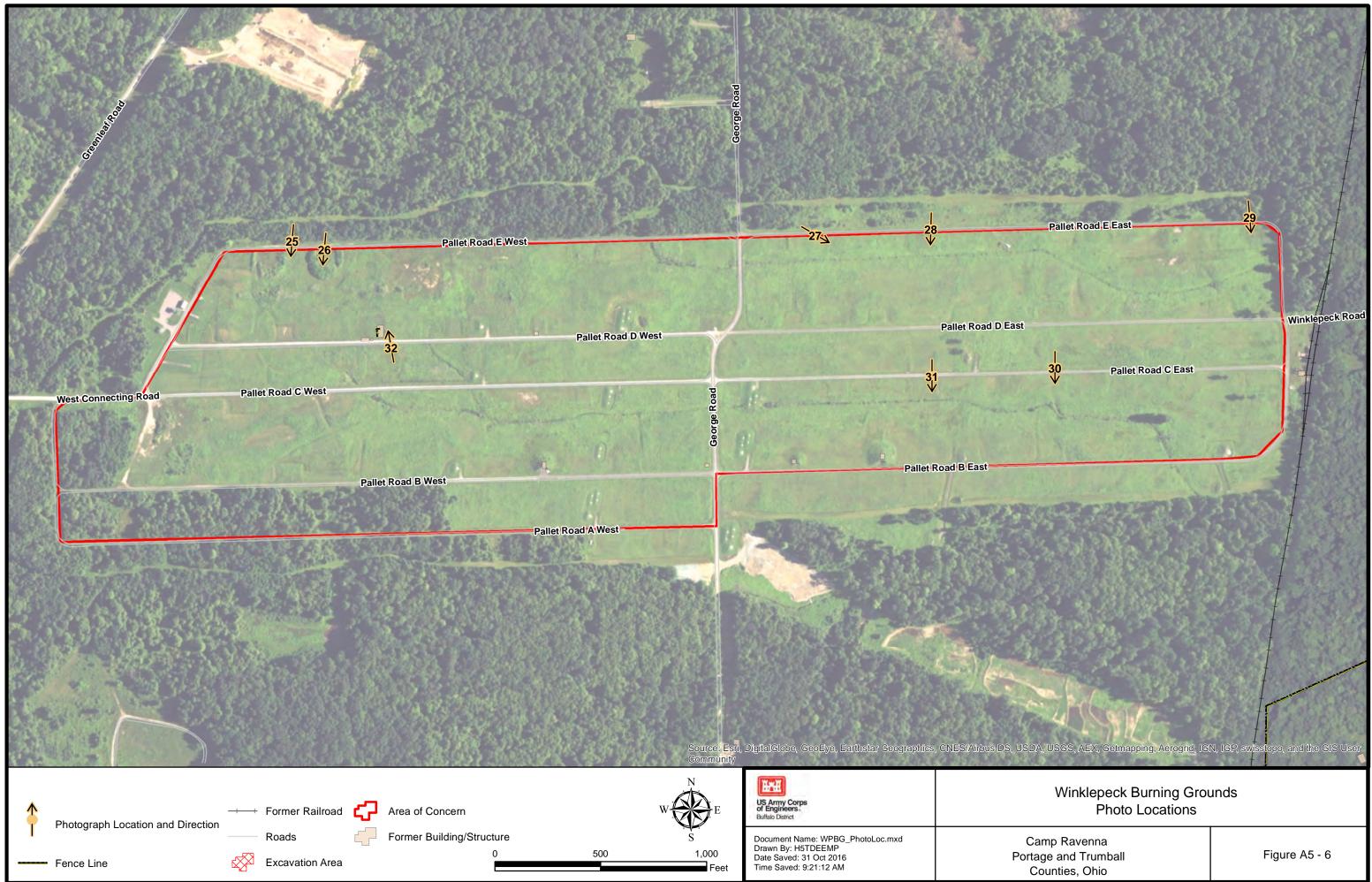

В.	Other Site Conditions		
	Remarks <u>The Ramsdell Quarry Landfill encompasses approximately 14 acres. The land surface</u> in a large portion of the landfill slopes into a former quarry, which is about 40 feet below the surrounding area. Surface water runoff collects in an isolated wetland on the bottom of the former quarry. There is no surface water drainage outlet from the quarry. The landfill has been closed and has a clay cap with topsoil/grass layer at surface. The cap is mowed. Monitoring wells are situated around the site.		
	The Ramsdell Quarry Landfill cover is a	FILL COVERS Applicable has been closed under State of Ohio so not a component of the remedial action e identified below to provide informati	blid waste regulations and is a subject to this five-year review.
А.	Landfill Surface	Applicable	N/A
1.	Settlement (Low spots) Areal extent Remarks:	Location shown on site map Depth	Settlement not evident
2.	Cracks Lengths Remarks:	Location shown on site map Widths Depths	
3.	Erosion Areal extent Remarks :	Location shown on site map Depth	Erosion not evident
4.	Holes Areal extent Remarks :	Location shown on site map Depth	Holes not evident
5.	Vegetative Cover □ □ Trees/Shrubs (indicate size Remarks:	Grass Cover properly estable and locations on a diagram)	lished 🛛 No signs of stress
6.	Alternative Cover (armored Remarks:	rock, concrete, etc.) 🛛 N/A	
7.	Bulges Areal extent Remarks:	Location shown on site map Height	⊠ Bulges not evident

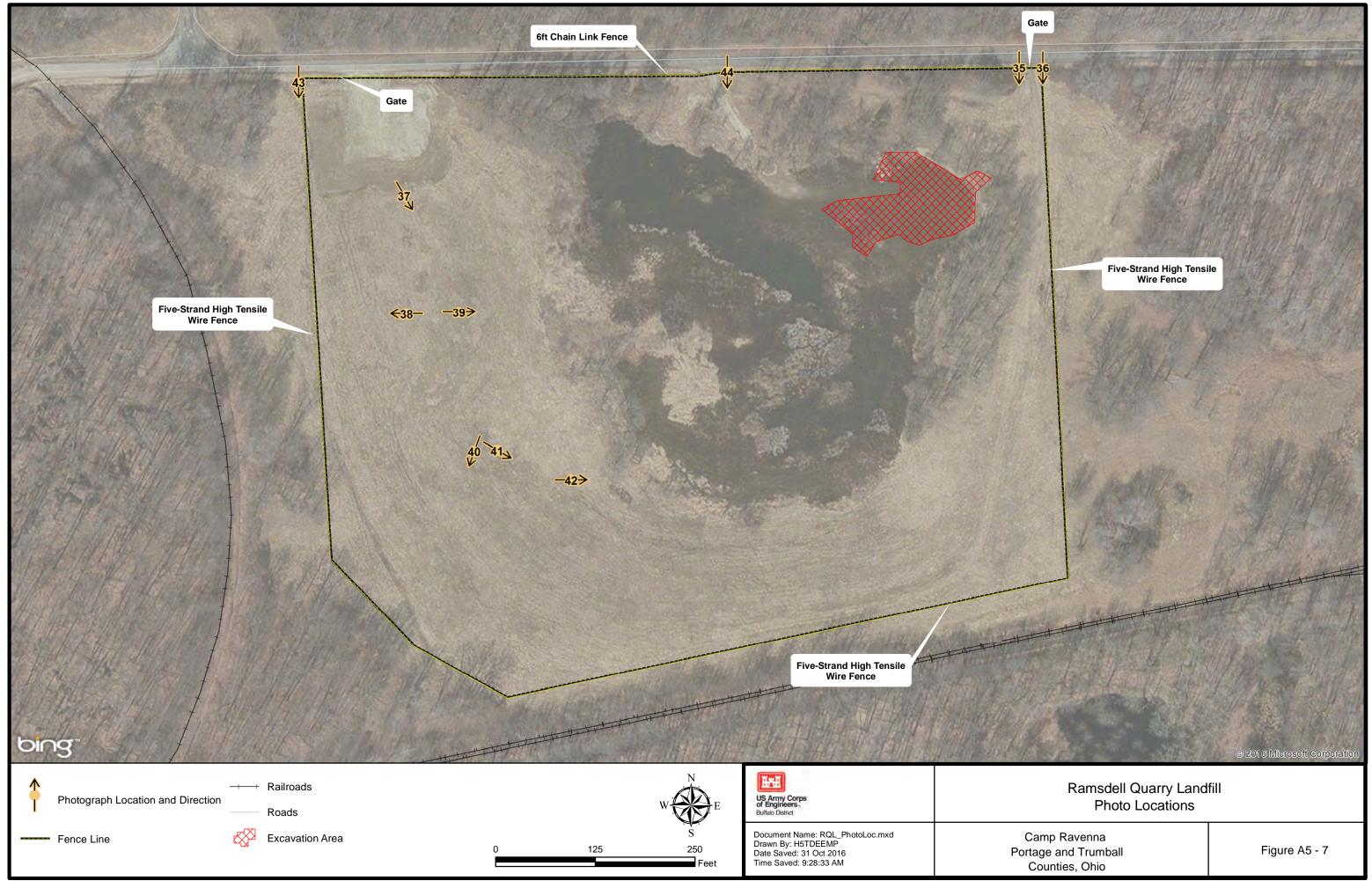

8.	Wet Areas/Water Damage ☐ Wet areas ⊠ Ponding ☐ Seeps ☐ Soft subgrade Remarks:	 □ Wet areas/wa □ Location shot □ Location shot □ Location shot □ Location shot 	wn on site map Area wn on site map Area	al extent al extent <u>see Attachment 1</u> al extent al extent
9.	Areal extent	Location shown		evidence of slope instability
В.	Benches (Horizontally constructed mound in order to slow down the veloci channel.)		ross a steep landfill side	
C.	Letdown Channels (Channel lined with erosion com slope of the cover and will allow cover without creating erosion g	the runoff water co	out bags, or gabions that	
D.	Cover Penetrations	🖾 Арр	licable 🗌 N/A	
1.	Gas Vents □ Ad □ Properly secured/locked □ Evidence of leakage at penetr □ N/A Remarks	Functioning	ive Routinely sampled Needs Maintenance	
2.	Gas Monitoring Probes Properly secured/locked Evidence of leakage at penetr Remarks	☐ Functioning ration	 Routinely sampled Needs Maintenance 	
3.	Monitoring Wells (within surfa Properly secured/locked Evidence of leakage at penetr Remarks	Functioning	⊠ Routinely sampled ☐ Needs Maintenance	
4.	Leachate Extraction Wells Properly secured/locked Evidence of leakage at penetr Remarks	Functioning Fration	 Routinely sampled Needs Maintenance 	
5.	Settlement Monuments Remarks	Located	Routinely surve	eyed 🖾 N/A
Е.	Gas Collection and Treatment	П Арр	licable 🖾 N/A	

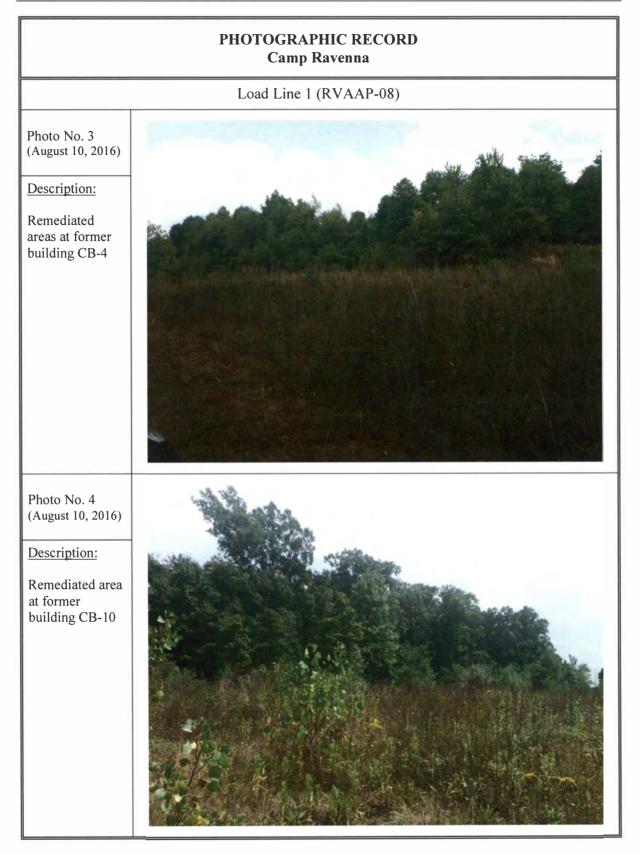

F.	Cover Drainage Layer Applicable N/A			
G.	Detention/Sedimentation Ponds Applicable N/A			
H.	Retaining Walls			
I.	Perimeter Ditches/Off-Site Discharge Applicable N/A			
	VIII. VERTICAL BARRIER WALLS			
	IX. GROUNDWATER/SURFACE WATER REMEDIES Applicable N/A			
	X. OTHER REMEDIES			
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.			
	Remarks : There are no other remedies at the site. The landfill was closed in 1990 under State of Ohio solid waste regulations.			
	XI. OVERALL OBSERVATIONS			
А.	Implementation of the Remedy			
	Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).			
	The remedy was implemented to protect human health and the environment from exposure to contaminants attributed to former landfilling operations. The selected remedy consisted of excavation and off-site disposal of approximately 423 cubic yards (<i>in-situ</i>) of soil and dry sediment. The remedy was not fully implemented because friable asbestos-containing material (ACM) was encountered during implementation of the remedy. A new remedy was implemented that consisted of 1) installation of a perimeter fence at the perimeter of the landfill to encompass the closed landfill, quarry bottom, and wetlands, and 2) implementing best management practices to remove surficial ACM through non-intrusive.no digging methods.			
	The remedies are effective and functioning as designed.			
В.	Adequacy of O&M			
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.			
	Maintenance activities consist of annual mowing of the landfill cap and monthly inspections by the Portage County Health Department.			
	Monitoring activities consist of quarterly sampling and analysis of groundwater for VOCs, SVOCs, PCBs, pesticides, explosives, propellants, inorganics, cyanide, nitrate, and perchlorate. All monitoring wells are properly secured/locked and in good condition.			
C.	Early Indicators of Potential Remedy Problems			
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs that suggest that the protectiveness of the remedy may be compromised in the future.			
	No issues or observations were identified that would suggest the protectiveness of the remedy may be compromised in the future.			

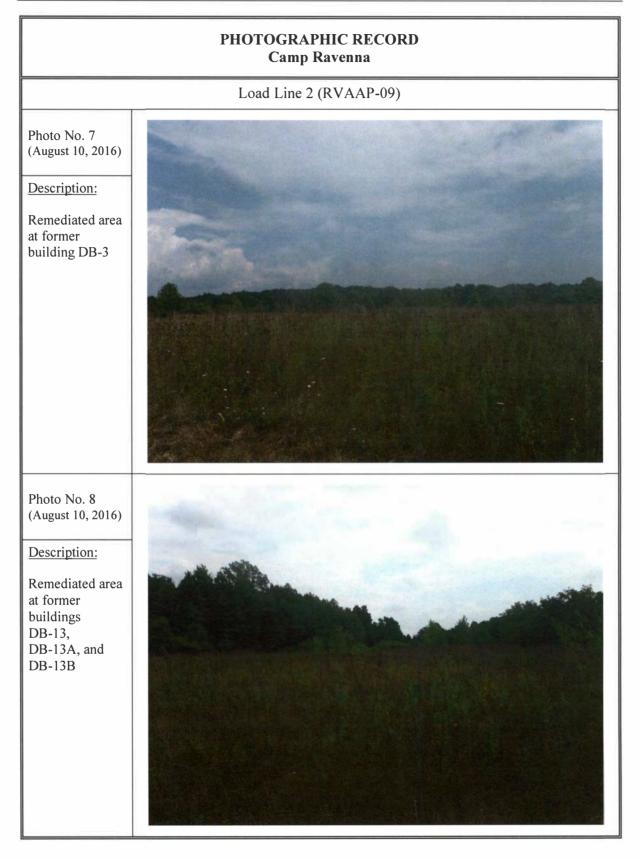

D.	Opportunities for Optimization
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.
	None

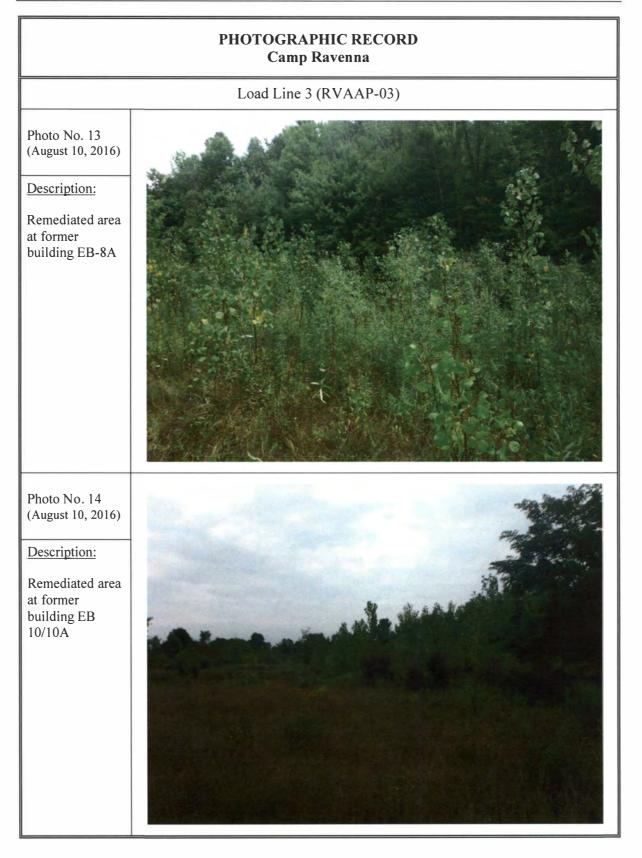

ATTACHMENT 5 Photographic Record

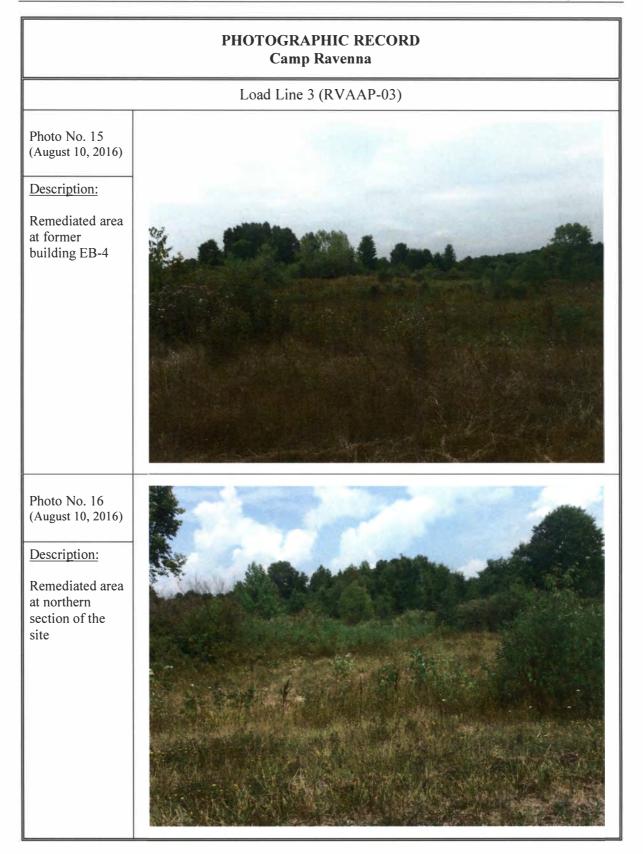


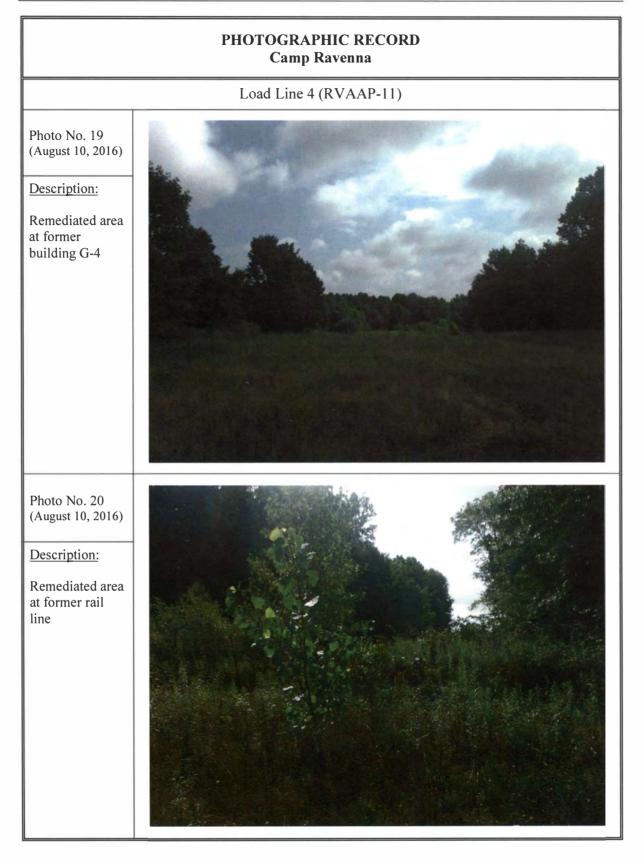


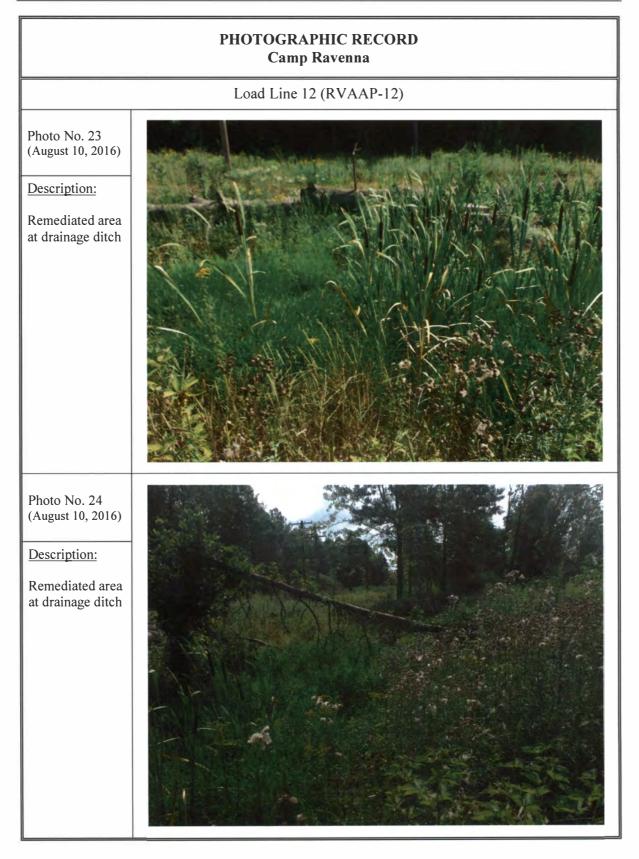


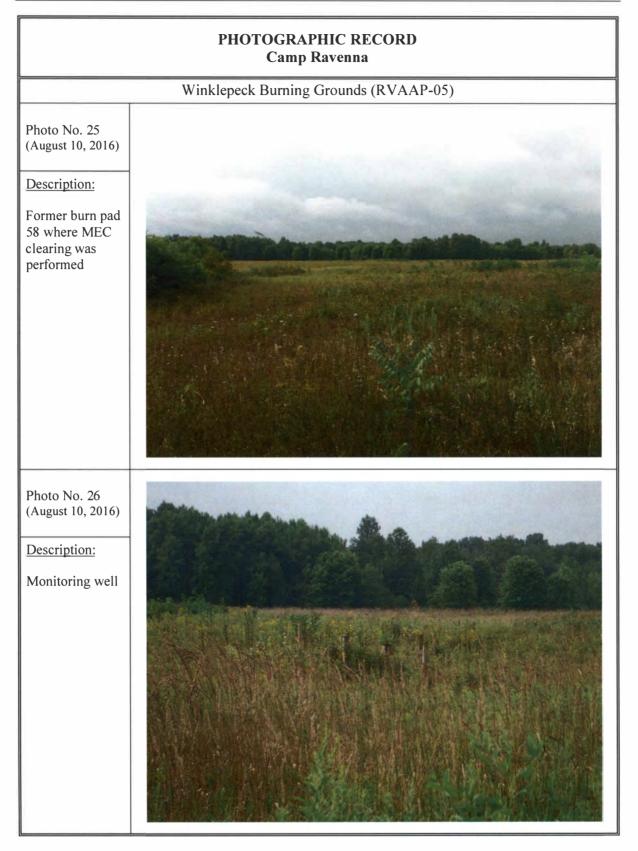


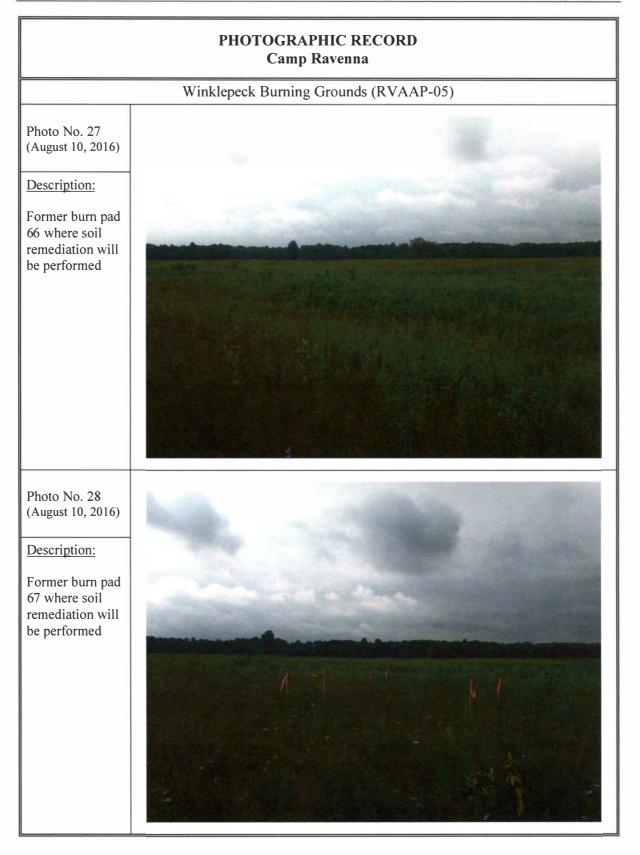


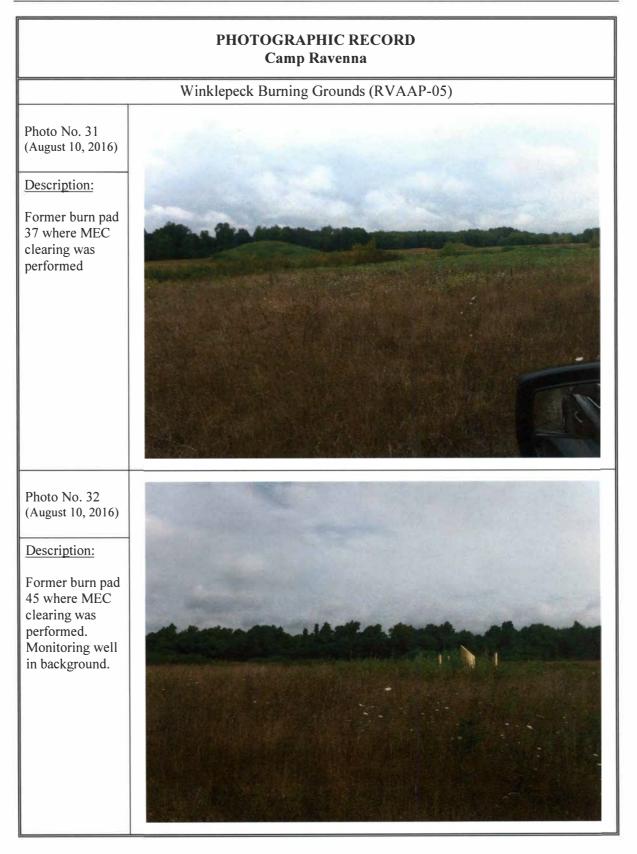


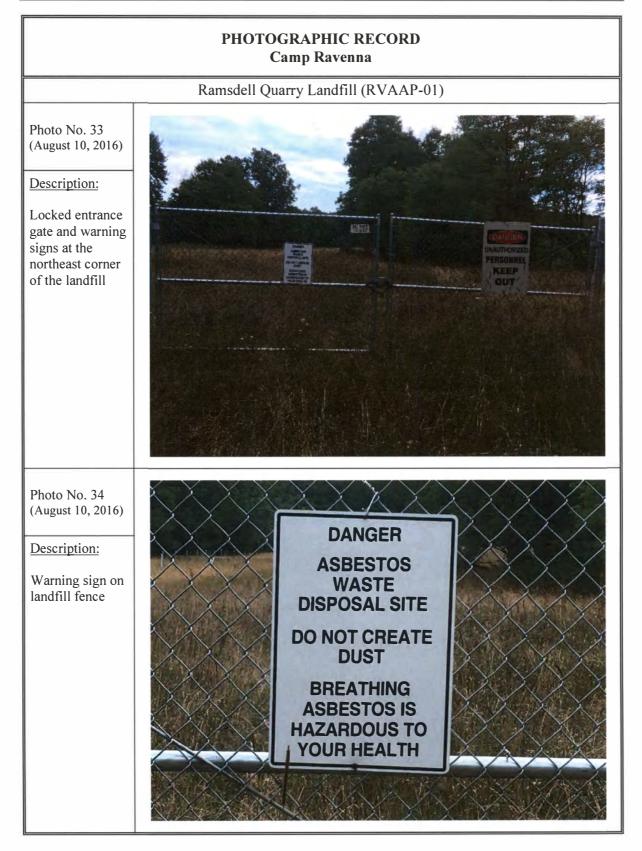


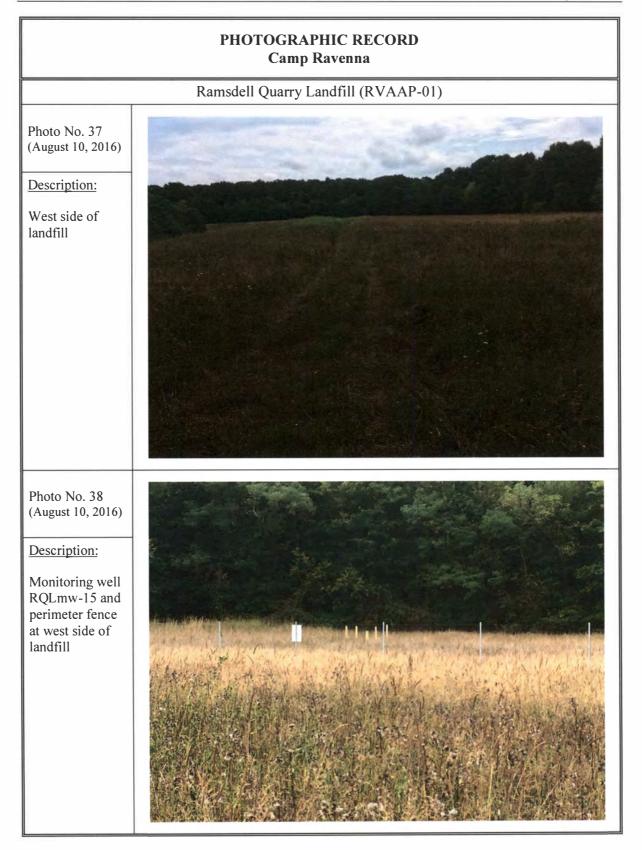


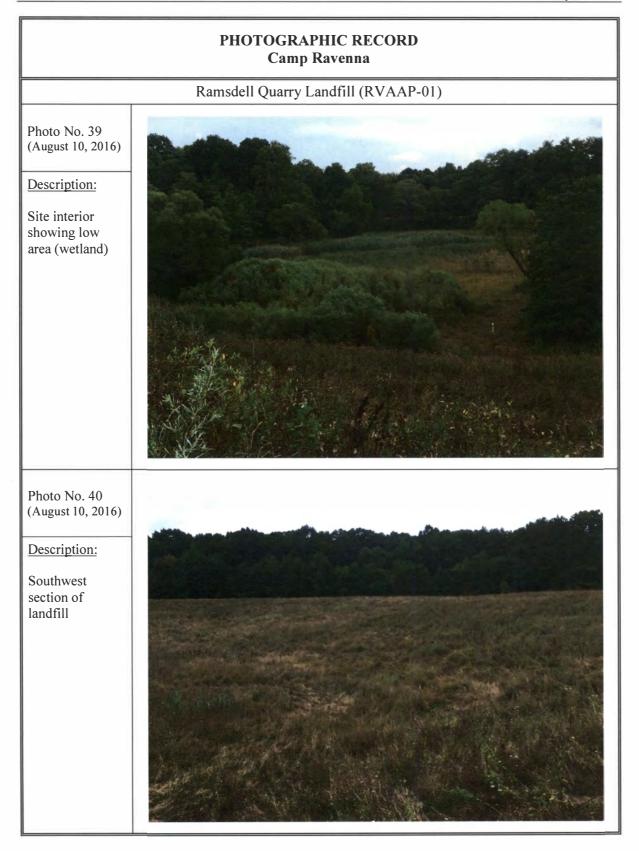


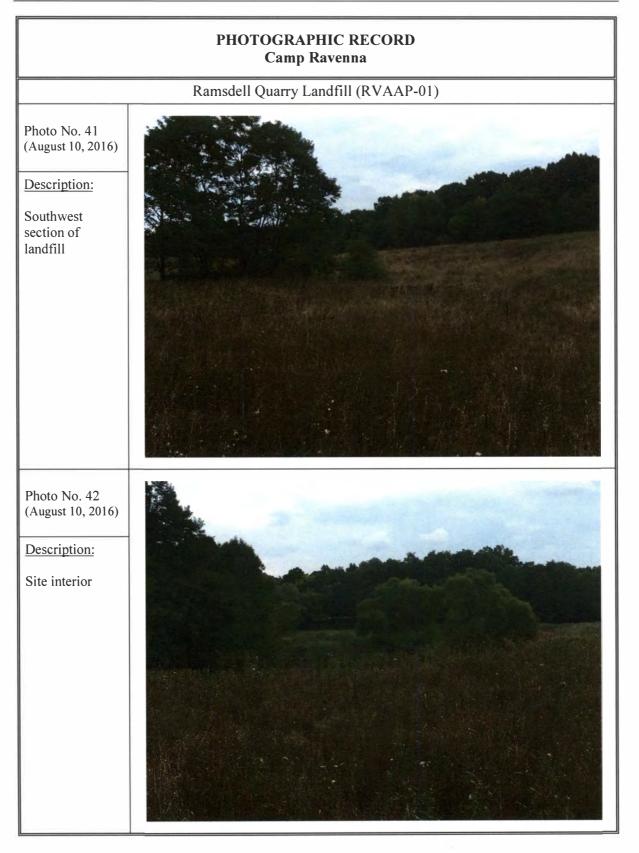


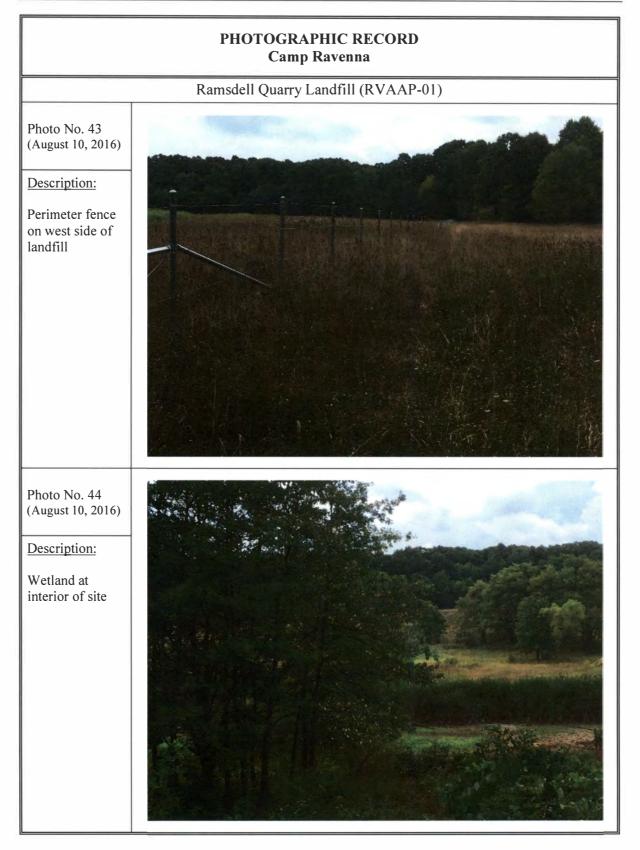












ATTACHMENT 6 Interview Records

INTERVIEW DOCUMENTATION FORM Camp Ravenna

The following is a list of individuals interviewed for this five-year review. See the attached interview records for a detailed summary of the interviews.

<u>Mark Leeper, P.G., MBA</u> Name	<u>Environmental Cleanup</u> <u>Program Manager</u> Title/Position	<u>ARNG</u> Organization	<u>Nov. 7, 2016</u> Date
<u>Kevin Sedlak</u> Name	<u>Restoration Program</u> <u>Manager</u> Title/Position	<u>ARNG</u> Organization	<u>Nov. 4, 2016</u> Date
<u>Katie Tait</u> Name	<u>Environmental Specialist</u> Title/Position	<u>Camp Ravenna</u> (<u>OHARNG)</u> Organization	<u>Nov. 9, 2016</u> Date
<u>Gregory Moore</u> Name	<u>Project Manager</u> Title/Position	<u>USACE Louisville</u> <u>District</u> Organization	<u>Oct. 19, 2016</u> Date
<u>Nathaniel Peters</u> Name	<u>Environmental Engineer</u> Title/Position	<u>USACE Louisville</u> <u>District</u> Organization	<u>Nov. 15, 2016</u> Date
<u>Angela Schmidt</u> Name	<u>Risk Assessor</u> Title/Position	<u>USACE Louisville</u> <u>District</u> Organization	<u>Nov. 7, 2016</u> Date
<u>Allan Brillinger</u> Name	<u>Program Manager</u> Title/Position	<u>Vista Sciences</u> <u>Corporation</u> Organization	<u>Nov. 7, 2016</u> Date
<u>Various</u> Name	<u>NEDO DERR</u> Title/Position	<u>Ohio EPA</u> Organization	<u>Nov. 23, 2016</u> Date
<u>Tom Tadsen</u> Name	<u>Restoration Advisory</u> <u>Board (RAB) Co-Chair</u> Title/Position	<u>RVAAP RAB</u> Organization	<u>Nov. 5, 2016</u> Date

]	INTERVIE	W RECORI)	
Site Name: Camp Ravenna			EPA ID No.:	OH5210020736
	Review of Remedial . .ine 12, Ramsdell Qi g Grounds		Time:	Date: Nov. 7, 2016
Type:	🗌 Visit 🛛 🖾	Other (email)	🗌 Incomin	g 🗌 Outgoing
Location of Visit: Not application	ıble			
	Contact	Made By		
Name: James R Stachowski, PE	Title: Environm	nental Engineer		: US Army Corps of Buffalo District
	Individual	Contacted		
Name: Mark Leeper, P.G., MBA	Title: Environm Program	ental Cleanup Manager	Organization <i>Guard</i>	: Army National
Telephone No: (703) 607-7955 Fax No: E-Mail Address: mark.s.leeper.civ@	mail.mil	Street Address: City, State, Zip:		
	Summary Of	Conversation		
 What is your role and responsinal and the acting Restoration Brain serve as the budgetary POC for any meetings. I work with the serve as the budgetary POC for any meetings. I work with the serve as the budgetary POC for any meetings. I work with the serve as the budgetary POC for any meetings. I work with the serve as the budgetary POC for any meetings. I work with the serve as the budgetary POC for any meetings. I work with the serve as the budgetary POC for any meetings. I work with the serve as the budgetary POC for any meetings. I work with the serve as the budgetary POC for any meetings. I work with the serve as the budgetary POC for any meetings. I work with the serve as the serve are moving as in the serve as the serve any comments, serve as the serve any comments, serve as the serve any comments, serve as the serve as the serve any comments, serve as the serve any comments, serve as the serve any comments, serve as the serve as the serve any comments, serve as the serve as the serve any comments, serve as the serve as the serve any comments, serve as the serve as the serve any comments, serve as the serve as the serve any comments, serve as the serve as the serve any comments, serve as the serve as the serve any comments, serve as the serve as the serve any comments, serve as the serve as	anch Chief with pro or Camp Ravenna and e Louisville COE reg AP-08, -09, -10, & on of the project (gen g well through the si nunications or activit rding the site? If so, roximately four time Sedlak and Katie Ta ts, violations, or oth details of the events out the site's activitie intended?	<i>gram manager duti</i> <i>ad also participate i</i> <i>garding contracts an</i> <i>c</i> -11) meral sentiment)? <i>ystem.</i> ties (site visits, inspective <i>please give purpos</i> <i>please give purpos</i> <i>ss/year to complete s</i> <i>it at least three time</i> er incidents related s and results of the re- ties and progress?	n Ohio EPA, co ad budget for Ca ections, reportin e and results site walks and a es per week. to the site requi- responses.	ntractor and Army amp Ravenna. ag activities, etc.) ttend meetings. I am ring a response by

	INTERVIEW RECORI)	
Site Name:	Camp Ravenna	EPA ID No.: 0H5210020736	
Subject:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Time:	Date: Nov. 7, 2016
Load Line 12	2 (RVAAP-12)		
<u>The pro</u> <u>Sedimer</u>	your overall impression of the project (general sentiment)? <i>ject is moving nicely. We submitted a Revised Phase II Remea</i> <i>at and Surface Water at RVAAP-12 Load Line 12 and have rec</i> <i>for no further action.</i>		
conduct	ere been routine communications or activities (site visits, inspected by your office regarding the site? If so, please give purpos <i>have been in communication on a weekly basis to discuss the sits</i> .	e and results	
	ere been any complaints, violations, or other incidents related ice? If so, please give details of the events and results of the r		uiring a response by
12. Do you <u>Yes</u>	feel well informed about the site's activities and progress?		
13. Is the re <u>Not app</u>	medy functioning as intended? <i>licable</i>		
	other information come to light that could call into question t <i>ay knowledge</i>	he protective	ness of the remedy?
15. Do you operatio <u>No</u>	have any comments, suggestions, or recommendations regardin?	ing the site's	management or
Ramsdell Qu	arry Landfill (RVAAP-01)		
	your overall impression of the project (general sentiment)? <u>e controls are in place and the site is included the five-year reng</u> ng well.	view process.	It appears the system
conduct	ere been routine communications or activities (site visits, inspected by your office regarding the site? If so, please give purpose the set of the site communication regarding the site.		ting activities, etc.)
18. Have th	ere been any complaints, violations, or other incidents related ice? If so, please give details of the events and results of the r		uiring a response by
	feel well informed about the site's activities and progress?		
	medy functioning as intended? site is fenced-in, which restricts access.		
<u>There</u> w	other information come to light that could call into question t as liquid noticed at the RQL cap, it was not clear if it was lead is typically associated with this issue.		
	have any comments, suggestions, or recommendations regard	ing the site's	management or

INTERVIEW RECORD Site Name: Camp Ravenna EPA ID No.: 0H5210020736					
Subject:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and	Time:	Date: Nov. 7, 2016		
	Winklepeck Burning Grounds peck Burning Grounds (RVAAP-05)				
\overline{W}	That is your overall impression of the project (general sentiment)? The are reopening the site for additional remediation so digging restrict eperimeter fence will not be required.	ctions will be pulle	ed and LUCs for		
со <u>Үе</u> <u>R</u> a	ave there been routine communications or activities (site visits, inspe- onducted by your office regarding the site? If so, please give purpose <i>es, there has been routine communication regarding the site activitie</i> <i>emedial Design for the ROD amendment</i> .	e and results s. Ohio EPA has a	approved the Fina		
	ave there been any complaints, violations, or other incidents related our office? If so, please give details of the events and results of the r		g a response by		
26. D <u>Y</u> e	o you feel well informed about the site's activities and progress?				
27. Is <u>Y</u> e	the remedy functioning as intended?				
28. H <u>N</u>	as any other information come to light that could call into question to 2	he protectiveness o	of the remedy?		
	o you have any comments, suggestions, or recommendations regardi peration?	ng the site's mana	gement or		

	Ι	NTE	RVIE	W RECORI)	
Site N	Site Name: Camp Ravenna				EPA ID No.: OH.	5210020736
Subje	ct: Second Five-Year R Lines 1 – 4, Load La Winklepeck Burning	ine 12, F	Ramsdell Qi	•	Time: 14:00	Date: Nov. 4, 2016
Type:	⊠ Telephone [🗌 Visit		Other	Incoming	Outgoing
Locati	ion of Visit: Not applicat	ble				
			Contact	Made By		
Name	: James R Stachowski, PE	Title:	Environn	nental Engineer	Organization: US Engineers, Buf	
		In	dividual	Contacted		
Name	: Kevin Sedlak	Title:	Camp Ra Project M	venna Restoration Ianager	Organization: <i>A Guard</i>	rmy National
Fax N	hone No: (614) 336-6000 (x 20 o: il Address: kevin.m.sedlak.ctr@		71		1438 State Route 53 Newton Falls, OH	
		Sum	mary Of	Conversation		
1. 2. 3. 4. 5. 6. 7.	Lines 1, 2, 3, and 4 (RVAA What is your involvement with <i>I oversee the project, review connecessary. I also work with OF</i> <i>EPA, USACE, and contractors.</i> Have any problems been encour of Decision (ROD)? <i>The sites couldn't be used for m</i> Do you have any comments, su construction documents, constr <i>None</i> What is the status of additional sites? <i>The FS addendum is being pref</i> What is the intended future use <i>Military training (maneuver ra</i> Has environmental data been en Load Line 3 to address the press levels identified in the Interim <i>Check with our contractor (Lei</i> Are routine inspections perform their frequency. Is the reportin <i>No, although the grass is cut an</i> <i>access.</i>	the proj mtractor hio EPA, untered the nilitary f nggestion uctabilit characte pared. of the s nge) valuated sence of ROD? (dos) on ned and g up to o	ect? <u>document.</u> <u>provide re</u> hat required <u>training aft</u> as, or recon y, manager erization sa ites? to determi benzo(a)py First Five <u>the startus o</u> records ma late?	s, and provide comm quested information d or will require cha er the Interim ROD mendations regard ment, regulatory age mpling and the feas ne if additional sam rrene, Aroclor-1254 Year Review report of these results. intained? If so, des	nges to the remedia <u>removal action.</u> ing the project (i.e. encies, etc.)? ibility study (FS) ac pling and/or remedia , and manganese ab recommendation #2 cribe how they are p	etings with Ohio I design or Record design, ddendum for these iation is needed at ove the cleanup 2) performed and
	Have there been significant char routines since start-up? If so, o <i>None required</i> .				naintenance schedu	les, or sampling

C'4 . NI	INTERVIEW RECORI		215210020726
Site Name	λ.	EPA ID No.: (DH5210020736
Subject:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Time: 14:00	Date: Nov. 4, 2016
up?	ve there been unexpected monitoring/maintenance difficulties or in ¹ If so, please give details. <i>t applicable</i>	creased costs at	the site since start-
<u>Yes</u> use	he remedy functioning as intended? <u>, it functioned as originally intended. However, the remedy is no l</u> of the property because of restrictions placed on their use. The si		
11. Has	erim ROD remedy was implemented s any other information come to light that could call into question t	he protectivenes	s of the remedy?
	you have any comments, suggestions, or recommendations regards	ing the site's man	nagement or
Load Lin	ne 12 (RVAAP-12)		
<u>I ov</u> nec	at is your involvement with the project? <i>Persee the project, review contractor documents, and provide commessary. I also work with Ohio EPA, provide requested information</i> A, USACE, and contractors.		
The	ve any problems been encountered that required or will require cha e sites couldn't be used for intended military training after the ROL d for ammonium nitrate production (as opposed to munitions load,) removal action	. Note, this site was
	you have any comments, suggestions, or recommendations regards struction documents, constructability, management, regulatory age ne		.e. design,
	at is the intended future use of the site? <i>itary training (maneuver range)</i>		
	at is the status of additional characterization sampling and the FS a <i>EFS addendum is being prepared</i> .	addendum for thi	s site?
ider	s the Property Management Plan (PMP) been updated to include th ntified in the ROD and remedial design? t yet	e land use contro	ol requirements
thei	e routine inspections performed and records maintained? If so, des ir frequency. Is the reporting up to date? <u>although the grass is cut annually to prevent tree growth and snot</u> ess.		-
rou	we there been significant changes in the monitoring requirements, retines since start-up? If so, do they affect the remedy? <i>The are required.</i>	naintenance sche	dules, or sampling
up?	we there been unexpected monitoring/maintenance difficulties or in P If so, please give details. <u>t applicable</u>	creased costs at	the site since start-
<u>Yes</u> use	he remedy functioning as intended? , it functioned as originally intended. However, the remedy is no l of the property because of restrictions placed on their use. The si- nedy was implemented		

	INTERVIEW RECO	ORD
Site N	ame: Camp Ravenna	EPA ID No.: OH5210020736
Subje	Ct: Second Five-Year Review of Remedial Actions for Loc Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, Winklepeck Burning Grounds	
23.	Has any other information come to light that could call into ques <i>None</i>	stion the protectiveness of the remedy?
24.	Do you have any comments, suggestions, or recommendations re operation? <i>None</i>	egarding the site's management or
Rams	dell Quarry Landfill (RVAAP-01)	
25.	What is your involvement with the project? <i>I oversee the project, review contractor documents, and provide</i> <i>necessary. I also work with Ohio EPA, provide requested inform</i> <i>EPA, USACE, and contractors.</i>	
26.	Have any problems been encountered that required or will requir An Engineering Evaluation/Cost Analysis and ROD Amendment was encountered during the ROD removal action. The revised re implemented.	were prepared because friable asbestos
27.	Do you have any comments, suggestions, or recommendations reconstruction documents, constructability, management, regulator <i>None</i>	
28.	Has the PMP been updated to include the land use control require amendment, and remedial designs? Land use requirements will be incorporated into a new version of	
29.	What is the intended future use of the site? <i>Restricted access.</i>	
30.	Have there been significant changes in the monitoring requireme routines since start-up? If so, do they affect the remedy? <i>None</i>	ents, maintenance schedules, or sampling
31.	Have there been unexpected monitoring/maintenance difficulties up? If so, please give details. <i>None</i>	s or increased costs at the site since start-
32.	Is the remedy functioning as intended? Yes	
33.	Has any other information come to light that could call into ques <i>None</i>	stion the protectiveness of the remedy?
34.	Do you have any comments, suggestions, or recommendations re operation? <u>None</u>	egarding the site's management or
Wink	lepeck Burning Grounds (RVAAP-05)	
	What is your involvement with the project? <u>I oversee the project, review contractor documents, and provide</u> <u>necessary. I also work with Ohio EPA, provide requested inform</u> EPA, USACE, and contractors.	
36.	Have any problems been encountered that required or will requir Additional sampling was performed and an Explanation of Signi use of the site as a multi-purpose machine gun range.	

INTERVIEW RECORD				
Site Name:	Camp Ravenna	EPA ID No.: OH	5210020736	
Subject:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Time: 14:00	Date: Nov. 4, 2016	
	have any comments, suggestions, or recommendations regardition documents, constructability, management, regulatory age		design,	
	the status of the remedial action for post-ROD changes? oval actions are ongoing and expected to be complete by the e	end of November, 2	2016.	
	the intended future use of the site? <i>urpose machine gun range</i> .			
	ere been significant changes in the monitoring requirements, n since start-up? If so, do they affect the remedy?	naintenance schedu	lles, or sampling	
	ere been unexpected monitoring/maintenance difficulties or in o, please give details. <i>licable</i>	creased costs at the	e site since start-	
<u>Yes, it fi</u>	medy functioning as intended? <i>unctioned as originally intended. However, training requiremater compatible with the intended use of the property.</i>	ents have changed	and the remedy is	
43. Has any <u>None</u>	other information come to light that could call into question t	he protectiveness o	of the remedy?	
44. Do you operatio <u>None</u>	have any comments, suggestions, or recommendations regardin?	ng the site's manag	gement or	

]	INTERVIE	W RECORI	D	
Site Name: Camp Ravenna	te Name: Camp Ravenna			5210020736
Subject: Second Five-Year I Lines 1 – 4, Load L Winklepeck Burnin	ine 12, Ramsdell Q		Time: Date: 15:00 Nov. 9, 201	
Type: 🛛 Telephone	□ Visit □	Other		Outgoing
Location of Visit: Not applied	ble			
	Contact	Made By		
Name: James R Stachowski, PE	Title: Environm	nental Engineer	Organization: US Engineers, Bufj	
	Individual	Contacted		
Name: Katie Tait	Title: Environm	eental Specialist 2	Organization: <i>O</i> <i>Guard</i>	hio Army National
Telephone No: (614) 336-6136 Fax No: E-Mail Address: Kathryn.s.tait.nfg@	Pmail.mil		1438 State Route 53 Newton Falls, OH 4	
	Summary Of	Conversation		
 Load Lines 1, 2, 3, and 4 (RVAA 1. What is your involvement with <i>I am the Camp Ravenna Resto</i> <i>interests for the RVAAP restor</i> 2. Have any problems been encor of Decision (ROD)? <i>None</i> 	n the project? ration Program Ma ation program. I a	nager for OHARNG Iso serve as a liaison	n for the OHARNG	with Ohio EPA.
 Do you have any comments, s construction documents, const <u>None, the project is moving fo</u> 	ructability, manager			design,
 What is the status of additional sites? <u>The FS addendum is being pre- adequate data was available for <u>collected at LL-2. The plan is</u> S. What is the intended future use <u>Heavy maneuver area (tank of</u> Has environmental data been end Load Line 3 to address the pre- levels identified in the Interim <u>Additional sampling has not b</u> 7. Are routine inspections perform their frequency. Is the reporting </u> 	pared. Additional s or soil and dry sedin to clean up the sites? e of the sites? ostacle course). evaluated to determi sence of benzo(a)py ROD? (First Five- een done at this site med and records ma	sampling wasn't dor nent at these sites. s to a commercial/in ne if additional sam rene, Aroclor-1254 Year Review report . The FS addendum	ne at LL-1, -3, and Additional sediment dustrial standard. pling and/or remedi , and manganese ab recommendation #2 a should evaluate the	<u>4 because</u> <u>t samples were</u> ation is needed at ove the cleanup 2) is data.
<u>The sites are maintained for re</u> identifies these areas as "resti	estricted access and			
activities are performed.				

INTERVIEW RECORD				
Site N	ame: Camp Ravenna	EPA ID No.: (DH5210020736	
Subje	ct: Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, ar Winklepeck Burning Grounds	Time: 15:00	Date: Nov. 9, 2016	
8.	Have there been significant changes in the monitoring requirements routines since start-up? If so, do they affect the remedy? <i>Not applicable</i>	s, maintenance sche	edules, or sampling	
9.	Have there been unexpected monitoring/maintenance difficulties of up? If so, please give details. <i>Not applicable</i>	increased costs at	the site since start-	
10.	Is the remedy functioning as intended? Yes, exposures are not occurring because access to the sites is restricted.	icted.		
11.	Has any other information come to light that could call into question None	n the protectivenes	s of the remedy?	
12.	Do you have any comments, suggestions, or recommendations regard operation? <i>None</i>	rding the site's ma	nagement or	
Load	Line 12 (RVAAP-12)			
	What is your involvement with the project? <u>I am the Camp Ravenna Restoration Program Manager for OHARM</u> <u>interests for the RVAAP restoration program.</u> <u>I also serve as a liai</u> Have any problems been encountered that required or will require of None	son for the OHARN	IG with Ohio EPA.	
15.	Do you have any comments, suggestions, or recommendations rega construction documents, constructability, management, regulatory a <i>None, the project is moving forward as intended.</i>		.e. design,	
16.	What is the intended future use of the site? Heavy maneuver area (tank obstacle course).			
17.	What is the status of additional characterization sampling and a FS <i>The FS addendum is being prepared. Additional sampling wasn't a available for soil and dry sediment at these sites. The plan is to cle industrial standard.</i>	lone because adequ	iate data was	
18.	Has the Property Management Plan (PMP) been updated to include identified in the ROD and remedial design? <i>No, it will be included in a future edition of the PMP.</i>	the land use contro	ol requirements	
19.	Are routine inspections performed and records maintained? If so, o their frequency. Is the reporting up to date? <i>The site is maintained for restricted access and the gate is kept lock</i> <i>these areas as "restricted access". Occasional grass mowing and</i> <i>are performed.</i>	xed. An annual tra	ining memo identifies	
20.	Have there been significant changes in the monitoring requirements routines since start-up? If so, do they affect the remedy? <i>Not applicable</i>	s, maintenance sche	edules, or sampling	
21	Have there been unexpected monitoring/maintenance difficulties or up? If so, please give details.	increased costs at	the site since start-	

	INTERVIEW RECORI)		
Site Name:	Camp Ravenna	EPA ID No.: OH5210020736		
Subject:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Time: 15:00	Date: Nov. 9, 2016	
	medy functioning as intended?			
	posures are not occurring because access to the sites is restrict		6.4 1.0	
23. Has any <u>None</u>	other information come to light that could call into question t	he protectiveness	s of the remedy?	
24. Do you operation <u>None</u>	have any comments, suggestions, or recommendations regardion?	ng the site's mar	nagement or	
Ramsdell Qu	uarry Landfill (RVAAP-01)			
<u>I am the</u> interest	your involvement with the project? <u>Camp Ravenna Restoration Program Manager for OHARNG</u> <u>s for the RVAAP restoration program. I also serve as a liaison</u> <u>ninister LUC awareness contractor briefs for the site.</u>			
	y problems been encountered that required or will require chance the ROD addendum	nges to the reme	dial design or ROD	
27. Do you construc <u>None</u>	have any comments, suggestions, or recommendations regardi- ction documents, constructability, management, regulatory age	ing the project (i. encies, etc.)?	e. design,	
amendn	PMP been updated to include the land use control (LUC) requirent, and remedial designs?			
29. What is	the intended future use of the site? ed access		-	
	ere been significant changes in the monitoring requirements, n since start-up? If so, do they affect the remedy?	naintenance sche	dules, or sampling	
	ere been unexpected monitoring/maintenance difficulties or in so, please give details.	creased costs at t	he site since start-	
32. Are the <u>Yes</u>	remedies functioning as intended?			
33. Has any <u>No</u>	other information come to light that could call into question t	he protectiveness	s of the remedy?	
34. Do you operation <u>None</u>	have any comments, suggestions, or recommendations regardion?	ng the site's mar	nagement or	
Winklepeck	Burning Grounds (RVAAP-05)			
<u>I am the</u>	your involvement with the project? <u>Camp Ravenna Restoration Program Manager for OHARNG</u> s for the RVAAP restoration program. I also serve as a liaisor			
	ninister LUC awareness contractor briefs for the site.			
	by problems been encountered that required or will require cha chanation of Significant Differences (ESD) was prepared.	nges to the reme	dial design or ROD	

Site Name:	Camp Ravenna	EPA ID No.: (0H5210020736
Subject:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Time: 15:00	Date: Nov. 9, 2010
	have any comments, suggestions, or recommendations regardiction documents, constructability, management, regulatory age		.e. design,
	the status of the remedial action for post-ROD changes? D remedy is being implemented (Nov. 2016).		
	the intended future use of the site? e gun range		
	ere been significant changes in the monitoring requirements, n since start-up? If so, do they affect the remedy?	naintenance sche	dules, or sampling
up? If s <u>The tim</u>	ere been unexpected monitoring/maintenance difficulties or in so, please give details. <u>e and cost required to inspect the Camp Ravenna perimeter fer</u> that this is no longer required.		
42. Is the re <u>Yes</u>	medy functioning as intended?		
43. Has any <u>None</u>	other information come to light that could call into question t	he protectivenes	s of the remedy?
44. Do you operatio <i>None</i>	have any comments, suggestions, or recommendations regardion?	ing the site's man	nagement or

INTERVIEW RECORD							
Site N	Site Name: Camp Ravenna				EPA ID No.: OH5210020736		
Subje	Subject: Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds			Time: 1045 - 1125	Date: Oct 19, 2016		
Туре:	Telephone		Other (completed via email)		□ Outgoing		
Location of Visit: US Army Corps of Engineers, Louisville District Office (CELRL)							
		Contact	Made By				
Name	: Karen Keil	Title: Environn	uental Toxicologist	Organization: US Engineers, Bufj			
		Individual	Contacted				
Name	: Gregory Moore	Title: Project M	anager	Organization: C	ELRL		
Fax N	hone No: (502) 315-6902 [o: il Address: Gregory .F.Moore@	@usace.army.mil		500 Dr. Martin Lut Louisville, KY 4040	0		
		Summary Of	Conversation				
Load	Lines 1, 2, 3, and 4 (RVAA		-10)				
1.	What is your involvement with <i>I have been the USACE Project</i> .		le over 2 years.				
2.							
3.	Do you have any comments, su construction documents, constr <i>See above, remove restrictions</i>	ructability, manager			design,		
4.	4. What is the status of additional characterization sampling and the FS addendum for these sites? <u>PBA-2013 (performance based acquisition contract) to look at LL 1 -4 and surface water (site-wide) is</u> currently on-going.						
5.	What is the intended future use <i>Military training</i>	of the sites?					
6.	Has environmental data been er Load Line 3 to address the press levels identified in the Interim <u>I don't know, ask Nate Peters of</u>	sence of benzo(a)py ROD? (First Five-	rene, Aroclor-1254,	, and manganese ab	ove the cleanup		

	INTERVIEW RECORI)		
Site Name:	EPA ID No.: OH	No.: OH5210020736		
Subject:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Time: 1045 - 1125	Date: Oct 19, 2016	
their fre <u>I'm not</u> (Environ	ine inspections performed and records maintained? If so, dese quency. Is the reporting up to date? sure if inspections are performed. Check with Camp Ravenna umental support contractor).	staff and/or Vista	Sciences Corp.	
routines	ere been significant changes in the monitoring requirements, n since start-up? If so, do they affect the remedy? <i>above. We're looking at changing the remedies, especially th</i>			
up? If s <u>The site</u>	ere been unexpected monitoring/maintenance difficulties or in o, please give details. <u>s have not been used and there are no ongoing monitoring and</u> Interim ROD remedy.			
10. Is the re <u>Maybe</u>	medy functioning as intended?			
 11. Has any other information come to light that could call into question the protectiveness of the remedy? <u>No new data or evidence of soil impact on surface water has been obtained. There are explosives in</u> <u>groundwater south of the LL's that appear to be leaving the installation, but we don't know what the si is yet. This is being investigated under facility-wide groundwater (RVAAP 66). </u> 				
12. Do you operatio	have any comments, suggestions, or recommendations regardi		gement or	
Load Line 12	2 (RVAAP-12)			
	your involvement with the project? een the USACE Project Manager for a little over 2 years.			
<u>LUCs, a</u> <u>mainten</u> <u>eliminat</u> <u>training</u>	y problems been encountered that required or will require cha as interpreted by Ohio EPA, would be too restrictive for the Ar ance and monitoring requirements). LL 12 is currently under the need for full cleaning of military vehicles (wheels) when A preliminary draft FS addendum is currently under Army r Schmidt. The objective is to meet industrial land use clean up	my during training going a "soil optim traversing the load eview; you may ge	<u>g (e.g., fence</u> nization study" to d lines during	
construc	have any comments, suggestions, or recommendations regardi- tion documents, constructability, management, regulatory age ve, remove restrictions on the end user.	0 1 5 1	design,	
	the intended future use of the site? <i>training</i> .			
<u>PBA-20</u>	the status of additional characterization sampling and the FS a 13 (performance based acquisition contract) to look at LL 12 of y on-going.			
18. Has the identifie	Property Management Plan (PMP) been updated to include the d in the ROD and remedial design? e this planned in [fiscal year] FY 17.	e land use control	requirements	
their fre	ine inspections performed and records maintained? If so, dese quency. Is the reporting up to date? sure if inspections are performed. Check with Camp Ravenna	-	-	
	nmental support contractor).		_	

INTERVIEW RECORD				
Site N	ame: Cam	np Ravenna	EPA ID No.: OH.	5210020736
Subje	Line	ond Five-Year Review of Remedial Actions for Load es 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and klepeck Burning Grounds	Time: 1045 - 1125	Date: Oct 19, 2016
20.	routines since s	n significant changes in the monitoring requirements, tart-up? If so, do they affect the remedy? <i>We're looking at changing the remedies, especially t</i>		
21.	up? If so, pleas	t been used and there are no ongoing monitoring and		
22.	Is the remedy fu Maybe	unctioning as intended?		
23.	<u>No new data or</u> groundwater so	nformation come to light that could call into question <i>evidence of soil impact on surface water. For examp</i> <i>puth of the LL's that appear to be leaving the installati</i> <i>investigated under facility wide groundwater (RVAAP</i>	le, there are explosi ion, but we don't kno	ves in
24.	operation?	ny comments, suggestions, or recommendations regarding the next round of sampling.	ling the site's manag	gement or
Ram	dell Quarry I	Landfill (RVAAP-01)		
	What is your in	volvement with the project? USACE Project Manager for a little over 2 years.		
26.		ems been encountered that required or will require change on except groundwater and surface water monitoring		
27.		y comments, suggestions, or recommendations regard cuments, constructability, management, regulatory ag		design,
28.		een updated to include the land use control requiremend d remedial designs? 17.	nts identified in the l	ROD, ROD
29.	What is the inte <i>As s landfill</i> .	ended future use of the site?		
30.		n significant changes in the monitoring requirements, tart-up? If so, do they affect the remedy?	maintenance schedu	les, or sampling
31.	Have there been up? If so, pleas <i>No</i>	n unexpected monitoring/maintenance difficulties or in se give details.	ncreased costs at the	site since start-
32.	•	unctioning as intended? nspections of the fence and landfill are performed. Th	e wetlands are avoid	led.
33.	Has any other in <u>No</u>	nformation come to light that could call into question	the protectiveness of	f the remedy?
34.	Do you have an operation? <i>None</i>	y comments, suggestions, or recommendations regard	ling the site's manag	ement or

INTERVIEW RECORD						
Site Name:	EPA ID No.: OH	EPA ID No.: OH5210020736				
Subject:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Ramsdell Quarry Landfill, and 1045 - 1125 Oct 19				
Winklepeck	Burning Grounds (RVAAP-05)	•	•			
	your involvement with the project? Seen the USACE Project Manager for a little over 2 years.					
<u>An Expl</u>	ny problems been encountered that required or will require cha lanation of Significant Differences (ESD) and remedial design l will take place next month.	0	0			
construc	have any comments, suggestions, or recommendations regards ction documents, constructability, management, regulatory age by under construction		design,			
	the status of the remedial action for post-ROD changes? act (with TetraTech) for soil removal is currently on-going.					
	the intended future use of the site? e Gun Range/Military Training.					
routines	ere been significant changes in the monitoring requirements, respectively. If so, do they affect the remedy? If <i>under construction</i>	naintenance schedu	les, or sampling			
up? If s	ere been unexpected monitoring/maintenance difficulties or in so, please give details. <i>ties in maintaining the LUCs (perimeter fence repairs)</i> .	creased costs at the	e site since start-			
	emedy functioning as intended? <i>Iy under construction</i>					
	43. Has any other information come to light that could call into question the protectiveness of the remedy? <i>The ESD is resolving issues that will make the site more protective.</i>					
44. Do you operation <u>None</u>	have any comments, suggestions, or recommendations regards	ing the site's manag	gement or			

]	INTERVIE	W RECORI	D		
Site Name: Camp Ravenna			EPA ID No.: OH5210020736		
Subject:Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds			Time:	Date: Nov. 15, 2016	
Type:	🛛 Visit 🛛	Other (completed via email)		Outgoing	
Location of Visit: US Army Corps of	^e Engineers, Louisv	ille District Office			
	Contact	Made By			
Name: Karen Keil	Title: Environ	mental Toxicologist	Organization: US Engineers, Buf		
	Individua	l Contacted	-		
Name: Nathaniel Peters	Title: Environm	nental Engineer	Organization: C	ELRL	
Telephone No: 502-315-2624 Fax No: E-Mail Address: <u>Nathaniel.Peters.II</u>	<u>@usace.army.mil</u>		600 Dr. Martin Luti Louisville, KY 4040		
	Summary Of	f Conversation			
 Load Lines 1, 2, 3, and 4 (RVAAP-08, -09, -10, & -10) 1. What is your involvement with the project? <i>I am the contracting officer's representative (COR) for a contract to develop a Feasibility Study Amendment (FSA) for LL1 – 4 and -12, a senior engineer for the technical team, and a senior engineer reviewer/ technical team lead.</i> 2. Have any problems been encountered that required or will require changes to the remedial design or Record of Decision (ROD)? <i>No, soil removal is the decision. We've already cleaned the site to be protective of a National Guard Trainee exposure. The established risk assessment approach was changed by the Army National Guard (ARNG) and Ohio EPA in a 2014 Tech Memo. The Ohio EPA didn't want all 12 exposures, just industrial or residential land use. Ohio EPA equates the exposure to land uses, which was always military training. Ohio EPA wants the USEPA RSL applied for industrial exposure. The OHARNG agreed but Ohio EPA indicates a need to monitor the military training exposure. For example, a guard shack could be built on the site. The FSA will evaluate further cleanup to residential or industrial land uses. It should not be necessary to review all trainees' exposures because the exposure assessment was already comprehensive and conservative. Bottom line is that we may perform more soil removal for residential or industrial land use, but the remedy still remains soil removal unless a treatment option is used for PAHs.</i> 3. Do you have any comments, suggestions, or recommendations regarding the project (i.e. design, construction documents, constructability, management, regulatory agencies, etc.)? <i>I will support the recommendations that will be coming out of the FSA. The building slabs were removed after the 1st interim ROD was signed. Originally, the slabs were intended as a cap for the soil contamination. After slabs were removed, more TNT was found, and additional removal swere performed This FSA covers </i>					

INTERVIEW RECORD					
Site Name: Camp Ravenna EPA ID No.: OH52100207					
Subje	t: Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Time:	Date: Nov. 15, 2016		
	What is the intended future use of the sites? Military training, but it will be called commercial/industrial so that fu personnel (trainees and civilians) can work there without being monit		rs are protected and all		
	Has environmental data been evaluated to determine if additional sam Load Line 3 to address the presence of benzo(a)pyrene, Aroclor-1254 levels identified in the Interim ROD? (First Five-Year Review report Yes, it will be included in the FSA.	, and mangane	ese above the cleanup		
	Are routine inspections performed and records maintained? If so, dest their frequency. Is the reporting up to date? <i>No, because it's not used. Instead, it is fenced and closed. As soon a</i> was made not to use the sites until a re-evaluation was completed.				
	Have there been significant changes in the monitoring requirements, maintenance schedules, or sampling routines since start-up? If so, do they affect the remedy? <u>No, because the sites are not currently being used.</u> If they were being used, OHARNG would have to monitor the exposure of the trainees. The Ohio EPA wants hot spot exposure point concentrations determined, so we will look to remove LUCs on large outlying areas.				
	Have there been unexpected monitoring/maintenance difficulties or in up? If so, please give details. <i>No because the OHARNG is not using them.</i>	creased costs	at the sites since start-		
10.	Is the remedy functioning as intended? Yes, it made it protective for National Guard Trainees.				
	Has any other information come to light that could call into question the Although the commercial/industrial USEPA regional risk-based screed military trainee exposure at the site, it should be noted that perhaps the for the military trainee are over protective because they are identified Ohio EPA preference). The military trainee cleanup goals are all low regional risk-based cleanup levels for industrial/commercial use (but expertise on this question).	<u>ning levels ma</u> <u>he chosen risk</u> dat the 10 ⁻⁵ ca her than the 10	<u>ty not match the</u> -based cleanup levels ncer risk level (as per 1 ⁴ level of the EPA		
	Do you have any comments, suggestions, or recommendations regard operation? <i>No</i>	ing the site's r	nanagement or		
Load	Line 12 (RVAAP-12)				
	What is your involvement with the project? <u>I am the COR for the LL1 – 4 and 12 FSA contract, senior engineer fo</u> engineer reviewer/technical team lead.	or the technica	l team, and senior		
	Have any problems been encountered that required or will require cha <u>I will support the recommendations that will be coming out of the FSA</u> <u>after the 1st interim ROD was signed. The slabs were intended as a co- slabs were removed, more TNT was found, and additional removals were everything (incorporates all sampling and results) and all previous re</u>	A. The buildin ap for the soil pere performed	g slabs were removed contamination. After l. This FSA covers		
	Do you have any comments, suggestions, or recommendations regard				

construction documents, constructability, management, regulatory agencies, etc.)? *The Army will need to implement the preferred alternate identified in the FSA for LL – 4 and -12.*

INTERVIEW RECORD					
Site Name:	EPA ID No.	PA ID No.: OH5210020736			
Subject:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Time:	Date: Nov. 15, 2016		
<u>Militar</u>	the intended future use of the site? training, but it will be called commercial/industrial so that fu the (trainees and civilians) can work there without being monitor		rs are protected and all		
<u>Samplir</u>	the status of additional characterization sampling and the RI/F ag and analyses will be incorporated into the FSA. The pre-dra draft will be available in early November. The Buffalo District	aft is currentl	<u>y under USACE review</u>		
18. Has the identific <u>No, bec</u>	Property Management Plan (PMP) been updated to include the ed in the ROD and remedial design? ause it's not used. Instead, it is fenced and closed. As soon as de not to use the sites until a re-evaluation was completed.	e land use cor	ntrol requirements		
their fre	tine inspections performed and records maintained? If so, desc equency. Is the reporting up to date? s above.	cribe how the	y are performed and		
routines <u>No, bec</u> <u>monitor</u>	ere been significant changes in the monitoring requirements, n s since start-up? If so, do they affect the remedy? ause the sites are not currently being used. If they were being the exposure of the trainees. Now that Ohio EPA wants hot sp ned, we will look to remove LUCs on large outlying areas.	used, OHARI	NG would have to		
up? If:	ere been unexpected monitoring/maintenance difficulties or in- so, please give details. <i>use the OHARNG is not using them</i> .	creased costs	at the site since start-		
	emedy functioning as intended? nade it protective for National Guard Trainees.				
	v other information come to light that could call into question the <i>question #11</i> .	he protectiver	ness of the remedy?		
24. Do you operation <u>No</u>	have any comments, suggestions, or recommendations regardion?	ng the site's r	management or		
Ramsdell Qu	uarry Landfill (RVAAP-01)				
<u>I am the</u>	your involvement with the project? <u>c COR for the LL1 – 4 and 12 FSA contract, senior engineer fo</u> <u>r reviewer/technical team lead.</u>	r the technica	ul team, and senior		
	ny problems been encountered that required or will require char	nges to the re	medial design or ROD?		
	have any comments, suggestions, or recommendations regardi ction documents, constructability, management, regulatory age		t (i.e. design,		
amendr	PMP been updated to include the land use control requirement, nent, and remedial designs? ate to the PMP is in draft form, monitoring and maintenance re				
29. What is	the intended future use of the site? ended to remain as a landfill with no other use planned.		-		

	INTERVIEW RECORD				
Site N	EPA ID No.: OH52	210020736			
Subje	t: Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Time:	Date: Nov. 15, 2016		
	Have there been significant changes in the monitoring requirements, r routines since start-up? If so, do they affect the remedy? <i>No</i>	naintenance schedule	s, or sampling		
31.	Have there been unexpected monitoring/maintenance difficulties or in up? If so, please give details. <i>No</i>	creased costs at the s	ite since start-		
32.	Is the remedy functioning as intended? Yes				
33.	Has any other information come to light that could call into question t No	he protectiveness of t	he remedy?		
34.	Do you have any comments, suggestions, or recommendations regard operation? No	ing the site's manager	ment or		
Wink	lepeck Burning Grounds (RVAAP-05)				
35.	What is your involvement with the project? <u>I am the COR for the LL1 – 4 and 12 FSA contract, senior engineer for</u> engineer reviewer/technical team lead.	or the technical team,	and senior		
	Have any problems been encountered that required or will require cha An ESD and RD for post-ROD changes have been written and accepted That Remedial Action in in progress now. The purpose is to remove so standards, but does not meet the industrial RSLs for fulltime worker en decision to do additional soil removal to support the potential for full Do you have any comments, suggestions, or recommendations regard	ed to perform addition ome soil that previous xposure. The ARNG r time workers in the fu	nal soil removal. Sly met NGT nade the ture.		
57.	construction documents, constructability, management, regulatory age				
38.	What is the status of the remedial action for post-ROD changes? <i>That remedial action began in early November and the field work is en of December.</i>	xpected to be complet	ted by the middle		
39.	What is the intended future use of the site? <u>Military Training is the intended future use. Specifically the site is sla</u> Machine Gun Range.	ted to be used as a M	ulti-Purpose		
40.	Have there been significant changes in the monitoring requirements, r routines since start-up? If so, do they affect the remedy? <i>No</i>	naintenance schedule	s, or sampling		

INTERVIEW RECORD					
Site Name: Camp Ravenna EPA ID No.: 0H5210020736					
Subject:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	2, Ramsdell Quarry Landfill, and Nov. 15, 2016			
 41. Have there been unexpected monitoring/maintenance difficulties or increased costs at the site since start-up? If so, please give details. <i>The original ROD identified the Camp Ravenna perimeter fence as an engineering control for this site. Consequently, Camp Ravenna is required to perform very time-consuming and costly inspections of the full length of the perimeter fence on a quarterly basis. They have limited O&M funds; therefore, it is not always possible to make all fence repairs as soon as they are noted in inspection forms. Additionally, the installation status is such that the type of fence that is in place is not even required. The ESD for this site changed the LUCs so that the Camp Ravenna perimeter fence will no longer be one of the LUCs. However, this change will not be effective until the RA is complete and the RA report is accepted. At that time, a revised PMP will be submitted for Ohio EPA review and approval. Then, the perimeter fence will no longer be an engineering control for any of the AOCs that do not meet UU/UE.</i> 42. Is the remedy functioning as intended? Yes					
No	other information come to light that could call into question the have any comments, suggestions, or recommendations regarding	-			

		INTE	RVIE	W RECORI)		
Site Name:	ame: Camp Ravenna				EPA ID No.: OH5210020736		
Subject:	ubject: Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds			Time: 1300 - 1400	Date: Oct 19, 2016		
Туре:	Telephone	🛛 Visit		Other (completed via email)		Outgoing	
Location of V	Visit: US Army Corps o	f Enginee	ers, Louisvi	lle District Office			
			Contact	Made By			
Name: Karen	n Keil	Title:	Environn	nental Toxicologist	Organization: U Engineers, Bu		
		In	dividual	Contacted			
Name: Angel	a Schmidt	Title:	Risk Asse	ssor	Organization: (CELRL	
Fax No:	Telephone No: (502) 315-6313 Street Address:				600 Dr. Martin Luther King Pl. Louisville, KY 40402		
		Sum	mary Of	Conversation			
Load Lines	1, 2, 3, and 4 (RVA		v				
1. What i	s your involvement wit been the USACE proje	h the proj	ect?		ince 2008/2009.		
	ny problems been enco ision (ROD)?	untered th	hat required	l or will require cha	nges to the remedi	al design or Record	
	<u>e sites cannot be used a</u> ed and have to basicall [:]						
	re/cleanup will be the d						
	<u>o 13 feet (ft) below gro</u>						
	<u>y training land use (for</u> ercial/industrial land us					<u>e sou exposure for</u>	
	a have any comments, s	-				design,	
	iction documents, cons						
	<u>was a technical memor</u> ercial/industrial land us						
	tive of military training						
	POC at OHARNG (arrived after the memo was signed) recognized that the Risk Assessment Land Use Tech						
	<u>Memo confused some of the issues in the consideration of exposure as well as media and risk assessment.</u> However, Ohio EPA continues to approve recent site documents, so it may not be necessary to revise the						
	<i>Iemo in order to obtain</i>					•	
	e USEPA RSLs for indi						
	e. A site specific expos ented in 2009 and revis				*		
	ons, etc.) based on USE						
	w to address sediment		contaminat	ion, which could ra	ise the FWCUGs a	nd relieve the Army	
<u>oj cied</u>	ning up sites unnecesso	u 11 y.)					

Site Name: Camp Ravenna EPA ID No.: OH5210020736				
Subject:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Time: 1300 - 1400	Date: Oct 19, 2016	
these <u>Samp</u> <u>review</u> can ge 5. What <u>Milita</u> <u>13 ft l</u>	is the status of additional characterization sampling and the Feas sites? ling and analysis is incorporated into a FS Addendum. The pre- v and the draft version will be available in early November. The et a copy at that time. is the intended future use of the sites? ry training with exposure to 7 ft bgs. The industrial/commercian ogs. Cleanup goals were set in the facility-wide cleanup goal do nized by some Ohio EPA personnel.	draft is currently u Buffalo District C cleanup standard	inder USACE Forps of Engineers	
6. Has en Load levels <u>Unsur</u>	nvironmental data been evaluated to determine if additional sam Line 3 to address the presence of benzo(a)pyrene, Aroclor-1254, identified in the Interim ROD? (First Five-Year Review report re, it seems it would be to the Army's benefit to look at these num re still protective and that the LUCS are still needed.	and manganese al recommendation #	2)	
7. Are ro their f	poutine inspections performed and records maintained? If so, descrequency. Is the reporting up to date? <i>e the fence is maintained</i> ?	cribe how they are	performed and	
routin <u>There</u> <u>taking</u> <u>conce</u> <u>Asses</u> <u>expos</u> <u>spots</u> <u>reside</u>	there been significant changes in the monitoring requirements, ness since start-up? If so, do they affect the remedy? <i>may be some smaller pockets needing LUCs and other areas that</i> <i>samples across the AOC and averaging across the entire AOC</i> <i>ntrations (EPCs) for risk determination as referenced in Facility</i> <i>sment Manual (FW HHRAM). We had a process in place to rem</i> <i>ure, but Ohio EPA did not agree with the approach. Ohio EPA</i> <i>only. Removing outlying areas of the AOC from EPC developmential use and eliminate the need for LUCs. Also, Ohio EPA doe</i> <i>ing approach that we have used since imitating the IRP at Raver</i>	at could be release to develop the expo -Wide Human Hea ove hot spots and wants EPCs develo ent should allow m s not recognize the	d. We had been osure point alth Risk then re-calculate oped across hot any areas to meet	
up? I	there been unexpected monitoring/maintenance difficulties or in f so, please give details. <i>ecause OHARNG is not able to use the site due to monitoring re</i>		e site since start-	
10. Is the	remedy functioning as intended? the remedy is functioning but the site it not being used as needed.	*		
The co	ny other information come to light that could call into question the protection of t			
operat	w have any comments, suggestions, or recommendations regardi- tion? ges in the Tech Memo (for site-wide risk-based cleanup goal dev			

<u>I have been the USACE project risk assessor and technical reviewer since 2008/09.</u>

	INTERVIEW RECORI)		
Site Name:	Camp Ravenna	EPA ID No.: OH	5210020736	
Subject:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Time: 1300 - 1400	Date: Oct 19, 2016	
Yes, the and have cleanup 13 feet training commen 15. Do you constru There v commen protect POC at Tech M assessm revise t (Angeld Guard as docu equatio and how	ny problems been encountered that required or will require chance is ite cannot be used as intended. We have difficulty using the expect to basically clean it up again for residential or industrial land or will be the actual depth of contamination, although Ohio EPA (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (bgs), which applies to residential expected (ft) below ground surface (ft) below ground sufficient (ft) below ft) below ground s	site for military tra ad use. The depth of typically assumes posure and not the ed surface soil exper- receptor. ng the project (i.e. ncies, etc.)? ned February 2014 pased screening lev it's not completely pat the Risk Assessm tre as well as media uments, so it may re- te decision-making it exposure assessm ed to develop site-v ate facility-wide cleant factor values and t	ining as intended of exposure/ a depth down to depth for military osure for design, design, design, design, design, <u>design, the stipulates that</u> els (RSLs) are clear. The new thent Land Use a and risk to be necessary to documents. to be necessary to documents.	
<u>Militar</u> 13 ft bg	the intended future use of the site? y training with exposure to 7 ft bgs. The industrial/commercian s. Cleanup goals were set in the facility-wide cleanup goal do ized by some Ohio EPA personnel.			
17. What is the status of additional characterization sampling and the FS addendum for this site? <u>Sampling and analyses are incorporated into a draft FS Addendum. The pre-draft is currently under</u> <u>USACE review and the draft version will be available in early November. The Buffalo District Corps of</u> Engineers can get a copy at that time.				
identifi	Property Management Plan (PMP) been updated to include the ed in the ROD and remedial design? <i>wn, I believe it needs to be.</i>	e land use control r	equirements	
their fre	tine inspections performed and records maintained? If so, deservation deservations is the reporting up to date? <i>but I assume it is being completed as directed.</i>	cribe how they are	performed and	
20. Have th routines	here been significant changes in the monitoring requirements, n s since start-up? If so, do they affect the remedy? cause OHARNG is not able to use the site because of the monit			

		INTERV	IEW RECOR	<u>u</u>	
Site Name: Camp Ravenna			EPA ID No.: <i>OH5210020736</i>		
Subject	Lines .	l Five-Year Review of Ren l – 4, Load Line 12, Rams ppeck Burning Grounds		Time: 1300 - 1400	Date: Oct 19, 2016
1 <u>1</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u> <u>4</u>	p? If so, please f <i>There may be som</i> <i>aking samples ac</i> <i>concentrations (E</i> <i>Assessment Manu</i> <i>exposure, but Ohi</i> <i>pots only. Remo</i> <i>residential use an</i>	nexpected monitoring/ma give details. <i>e smaller pockets needing</i> ross the AOC and averagi PCs) for risk determinatio al (FW HHRAM). We had o EPA did not agree with ving outlying areas of the d eliminate the need for L th that we have used since	LUCs and other areas the ng across the entire AOC n as referenced in Facilit l a process in place to ren the approach. Ohio EPA AOC from EPC developm UCs. Also, Ohio EPA doo	nat could be release to develop the expension ty-Wide Human Hea nove hot spots and wants EPCs develo tent should allow m es not recognize the	d. We had been osure point alth Risk then re-calculate oped across hot any areas to meet
		ctioning as intended? is not being used.			
1		ormation come to light tha <u>ndustrial USEPA regional</u> ot site-specific.			
((operation? Changes in the Te	comments, suggestions, or ech Memo (for site-wide ri nd are not considerate for	sk-based cleanup goal de		-
Ramso	lell Quarry La	ndfill (RVAAP-01)			
		lvement with the project? SACE project risk assesso	r and technical reviewer .	since 2008/09.	
		ns been encountered that read that read that read that read that was prepared in 2013 to			al design or ROD?
C		comments, suggestions, or ments, constructability, m			design,
8		n updated to include the la emedial designs? e it needs to be.	nd use control requiremen	nts identified in the	ROD, ROD
	What is the intend Landfill, restricted	led future use of the site? d access.			
r	outines since star	ignificant changes in the r t-up? If so, do they affect <i>hitoring is being performed</i>	the remedy?		
31. I เ		nexpected monitoring/ma			-
	Has any other info None	ormation come to light tha	t could call into question	the protectiveness of	of the remedy?
(Do you have any opperation? None	comments, suggestions, or	recommendations regard	ling the site's mana	gement or

	INTERVIEW RECORI)			
Site Name:Camp RavennaEPA ID No.: OH5210020736					
Subject:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Time: 1300 - 1400	Date: Oct 19, 2016		
Winklepeck	Burning Grounds (RVAAP-05)				
<u>I have l</u>	your involvement with the project? been the USACE project risk assessor and technical reviewer s				
<u>There h</u> <u>meet un</u> <u>Army p</u> <u>needed</u> not nec	ny problems been encountered that required or will require cha ave been many issues with the site. The Army identified small prestricted (residential) land use at the Site. The Ohio EPA dia repared a RAAD that was approved but afterwards it was detect to be added and the screening had to be redone in areas where essarily related to the overall distribution from a site-wide bas	areas that needed l not agree with thi rmined that a full t e there were elevat is.	to be remediated t s approach. The ime receptor ed concentrations		
constru <u>None</u>	have any comments, suggestions, or recommendations regarding the documents, constructability, management, regulatory age		design,		
37. What is <u>Unsure</u>	the status of the remedial action for post-ROD changes?				
	the intended future use of the site? ed access (closed landfill).				
routines	here been significant changes in the monitoring requirements, not solve start-up? If so, do they affect the remedy? Sended future use of this site has changed and additional areas is the solve start solve start solve start solve so				
up? If:	40. Have there been unexpected monitoring/maintenance difficulties or increased costs at the site since start- up? If so, please give details. <u>The majority of monitoring is either done for safety from UXO or for OSHA standards.</u>				
The con	41. Has any other information come to light that could call into question the protectiveness of the remedy? <u>The commercial/industrial USEPA regional RSLs may not be protective of a military trainee exposure at</u> the site and is not site-specific.				
operatio	e analysis and do not consider the composite receptor as a ful	-	-		

	INTERVIEW RECORD					
Site N	ame: Camp Ravenna			EPA ID No.: OH:	5210020736	
Subje	ubject: Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds			Time: 11:30 am	Date: Nov. 08, 2016	
Туре:	Telephone [☐ Visit ⊠ O via er	ther (completed mail)	Incoming	Outgoing	
Locat	ion of Visit: Not application	ble				
		Contact	Made By	•		
Name	: James R Stachowski, PE	Title: Environn	nental Engineer	Organization: US Engineers, Bufj		
		Individual	Contacted			
Name	: Allan Brillinger	Title: Program	Manager	Organization: Vi Services	ista Environmental	
Fav No.				1438 State Route 53 Newton Falls, OH 4		
		Summary Of	Conversation			
Load	Lines 1, 2, 3, and 4 (RVAA	P-08, -09, -10, &	: -11)			
1.	What is your involvement with <i>None</i>	the project?				
Load	Line 12 (RVAAP-12)					
2.	What is your involvement with <i>None</i>	the project?				
Rams	sdell Quarry Landfill (RVA	AP-01)				
3. 4.	 <u>Vista Sciences Corporation (VSC)</u> has been under contract with USACE for over 10 years to provide maintenance and inspection services for the Ramsdell Quarry Landfill (RQL). These services have historically included annual mowing, soil repairs (as needed), and weekly inspections. 4. Do you have any comments, suggestions, or recommendations regarding the project (i.e. design, 					
5.	amendment, and remedial designs? Yes, VSC's PMP has been updated to include inspections of the Land Use Controls (LUCs) that were					
6.	 <i>initiated in December 2014.</i> Have there been significant changes in the monitoring requirements, maintenance schedules, or sampling routines since start-up? If so, do they affect the remedy? Yes, on behalf of OHARNG, VSC as of September 2016 will be conducting quarterly inspections and submitting the quarterly Closed Municipal Solid Waste (MSW) Landfill Inspection checklist to the Ohio EPA. VSC will also be submitting an annual report to the Ohio EPA to comply with the regulations for closed MSW landfills in Ohio. Fulfilling these reporting requirements will improve the record-keeping for the facility and will ensure the continued effectiveness of the LUCs and cap system in place. 					

	INTERVIEW RECORI)			
Site Name:Camp RavennaEPA ID No.: 0H5210020736					
Subject:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Time: 11:30 am	Date: Nov. 08, 2016		
up? If	nere been unexpected monitoring/maintenance difficulties or in so, please give details. <i>dition of the quarterly and annual report have not significantly</i> <i>ment</i> .				
8. Is the re <u>Yes</u>	emedy functioning as intended?				
9. Has an <u>.</u> <u>No</u>	y other information come to light that could call into question t	he protectiveness	of the remedy?		
10. Do you operation <u>None</u>	have any comments, suggestions, or recommendations regards	ing the site's man	agement or		
Winklepeck	Burning Grounds (RVAAP-05)				
<u>VSC pr</u> 12. Do you	s your involvement with the project? <u>ovides quarterly inspections and reporting for the Winklepeck</u> have any comments, suggestions, or recommendations regarding ction documents, constructability, management, regulatory age	ing the project (i.e			
their fro <u>VSC co</u> <u>involve</u> <u>damag</u>	tine inspections performed and records maintained? If so, desequency. Is the reporting up to date? <u>nducts and submits quarterly LUC inspection reports to the Ois</u> <u>s inspecting the Camp Ravenna perimeter fence (which is a LU</u> <u>to the fence, and conducting interviews with appropriate person</u> <u>nd operating effectively. The quarterly and annual reports are</u>	hio EPA. The LU IC for WBG) and connel to ensure th	<u>C inspection</u> documenting any		
	here been significant changes in the monitoring requirements, r s since start-up? If so, do they affect the remedy?	naintenance sched	lules, or sampling		
	nere been unexpected monitoring/maintenance difficulties or in so, please give details.	creased costs at th	ne site since start-		
16. Has an <i>No</i>	y other information come to light that could call into question t	he protectiveness	of the remedy?		
17. Do you operatio <u>None</u>	have any comments, suggestions, or recommendations regards	ing the site's man	agement or		

General Comments

Rodney Beals:

The current copy of the Property Management Plan in the Ohio EPA file does not include LUCs for Ramsdell Quarry or Load Line 12. This was identified as an issue in the first five-year review (August 2012).

The 2007 Interim ROD for Load Lines 1 - 4 did not include LUCs, but should have since waste was left in place. Ohio EPA recognizes that OHARNG has not used this AOC and that additional work is ongoing that will support a less restrictive future use.

Load Lines 1, 2, 3, and 4

1. What is your role and responsibility with this project?

Response: Sue Watkins is project lead reviewer for the Winklepeck Burning Grounds revised ROD activities and lead reviewer for the additional remedial investigation activities at Load Lines 1 - 4 and 12.

2. What is your overall impression of the project (general sentiment)?

Response: The purpose of sampling at these AOCs is to address questions regarding potential contamination dragged out from areas that had undergone removal activities after other areas had been cleaned up. Changes in the land use receptors has also resulted in re-evaluation of these AOCs. There are some challenges regarding the interpretation of previous sample collection activities through incremental sampling and ensuring exposure areas are adequately characterized.

3. Have there been routine communications or activities (site visits, inspections, reporting activities, etc.) conducted by your office regarding the site? If so, please give purpose and results.

Response: Ohio EPA participates in monthly calls with the USACE and Ohio National Guard. We receive updates through this venue. We usually conduct site visits to these AOCs annually. There has not been actual changes to the use of these AOCs.

4. Have there been any complaints, violations, or other incidents related to the site requiring a response by your office? If so, please give details of the events and results of the responses.

Response: None

5. Do you feel well informed about the site's activities and progress?

Response: I don't have a great sense when sampling activities are being conducted. Results are provided to us when they have been compiled into a report. Ohio EPA provided comments on the RI in February 2016.

6. Is the remedy functioning as intended?

Response: Soil removal activities have been conducted at these load lines in the past. The planned additional RI activities are intended to determine if additional removal actions are needed. I'm not sure of the status of the sampling activities.

7. Has any other information come to light that could call into question the protectiveness of the remedy?

Response: No

8. Do you have any comments, suggestions, or recommendations regarding the site's management or operation?

Response: The monthly calls could include more details regarding status of activities at these AOCs. Generally the monthly calls focus only on deliverable reports and the timing of getting these reports to each other.

Load Line 12

9. What is your overall impression of the project (general sentiment)?

Response: Focus of the additional sampling is on the surface water and sediments at this AOC. Ohio EPA provided comments on October 24, 2016 on the Draft Phase III Remedial Investigation. Ensuring that detections of COCs on this AOC are evaluated and considered

10. Have there been routine communications or activities (site visits, inspections, reporting activities, etc.) conducted by your office regarding the site? If so, please give purpose and results.

Response: Ohio EPA participates in monthly calls with the US ACE and Ohio National Guard. We receive updates through this venue. We usually conduct site visits to the AOCs annually. There has not been changes to the use of this AOC.

11. Have there been any complaints, violations, or other incidents related to the site requiring a response by your office? If so, please give details of the events and results of the responses.

Response: None

12. Do you feel well informed about the site's activities and progress?

Response: We have conversations with the US ACE regarding RI development to reach consensus. I don't have a great sense when sampling activities are being conducted. Results are provided to us when they have been compiled into a report for our review.

13. Is the remedy functioning as intended?

Response: Yes, however the evaluation of sediments and surface water as well as sampling the ground water in the area of this AOC will help evaluate the success of prior soil removal activities in this AOC. Other investigations (site wide sewers, site wide ground water and Atlas Scrap) may show that these other AOC may be impacting Load Line 12 or that there may be sources of COCs remaining on LL 12. These other AOC evaluations underway as well as Ohio EPA's recommendation to further evaluate surface water/sediments on Load Line 12 will help evaluate these questions.

14. Has any other information come to light that could call into question the protectiveness of the remedy?

Response: Not at this **time**.

15. Do you have any comments, suggestions, or recommendations regarding the site's management or operation?

Response: The monthly calls could include more details regarding status of activities at the AOCs. Generally the monthly calls focus only on deliverable reports and the timing of getting these reports.

Winklepeck Burning Grounds

16. What is your overall impression of the project (general sentiment)?

Response: The cleanups conducted on this AOC appear to have addressed direct contact exposures to COCs. The AOC still has a Land Use Control in place (fence), but this will no longer be needed after the current remedial activities outlined in the Sept 2015 ESD changes are completed. The fence will remain around the entire RVAAP to keep trespassers from entering the facility, but it will not be needed for environmental remedial measures at Winklepeck. Ground water in this area will continue to be monitored through site wide ground water monitoring activities. Winklepeck Burning Grounds continues to be used actively by the Ohio National Guard for military training. MEC items were found during the recent post ROD remedy activities. It is likely the MEC will continue to be discovered at Winklepeck over time.

17. Have there been routine communications or activities (site visits, inspections, reporting activities, etc.) conducted by your office regarding the site? If so, please give purpose and results.

Response: In September 2015 Ohio EPA approved the ESD for Winklepeck. The land use changes at this AOC required additional removal actions at several former burn pad locations on the AOC. Ohio EPA recently visited Winklepeck to view the remedy underway.

18. Have there been any complaints, violations, or other incidents related to the site requiring a response by our office? If so, please give details of the events and results of the responses.

Response: I am not aware of any complaints, violations or incidents that required a response by our office.

19. Do you feel well informed about the site's activities and progress?

Response: Yes, I received notice both via e-mail and letter that activities were going to start at this AOC. The activities began on October 31, 2016.

20. Is the remedy functioning as intended?

Response: On-going activities at Winklepeck are designed to address use changes. Existing LUCs are in place until the remedy is complete.

21. Has any other information come to light that could call into question the protectiveness of the remedy?

Response: No

22. Do you have any comments, suggestions, or recommendations regarding the site's management or operation?

Response: Ohio EPA visited the AOC on November 10^{th} . All parties involved with the current remedial actions were conducting the remedy in a manner that seems consistent with the post – ROD changes.

Ramsdell Quarry Landfill

Nicholas Roope is the Ohio EPA Site Coordinator for Ramsdell Quarry Landfill AOC.

23. What is your overall impression of the project (general sentiment)?

Response: My overall impression of the site is that it remains protective to human health with restricted access to the area, and a fence that is being maintained to deter entrance to the area. There is still work remaining to maintain protection of the environment under different programs (MMRP, surface water and sediment, etc.).

24. Have there been routine communications or activities (site visits, inspections, reporting activities, etc.) conducted by your office regarding the site? If so, please give purpose and results.

Response: Routine communications have been made. Multiple site visits have occurred in the last year (2016). The site visits were prompted by the surface water and sediment investigation at the site. During that investigation the integrity of the cap, signs, and fence as part of the LUC were completed and noted to be in excellent condition. The results of the previous site visit at low water level revealed some solid wastes, and Asbestos Containing Material (ACM). Other than that training has occurred to inform guard staff why the site is restricted, and the requirement of signing in to access the site is completed routinely.

25. Have there been any complaints, violations, or other incidents related to the site requiring a response by our office? If so, please give details of the events and results of the responses.

Response: To the best of my knowledge, I am unaware of any complaints, violations, or incidents requiring response from our agency.

26. Do you feel well informed about the site's activities and progress?

Response: Yes, I feel well informed about the site's activities and progress, and have been in contact with Kathryn Tait for every inspection to date.

27. Is the remedy functioning as intended?

Response: The fence to prevent human exposure and access to the site appears to be in good shape, and acts as an effective barrier with signs evenly spaced and restricting access and digging of any kind. The cap on the surface appears to be well vegetated to prevent runoff and the gradual weathering of the cap. However, after viewing the water at low levels in the wetland it was evident that some material is uncapped, and at times of drought allows for complete access to ACM and other wastes. However, the area is restricted, no digging has occurred, and the exposed items normally are not exposed due to the contact with a wetland. Further discussion may be warranted.

28. Has any other information come to light that could call into question the protectiveness of the remedy?

Response: After viewing the water at low levels in the wetland it was evident that some material is uncapped, and at times of drought ACM and other wastes are exposed. However, the area is restricted.

29. Do you have any comments, suggestions, or recommendations regarding the site's management or operation?

Response: I believe the site is being properly managed to maintain safety and provides protection to human health. However, I have concerns for the remaining material that is below the surface of the water in the wetland area may have the potential to cause an environmental impact and human exposure at low water levels (i.e. during a drought).

INTERVIEW RECORD				
Site Name: Camp Ravenna	e Name: Camp Ravenna			5210020736
Subject: Second Five-Year R Lines 1 – 4, Load L Winklepeck Burning	ine 12, Ramsdell Qı	·	Time: 1447 hrs.	Date: Nov. 5, 2016
Type:	☐ Visit ⊠ O via er	ther (completed nail)	☐ Incoming	□ Outgoing
Location of Visit: Not application	ble			
	Contact	Made By		
Name: James R Stachowski, PE	Title: Environn	nental Engineer	Organization: US Engineers, Bufj	
	Individual	Contacted		
Name: Tom Tadsen	Title: RAB Co-C	Chair	Organization: R	VAAP RAB
Telephone No: 330-256-0921 Fax No: N/A E-Mail Address: ttadsen@neo.rr.co.	m	Street Address: 2 City, State, Zip:		
	Summary Of	Conversation		
General 1. How does the community use C Community members train then economy. The Ohio Army Nati organizations. Hunters apply t each fall. Vendors provide sup	e as military person onal Guard provide o hunt the unrestric	nnel. Contractors w es occasional facilit eted portions of the	y tours for area cive facility during conte	<u>ic and other</u> rolled deer hunts
Load Lines 1, 2, 3, and 4 (RVAA	P-08, -09, -10, &	-11)		
 What is your overall impression of the project (general sentiment)? <i>The project has been going well and progressing as planned, subject to budgetary limitations. During th</i> <i>project, some procedures and specific goals have changed as a result of unexpected findings onsite. The</i> <i>army has honored its pledge to follow the evidence in its deliberate search for contaminants and has spec- <i>extra care in ensuring that any known contaminated areas were remediated to the required standard, an</i> <i>any contaminants in surface and groundwater were tracked accurately, whether the contaminants were</i> <i>limited to the area within the installation boundary, or outside.</i> </i> What effects have site operations had on the surrounding community? <i>The surrounding community has always been very suspicious that the Army has been hiding something</i> <i>inside the fence. Suspicions have led to development of many rumors over the years about what goes on</i> <i>inside the fence. The surrounding communities are more concerned about potential contamination leavi</i> <i>the facility and potential long term effects of the contamination. When Load Line 9 was burned, local</i> <i>opposition was at its highest ever. It was a good idea for the Army to finish remediating and demolishin</i> <i>buildings by means other than fire.</i> 				ngs onsite. The nts and has spent ed standard, and aminants were ing something ut what goes on amination leaving purned, local

	INTERVIEW RECORI)	
Site N	ame: Camp Ravenna	EPA ID No.: OHS	5210020736
Subje	ct: Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds		
4.	Are you aware of any community concerns regarding the site or its op please give details. <i>The community is quite concerned about hexavalent chromium leaving</i> <i>eventual resting place and potential impacts on flora and fauna – mos</i> <i>community is also concerned that the explosive and SVOC contaminati</i> <i>installation is followed to its eventual resting place and properly treat</i> <i>rumor has been the suspected occurrence of cancer clusters in the Min</i> <i>Director of the Portage County Health Department made a RAB prese</i> <i>existence of cancer clusters related to RVAAP, but the suspicion still I</i> <i>head. There's also concern about groundwater contamination from R</i> <i>fairly unique potentiometric results there, based on ground water flow</i> <i>concerned about development of live-fire weapons ranges, especially</i> <i>contaminated ground. Winklepeck Burning Ground is one such area.</i> <i>remediated to an unrestricted use category and all unexploded ordnar</i> Are you aware of any events, incidents, or activities at the site such as emergency responses from local authorities? If so, please give details <i>There have been very infrequent cases of trespassing and vandalism if</i> <i>only a few times law enforcement agencies were called to apprehend of</i> <i>recent past, a number of police agencies chased two suspected felons</i> <i>Charlestown gate, then had to apprehend and arrest them. Over man</i> <i>poachers from outside the Northern boundary have cut the fence and p</i> <i>Portage County (ODOW) Wildlife Enforcement Officer responded to a</i> <i>sometime in the last ten years.</i>	g the facility in the g tly on humans, thou tion in groundwater ed and/or disposed tyoung Road area h entation years ago, a ingers and infreque amsdell Quarry Law or The community is when they are overl The public would l the public would l ace and contaminan vandalism, trespass and expel trespasser into the installation by years (since the er poached deer and o nany of these calls of	<u>groundwater, it's</u> <u>leaving the</u> <u>of. A lingering</u> <u>istorically. The</u> <u>and disproved the</u> <u>ntly rears its ugly</u> <u>ndfill, based on</u> <u>c always</u> <u>aid on</u> <u>ike to see it</u> <u>ts removed.</u> <u>sing, or</u> <u>the years, and</u> <u>rs. In the fairly</u> <u>through the</u> <u>ad of WWII),</u> <u>ther wildlife. The</u> <u>and removed a</u>
6.	Do you feel well informed about the site's activities and progress? Yes		
7.	Do you have any comments, suggestions, or recommendations regarding operation? Follow the contamination emanating from load lines 3 and 12 to its contamination.		
Load	Line 12 (RVAAP-12)		
8.	What is your overall impression of the project (general sentiment)? <i>Progressing as scheduled.</i>		
9.	What effects have site operations had on the surrounding community? <i>Very little, if any, except causing anxiety over unknowns.</i>		
10.	Are you aware of any community concerns regarding the site or its op please give details. Yes – specifically, establishment, memorialization and enforcement of North of WBG.		
	Are you aware of any events, incidents, or activities at the site such as emergency responses from local authorities? If so, please give details <i>Load Line 12 was the site of a fatal building collapse during the build</i> Do you feel well informed about the site's activities and progress? <u>Yes</u>		-

		INTERVIEW RECORI)				
Site N	ame:	Camp Ravenna	EPA ID No.: Of	45210020736			
Subje	ct:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Time: 1447 hrs.	Date: Nov. 5, 2016			
13.	 13. Do you have any comments, suggestions, or recommendations regarding the site's management or operation? Follow the contamination emanating from Load Line 12 to its conclusion and initiate appropriate remediate actions. 						
Ram	sdell Qu	arry Landfill (RVAAP-01)					
1.	<u>Good – </u>	your overall impression of the project (general sentiment)? somewhat concerned. Want to ensure that there's no residual SVOC's and explosives migrating outward in the ground wate		om dumping,			
14.	What eff	fects have site operations had on the surrounding community? h					
15.		aware of any community concerns regarding the site or its op ive details.	eration and admin	istration? If so,			
16.		aware of any events, incidents, or activities at the site such as acy responses from local authorities? If so, please give details		assing, or			
17.		aware of any events, incidents, or activities at the site such as acy responses from local authorities? If so, please give details		assing, or			
18.	Do you : <u>Yes</u>	feel well informed about the site's activities and progress?					
19.	Do you l operatio <u>No</u>	have any comments, suggestions, or recommendations regards n?	ing the site's mana	agement or			
Wink	lepeck	Burning Grounds (RVAAP-05)					
	The prop not mem What eff Very litt their dir	your overall impression of the project (general sentiment)? <u>iect has progressed in starts and stops since the beginning, du</u> <u>porialized clearly in historical records. Halts in re-development</u> fects have site operations had on the surrounding community? <u>le. Occasionally, neighbors comment on hearing weapons fir</u> <u>ection. All ranges comply with required federal and state noi</u> teally a non-issue.	ent projects resulte	ed, delaying re-use. Is carry the noise in			
	 Are you aware of any community concerns regarding the site or its operation and administration? If so, please give details. <u>The community is concerned anytime the military weaponry to be used is superseded by more modern or newer systems with different range/targetry requirements. The Army (OHARNG) responds to Army requirements and makes changes IAW directives from DA, when funding supports required modifications.</u> Are you aware of any events, incidents, or activities at the site such as vandalism, trespassing, or emergency responses from local authorities? If so, please give details. 						
24.		aware of any events, incidents, or activities at the site such as icy responses from local authorities? If so, please give details		assing, or			

INTERVIEW RECORD				
Site Name:	Camp Ravenna	EPA ID No.: OH:	5210020736	
Subject:	Second Five-Year Review of Remedial Actions for Load Lines 1 – 4, Load Line 12, Ramsdell Quarry Landfill, and Winklepeck Burning Grounds	Time: 1447 hrs.	Date: Nov. 5, 2016	
 25. Do you feel well informed about the site's activities and progress? <u>Generally, it might be good to have an update from the OHARNG on intended range modifications,</u> <u>environmental considerations and potential problem areas resulting from modifications.</u> 26. Do you have any comments, suggestions, or recommendations regarding the site's management or operation? No 				

ATTACHMENT 7 ARAR Evaluation

1

ARAR EVALUATION

2 BACKGROUND

- 3 Section 121 (d)(2)(A) of the Comprehensive Environmental Response, Compensation, and
- 4 Liability Act (CERCLA) specifies that remedial actions must meet federal standards,
- 5 requirements, criteria, or limitations that are determined to be legally applicable or relevant and
- 6 appropriate requirements (ARARs). ARARs are those standards, criteria, or limitations
- 7 promulgated under federal or state law that specifically address a hazardous substance, pollutant,
- 8 contaminant, remedial action, location, or other circumstance at a CERCLA site. To-be-
- 9 considered (TBC) criteria are non-promulgated advisories and guidance that are not legally
- 10 binding, but should be considered in determining the necessary level of cleanup for protection of
- 11 human health or the environment.
- 12 The final remedy selected for a site should be designed to meet all chemical-specific, action-
- 13 specific, and location-specific ARARs and consider all TBCs. Chemical-specific ARARs are
- 14 health- or risk-based numerical values for individually listed contaminants in specific media.
- 15 Action-specific ARARs are technology- or activity-based limitations or requirements that are
- 16 selected to accomplish a remedy. Location-specific ARARs are restrictions placed on the
- 17 concentration of chemicals or conduct of operations based on the location of a site.

18 <u>OBJECTIVE</u>

- 19 Camp Ravenna, formerly known as the Ravenna Army Ammunition Plant (RVAAP), is located
- 20 in northeastern Ohio within Portage and Trumbull counties. The facility was constructed in 1940
- and 1941 and used for ammunition assembly, loading, and demilitarization activities. It
- 22 encompassed 21,683 acres. Administrative accountability for all of the acreage was transferred
- to the U.S. Property and Fiscal Officer in September 2013 and licensed to the Ohio Army
- 24 National Guard as a military training site known as Camp Ravenna Joint Military Training
- 25 Center (Camp Ravenna).
- 26 This is the second five-year review of the following Camp Ravenna sites:
- Load Line 1
- Load Line 2
- Load Line 3
- 30•Load Line 4
- 31 Load Line 12
- Winklepeck Burning Grounds
- Ramsdell Quarry Landfill
- 34 This evaluation was prepared to address Question B of the CERCLA five-year review, "Are the
- 35 exposure assumptions, toxicity data, cleanup levels, and remedial action objectives used at the
- 36 time of the remedy selection still valid?"

37 <u>EVALUATION</u>

38 Load Lines 1 Through 4

39 Industrial operations at RVAAP primarily consisted of 12 munitions assembly facilities referred

40 to as load lines (LLs). LL 1-4 were used between 1941 and 1971 to melt and load trinitrotoluene

- 41 (TNT) and Composition B (a mixture of TNT and cyclotrimethylenetrinitramine [RDX]) into
- 42 large-caliber shells. In 1951, soils contaminated with accumulated explosives were removed
- 43 from LL 1 and replaced with clean fill.
- 44 Chemical contaminants detected in soil and dry sediment at LLs 1-4 above risk-based cleanup
- 45 goals consisted of inorganics, explosives, polychlorinated biphenyls (PCBs) and semivolatile
- 46 organic compounds (SVOCs). The soil and sediment contamination detected at LLs 1-4 was
- 47 generally surficial in nature, between 0 and 4 feet (ft) below ground surface (bgs). In isolated
- 48 areas, the contamination may have extended to 6 ft bgs.
- 49 The remedy selected in the Interim Record of Decision (ROD) [USACE 2007] to address
- contaminated surface and subsurface soils and dry sediment at LLs 1-4 consisted of thefollowing:
- Excavation of discrete areas of contaminated surface and subsurface soils and dry
 sediment with concentrations of contaminants exceeding risk-based clean-up goals
- Temporary on-site storage via stockpiling for characterization
- Off-site disposal of soils at a permitted landfill and, as needed, disposal at a TSCA and/or
 RCRA permitted landfill
- Replacement of excavated material with clean compacted backfill
- Groundwater monitoring to ensure the remedy did not impact groundwater
- Maintenance of building slabs and foundations
- Five year reviews in accordance with CERCLA 121(c) and 300.430(f)(4)(ii)
- 61 No chemical-specific ARARs were identified in the Interim ROD [USACE 2007]. The location-
- and action-specific ARARs, listed in Attachment 1 of the Interim ROD and included in
- 63 Appendix A of this ARAR evaluation, were potential ARARs for the conduct of the remediation,
- 64 and therefore are no longer relevant and appropriate.
- 65 The U.S. Army issued a change memorandum to the Interim ROD [Army 2008] which
- 66 committed to sampling soil underneath concrete slabs and building foundations to determine the
- 67 need to perform a removal action of contaminated soil.
- 68 Between August and November of 2007, 1,752 tons of PCB soils and 9,489 tons of non-
- 69 hazardous soils were excavated from LLs 1-4 [USACE 2008]. Following remedial action, sub-
- role slab soil sampling was conducted to determine if the removal of contaminated sub-slab soil was
- necessary. The sub-slab soil remedial completion report [URS 2010] documents the removal of
- contaminated sub-slab soil at building footprints within Load Lines 2 and 3. It also documents
 the removal and disposal of soil piles stored within three buildings at Load Line 4 (i.e., G-1, G-
- the removal and disposal of soil piles stored within three buildings at Load Line 4 (i.e., G-1, G 1A and G-3). This material was removed so that these three buildings could be demolished, the
- 74 1A and G-3). This material was removed so that these three buildings could be demolished, the 75 slabs removed, and the underlying soil subsequently sampled. The subsurface characterization
- 75 shaps removed, and the underlying son subsequently sampled. The subsurface characterization 76 performed after the floor slabs were removed extended to a depth of 4 ft bgs and the resulting
- 77 subsurface samples were field screened only.
- 78 In December 2009 and August 2010, subsurface soil beneath former building slabs was sampled
- vsing a subsurface soil incremental sampling methodology (ISM) to determine if there was
- 80 residual soil contamination above risk-based project cleanup goals over the depth range of 1 to 7
- 81 ft bgs [Prudent 2011].
- 82 Additional ISM sampling was conducted at LLs 1-4 and other areas of concern in June and July
- 83 2011 to bound areas requiring further soil remediation and documented in a characterization

- 84 sampling report [Prudent 2013]. Table 7-2 of the characterization report [Prudent 2013]
- 85 identifies characterization samples exceeding risk-based child resident, adult resident, and
- 86 National Guard trainee cleanup goals.
- 87 The sample and analysis plan addendum for surface water and sediment at LLs 1-4 [Leidos
- 88 2016] provides recommendations, procedures, and locations for conducting surface water and
- 89 sediment sampling at LLs 1-4 to define the nature and extent of contamination for incorporation
- 90 into a feasibility study addendum for soil, sediment, and surface water at LLs 1-4 and LL 12.
- 91 There are no new standards or performance requirements affecting the protectiveness of the
- 92 remedy at LLs 1-4. A review of the risk assessment methods and toxicity criteria that prompted
- 93 remedial action at LLs 1-4 is located in Attachment 8.

94 <u>CONCLUSION</u>

- 95 There are no changes to the ARARs or newly promulgated or modified requirements of federal
- 96 or state environmental laws that would change the protectiveness of the remedy implemented at
- 97 LLs 1 4.

98 RVAAP-12 (Load Line 12)

- 99 From 1946 to 1949, LL 12 was used to produce ammonium nitrate for explosives and fertilizers
- 100 prior to its use as a weapons demilitarization facility [SAIC 2006b].
- 101 Arsenic was detected in dry sediment in a main ditch at LL 12 above the risk-based cleanup
- 102 goals of 31 milligrams per kilogram (mg/kg) for a National Guard trainee (mounted training with
- 103 no digging).
- 104 The remedy selected in the ROD for LL 12 [SAIC 2009b] to address arsenic in dry sediment in
- 105 the main ditch consisted of excavation and off-site disposal of contaminated soil and dry
- 106 sediment above National Guard Trainee clean-up goals. Components of the selected remedy
- 107 included:
- 108 Remedial design plan
- 109 Excavation
- Handling of waste materials
- Off-site disposal
- Confirmatory sampling
- 113 Restoration
- Land use controls
- Five-year reviews
- 116 No chemical- or location-specific ARARs were identified in the ROD [SAIC 2009b]. The
- 117 action-specific ARARs, listed in Attachment A of the ROD and included in Appendix A of this
- 118 ARAR evaluation, were potential ARARs for the conduct of the remediation, and therefore are
- 119 no longer relevant and appropriate.
- 120 In June 2010, approximately 1.212 tons of non-hazardous material was transported off-site for
- disposal. Table 7-2 of the Remedial Action Report [SAIC 2010] shows that the confirmation
- 122 sample results below the risk-based cleanup goal.

- 123 There are no new standards or performance requirements affecting the protectiveness of the
- 124 remedy at LL 12. A review of the risk assessment methods and toxicity criteria that prompted
- 125 remedial action at LL 12 is located in Attachment 8.

126 CONCLUSION

- 127 There are no changes to the ARARs or newly promulgated or modified requirements of federal
- 128 or state environmental laws that would change the protectiveness of the remedy implemented at 129 LL 12.

130 **RVAAP-05 Winklepeck Burning Grounds**

- 131 The Winklepeck Burning Grounds (WBG) is a 200-acre site located in the central part of Camp
- 132 Ravenna. Historical activities at WBG included destruction of explosives in munitions, bulk
- 133 explosives, propellants, and explosives-contaminated combustible material using open burning.
- 134 Approximately 180 acres of WBG has been used for a Mark 19 (MK19) Grenade Machinegun
- 135 Range, a target practice range for use in firing non-explosive practice rounds. In advance of site
- 136 transfer and range construction, the U.S. Army Joint Munitions Command removed munitions
- 137 and explosives of concern (MEC) in August 2005.
- 138 Chemical contaminants detected in soil and dry sediment at WBG above risk-based cleanup
- 139 goals consisted of the explosive RDX and polycyclic aromatic hydrocarbons (benzo(a)pyrene,
- 140 dibenz(a,h)anthracene, benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-cd) pyrene).
- 141 A ROD was signed on 19 August 2008 [SAIC 2008] that established a selected remedy with the 142 following components for COCs in soil and dry sediment:
- clearing of vegetation 143 •
- 144 geophysical surveys and visual inspections for identifying metal debris •
- 145 • removal of transite and friable asbestos from the surface and subsurface within the 146 footprint of Pad 70
- 147 • excavation of contaminated soil by layers to a depth of 0.3 to 1.2 meters (1 to 4 ft)
- screening (sifting) of the excavated soil for metal debris (potential MEC) 148 •
- 149 • confirmation sampling of the chemical characteristics of the remaining soil and for the 150 absence of visible asbestos within the sides and bottom of the excavation
- 151 • multi-increment sampling and testing of sifted soil to determine disposal requirements
- 152 disposal of contaminated soil (above remedial goals) at an approved off-site facility •
- 153 • backfill of the excavations using fill material from a source approved by the U.S. Army 154 and Ohio EPA
- 155 • site restoration
- 156 implementation of LUCs for the site •
- 157 conducting 5-year reviews of the performance of the selected remedy •
- 158 No chemical-specific ARARs were identified in the ROD [SAIC 2008]. Location- and action-
- 159 specific ARARs, listed in Table 4 of the ROD and included in Appendix A of this ARAR
- 160 evaluation, were potential ARARs for the conduct of the remediation, and therefore are no longer
- 161 relevant and appropriate.
- 162 A total of 7,294 cubic yards of soils contaminated with transite ACM, friable asbestos, and/or
- 163 MEC was excavated from WBG Pads 61/61A, 67, and 70 to protect future range maintenance
- 164 soldiers from exposure to contaminants in soil exceeding risk-based cleanup goals listed in the

165 WBG ROD [SAIC 2008]. Although ACM (transite) was present in the soil at pads 61/61A and 166 70, the Ohio Department of Health did not consider soil excavation and processing operations an 167 abatement operation. Therefore, the excavations were not required to be performed in 168 accordance with State of Ohio (Ohio Administrative Code [OAC] 3745-20) asbestos emission 169 control regulations. However, the loadout of asbestos-contaminated soil for off-site disposal was 170 considered an asbestos abatement operation and was conducted in accordance with 40 CFR Part 171 61, Subpart M and State of Ohio (OAC 3745-20) asbestos emission control regulations [MKM 172 2009]. 173 The remedial action was conducted on the basis of a limited site characterization to accelerate 174 the timeframe in which the AOC could be developed and used as a MK19 Range. Although 175 remedial actions were completed for WBG, the associated LUCs/restrictions placed on the AOC 176 limited the use and future development of the AOC. Additional development of the AOC as a 177 Multi-Purpose Machine Gun range was planned and therefore the AOC was reassessed to fully 178 define the nature and extent of remaining contamination (if any) and LUCs/restrictions were re-179 evaluated to facilitate range construction and future use and management of the AOC as an 180 operational range. 181 A 2015 Explanation of Significant Differences [USACE 2015] documents additional areas of 182 soil excavation required to meet the commercial/industrial land use and associated changes to the 183 LUCs. The only LUCs for the WBG AOC are: 184 The AOC cannot be used for unrestricted (residential) land use unless or until additional 185 evaluation shows that risk levels resulting from residual contamination have been reduced to levels acceptable for residential land use and any residual MEC hazards have 186 187 been removed 188 Groundwater use or extraction of groundwater located at or underlying WBG or any 189 portion thereof is prohibited, except for the following: 190 • The installation, development, purging, and sampling of new or existing 191 monitoring wells in accordance with the most recent Facility-Wide Sampling and 192 Analysis Plan as part of the Area of Concern (AOC)-specific Installation 193 Restoration Program, the Facility-Wide Ground Water Monitoring Program Plan 194 (FWGWMPP), or the Facility-Wide Groundwater Remedial Investigation 195 • The modification of existing monitoring wells, if necessary, to allow for 196 construction on the range 197 The abandonment and replacement of monitoring wells damaged by activities or 0 198 removed for construction, and abandonment of wells no longer utilized as part of 199 IRP or FGWMPP activities, in accordance with Ohio EPA guidance, the most 200 recent Facility-Wide Sampling and Analysis Plan, and applicable OAC 201 requirements 202 The Explanation of Significant Differences did not identify any changes to the ARARs listed in 203 the ROD. 204 There are no new standards or performance requirements affecting the protectiveness of the 205 remedy at the WBG. A review of the risk assessment methods and toxicity criteria that 206 prompted remedial action at WBG is located in Attachment 8. 207

208 <u>CONCLUSION</u>

- 209 There are no changes to the ARARs or newly promulgated or modified requirements of federal
- or state environmental laws that would change the protectiveness of the remedy implemented at WBG.

212 RVAAP-01 Ramsdell Quarry Landfill

- 213 The Ramsdell Quarry landfill (RQL) is a 14-acre abandoned quarry with a 10-acre unlined
- 214 landfill that was used for domestic, commercial, industrial, and solid wastes that included
- 215 explosives (TNT and Composition B), napalm, gasoline, acid-dip liquor, annealing residue,
- aluminum chloride, and inert material. Land surface burning was also performed to destroy
- 217 waste explosives from Load Line 1 and napalm bombs. A four-acre portion of the landfill was
- 218 operated as a state of Ohio permitted sanitary landfill in 1978 and was closed under state of Ohio
- 219 solid waste regulations in 1990.
- 220 Chemical contaminants detected in soil and dry sediment at RQL above risk-based cleanup goals
- 221 consisted of polycyclic aromatic hydrocarbons (benzo(a)anthracene, benzo(a)pyrene,
- benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd) pyrene).
- A ROD was signed on 20 August 2009 [SAIC 2009a] that established a selected remedy for
- 224 excavation and off-site disposal of chemically-contaminated soil and dry sediment. Other
- 225 components of the remedy included LUCs and five-year reviews to assess performance of the
- remedial action. Remediation started in 2010 and was not completed because asbestos-containing
- 227 material (ACM) was encountered in the subsurface. The presence of ACM in the landfill was
- not known prior to discovery, and the ROD did not account for this material. The excavation
- 229 was stopped once ACM was no longer visible, and the excavated ACM was disposed off-site.
- 230 Not all of the chemically-contaminated areas were remediated. Because of the discovery of
- friable ACM, new remedial alternatives were evaluated and the selected remedy was established
- in a ROD Amendment [SAIC 2013].
- 233 The remedy selected in the ROD amendment consisted of the following:
- Installation of a fence at the perimeter of RQL to encompass the closed landfill, quarry
 bottom, and wetlands
- Implementing a best management practice to remove surficial ACM through nonintrusive/no-digging methods
- Part V of the ROD amendment refers to the RQL feasibility study [SAIC 2006a], the original
 ROD [SAIC 2009a], and OAC 3745-20-07 for ARARs.
- 240 Many of the action-specific ARARs, listed in Table 4-1 of the RQL feasibility study and
- 241 Attachment A of the original ROD and included in Appendix A of this ARAR evaluation, were
- 242 potential ARARs for RCRA hazardous waste that would be disposed of on-site, and therefore are
- 243 no longer relevant and appropriate.
- 244 Part III of the ROD amendment states that the discovery of ACM in RQL during the
- 245 implementation of 2010 remedial action, under the original ROD invoked the following relevant
- and appropriate requirements stated in OAC, Asbestos Emissions Control ~ OAC 3745-20 and
- 247 Standard of Inactive Asbestos Waste Disposal Sites ~ OAC 3745-20-07:
- 1. Discharge no visible emissions to the outside air

- 249
 2. Cover ACM with at least 6 inches of compacted non-ACM, and establish and maintain a cover of vegetation on the area adequate to prevent exposure to the ACM
 251
 3. Cover ACM with at least 2 ft compacted non-ACM and maintain the cover to prevent
 - exposure to the ACM
- 253 Section 7.0 of the remedial design report [Leidos 2014] stated, "After the perimeter fence is
- 254 installed, there is no additional requirement for ACM removal, as access and land use
- 255 restrictions at RQL will ensure no visible emissions will be released to the outside air in
- 256 accordance with Ohio Administrative Code (OAC) 3745-20-01." Section 10.0 of the remedial
- 257 design report presented asbestos-related regulations that were to be conformed to during the 258 conduct of the remedy implementation.
- According to the remedial action report [Leidos 2015], security fences were installed around the
- 260 perimeter of RQL in 2014 and eleven signs were installed around RQL to warn of the ACM
- hazard in the quarry bottom in compliance with OAC 3745-20-07(B)(1)(b). After installing the
- 262 perimeter fence, ACM exposed at the ground surface was removed using non-intrusive, no
- 263 digging methods (e.g., removal by hand) and dust control measures were implemented as needed
- to ensure no visible emissions. In total, an estimated 200 pounds of ACM was removed from the
- 265 RQL.

252

- 266 The U.S. Army will manage future land use at RQL as restricted access due to residual, non-
- 267 exposed asbestos in soil, residual PAH contamination above residential facility-wide cleanup
- 268 goals, and the closed landfill. No soil disturbing activities are allowed within the quarry bottom
- and any personnel entering the quarry bottom will be briefed of the asbestos hazards. The Army
- 270 will implement LUCs and conduct CERCLA five-year reviews. Other media (i.e., surface water,
- 271 wet sediment, and groundwater) and MEC at RQL will be addressed as part of future actions.
- 272 There are no new standards or performance requirements affecting the protectiveness of the
- 273 remedy at the RQL. A review of the risk assessment methods and toxicity criteria that prompted
- 274 remedial action at RQL is located in Attachment 8.

275 <u>CONCLUSION</u>

- 276 There are no changes to the ARARs or newly promulgated or modified requirements of federal
- or state environmental laws that would change the protectiveness of the remedy implemented at
- 278 RQL.

279 <u>REFERENCES</u>

- 280 Leidos (formerly SAIC) Engineering of Ohio, Inc. (Leidos) 2015. *Final Remedial Action Report*
- for Soil and Dry Sediment at RVAPP-01 Ramsdell Quarry Landfill, Ravenna Army Ammunition
 Plant, Ravenna, Ohio, January.
- Leidos 2016. *Final PBA13 Sample and Analysis Plan Addendum for Surface Water and Sediment at Load Lines 1, 2, 3, and 4, April.*
- Leidos 2014. Final Remedial Design for Soil and Dry Sediment at RVAPP-01 Ramsdell Quarry
 Landfill, Ravenna Army Ammunition Plant, Ravenna, Ohio, April.
- 287 MKM Engineers, Inc. (MKM) 2009. *Final Remedial Action Completion Report for RVAPP-05*288 Winklepeck Burning Grounds Pads 61/61A, 67, and 70, November.
- 289 Prudent Technologies, Inc. (Prudent) 2013. Field Characterization Sampling Report of Surface
- and Subsurface Incremental Sampling Methodology at RVAAP-08, 09, 10, 11, and 12, Load
 Lines 1, 2, 3, 4, and 12, March.
- Prudent 2011. Field Sampling Report of Surface and Subsurface Incremental Sampling
- 293 *Methodology at Load Lines 1, 2, 3, and 4 (RVAAP-08, 09, 10, and 11)*, March.
- 294 SAIC Engineering of Ohio, Inc. (SAIC) 2013. Final Record of Decision Amendment for Soil
- and Dry Sediment at the RVAAP-01 Ramsdell Quarry Landfill, Ravenna Army Ammunition
 Plant, Ravenna, Ohio, May.
- SAIC 2010. Final Remedial Action Report for the RVAAP-12 Load Line 12, Ravenna Army
 Ammunition Plant, Ravenna, Ohio, August.
- SAIC 2009a. Final Record of Decision for Soil and Dry Sediment for the RVAAP-01 Ramsdell
 Quarry Landfill, Ravenna Army Ammunition Plant, Ravenna, Ohio, March.
- SAIC 2009b. Final Record of Decision for Soil and Dry Sediment for the RVAAP-12 Load Line
 12, Ravenna Army Ammunition Plant, Ravenna, Ohio, March.
- 303 SAIC 2006a. Final Feasibility Study for Ramsdell Quarry Landfill (RVAAP-01), Ravenna Army
 304 Ammunition Plant, Ravenna, Ohio, October.
- SAIC 2006b. Final Feasibility Study for Load Line 12 (RVAAP-12), Ravenna Army Ammunition
 Plant, Ravenna, Ohio, July.
- 307 URS Group, Inc. (URS) 2010. Final Remediation Completion Report, Sub-Slab Soils at RVAPP308 09 Load Line 2, RVAAP-10 Load Line 3, and RVAAP-11 Load Line 4, December.
- 309 United States Army (Army) 2008. *Change Memorandum to the Interim Record of Decision for* 310 *the Remediation of Soils at Load Lines 1 through 4*, January.
- United States Army Corps of Engineers Louisville District (USACE) 2015. Final Explanation of
 Significant Differences for Post-ROD Changes to the Remedy at RVAAP-05 Winklepeck Burning

- 313 Grounds, Former Ravenna Army Ammunition Plant/Camp Ravenna, Portage and Trumbull
- 314 Counties, Ohio, March.
- 315 USACE 2008. Final Remedial Action Completion Report for the *Remediation of Soils and Dry*
- 316 Sediments at RVAAP 08-11 (Load Lines 1-4), Ravenna Army Ammunition Plant, June.
- 317 USACE 2007. Interim Record of Decision for the Remediation of Soils at Load Lines 1 through
- 318 *4 at the Ravenna Army Ammunition Plant*, January.

Appendix A

- 1. Attachment 1 of the Interim ROD for LLs 1-4 (USACE 2007)
- 2. Attachment A of the ROD for LL 12 (SAIC 2009b)
- 3. Table 4 of the ROD for WBG (SAIC 2008)
- 4. Table 4-1 of the Feasibility Study for RQL (SAIC 2006a)
- 5. Attachment A of the original ROD for RQL (SAIC 2009a)

	Containers holding hazardous wastes must be kept closed except to add or remove wastes and must not be managed in a	Applicable to 90-day accumulation of debris from excavation and screening if such debris contains listed wastes or exhibits a	40 CFR 264.117/1 40 CFR 264.172
	manner that would cause them to leak.	characteristic.	40 CFR 264.173
			40 CFR 264.176
			40 CFR 264.17
			OAC 3745-52-34(A)(1)
	Containers of hazardous waste must be maintained in good condition and comparable with the waste stored therein. Containers holding ignitable or reactive wastes must be separated from potential ignition sources and located 50 feet from the property boundary.		
Placement of hazardous	In 1998, USEPA created a new unit for the	Applicable to storage of hazardous-	40 CFR 264.554
contaminated soil in a staging pile	temporary management of remediation wastes known as the staging pile. The staging pile is an accumulation of solid, non-flowing remediation wastes that may be used for storage of those wastes for two years.	contaminated soils in staging piles. Potentially relevant and appropriate if excavated soils are determined to not contain listed wastes or exhibit the TC soils.	OAC 3745-57-74
	The requirements for staging piles include the performance criteria of 40 CFR 264.554(d). These standards require that:		
	the staging pile must be designed to prevent or minimize releases of hazardous waste or hazardous constituents into the environment,		
	the staging pile must be designed to minimize cross-media transfer as necessary to protect human health and the environment (by using liners, run-off/run-on controls as appropriate)		
	The staging pile requirements also contain closure requirements (separate provisions for staging piles located in previously contaminated areas and those located in previously uncontaminated areas)		

Attachment 1. Description of ARARs

			·
	The generator must determine each EPA Hazardous Waste Number (Waste Code) to determine the applicable treatment standards under 40 CFR 268.40, Subpart D.	Applicable to the generation and characterization of hazardous-contaminated soil and hazardous debris resulting from excavation. Applicable to generation of decontamination wastewater.	40 CFR 268.9(a) OAC 3745-270-07 OAC 3745-270-09
	The generator must determine the underlying hazardous constituents [as defined in 40 CFR 268.2(i)] in the waste.	Applicable to the generation and characterization of RCRA characteristic hazardous waste (except D00I non-wastewaters treated by combustion, recovery of organics, or polymerization. See 268.42, Table I) and to hazardous-contaminated soils for their subsequent storage, treatment, or disposal.	40 CFR 268.9(a) OAC 3745-270-09
Accumulation of Hazardous Debris from Excavation and Screening. It is Assumed that any Debris Resulting from Excavation and Screening will be Accumulated for < 90 Days	A generator may accumulate for up to 90 days or conduct treatment of hazardous wastes in containers without an Ohio EPA permit. Generators that accumulate for 90 days or conduct on-site treatment of hazardous waste in containers must comply with the personnel training, preparedness and prevention requirements, and contingency plan requirements of 40 <i>CFR</i> 265.16; 40 <i>CFR</i> 265, Subpart C; and 40 <i>CFR</i> 265, Subpart D, respectively. Personal training and contingency plan requirements would appear to be administrative in nature. Arguably some of the components/goals of the contingency plan such as: (1) to minimize the hazards to human health or environment from fire, explosion or sudden release of hazardous waste or hazardous constituents, or (2) presence of an emergency coordinator on site, could be viewed as substantive. If determined to be substantive, these provisions should be cited as ARAR; however, the plans, details or implementation steps should be included in the CERCLA documentation for the site (i.e., remedial design documents).	Applicable to 90-day accumulation of debris from excavation and screening if such debris contains listed wastes or exhibits a characteristic.	40 CFR 262.34(a)(4) OAC 3745-52-34(A)(4) OAC 3745-66-70 to 66-77
	Containers must be marked with the date upon which period of accumulation began and with the words "Hazardous Waste."	Applicable to 90-day accumulation of debris from excavation and screening if such debris contains listed wastes or exhibits a characteristic.	40 CFR 262.34 (a)(2)(3) OAC 3745-52-34 (A)(2)(3)

Attachment 1. Description of ARARs

Attachment 1. Description of ARARs Construction Activities 40 CFR 122.26 Construction activities disturbing more than Applicable to stormwater discharges from land Causing Storm Water Runoff 1 acre must develop and implement a storm disturbances from a construction activity OAC 3745-38-06 (e.g., clearing, grading, and water pollution prevention plan involving more than 1 acre. incorporating best management practices excavation) (including sediment and erosion controls, vegetative controls, and structural controls) in accordance with the requirements of the Ohio EPA General Permit for Construction Activities (Permit ORC 000002). **REMOVAL OF CONTAMINATED SOILS** Waste Generation, Characterization, Segregation, and Storage-Excavated Soils and Buried Wastes, Sludge, Surface Features, Debris. and Secondary Wastes Generation and The generator must determine if the Applicable to generation of a solid waste as 40 CFR 262.111(a)(b)(c) Characterization of Solid material is a solid waste, as defined in 40 defined in 40 CFR 261.2 and that is not OAC 3745-52-111(A)(B)(C)(D) Waste (all primary and CFR 261.2 and 40 CFR 261.4(a). if the excluded under 40 CFR 261.4(a). secondary wastes) material is a solid waste, the generator must determine if the solid waste is a hazardous waste by: · determining if the waste is listed under Applicable to the generation and 40 CFR 262.111(a)(b)(c) 40 CFR Part 261: or characterization of hazardous-contaminated soil OAC 3745-52-111(A)(B)(C)(D) and hazardous debris resulting from excavation. determining if the waste exhibits Process history indicates that soils were 40 CFR 262.II((a)((b)(c) characteristics by using prescribed testing contaminated with K047 pink/red water from methods or applying generator knowledge TNT operations. OAC 3745-52-111(A)(B)(C)(D) based on information regarding material or Applicable to the generation and processes used: and characterization of hazardous-contaminated soil • determining if the waste is excluded and hazardous debris resulting from excavation. under 40 CFR Parts 261, 262, 266, 268, Site data indicate that soils contain metals at and 273 concentrations that exceed 20 times the TC limit and may exhibit the characteristics D008. Applicable to generation of decontamination wastewater. The generator must determine if the waste 40 CFR 268.7 Applicable to the generation and is restricted from land disposal under 40 characterization of hazardous-contaminated soil OAC 3745-270-07 CFR 268 et seq. by testing in accordance and hazardous debris resulting from excavation. with prescribed methods or use of generator Applicable to generation of decontamination

knowledge of waste.

wastewater.

Attachment 1. Description of ARARs

Action		Requirements	Prerequisite	Citation(s)
Surface Waters and Wetlands	All waters of the state shall be free of suspended solids, floating debris, oil, scum, or toxic substances from human activity that create a nuisance, cause degradation, or adversely affect aquatic life. There may be no degradation of water quality that results in violation of the applicable water quality criteria or the impairment of existing uses. Wetlands-designated uses shall be maintained and protected such that degradation through direct, indirect, or cumulative impacts do not result in wetland use or function.		Applicable to activities at LLs 1-4 that may impact waters of the state (connected drainageways) or wetlands, including isolated wetlands.	OAC 3745-1-04 OAC 3745-1-511 OAC 3745-1-54(B)(1)
General Const	truction	Standards-Site Preparation and Ex	cavation	
Activities Resulting Emission of Particu Matter, Dusts, Fum Mists, Smoke, etc. Hazardous Waste I	in the Ilate Ies, Gas, From a	No owner/operator of a hazardous waste facility shall cause or allow the emission of any particulate matter, dusts, gas, fumes, mists, smoke, vapor, or odorous substances that interferes with the enjoyment of life or property by persons living or working in the vicinity of the facility. Any such action is considered a public nuisance.	Applicable to soil excavation activities at LLs 1- 4	ORC 3734.02(机) OAC 3745-15-07(A)
Activities Causing Fugitive Dust Emissions		 Persons engaged in construction activities shall take reasonable precautions to prevent particulate matter from becoming airborne; reasonable precautions include, but are not limited to, the following: the use of water or chemicals for control of dust during construction operations or clearing of land; and 	Applicable to fugitive emissions from demolition of existing buildings or structures, construction operations, grading of roads, or the clearing of land. Applicable to pre-construction clearing activities and excavation activities.	OAC 3745-17-08(B)
		 the application of asphalt, oil, water, or suitable chemicals on dirt roads, materials stockpiles, and other surfaces, which can create airborne dusts. No person shall cause, or allow, fugitive dust to be emitted in such a manner that visible emissions are produced beyond the property line. 		

Attachment 1. Description of ARARs

Abbreviations:

- Code of Federal Regulations Ohio Revised Code CFR
- ORC
- тс toxicity characteristic

Media and Citation	Description of Requirement	Potential ARAR Status	Standard
Soil Contaminated	These rules prohibit land disposal	LDRs apply only to	All soils subject to treatment must be treated as
with RCRA	of RCRA hazardous wastes	RCRA hazardous waste.	follows:
Hazardous Waste	subject to them, unless the waste	This rule is considered	1) For non-metals, treatment must achieve 90%
	is treated to meet certain	for ARAR status only	reduction in total constituent concentration
OAC § 3745-400-49	standards that are protective of	upon generation of a	(primary constituent for which the waste is
OAC § 3745-400-48	human health and the	RCRA hazardous waste.	characteristically hazardous as well as for any
UTS	environment. Standards for	If any soils are	organic or metal UHC), subject to 3) below
	treatment of hazardous	determined to be RCRA	
	contaminated soil prior to	hazardous, and if they	2) For metals and carbon disulfide,
	disposal are set forth in the two	will be disposed of	cyclohexanone, and methanol, treatment must
	cited rules. Use of the greater of	onsite, then this rule is	achieve 90% reduction in constituent
	either technology-based standards	potentially applicable to	concentrations as measured in leachate from the
	or UTS is prescribed.	disposal of the soils.	treated media (tested according to the TCLP or
			90% reduction in total constituent
			concentrations when a metal removal treatment
			technology is used), subject to 3) below.
			3) When treatment of any constituent subject to
			treatment to a 90% reduction standard would
			result in a concentration less than 10 times the
			UTS for that constituent, treatment to achieve
			constituent concentrations less than 10 times the
			UTS is not required. This is commonly referred
			to as "90% capped by 10xUTS."
Debris Contaminated	These rules prescribe conditions	If RCRA hazardous	Standards are extraction or destruction methods
with RCRA	and standards for land disposal of	debris is disposed of	prescribed in OAC § 3745-400-47.
Hazardous Waste	debris contaminated with RCRA	onsite, then these rules	
	hazardous waste. Debris subject	are potentially	Treatment residues continue to be subject to
OAC § 3745-400-49	to this requirement for	applicable to disposal of	RCRA hazardous waste requirements.
OAC § 3745-400-47	characteristic RCRA	the debris.	
	contamination that no longer		
	exhibits the hazardous		
	characteristic after treatment does		
	not need to be disposed of as a		
	hazardous waste. Debris		
	contaminated with listed RCRA		
	contamination remains subject to		
	hazardous waste disposal		
A 11 m 1 1	requirements.		
Soils/Debris	The Director will recognize a	Potentially applicable to	A site-specific variance from the soil treatment
Contaminated with	variance approved by the EPA	RCRA hazardous soil or	standards can be used when treatment to
RCRA Hazardous	from the alternative treatment	debris that is generated	concentrations of hazardous constituents greater
Waste – Variance	standards for hazardous	and placed back into a	(i.e., higher) than those specified in the soil
010000000000000	contaminated soil or for	unit and that will be land	treatment standards minimizes short- and long-
OAC § 3745-400-44	hazardous debris.	disposed of onsite.	term threats to human health and the
			environment. In this way, on a case-by-case
			basis, risk-based LDR treatment standards
			approved through a variance process could
			supersede the soil treatment standards.

Potential Action ARARs for Disposal of RCRA Hazardous Waste

Media and Citation	Description of Requirement	Potential ARAR Status	Standard
Soils Disposed of in a	Only CAMU-eligible waste can	Potentially applicable to	Design standards include a composite liner and
CAMU	be disposed of in a CAMU.	RCRA hazardous waste	a leachate collection system that is designed and
	CAMU-eligible waste includes	that is disposed of in a	constructed to maintain less than a 30 cm depth
OAC § 3745-57-53	hazardous and non-hazardous	CAMU.	of leachate over the liner. A composite liner
	waste that are managed for		means a system consisting of two components;
	implementing clean-up,		each of which has detailed specifications and
	depending on the Director's		installation requirements. The Director may
	approval or prohibition of specific		approve alternate requirements if he can make
	wastes or waste streams. Use of a		the findings specified in the rule. Treatment
	CAMU for disposal does not		standards are similar to LDR standards for
	trigger LDRs or MTRs as long as		contaminated soil, although alternative and
	the standards specified in the rule		adjusted standards may be approved or required
	are observed. The Director will		by the Director, as long as the adjusted standard
	incorporate design and treatment		is protective of human health and the
	standards into a permit or order.		environment.
			Treatment standards are de facto clean-up
			standards for wastes disposed of in a CAMU.
Clean Water Act	Section 404 of the Clean Water	Potentially applicable if	The wetland in question is currently considered
33 USC § 1344	Act of 1977 governs the discharge	the main ditch at Load	jurisdictional. However, USACE would have to
Sections 401, 404	of dredged and fill material into	Line 12 is categorized as	make a jurisdictional determination regarding
	waters of the U.S., including	a jurisdictional wetland	the wetland's status under Section 404 of the
	adjacent wetlands.	by the USACE	CWA.
		Pittsburgh District.	
		Section 401 water	Both EPA and USACE have jurisdiction over
		quality certification	wetlands. EPA's Section 404 guidelines are
		would apply regardless	promulgated in 40 CFR § 230; USACE
		of jurisdictional status	guidelines are promulgated in 33 CFR § 320.
		under Section 404. Ohio	
		EPA addresses Section	
		401 certification through	
		their Wetland	
		Antidegradation Policy	
		(See below).	
Executive Order	EO 11990 requires that federal	Potentially applicable.	EO 11990 requirements were addressed through
11990 Protection of	agencies minimize the	Requires federal	the CERCLA evaluation of alternative actions
Wetlands	destruction, loss, or degradation	agencies to consider all	for remediation.
	of wetlands; preserve and enhance	alternatives to avoid or	
	the natural and beneficial value of	minimize activities with	
	wetlands,; and avoid support of	adverse impacts to	
	new construction in wetlands if a	wetlands.	
	practicable alternative exists.		

Media and Citation	Description of Requirement	Potential ARAR Status	Standard
Wetland	These rules prescribe the steps to	Potentially applicable	The impact as a result of excavation in the main
Antidegradation	categorize the existing wetland	unless the main ditch is	ditch would not result in significant degradation
	and outline the procedures for the	categorized as a	to the aquatic ecosystem - as determined
OAC Section 3745-1-	antidegradation of wetlands.	jurisdictional wetland by	consistent with 40 CFR part 230.10(2). The
54		the USACE Pittsburgh	results of the action would result in better water
		district. In which case	quality. Ohio EPA could require mitigation for
		the wetland would fall	loss of wetland habitat.
		under requirement in the	
		Clean Water Act for	
		CERCLA wetlands.	

Potential Action ARARs for Disposal of RCRA Hazardous Waste (continued)

ARAR = Applicable and Relevant or Appropriate Requirements.

 $CAMU \equiv Corrective action management unit.$

LDR = Land disposal restrictions.

MTR = Minimum Technical Requirements.

OAC = Obio Administrative Code.

 $\mathbf{RCRA} = \mathbf{Resource \ Conservation \ and \ Recovery \ Act.}$

 $TCLP \equiv Toxicity \ Characteristic \ Leaching \ Procedure.$

UHC = Underlying hazardous constituent. UTS = Universal Treatment Standard.

Type of ARAR	Requirements	Prerequisite	Citation(s)
	Location-Specific	•	
Surface Waters and Wetlands	All waters of the state shall be free of	Applicable to activities at WBG that may	OAC 3745-1-04
	suspended solids, floating debris, oil,	impact waters of the state (connected	OAC 3745-1-51
	scum, or toxic substances from human	drainageways) or wetlands, including	OAC 3745-1-54(B)(1)
	activity that create a nuisance, cause	isolated wetlands.	
	degradation, or adversely affect aquatic		
	life. There may be no degradation of water		
	quality that results in violation of the		
	applicable water quality criteria or the		
	impairment of existing uses. Wetlands-		
	designated uses shall be maintained and		
	protected such that degradation through		
	direct, indirect, or cumulative impacts do		
	not result in wetland loss or function.		
	Action- Specific		
Activities Causing Fugitive Dust	Persons engaged in construction activities	Applicable to fugitive emissions from	OAC 3745-17-08(B)
Emissions	shall take reasonable precautions to	demolition of existing buildings or	
	prevent particulate matter from becoming	structures, construction operations, grading	
	airborne; reasonable precautions include,	of roads, or the clearing of land.	
	but are not limited to, the following:	Applicable to pre-construction clearing	
	- the use of water or chemicals for	activities and soil excavation activities.	
	control of dust during construction	· · ·	
	operations or clearing of land; and		
	- the application of asphalt, oil, water, or		
	suitable chemicals on dirt roads,		
	materials stockpiles, and other surfaces,		
	which can create airborne dusts.		
	No person shall cause, or allow, fugitive		
	dust to be emitted in such a manner that		
	visible emissions are produced beyond the		
	property line. Monitoring may be		
	employed to determine the effectiveness of	···	
	dust emission controls.		

Table 4. ARARs for the Selected Alternative for Contaminated Soil and Dry Sediment at Winklepeck Burning Grounds

Table 4 ADADe for the Selected Alternativ	o for Contominated Soil and Dry Sodimant a	t for Winklepeck Burning Grounds (continued)
TADIE 4. ARAKS IDI THE SCIECTED ATTEINATIV	e for Contaminated Son and Dry Seument a	(Continued)

Type of ARAR	Requirements	Prerequisite	Citation(s)
Construction Activities Causing Storm Water Run-off (e.g., clearing, grading, and excavation)	Construction activities disturbing more than 1 acre must develop and implement a stormwater pollution prevention plan incorporating best management practices (including sediment and erosion controls, vegetative controls, and structural controls) in accordance with the requirements of the Ohio EPA General Permit for Construction Activities (Permit ORC 000002).	Applicable to stormwater discharges from land disturbances from a construction activity involving more than 1 acre.	40 <i>CFR</i> 122.26 OAC 3745-38-06
Generation and Characterization of Solid Waste (all primary and secondary wastes)	The generator must determine if the material is a solid waste, as defined in 40 CFR 261.2 and 40 CFR 261.4(a). If the material is a solid waste, the generator must determine if the solid waste is a hazardous waste by:	Applicable to generation of a solid waste as defined in 40 CFR 261.2 and that is not excluded under 40 CFR 261.4(a). Applicable to the generation and characterization of hazardous-	40 CFR 262.11((a)((b))(c) OAC 3745-52- 11((A))((B))(C)(D) 40 CFR 262.111((a)((b))(c)
	 determining if the waste is listed under 40 CFR Part 261; or determining if the waste exhibits characteristics by using prescribed testing methods or applying generator knowledge based on information regarding material or processes used; and determining if the waste is excluded under 40 CFR Parts 261, 262, 266, 268, and 273. 	contaminated soil and hazardous debris resulting from excavation. Process history indicates that soil may have been contaminated with K047 (pink/red water) from RVAAP operations. Applicable to the generation and characterization of hazardous- contaminated soil and hazardous debris resulting from excavation. Site data indicate that soil contains metals at concentrations that exceed 20 times the toxicity characteristic limit and may exhibit the characteristics D008 . Applicable to generation of decontamination wastewater.	OAC 3745-52- 11((A))(B)(C)(D)
	The generator must determine if the waste is restricted from land disposal under 40 <i>CFR</i> 268 <i>et seq.</i> by testing in accordance with prescribed methods or use of generator knowledge of waste.	Applicable to the generation and characterization of hazardous- contaminated soil and hazardous debris resulting from excavation. Applicable to generation of decontamination wastewater.	40 CFR 268.7 OAC 3745-270-07

TypeofARAR	Requirements	Prerequisite	Citation(s)
	The generator must determine each EPA Hazardous Waste Number (Waste Code) to determine the applicable treatment standards under 40 <i>CFR</i> 268.40, Subpart D.	Applicable to the generation and characterization of hazardous- contaminated soil and hazardous debris resulting from excavation. Applicable to generation of decontamination wastewater.	40 <i>CFR</i> 268.9(a) OAC 3745-270-07 OAC 3745-270-09
	The generator must determine the underlying hazardous constituents [as defined in 40 <i>CFR</i> 268.2(i)] in the waste.	Applicable to the generation and characterization of RCR A characteristic hazardous waste (except D000 1 non- wastewaters treated by combustion, recovery of organics, or polymerization. see 268.42, Table I) and to hazardous- contaminated soil for their subsequent storage, treatment, or disposal.	40 CFR 268.9(a) OAC 3745-270-09
Accumulation of Hazardous Debris from Excavation and Screening (it is assumed that any debris resulting from excavation and screening will be accumulated for less than 90 days)	A generator may accumulate for up to 90 days or conduct treatment of hazardous wastes in containers without an Ohio EPA permit. Generators that accumulate for 90 days or conduct on-site treatment of hazardous waste in containers must comply with the personnel training, preparedness and prevention requirements, and contingency plan requirements of 40 CFR 265.16; 40 CFR 265, Subpart C; and 40 CFR 265, Subpart D, respectively.	Applicable to 90-day accumulation of debris from excavation and screening if such debris contains listed wastes or exhibits a characteristic.	40 CFR 262.34(a)(4) OAC 3745-52-34(A)(4) OAC 3745-66-70 to 66- 77
	Personal training and contingency plan requirements would appear to be administrative in nature. Arguably, some of the components/goals of the contingency plan such as: (1) to minimize the hazards to human health or environment from fire, explosion, or sudden release of hazardous waste or hazardous constituents; or (2) presence of an emergency coordinator on-site, could be viewed as substantive. If determined to be substantive, these provisions should be		e

Type of ARAR	Requirements	Prerequisite	Citation(s)
	cited as ARAR; however, the plans, details, or implementation steps should be included in the CERCLA documentation for the site (i.e., remedial design documents). Containers must be marked with the date upon which period of accumulation began and with the words "Hazardous Waste." Containers holding hazardous wastes must be kept closed except to add or remove wastes and must not be managed in a	Applicable to 90-day accumulation of debris from excavation and screening if such debris contains listed wastes or exhibits a characteristic. Applicable to 90-day accumulation of debris from excavation and screening if such debris contains listed wastes or	Citation(s) 40 CFR 262.34 (a)(2)(3) OAC 3745-52-34 (A)(2)(3) 40 CFR 264.171 40 CFR 264.172 40 CFR 264.173
	manner that would cause them to leak. Containers of hazardous waste must be maintained in good condition and comparable with the waste stored therein. Containers holding ignitable or reactive wastes must be separated from potential ignition sources and located 50 ft from the property boundary.	exhibits a characteristic.	40 CFR 264.176 40 CFR 264.17 OAC 3745-52- 34((A))(1)
Placement of Hazardous-contaminated Soil in a Staging Pile	In 1988, EPA created a new unit for the temporary management of remediation waste known as a staging pile. The staging pile is an accumulation of solid, non- flowing remediation wastes that may be used for storage of those wastes for 2 years.	Applicable to storage of hazardous- contaminated soil in staging piles. Potentially relevant and appropriate if excavated soil are determined to not contain listed wastes or exhibit the toxicity characteristics of soil.	40 CFR264.554 OAC 3745-57-74

Type of ARAR	Requirements	Prerequisite	Citation(s)
	The requirements for staging piles include the performance criteria of 40 <i>CFR</i> 264.554(d). These standards require that:		
	 the staging pile must be designed to prevent or minimize releases of hazardous waste or hazardous constituents into the environment, and 		
·	 the staging pile must be designed to minimize cross-media transfer as necessary to protect human health and the environment (by using liners, run- off/run-on controls as appropriate). 		
	The staging pile requirements also contain closure requirements (separate provisions for staging piles located in previously contaminated areas and those located in		
Conception and Stances of Whattoweton	previously uncontaminated areas). The generator must determine if the	Applicable to conception of weatowater	40 CFR 262.11
Generation and Storage of Wastewater from Equipment Decontamination (wastewater may contain listed wastes or exhibit a hazardous waste characteristic)	wastewater contains listed wastes or exhibits a characteristic, and must characterize the pollutants sufficiently to meet the waste acceptance criteria of the receiving facility. See previous requirements concerning the generation/characteristic of solid wastes.	Applicable to generation of wastewater from equipment decontamination.	OAC 3745-52-11 (A)(B)(C)(D)
Asbestos-Containing Materials at Pad 70 (worker training, material handling, containerization, transport and disposal)	The management of Asbestos Containing Materials (ACM) is subject to the technical requirements found at 40 CFR 61.145 and OAC 3745-20. These standards require:	Applicable for asbestos-containing material generated from remedial actions at Pad 70.	40 CFR 61.145 OAC 3745-20
	• That prior to the management of any asbestos material at least one trained person be present at all times that is trained in accordance with OAC3745-20-5.		

Type of ARAR	Requirements	Prerequisite	Citation(s)
	• That no visible dust emissions occur during activities and that sufficient asbestos control measures (e.g., wetting, fixing, etc.) be included within the activities to prevent fugitive emissions of asbestos particles.		
	• That asbestos wastes be controlled at all times (e.g., adequately wetted/fixed, work controls preclude the potential of rendering non-friable asbestos airborne, etc.).		
	• The emission control measures be included within the planned actions and be approved prior to implementation.		
	• Wastes be properly marked and disposed of at an approved facility.		
	The technical or substantive requirements will govern the manner in which ACM are removed, managed, packaged, and shipped for final disposal.		

ARAR =Applicable or relevant and appropriate requirement. CERCLA = Comprehensive Environmental Response, Compensation, and Liability Act. *CFR* = Code offFederal Regulations. COC = Chemical of concern. EPA = U. S. Environmental Protection Agency. OAC = Ohio Administrative Code. Ohio EPA = Ohio Environmental Protection Agency. ORC = Ohio Revised Code. PCB = Polychlorinated biphenyl. RCRA = Resource Conservation and Recovery Act. RVAAP =Resource Conservation Plant. TSCA = TToxic Substances Control Act. WBG = Winklepeck Burning Grounds. liner. A composite liner entails a system consisting of two components; each component has detailed specifications and installation requirements. The Director may approve alternate requirements if he can make the findings specified in the rule. Treatment standards are similar to LDR standards for contaminated soil, although alternative and adjusted standards may be approved or required by the Director, as long as the adjusted standard is protective of human health and the environment.

Media and Citation	Description of Requirement	Potential ARAR Status	Standard
Soil Contaminated	These rules prohibit land	LDRs apply only to RCRA	All soils subject to treatment must be treated as
with RCRA	disposal of RCRA hazardous	hazardous waste. This rule	follows:
Hazardous Waste	wastes subject to them, unless	is considered for ARAR	1) For non-metals, treatment must achieve 90%
	the waste is treated to meet	status only upon	reduction in total constituent concentration
OAC Section 3745-	certain standards that are	generation of a RCRA	(primary constituent for which the waste is
400-49	protective of human health	hazardous waste. If any	characteristically hazardous as well as for any
OAC Section 3745-	and the environment.	soils are determined to be	organic or metal UHC), subject to 3) below;
400-48 UTS	Standards for treatment of	RCRA hazardous, and if	2) For metals and carbon disulfide,
	hazardous contaminated soil	they will be disposed of	cyclohexanone, and methanol, treatment must
	prior to disposal are set forth	onsite, then this rule is	achieve 90% reduction in constituent
	in the two cited rules. Use of	potentially Applicable to	concentrations as measured in leachate from the
	the greater of either	disposal of the soils.	treated media (tested according to the TCLP or
	technology-based standards or		90% reduction in total constituent
	UTS is prescribed.		concentrations (when a metal removal
			treatment technology is used), subject to 3)
			below:
			3) When treatment of any constituent subject to
			treatment to a 90% reduction standard would
			result in a concentration less than 10 times the
			UTS for that constituent, treatment to achieve
			constituent concentrations less than 10 times
			the UTS is not required. This is commonly
			referred to as "90% capped by 10xUTS."

Table 4-1. Potential Action ARARs for Disposal of RCRA Hazardous Waste

Media and Citation	Description of Requirement	Potential ARAR Status	Standard
Debris Contaminated	These rules prescribe conditions	If RCRA hazardous	Standards are extraction or destruction methods
with RCRA Hazardous	and standards for land disposal	debris is disposed of	prescribed in OAC Section 3745-400-47.
Waste	of debris contaminated with	onsite, then these rules	
	RCRA hazardous waste. Debris	are potentially	Treatment residues continue to be subject to
OAC Section 3745-	subject to this requirement for	applicable to disposal of	RCRA hazardous waste requirements.
400-49	characteristic RCRA	the debris.	
OAC Section 3745-	contamination that no longer		
400-47	exhibits the hazardous		
	characteristic after treatment		
	does not need to be disposed of		
	as a hazardous waste. Debris		
	contaminated with listed RCRA		
	contamination remains subject to		
	hazardous waste disposal		
	requirements.		
Soils/Debris	The Director will recognize a	Potentially applicable to	A site-specific variance from the soil treatment
Contaminated with	variance approved by the	RCRA hazardous soil or	standards can be used when treatment to
RCRA Hazardous	USEPA from the alternative	debris that is generated	concentrations of hazardous constituents greater
Waste Variance	treatment standards for	and placed back into a	(i.e., higher) than those specified in the soil
	hazardous contaminated soil or	unit and that will be land	treatment standards minimizes short- and long-
OAC Section 3745-	for hazardous debris.	disposed of onsite.	term threats to human health and the
400-44			environment. In this way, on a case-by-case
			basis, risk-based LDR treatment standards
			approved through a variance process could
			supersede the soil treatment standards.
Soils Disposed of in a	Only CAMU-eligible waste can	Potentially applicable to	Design standards include a composite liner and
CAMU	be disposed of in a CAMU.	RCRA hazardous waste	a leachate collection system that is designed and
	CAMU-eligible waste includes	that is disposed of in a	constructed to maintain less than a thirty
OAC Section 3745-57-	hazardous and non-hazardous	CAMU.	centimeter depth of leachate over the liner. A
53	waste that are managed for		composite liner means a system consisting of
	implementing cleanup,		two components; each of which has detailed
	depending on the Director's		specifications and installation requirements. The
	approval or prohibition of		Director may approve alternate requirements if
	specific wastes or waste streams.		he can make the findings specified in the rule.
	Use of a CAMU for disposal		Treatment standards are similar to LDR
	does not trigger LDRs or MTRs		standards for contaminated soil, although
	as long as the standards		alternative and adjusted standards may be
	specified in the rule are		approved or required by the Director, as long as
	observed. The Director will		the adjusted standard is protective of human
	incorporate design and treatment		health and the environment.
	standards into a permit or order.		Treatment standards are de facto cleanup
			standards for wastes disposed of in a CAMU.

Table 4-1. Potential Action ARARs for Disposal of RCRA Hazardous Waste (continued)

ARAR = Applicable and relevant or appropriate requirements.

 $CAMU \equiv Corrective Action Management Unit.$

 $LDR \equiv Land Disposal Restrictions.$

MTR = Minimum technical requirements.

OAC = Ohio Administrative Code.

 $RCRA \equiv Resource Conservation and Recovery Act.$

 $\label{eq:TCLP} TCLP = Toxicity \ characteristic \ leaching \ procedure.$

UHC = Winderlying Hazardous Constituent.

 $UTS \equiv Universal Treatment Standard.$

Media and Citation	Description of Requirement	Potential ARAR Status	Standard
Soil Contaminated with	These rules prohibit land	LDRs apply only to	All soils subject to treatment must
RCRA Hazardous Waste	disposal of RCRA hazardous	RCRA hazardous waste.	be treated as follows:
	wastes subject to them, unless	This rule is considered	1) For non-metals, treatment must
OAC Section 3745-400-49	the waste is treated to meet	for ARAR status only	achieve 90% reduction in total
OAC Section 3745-400-48	certain standards that are	upon generation of a	constituent concentration (primary
UTS	protective of human health	RCRA hazardous waste.	constituent for which the waste is
	and the environment.	If any soils are	characteristically hazardous as well
	Standards for treatment of	determined to be RCRA	as for any organic or metal UHC),
	hazardous contaminated soil	hazardous, and if they	subject to 3) below;
	prior to disposal are set forth	will be disposed of	2) For metals and carbon disulfide,
	in the two cited rules. Use of	onsite, then this rule is	cyclohexanone, and methanol,
	the greater of either	potentially Applicable to	treatment must achieve 90%
	technology-based standards or	disposal of the soils.	reduction in constituent
	UTS is prescribed.		concentrations as measured in
			leachate from the treated media
			(tested according to the TCLP or
			90% reduction in total constituent
			concentrations (when a metal
			removal treatment technology is
			used), subject to 3) below;
			3) When treatment of any
			constituent subject to treatment to a
			90% reduction standard would result
			in a concentration less than 10 times
			the UTS for that constituent,
			treatment to achieve constituent
			concentrations less than 10 times the
			UTS is not required. This is
			commonly referred to as "90%
			capped by 10xUTS."
Debris Contaminated with	These rules prescribe	If RCRA hazardous	Standards are extraction or
RCRA Hazardous Waste	conditions and standards for	debris is disposed of	destruction methods prescribed in
	land disposal of debris	onsite, then these rules	OAC Section 3745-400-47.
OAC Section 3745-400-49	contaminated with RCRA	are potentially	
OAC Section 3745-400-47	hazardous waste. Debris	applicable to disposal of	Treatment residues continue to be
	subject to this requirement for	the debris.	subject to RCRA hazardous waste
	characteristic RCRA		requirements.
	contamination that no longer		
	exhibits the hazardous		
	characteristic after treatment		
	does not need to be disposed		
	of as a hazardous waste.		
	Debris contaminated with		
	listed RCRA contamination		
	remains subject to hazardous		
	waste disposal requirements.		

Potential Action ARARs for Disposal of RCRA Hazardous Waste

Description of Requirement	Potential ARAR Status	Standard
The Director will recognize a	Potentially applicable to	A site-specific variance from the
variance approved by the	RCRA hazardous soil or	soil treatment standards can be used
USEPA from the alternative	debris that is generated	when treatment to concentrations of
treatment standards for	and placed back into a	hazardous constituents greater (i.e.,
hazardous contaminated soil or for hazardous debris.	unit and that will be land disposed of onsite.	higher) than those specified in the soil treatment standards minimizes short- and long-term threats to human health and the environment. In this way, on a case-by-case basis, risk-based LDR treatment standards approved through a variance process could supersede the soil treatment
		standards.
Only CAMU-eligible waste can be disposed of in a	Potentially applicable to RCRA hazardous waste	Design standards include a composite liner and a leachate
CAMU. CAMU-eligible waste includes hazardous and non- hazardous waste that are managed for implementing clean-up, depending on the Director's approval or prohibition of specific wastes or waste streams. Use of a CAMU for disposal does not trigger LDRs or MTRs as long as the standards specified in the rule are observed. The Director will incorporate design and treatment standards into a permit or order.	that is disposed of in a CAMU.	collection system that is designed and constructed to maintain less than a thirty centimeter depth of leachate over the liner. A composite liner means a system consisting of two components; each of which has detailed specifications and installation requirements. The Director may approve alternate requirements if he can make the findings specified in the rule. Treatment standards are similar to LDR standards for contaminated soil, although alternative and adjusted standards may be approved or required by the Director, as long as the adjusted standard is protective of human health and the environment.
		Treatment standards are de facto clean-up standards for wastes
1	1	i erean ap sumanas tor wastes
	The Director will recognize a variance approved by the USEPA from the alternative treatment standards for hazardous contaminated soil or for hazardous debris. Only CAMU-eligible waste can be disposed of in a CAMU. CAMU-eligible waste includes hazardous and non- hazardous waste that are managed for implementing clean-up, depending on the Director's approval or prohibition of specific wastes or waste streams. Use of a CAMU for disposal does not trigger LDRs or MTRs as long as the standards specified in the rule are observed. The Director will incorporate design and treatment standards	The Director will recognize a variance approved by the USEPA from the alternative treatment standards for hazardous contaminated soil or for hazardous debris.Potentially applicable to RCRA hazardous soil or debris that is generated and placed back into a unit and that will be land disposed of onsite.Only CAMU-eligible waste can be disposed of in a CAMU. CAMU-eligible waste includes hazardous and non- hazardous waste that are managed for implementing clean-up, depending on the Director's approval or prohibition of specific wastes or waste streams. Use of a CAMU for disposal does not trigger LDRs or MTRs as long as the standards specified in the rule are observed. The Director will incorporate design and treatment standardsPotentially applicable to RCRA hazardous waste to a unit and that will be land disposed of onsite.

Clean Water Act	Section 404 of the Clean	Potentially applicable if	The wetland in question is
33 USC § 1344	Water Act of 1977 governs the	the Ramsdell Quarry	hydrologically isolated and
Sections 401, 404	discharge of dredged and fill	wetland is categorized	incidentally created. It has no direct
	material into waters of the	as a jurisdictional	surface water connections to any
	U.S., including adjacent	wetland by the USACE	waters of the U.S. The USACE
	wetlands.	Pittsburgh District.	would have to make a jurisdictional
		Section 401 water	determination regarding the
		quality certification	wetland's status under Section 404
		would apply regardless	of the CWA.
		of jurisdictional status	
		under Section 404. Ohio	Both EPA and USACE have
		EPA addresses Section	jurisdiction over wetlands. EPA's
		401 certification through	Section 404 guidelines are
		their Wetland	promulgated in 40 CFR § 230;
		Antidegradation Policy	USACE guidelines are promulgated
		(See below).	in 33 CFR § 320.
Executive Order 11990	EO 11990 requires that federal	Potentially applicable.	EO 11990 requirements were
Protection of Wetlands	agencies minimize the	Requires federal	addressed through the CERCLA
	destruction, loss, or	agencies to consider all	evaluation of alternative actions for
	degradation of wetlands;	alternatives to avoid or	remediation.
	preserve and enhance the	minimize activities with	
	natural and beneficial value of	adverse impacts to	
	wetlands,; and avoid support	wetlands.	
	of new construction in		
	wetlands if a practicable		
	alternative exists.		
Wetland Antidegradation	These rules prescribe the steps	Potentially applicable	The wetland in question was rated as
_	to categorize the existing	unless other wise	a Category 1 through the ORAM as
OAC Section 3745-1-54	wetland and outline the	categorized as a	prescribed by Ohio EPA. A
	procedures for the	jurisdictional wetland by	category 1 wetland generally
	antidegradation of wetlands.	the USACE Pittsburgh	supports minimal wildlife habitat,
	C C	district. In which case	hydrologic, and recreational
		the wetland would fall	functions. The impact as a result of
		under requirement in the	excavation would not result in
		Clean Water Act for	significant degradation to the
		CERCLA wetlands.	aquatic ecosystem - as determined
			consistent with 40 CFR part
			230.10(2). The results of the action
			would result in better water quality.
		1	I wanted and the second states and the secon
			Ohio EPA could require mitigation
			Ohio EPA could require mitigation for loss of wetland habitat.

ARAR = Applicable and relevant or appropriate requirements.

CAMU = Corrective Action Management Unit.

 $LDR \equiv Land Disposal Restrictions.$

MTR = Minimum technical requirements.

 $OAC \equiv Ohio Administrative Code.$

 $RCRA \equiv Resource Conservation and Recovery Act.$

 $TCLP \equiv Toxicity \ characteristic \ leaching \ procedure.$

UHC = Underlying Hazardous Constituent. UTS = Universal Treatment Standard.

ATTACHMENT 8

Risk Assessment and Toxicology Evaluation

Risk Assessment and Toxicology Evaluation

- 2 This evaluation was prepared to address Question B of the statement of service, "Are the
- *exposure assumptions, toxicity data, cleanup levels and remedial action objectives (RAOs) used at the time of the remedy selection still valid?*"
- 5 This is the second five-year review for Camp Ravenna. The following areas of concern (AOCs)6 are being evaluated.
- 7 Load Line 1

1

- 8 Load Line 2
- 9 Load Line 3
- 10 Load Line 4
- 11 Load Line 12
- 12 Winklepeck Burning Grounds (WBG)
- 13 Ramsdell Quarry Landfill (RQL)

14 Since many of these areas have the same constituents of concern (COCs) and a review of toxicity

15 criteria changes was performed altogether. Table A.8-1 indicates that toxicity criteria changes

16 may have occurred for some COCs since their original records of decision (RODs) were signed

17 (e.g., for Load Lines 1 - 4, Load Line 12, and RQL), however, no new toxicity criteria changes

- 18 have occurred since the last five-year review was completed in 2012 (USACE-LRB 2012).
- 19 Therefore, the conclusions from the previous five-year review regarding continued

20 protectiveness of existing toxicity criteria used at the time of the remedy remain valid for this

- 21 report. Since that time, an updated risk assessment was performed for WBG in 2014 as part of a
- 22 remedial investigation/feasibility study (RI/FS) supplement (USACE-LRL 2014). This
- supported a 2015 Explanation of Significant Differences (ESD) for WBG (USACE-LRL 2015).

24 In 2010, facility-wide risk-based cleanup goals were developed (SAIC 2010) to assist in

25 streamlining the site-specific human health risk assessment process following investigation of

26 potentially contaminated site media. In 2012, USACE issued a position paper outlining the

- 27 application and use of these facility-wide cleanup goals, which indicated that site-specific
- 28 cleanup goals for residential or military training should be used in the streamlined risk evaluation
- 29 process (USACE-LRL 2012). In 2014 the Army National Guard (ARNG) issued a final
- 30 technical memorandum regarding land uses and revised risk assessment process for the Ravenna

31 Army Ammunition Plant (ARNG 2014), which indicated that in addition to the site-specific

exposure assessments described in the 2012 position paper, the USEPA's regional risk-based
 screening levels (RSLs) for industrial use should also be used in the risk evaluations (currently

34 USEPA 2016a). The three land uses and representative receptors identified in that technical

- 35 memorandum are (a) unrestricted (residential) land use, represented by a resident receptor (adult
- and child), (b) military training land use, represented by a National Guard Trainee, and (c)
- 37 commercial/industrial use, represented by an industrial receptor as used in the development of
- 38 USEPA regional generic risk-based screening levels for the composite worker. Note that a
- 39 comparison between the current USEPA industrial use RSLs and the previously developed site-
- 40 specific cleanup goals (for the areas covered by this review, or the facility-wide cleanup goals)
- 41 indicates that the USEPA industrial RSLs may not be protective of the assumed site-specific
- 42 exposures (the National Guard Trainee) for certain constituents of concern. This is shown in
- 43 Table A.8-2; site-specific cleanup goals developed to protect a National Guard Trainee in the

- 44 Load Lines 1 4 Interim ROD for aluminum, barium, hexavalent chromium, manganese are
- 45 lower than the current USEPA industrial use RSLs, as are cleanup goals developed in the RQL
- 46 for manganese and polycyclic aromatic hydrocarbons (semi-volatiles). The 2010 facility-wide
- 47 cleanup goal for Aroclor-1254 is lower than the current USEPA industrial use risk-based
- 48 screening level. This issue does not currently affect protectiveness, since the cleanup goals
- 49 established in the decision documents and the ESD remain protective of current exposure and the
- 50 USEPA industrial use risk-based cleanup goals are not being implemented as site-specific
- 51 cleanup goals at Load Lines 1 4 or RQL at this time.
- 52 Area-specific considerations for risk assessment are provided for each area below.
- 53 <u>Load Lines 1 4</u>

54 Human Health

- 55 Site-specific risk-based cleanup goals were developed for load lines 1 4 based on protection of
- the current and reasonably anticipated future use of these areas of the site as a National Guard
- 57 training site. These are presented in Table 3 of the 2007 Interim Record of Decision (ROD) for
- 1 4. A National Guard Trainee was identified as the reasonable maximum exposed
- individual for load lines 1 4, following the same basic exposure assessment. This receptor was
- assumed to train at the site 24 hours per day for 24 days per year for inactive duty training and 24
- 61 hours per day for 15 days per year for annual training for their 25 year enlistment period.
- 62 Conservative estimates were made of how much contaminated soil and sediment this person
- would encounter via incidental ingestion, inhalation of dust particles, and skin contact. The
 USEPA's currently recommended default exposure factor values (USEPA 2014) are generally
- 65 less conservative than what was used in the site-specific risk assessment and the exposure
- 66 assessments used at the time of the risk assessments for these areas remains valid. The cleanup
- 67 goals were designed to be fully protective of all trainee activities with the sites, assuming that the
- trainee would be exposed to surface soil, which was defined as the top four feet. Remediation
- 69 was limited to the top four feet of soil. The intention of the original exposure assessment
- supporting development of these cleanup goals was to allow the trainee to move about the site on
- foot or in a vehicle with unlimited exposure to surface soil. The only restrictions would be to
- represented to be consistent with anticipated to be consistent with anticipated
- 73 military uses of the site.
- 74 Although the reasonable future land use remains the same the Ohio Army National Guard
- 75 (OHARNG) must adhere to the digging and vehicle cleaning restrictions implied by the exposure
- assessment defined in the Interim ROD for load lines 1 4. Specifically, all site visitors and site
- vsers should be monitored to ensure that their actual exposure time does not exceed the exposure
- time assumed for development of cleanup goals. In addition, vehicles traversing from one load
- 79 line area to another should be cleaned between areas, to ensure that dirt is not being dug up and
- 80 dragged across sites. This can be cumbersome and interferes with OHARNG planned training
- 81 activities at the site.
- 82 Load lines 1 4 are not currently being used for OHARNG training, although that is their
- intended land use. The site inspection did not identify evidence of trespass or OHARNG trainingin these areas.
- 85 Subsequent to the remedy implementation (removal of all soils containing contamination above 86 cleanup goals established in the ROD), additional characterization (sampling and analysis) was

- 87 performed to evaluate the presence and extent of contamination in the surface and subsurface
- soils and surface water and sediment at Load Lines 1 4 (Leidos 2015, Leidos 2016). The
- 89 objective of this characterization was to determine if the areas may meet unrestricted
- 90 (residential) land use requirements, or, if additional remediation may be appropriate in order for
- 91 the areas to meet those requirements. The sediment and surface water sampling data will also be
- 92 evaluated for potential effects on ecological receptors which may be exposed to those media. A
- FS addendum is currently being drafted to determine whether additional soil cleanup may be
- 94 warranted in order to remove restrictions on use of the sites by OHARNG.
- 95 As indicated earlier (Table A.8-1), no additional toxicity changes have occurred for any of the
- 96 COCs in the ROD since the last five-year review was conducted. As no actual exposures are
- 97 occurring at the sites, the cleanup goals specified in the Interim ROD remain protective.

98 Environmental Health

- 99 The conclusions from evaluating the ecological risk assessment and current conditions of the site
- 100 for media covered by the 2007 Interim ROD (soil and dry sediment) at the time of the previous
- 101 five-year review are still valid and are repeated here. (Note: the draft report evaluating potential
- 102 ecological effects from exposure to any site contaminants in surface water and sediment was not
- 103 available at the time this review was prepared).
- 104 Because the majority of constituents of ecological concern are co-located with human health
- 105 COCs, remedial activities implemented to address human health COCs will serve to reduce the
- 106 concentrations and number of constituents of ecological concern in soil to which ecological
- 107 receptors are exposed, resulting in lowered ecological risk. Based on the expected impact to site
- 108 conditions at load lines 1-4 from remediation associated with achieving human health cleanup
- 109 goals and proposed vehicular training activities (e.g., soil compaction, vegetation damage, etc.),
- 110 ecologically based cleanup goals have been determined to be unnecessary (USACE 2007). Since
- 111 the load lines 1-4 and Load Line 12 will not be managed for ecological purposes but instead will
- 112 have intensive use by the OHARNG, protection of human health will drive the RAOs and the
- 113 remedy would adequately protect the environment. The Integrated Natural Resource
- 114 Management Plan for the site (OHARNG 2007) stipulates that the site will be managed to
- provide for sustainable, healthy ecosystems and comply with applicable environmental laws and
- regulations. As such, the remedy allowing for OHARNG use of the site would continue to
- 117 provide adequate protection for the environment.
- 118 Significant Finding
- 119 The exposure assumptions, toxicity data, cleanup levels and RAOs used at the time of the
- 120 remedy selection are still valid. The USEPA's current recommended default exposure factor
- values are generally less conservative than what was used to initially assess risk and develop
- 122 site-specific cleanup goals, so the basis of the exposure assessment remains protective. No
- 123 exposures are currently occurring at the site. No new toxicity criteria changes have occurred in
- 124 the past five years that would affect the protectiveness of the cleanup goals.

125 <u>RVAAP-12, Load Line 12</u>

126 Human Health

- 127 A site-specific risk-based cleanup goal for arsenic in soil and dry sediment was developed for
- 128 Load Line 12 based on protection of the current and reasonably anticipated future use of this area
- 129 of the site as a National Guard Training site. This is presented in Table 1 of the 2009 ROD. A

- 130 National Guard Trainee was identified as the reasonable maximum exposed individual for Load
- Line 12, following the same basic exposure assessment described above for load lines 1 4. This
- receptor was assumed to train at the site 24 hours per day for 24 days per year for inactive duty
- training and 24 hours per day for 15 days per year for annual training for their 25 year enlistment
- period. Conservative estimates were made of how much contaminated soil and sediment thisperson would encounter via incidental ingestion, inhalation of dust particles, and skin contact.
- The USEPA's currently recommended default exposure factor values (USEPA 2014) are
- 137 generally less conservative than what was used in the site-specific risk assessment, therefore, the
- 138 exposure assessments used at the time of the risk assessments for this area remains valid. The
- 139 cleanup goals were designed to be fully protective of all trainee activities with the site, assuming
- 140 that the trainee would be exposed to surface soil, which was defined as the top four feet of soil.
- 141 Remediation was limited to the top four feet of soil. The intention of the original exposure
- 142 assessment supporting development of these cleanup goals was to allow the trainee to move
- about the site on foot or in a vehicle with unlimited exposure to surface soil. The only
- restrictions would be to exposure to soils deeper than four feet. This was intended to be
- 145 consistent with anticipated military uses of the site.
- 146 Although the reasonable future land use remains the same (it is intended to be used by the
- 147 OHARNG), the OHARNG must adhere to the digging and vehicle cleaning restrictions implied
- by the exposure assessment defined in the 2009 ROD for Load Line 12. Specifically, all site
- 149 visitors and site users should be monitored to ensure that their actual exposure time does not
- 150 exceed the exposure time assumed for development of cleanup goals. In addition, vehicles
- 151 traversing from one load line area to another should be cleaned between areas, to ensure that dirt
- 152 is not being dug up and dragged across sites. This can be cumbersome and interferes with
- 153 OHARNG planned training activities at the site.
- 154 Load Line 12 is not currently being used for OHARNG training, although that is its intended
- 155 land use. The site inspection did not identify evidence of trespass or OHARNG training in these
- areas. Subsequent to the remedy implementation (removal of all soils containing contamination
- above cleanup goals established in the ROD), additional characterization (sampling and analysis)
- 158 was performed to evaluate the presence and extent of contamination in the surface and
- 159 subsurface soils (Leidos 2015) and in wet sediment and surface water at the site (SAIC 2012). A
- 160 FS addendum is currently being drafted to determine whether additional cleanup may be
- 161 warranted in order to remove restrictions on use of the site by OHARNG.
- 162 As indicated earlier (Table A.8-1), no additional toxicity changes have occurred for any of the
- 163 COCs in the ROD since the last five-year review was conducted. As no actual exposures are
- 164 occurring at the sites, the cleanup goals specified in the ROD remain protective.
- 165 In 2012, a Phase III RI report was drafted, which characterized the nature and extent of
- 166 constituents of potential concern in wet sediment and surface water at Load Line 12 (SAIC
- 167 2012). That report concluded that there are no COCs that pose unacceptable risk in these media
- 168 at this site. Groundwater is being evaluated separately as an area of concern for the entire
- 169 facility under RVAAP-66.

170 Environmental Health

- 171 The conclusions from evaluating the ecological risk assessment and current conditions of the site
- 172 at the time of the previous five-year review are still valid.

- 173 Because the majority of constituents of ecological concern are co-located with human health
- 174 COCs, remedial activities implemented to address human health COCs will serve to reduce the
- 175 concentrations and number of constituents of ecological concern in soil to which ecological
- receptors are exposed, resulting in lowered ecological risk. Based on the expected impact to site
- 177 conditions at Load Line 12 from remediation associated with achieving human health cleanup
- goals and proposed vehicular training activities (e.g., soil compaction, vegetation damage, etc.),
 ecologically based cleanup goals have been determined to be unnecessary (USACE 2007). Since
- 180 Load Line 12 will not be managed for ecological purposes but instead will have intensive use by
- 181 the OHARNG, protection of human health will drive the RAOs and the remedy would provide
- adequate protection of the environment. The Integrated Natural Resource Management Plan for
- 183 the site (OHARNG 2007) stipulates that the site will be managed to provide for sustainable,
- 184 healthy ecosystems and comply with applicable environmental laws and regulations. As such,
- 185 the remedy allowing for OHARNG use of the site would continue to provide adequate protection
- 186 for the environment. Furthermore, the Phase III RI of wet sediment and surface water
- 187 considered the presence of wetlands and perennial surface water in channelized ditches/streams
- and ponds at the site as important and significant ecological resources near potential
- 189 contamination being investigated in the area of concern. The Phase III RI also concluded that no
- 190 further action was warranted to protect ecological receptors in this area.

191 Significant Finding

- 192 The exposure assumptions, toxicity data, cleanup levels and RAOs used at the time of the
- remedy selection for dry soil and sediment are still valid. No exposures are currently occurring
- 194 at the site. The USEPA's current recommended default exposure factor values are generally less
- 195 conservative than what was used to initially assess risk and develop site-specific cleanup goals,
- 196 so the basis of the exposure assessment used to develop cleanup goals for the site remains
- 197 protective. No new toxicity criteria changes have occurred in the past five years that would
- 198 affect the protectiveness of the cleanup goals. Additional characterization of wet sediment and
- surface water indicated that there are no COCs that pose unacceptable risk to human health and
- 200 the environment in these media at this site, therefore, there is no new evidence of any
- 201 contamination which would call into question the protectiveness of the remedy.

202 Ramsdell Quarry Landfill

203 Human Health

204 In 2009, a ROD was signed indicating that soil excavation was needed to protect security guard 205 and maintenance worker receptors who might be exposed to site media. The previous five year 206 review indicated that those cleanup goals remained valid and protective, however, unanticipated 207 conditions (presence of asbestos) were encountered during implementation of the remedy, which 208 prevented full implementation of the remedy. In 2013, a ROD amendment was signed which 209 selected a new remedy that consisted of installing a security fence with signage around the 210 perimeter of RQL and removal of asbestos containing material at the ground surface within the 211 quarry bottom (SAIC 2015). ROL would be closed to all standard training activities and the 212 fence would help enforce those restrictions. As stated in the ROD amendment:

- 213 "Surveying; sampling; and essential security, safety, periodic maintenance,
- 214 *natural resources management, and other directed activities may be conducted at*
- 215 *ROL* only after personnel have been properly briefed on potential hazards. A
- 216 portion of RQL is also considered an MRS, designated RVAAP-0001-R-01.

- 217 Investigation and decisions regarding the need for remediation of munitions and
- 218 *explosives of concern (MEC) and munitions debris (MD) will be conducted as*
- 219 part of the Military Munitions Response Program (MMRP). Individuals will be
- 220 granted access to the AOC after being properly briefed on the
- 221 *hazards/restrictions. Once the fence is complete and LUCs are in place, this*
- 222 alternative will result in reduced potential for exposure to contaminated soil by
- National Guard receptors. This alternative will also protect the MRS and landfill
 cap on the closed, sanitary landfill within RQL."
- According to the 2015 Annual Land Use Control Monitoring Report (Vista 2016), the fence and signage has been installed and are in good shape.
- 227 <u>Significant Finding</u>
- 228 The remedial action objectives identified in the 2013 ROD amendment were established to
- 229 eliminate exposure to site contaminants. Fencing was installed and training activities are not
- allowed on this area of the site. The RAOs used at the time of remedy selection are still valid
- and functioning to eliminate the exposure that could lead to unacceptable risks.
- 232 <u>Winklepeck Burning Grounds</u>

233 Human Health

A ROD was initially signed in 2008 indicating cleanup was to be performed to allow use of the site as a Mark 19 Grenade Machine Gun range by a National Guard Maintenance Soldier. It is currently being used for this purpose.

237 In 2015, an ESD was developed for WBG (USACE-LRL 2015) following a draft RI/FS 238 supplement that was conducted after the initial ROD remedial action. These actions were taken 239 to remove restrictions associated with the previous remedial action. The site is planned to be 240 further developed as a Multi-Purpose Machine Gun range, which will require intrusive activities 241 at various depths over the entire AOC. Additionally, the U.S. Army determined that future use 242 of the site may involve full-time employees, thereby requiring that it meet the applicable 243 standards for commercial/industrial land use. The draft RI/FS supplement indicates that the 244 AOC has three COCs related to commercial/industrial land use (USACE-LRL 2014). Although 245 the ESD does not list the three COCs or their associated commercial/industrial cleanup goals, a 246 review of the RI/FS Supplement indicates that TNT, RDX, and benzo(a)pyrene were identified 247 as exceeding the commercial/industrial RSLs. Table A.8-2 includes the USEPA 248 commercial/industrial RSLs for these constituents that were identified at the time of the 249 supplemental RI/FS. The USEPA RSLs are updated every six months; it appears that values 250 from the May 2013 version of the USEPA RSL table were used, consistent with the date of the 251 Final Risk Assessment Assumptions Document (USACE-LRL 2013). Tables A.8-1 and A.8-2, 252 indicate that although no recent changes in toxicity criteria have occurred for these three COCs, 253 the current USEPA RSLs for industrial use are now greater than (less conservative than) the 254 industrial USEPA RSLs used at the time of the RI/FS supplement. This is due to slight updates 255 to various exposure factor values that USEPA uses to develop the RSLs, which are generally less 256 conservative than previous default exposure factor values (USEPA 2014). In addition, chemical 257 and physical parameter values may have been slightly updated, and those will affect the dermal 258 and inhalation exposure pathways. However, none of these newer exposure assessment

259 recommendations from the USEPA affect the protectiveness of the remedy.

260 Environmental Health

- As stated in the first five-year review (2012), the determination of ecological risk was made by
- using field biological measurements at the site. This provides a significant advantage over a
- 263 screening level ecological risk assessment, which tends to rely on laboratory-based toxicity
- evaluations and the use of laboratory test subjects rather than wildlife. As such, the site-specific
- 265 observations and measurements made during the field studies would take precedence over any
- changes in toxicity criteria developed in the laboratory. Since the WBG will not be managed for
- ecological purposes and instead will have intensive use by the OHARNG, protection of human
- health drives the remedial action objectives (RAOs) and the remedy would provide adequate
- 269 protection of the environment.
- 270 The Integrated Natural Resource Management Plan for the site (OHARNG 2007) stipulates that
- the site will be managed to provide for sustainable, healthy ecosystems and comply with
- applicable environmental laws and regulations. As such, the remedy allowing for OHARNG use
- 273 of the site would continue to provide adequate protection for the environment.

274 <u>Significant Finding</u>

- 275 The exposure assumptions, toxicity data, cleanup levels, and RAOs used at the time of the
- remedy selection (2009 ROD) are still valid. The additional cleanup identified in the 2015 ESD
- remains valid as there have been no changes in recommended exposure factor values or toxicity
- values that would affect the protectiveness of using the USEPA commercial/industrial RSLs in
- 279 place at that time (circa 2013) as cleanup goals.

280 <u>References</u>

- 281 Army National Guard Bureau (ARNG) 2014. Final Technical Memorandum for Nancy
- 282 Zikmanis Environmental Supervisor, Ohio Environmental Protection Agency Northeast District
- 283 Office: Land Uses and Revised Risk Assessment Process for the Ravenna Army Ammunition
- 284 Plant (RVAAP) Installation Program, Portage/Trumball Counties, Ohio.
- 285 Leidos 2015. Draft. PBA13 Remedial Investigation Sample and Analysis Plan Addendum for
- Load Lines 1, 2, 3, 4 and 12. Ravenna Army Ammunition Plant, Ravenna, Ohio. Prepared for the USACE Louisville District.
- 288 Leidos 2016. Final. PBA13 Remedial Investigation Sample and Analysis Plan Addendum for
- 289 Surface Water and Sediment at Load Lines 1, 2, 3, 4. Ravenna Army Ammunition Plant,
- 290 Ravenna, Ohio. Prepared for the USACE Louisville District.
- 291 Sciences Applications International Corporation (SAIC) 2010. Facility-Wide Human Health
- 292 Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio.
- 293 SAIC 2012. Draft Phase III Remedial Investigation Report for Wet Sediment and Surface Water
- at RVAAP-12 Load Line 12. Ravenna Army Ammunition Plant, Ravenna, Ohio. Prepared for
 the USACE Louisville District.
- 296 SAIC 2015. Final Record of Decision Amendment for Soil and Dry Sediment at the RVAAP-01
- 297 Ramsdell Quarry Landfill. Ravenna Army Ammunition Plant, Ravenna, Ohio. Prepared for the
- 298 USACE Louisville District.
- 299 U.S. Army Corps of Engineers Buffalo District Office (USACE-LRB) 2012. Final First
- 300 Installation-Wide Five-Year Review Report for RVAAP-01 Ramsdell Quarry Landfill, RVAAP-

- 301 05 Winklepeck Burning Grounds, RVAAP-08 Load Line 1, RVAAP-09 Load Line 2, RVAAP-
- 302 10 Load Line 3, RVAAP-11 Load Line 4, RVAAP-12 Load Line 12 Ravenna Army
- 303 Ammunition Plant, Ravenna Ohio, Prepared for U. S. Army Base Realignment and Closure
- 304Division Army National Guard, Ohio Army National Guard
- 305 U.S. Army Corps of Engineers Louisville District Office (USACE-LRL) 2012. Position Paper
 306 for the Application and Use of Facility-Wide Human Health Cleanup Goals.
- 307 USACE-LRL. Final Risk Assessment Assumptions Document (RAAD): Addendum to the Work
- 308 Plan for the Additional Evaluation of the RVAAP-05 Winklepeck Burning Grounds,
- 309 RVAAP/Cam Ravenna, Ohio
- 310 USACE-LRL 2014. Draft Remedial Investigation / Feasibility Study Supplement for RVAAP-
- 311 05 Winklepeck Burning Grounds, Former Ravenna Army Ammunition Plant / Camp Ravenna,
- 312 Portage and Trumbull Counties, Ohio. Prepared for RVAAP/Camp Ravenna
- 313 USACE-LRL 2015. Final Explanation of Significant Differences for Post-ROD Changes to the
- 314 Remedy at RVAAP-05 Winklepeck Burning Grounds, Former Ravenna Army Ammunition
- 315 Plant / Camp Ravenna, Portage and Trumbull Counties, Ohio. Prepared for National Guard
- 316 Bureau.
- 317 U.S. Environmental Protection Agency (USEPA) 1990. National Oil and Hazardous Substances
- Pollution Contingency Plan, Final Rule, FR Vol. 55, No. 46, March 8, 1990, available from U.S.
- 319 Government Printing Office, Washington, D.C
- 320 USEPA 2003. Human Health Toxicity Values in Superfund Risk Assessments. OSWER
- 321 Directive 9285.7-53. December.
- 322 USEPA 2004, Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation
- 323 Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Final,
- 324 EPA/540/R/99/005, OSWER 9285.7-02EP, Office of Solid Waste and Emergency Response,
- 325 Washington, DC (including 2007 updates on-line);
- 326 http://www.epa.gov/oswer/riskassessment/ragse/index.htm
- 327 USEPA 2009, Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health
- 328 Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment), EPA-540-
- 329 R-070-002 (January), http://www.epa.gov/oswer/riskassessment/ragsf/
- USEPA 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard
 Default Exposure Factors. OSWER Directive 9200.1-120.
- 332 http://www.epa.gov/oswer/riskassessment/pdf/superfund-hh-exposure/OSWER-Directive-9200-
- 333 1-120-ExposureFactors.pdf
- 334 USEPA 2015a, Assessment of Mitigation Systems on Vapor Intrusion: Temporal Trends,
- Attenuation Factors, and Contaminant Migration Routes under Mitigated And Non-mitigated
 Conditions. EPA/600-R-13-241.
- 337 USEPA June 2015b. OSWER Technical Guidance for Assessing and Mitigating the Vapor
- Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. OSWER Publication 9200.2 154.
- 340 USEPA 2016a, Regional Screening Levels (RSL) Summary Table, May 2016 (table last
- 341 updated); available via EPA Region web sites, e.g.,

- 342 https://www.epa.gov/risk/regional-screening-levels-rsls
- 343 USEPA 2016b, Integrated Risk Information System (IRIS), National Center for Environmental
- 344 Assessments. http://www.epa.gov/iris/
- 345 USEPA 2016, OSWER Vapor Intrusion Assessment VISL Calculator Version 3.5.1, June 2016,
- 346 <u>http://www.epa.gov/vaporintrusion</u>
- 347 USEPA Region X. December 2012. Office of Environmental Assessment Recommendations
- 348 Regarding TCE Toxicity in Human Health Assessments.
- 349 Vista 2016. Final 2015 Annual Land Use Control Monitoring Report, RVAAP-01 Ramsdell
- 350 Quarry Landfill and RVAAP-05 Winklepeck Burning Grounds.

Constituent of Concern	Area	Media	Cleanup Goal Basis	Date of Risk Assessment / ROD / ESD	Toxicity Criteria Last Reviewed in IRIS	Current Toxicity Criteria Source (and date if not IRIS)	Change in Toxicity Criteria since ROD/Risk Assessment?
Inorganics							
Aluminum	LL1 - 4	soil and dry sediment	Risk	2004 / 2007	1987	PPRTV (2006)	No, derivation of risk-based concentrations used current toxicity criteria
Antimony	LL1 - 4	soil and dry sediment	Risk	2004 / 2007	1987	IRIS	No, derivation of risk-based concentrations used current toxicity criteria
Arsenic	LL1 - 4, LL 12	soil and dry sediment	Risk	2004 / 2007, 2009	1991 (oral reference dose), 1994 (carcinogencity)	IRIS (cancer criteria and oral reference dose), CalEPA (inhalation reference dose, 2008)	No change in primary toxicity criteria for ingestion; new Tier III toxicity source (CalEPA) for inhalation reference concentration.
Barium	LL1 - 4	soil and dry sediment	Risk	2004 / 2007	2005 (oral reference dose), 1994 (inhalation reference concentration and carcinogencity)	IRIS (oral reference dose), HEAST (inhalation reference concentration)	Yes, updated toxicity criteria indicates barium is less toxic now than at time of derivation of risk-based cleanup goal
Cadmium	LL1 - 4	soil and dry sediment	Risk	2004 / 2007	1989 (oral reference dose), 1987 (carcinogencity)	IRIS (inhalation unit cancer risk and oral reference dose), ATSDR 2012 (inhalation reference concentration)	No change in primary toxicity criteria for ingestion; new Tier III toxicity source (ATSDR) for inhalation.
Chromium, hexavalent	LL1 - 4	soil and dry sediment	Risk	2004 / 2007	1998	IRIS (oral reference dose, inhalation reference concentration, and inhalation unit cancer risk), New Jersey 2008 (oral cancer slope factor)	Yes, updated toxicity criteria for carcinogenicity via oral exposure could increase toxicity, as evaluated in 2012 Five Year Review.
Lead	LL1 - 4	soil and dry sediment	Risk	2004 / 2007	2004 (oral reference dose), 1988 (carcinogencity)	USEPA Adult lead model (2009 update)	Yes, the Adult Lead Model was updated in 2009. This was assessed in the 2012 Five Year Review; this update does not affect protectiveness
Manganese	LL1 - 4	soil and dry sediment	Risk	2004 / 2007	1995 (oral reference dose), 1993 (inhalation reference concentration), 1988(carcinogencity)	IRIS	No, derivation of risk-based concentrations used current toxicity criteria
Explosives							
2,4,6-TNT	LL1 - 4	soil and dry sediment	Risk	2004 / 2007	1988 (oral reference dose), 1989 (carcinogencity)	IRIS	No, derivation of risk-based concentrations used current toxicity criteria
RDX	LL1 - 4, WBG	soil and dry sediment	Risk	2004 / 2007, 2008/2013/2015	1988 (oral reference dose), 1990 (carcinogencity)	IRIS	No, derivation of risk-based concentrations used current toxicity criteria
PCBs							
Aroclor-1254	LL1 - 4	soil and dry sediment	Risk	2004 / 2007	1994	IRIS	No, derivation of risk-based concentrations used current toxicity criteria
SVOCs		· · · · ·					
Benz(a)anthracene	LL1 - 4, RQL, WBG	soil and dry sediment	Risk	2004 / 2007, 2006/2009, 2008/2013/2015	1994	IRIS (oral cancer slope factor), CalEPA 2011 (inhalation unit cancer risk)	No, derivation of risk-based concentrations used current toxicity criteria
Benzo(a)pyrene	LL1 - 4, RQL, WBG	soil and dry sediment	Risk	2004 / 2007, 2006/2009, 2008/2013/2015	1994	IRIS (oral cancer slope factor), CalEPA 2011 (inhalation unit cancer risk)	No, derivation of risk-based concentrations used current toxicity criteria
Benzo(b)fluoranthene	LL1 - 4, RQL, WBG	soil and dry sediment	Risk	2004 / 2007, 2006/2009, 2008/2013/2015	1994	IRIS (oral cancer slope factor), CalEPA 2011 (inhalation unit cancer risk)	No, derivation of risk-based concentrations used current toxicity criteria
Dibenz(a,h)anthracene	LL1 - 4, RQL, WBG	soil and dry sediment	Risk	2004 / 2007, 2006/2009, 2008/2013/2015	1990	IRIS (oral cancer slope factor), CalEPA 2011 (inhalation unit cancer risk)	No, derivation of risk-based concentrations used current toxicity criteria
Indeno(1,2,3-cd)pyrene	RQL, WBG	soil and dry sediment	Risk	2006/2009, 2008/2013/2015	1990	IRIS (oral cancer slope factor), CalEPA 2011 (inhalation unit cancer risk)	No, derivation of risk-based concentrations used current toxicity criteria

Table A.8-1 Summary of Toxicity Criteria Changes for RVAAP Human Health Constituents of Concern

Current toxicity criteria source identified in the May 2016 USEPA regional risk-based screening levels

IRIS is the USEPA Integrated Risk Information System, the primary source of toxicity criteria for CERCLA.

PPRTV are the USEPA's provisional peer reviewed toxicity criteria, the secondary source of toxicity criteria for CERCLA, when IRIS toxicity criteria are absent.

CalEPA is the California Environmental Protection Agency, a tertiary source of toxicity criteria for CERCLA, when IRIS toxicity criteria are absent.

HEAST is the USEPA's health effects summary assessment table, a tertiary source of toxicity criteria for CERCLA, when IRIS toxicity criteria are absent.

	Decision Document based CUG				National Guard Trainee Surface Soil FWCUG		Surface Soil	Subsurface soil	Resident Farmer Adult FWCUG		2013 Residential RSL	Current (2016) EPA	
Constiuent of Concern	LL 1-4, 12 (2007/2009)	RQL (2009)	WBG (2008)	WBG (2015)	2010 FWCUG	Non- Cancer HI = 1	Cancer Risk = 10 ⁻⁵	Background	Background	Non- Cancer HI = 1	Cancer Risk = 10 ⁻⁵	for Chemicals w/No FWCUG 10 ⁻⁵ or HI =1	RSL Industrial Use 10 ⁻⁵ or HI=1
Inorganics													
Aluminum	34,942				34,960	34,960	*	17,700	19,500	529,229	*		1,100,000
Antimony	2,458				136	1,753	*	0.96	0.96	136	*		470
Arsenic	31				19.8	1,140	27.8	15.4	19.8	82.1	4.25		30
Barium	3,483				3,506	3,506	*	88.4	124	89,656	*		220,000
Cadmium	109				109	3,292	109	0	0	223	12,491		980
Chromium (hexavalent)	16				16.4	56.1	16.4	*	*	904	1,874		63
Lead	1,995				4,000			26.1	19.1			4,000	800
Manganese	1,800 (surface) / 3.030 (subsurface)	1,800			3,030	351	*	1,450	3,030	14,817	*		26,000
Explosives - Propellants													
2,4,6 Trinitrotoluene	1,646			420	211	2,488	4,643	*		211	328		510
RDX	838		617	240	1,452	17,113	1,452	*		1,632	*		280
Semi-Volatiles													
Benzo(a) anthracene	105	13			2.21	*	47.7			*		2.21	29
Benzo(a) pyrene	10	1.3	7.5	2.1	0.221	*	4.77			*		0.221	2.9
Benzo(b) fluoranthene	105	13	75		2.21	*	4.77			*		2.21	29
Dibenz(a,h) anthracene	10	1.3			0.221	*	4.77			*		0.221	2.9
Indeno(1,2,3-cd) pyrene		13			2.21	*	47.7			*		2.21	29
PESTICIDES & PCBs													
PCB-1254	35				2	54.9	34.6			3.48		2.03	9.7

Table A.8-2 Comparison of Decision Document-Based CUG with Facility Wide Cleanup Goals and Current USEPA Risk-Based Screening Levels for Industrial Use for COCs Covered by this Five Year Review

All units are mg/kg

This table is adopted from Table 7-1 of the Characterization Sampling Report of Load Lines 1,2,3,4 and 12 (Prudent 2013)

Current EPA RSL are the May 2016 USEPA regional risk-based screening levels

ATTACHMENT 9 Public Notices

AFFIDAVIT OF DISTRIBUTION

STATE OF: Ohio

COUNTY OF: Summit

I, Ann Hartman, clerk of THE BEACON JOURNAL PUBLISHING COMPANY, publishers of THE AKRON BEACON JOURNAL, on oath, say that this notice has been published ONE TIME on the 21st day of August 2016, for U.S. Army Corps of Engineers in said paper printed and published in the City of Akron, County of Summit, State of Ohio, and of general circulation therein.

SIGNED: Am Hartman

Sworn to before me, and subscribed in my presence this Y9tL4 day of Sept _, 2016.

Kimperey J. Anderson Notary Public, Summit County, Ohio

My Commission Expires 4/2/2020

Notary Seal:

Kimberly J. Anderson **Resident Summit County** Notary Public, State of Ohio My Commission Expires: 04/02/2020

PUBLIC NOTICE

Camp Ravenna Joint Military Training Center Army National Guard Begins Second Five-Year Review

The Army National Guard has begun a second five-year review of environmental remedies undertaken as part of the Ravenna Army Ammunition Plant Restoration Program at the Camp Ravenna Joint Military Training Genter in Portage and Trumbull Counties, Ohio. The focus of the five-year review will be the following sites: Ramsdell Quarry Landfill, Winklepeck Burning Grounds, Load Line 1, Load Line 2, Load Line 3, Load Line 4, and Load Line 12.

Ramsdell Quarry Landfill is located in the eastern section of Camp Ravenna. It was an abandoned quarry that was used as a landfill for domestic, commercial, industrial, and solid wastes. Soil and sediment were contaminated by polycyclic aromatic hydrocarbons (PAHs) from these activities. A Record of Decision (ROD) was signed in 2009 that established excavation and off-site disposal of contaminated soil and sediment. Miscellaneous debris containing asbestos was discovered during implementation of the remedy in 2010. The remedy was subsequently revised to include installation of a security fence around the landfill and best management practices to remove surficial asbestos-containing material (ACM) through non-intrusive methods.

Winklepeck Burning Grounds is located in the center of Camp Ravenna. It was used for open burning activities in unlined pits, pads, on roads and roadside ditches, and in refractory-lined trays. Soil and dry sediment were contaminated by explosives, PAHs, and ACM from these activities. A ROD was signed in 2008 that established excavation and off-site disposal of chemically contaminated soil and dry sediment. An Explanation of Significant Differences was issued in 2015 that required removal of contaminated soil and sediment from additional areas to meet industrial use requirements and facilitate use of a future multi-purpose machine gun range.

Load Lines 1 through 4 are located in the southern section of Camp Ravenna. They were used to melt and load explosives into large caliber shells, for munitions rehabilitation activities, and for demilitarization of projectiles. These operations, together with maintenance, power generation, and wastewater treatment activities, resulted in the contamination of soil and dry sediment by metals, hexavalent chromium, explosives, polychlorinated biphenyls, and PAHs. An interim ROD was signed in 2007 that established excavation and off-site disposal of contaminated soil and dry sediment, groundwater monitoring, and maintenance of former building slabs to prevent leaching of potentially contaminated soil and dry sediment.

Load Line 12 is located in the southeast portion of Camp Ravenna. It was used for the production of ammonium nitrate and ammonium chloride and for demilitarization activities to recover explosives from bombs. A wastewater treatment plant was also operated on the site. Soil and dry sediment were contaminated by arsenic from these activities. A ROD was signed in 2011Othat required excavation and off-site disposal of contaminated soil and dry sediment and land use controls.

The five-year review will be conducted to determine whether the remedies remain protective of human health and the environment and function as intended by the RODs. The five-year review will also assess factors to determine if the remedies will continue to be protective in the future. The report is scheduled for completion by August 31, 2017.

If you have any concerns about these sites, please contact:

Mr. Mark Leeper Environmental Cleanup Program Manager Army National Guard Directorate Einvironmental Programs Division ARNG-IED 111 South George Mason Drive Arlington, VA 22204-1382 (703) 607-7955 Mark.s.leeper.civ@mail.mil

A copy of the final report will be available at the following locations:

Information Repositories:

Contact Information:

Reed Memorial Library 167 East Main Street Ravenna OH 44266

Newton Falls Public Library 204 South Canal Street Newton Falls, OH 44444 (330) 296-2827 Hours: 9 a.m. to 9 p.m. (Monday to Thursday) 9 a.m. to 6 p.m. (Friday) 9 a.m. to 5 p.m. (Saturday) 1:00 p.m. to 5:00 p.m. (Sunday)

(330) 872-1282

Hours: 10 a.m. to 8 p.m. (Monday to Thursday) 9 a.m. to 5 p.m. (Friday and Saturday)

31170290

Proof of Publication Record Publishing Company 1050 W. Main Street, Kent, OH 44240 Phone (330) 541-9400 Fax (330) 673-6363

I, **SSIMP have a first** duly sworn depose and say that I am Advertising Clerk of **Record Philtifishing Company**

30 Record-Courier a newspaper printed and published in the city of Kent, and of General circulation in the County of Portage, State of Ohio, and personal knowledge of the facts herein stated and that the notice hereto annexed was Published in said newspapers for 1 insertions on the same day of the week from and after the 28th day of August, 2016 and that the fees charged are legal.

Name of Account: US ARMY CORPS OF ENGINEERS, BUFFALO DISTRICT Ad Number: 12214817 No. of Lines: 72

Day(s) Published: 08/28, Printers Fee: \$110.70

rn to and subscribed before this 29th day of August, 2016.

Elizabeth McDaniel Notary Public Commission Expires June 19, 2021

205 Appliances / Electronics

LG DRYER slate, 5 yrs old, like new, \$200. (330) 607-3378

230 Farm Products / Produce

CANNING TOMATOES \$18/bushel. HOT PEPPERS. Mantua (330) 274-8354

Fresh picked Medium hot & hot peppers 330-802-2912

GREEN BEANS, Blue Lake * Half Runners \$1.25/lb or \$30/Bushel (330) 577-1918

250 Garage/Yard Sales

ESTATE/GARAGE SALE 5394 Juniper Ct. Ravenna OH Fri-Sat-Sun, Aug 26-27-28, 9-5 Dally. Cash and Carry. Huge selection of items!! Vintage collectibles, tools and toolboxes, housewares, iewelry, bikes, furniture, slot machine, coin collection, hunting ItemsII Come see!!

Garrettsville- 8278 Water St. Aug 26-27-28, 9-5. Toys, clothes, boys, girls & womens, furniture, household, baby items

Kent 1981 Crossfield Cir Aug 27 & 28, 10-3. House and yard misc. items Patio and other furniture, books, yard tools, big ladder

Ravenna 4018 Bayberry Knoll HUGE MULTI-FAMILY GAR-AGE SALE-Fri., Sat. Sun. 9-5 Quality items. Brand name clothing: Nike, Under Armour, Justice, Pink. Tools, fishing, camping, hiking. Lots of home decor, candles, linens. Furniture, DVDs, vhs. Collectibles, Antiques. Tons of Disney, Fisher Price and more new and vintage toys. Monster high, Barbie, chapter books, and so much more. Don't miss this one! Liquidating.

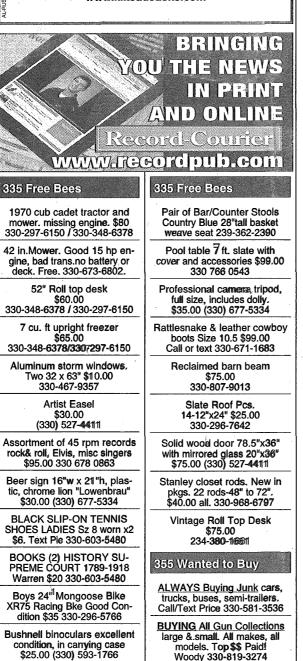
Ravenna Moving Sale 4939 John Thomas Rd. INDOOR Sale, Large parrot and reptile cages, auth. Native Am. items, antiques, blown glass, exercise equip, Schwinn elliptical, zero turri lawnmower, MUCH MORE, Sat, Sun 9-5, 330-814-1991

RAVENNA, 347 Oakwood ST, Sat-Sun, Aug 27-28, 9-6pm. Yard Sale! Come And Get Itll Everything from A-Z

RAVENNA- 3152 Clearview Rd. Aug 26-27-28, 10-4. Crystal jewelry, military items, rallroad clock, household goods, frames, crafts, antique sewing machine, antique air compressor, clothes, shoes & purses, ext ladder, misc items

ROOTSTOWN 5019 New Milford Rd., Aug 26-27-28, 9-6. Huge multi family sale! Clothes, household, Christmas, baby items, 1968 CJ5

2003 Kubota B2630 4x4 Loader Tractor With Backhoe - Power Tools - Antiques - Firearms - Hotsy Power-Steam Washer - 3 Pt. Equipment - Trailer -Miller Blue Star Generator/Welder


Absolute auction, all sells to the highest bidders on location: 11579 BOWEN RD., MANTUA, OH 44255 Directions: Take SR 44 north of the Ohio Turnpike (1-80) 4.5 miles to SR 82 and west 1 mile to Bowen Rd. and south to property. Watch for KIKO signs.

FRIDAY - SEPTEMBER 16, 2016 - 3:30 PM **TRACTOR & MAJOR EQUIPMENT SELLS** AT 5:00 PM

NOTE: Nice clean quality auction. See www.kikoauctions. com for full details. Open auction day only starting at 12:00 PM

AUCTION BY ORDER OF: Gary & Cyndi Keefer AUCTIONEER/REALTOR: Jack W. Kiko 330-206-0174 and John D. Kiko, AARE, CAI ext. 122.

> **KIKO Auctioneers** (330) 455-9357 www.kikoauctions.com

Woody 330-819-3274

PUBLIC NOTICE

US Army Corps of Engineers, BUILDING STRONIG,

Rai

Camp Ravenna Joint Military Training Center Army National Guard Begins Second Five-Year Review

The Army National Guard has begun a second five-year review of environmental remedies undertaken as part of the Ravenna Army Ammunition Plant Restoration Program at the Camp Ravenna Joint Military Training Center in Portage and Trumbull Counties, Ohio. The focus of the five-year review will be the following sites: Ramsdell Quarry Landfill, Winklepeck Burning Grounds, Ldad Line 1, Load Line 2, Load Line 3, Load Line 4, and Load Line 12.

Ramsdell Quarry Landfill is located in the eastern section of Camp Ravenna. It was an abandoned quarry that was used as a landfill for domestic, commercial, industrial, and solid wastes. Soil and sediment were contaminated by polycyclic aromatic hydrocarbons (PAHs) from these activities. A Record of Decision (ROD) was signed in 2009 that established excavation and off-site disposal of contaminated soil and sediment. Miscellaneous debris containing asbestos was discovered during implementation of the remedy in 2010. The remedy was subsequently revised to include installation of a security fence around the landfill and best management practices to remove surficial asbestoscontaining material (ACM) through non-intrusive methods.

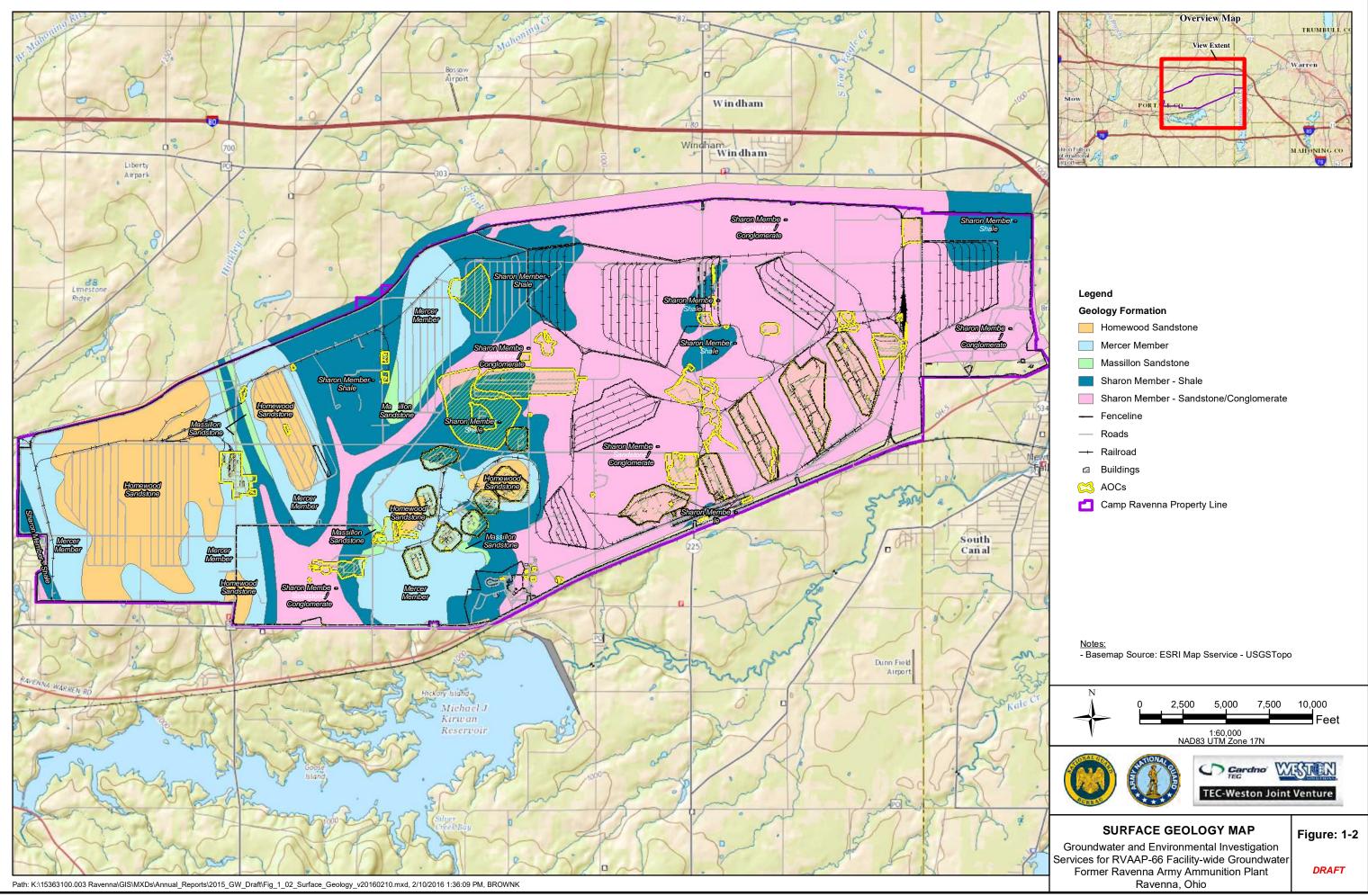
Winklepeck Burning Grounds is located in the center of Camp Ravenna. It was used for open burning activities in unlined pits, pads, on roads and roadside ditches, and in refractory-lined trays. Soil and dry sediment were contaminated by explosives, PAHs. and ACM from these activities. A ROD was signed in 2008 that established excavation and off-site disposal of chemically contaminated soil and dry sediment. An Explanation of Significant Differences was issued in 2015 that required removal of contaminated soil and sediment from additional areas to meet industrial use requirements and facilitate use of a future multi-purpose machine gun range.

Load Lines 1 through 4 are located in the southern section of Camp Ravenna. They were used to melt and load explosives into large caliber shells, for munitions rehabilitation activities, and for demilitarization of projectiles. These operations, together with maintenance, power generation, and wastewater treatment activities, resulted in the contamination of soil and dry sediment by metals, hexavalent chromium, explosives, polychlorinated biphenyls, and PAHs. An interim ROD was signed in 2007 that established excavation and off-site disposal of contaminated soil and dry sediment, groundwater monitoring, and maintenance of former building slabs to prevent leaching of potentially contaminated soil and dry sediment.

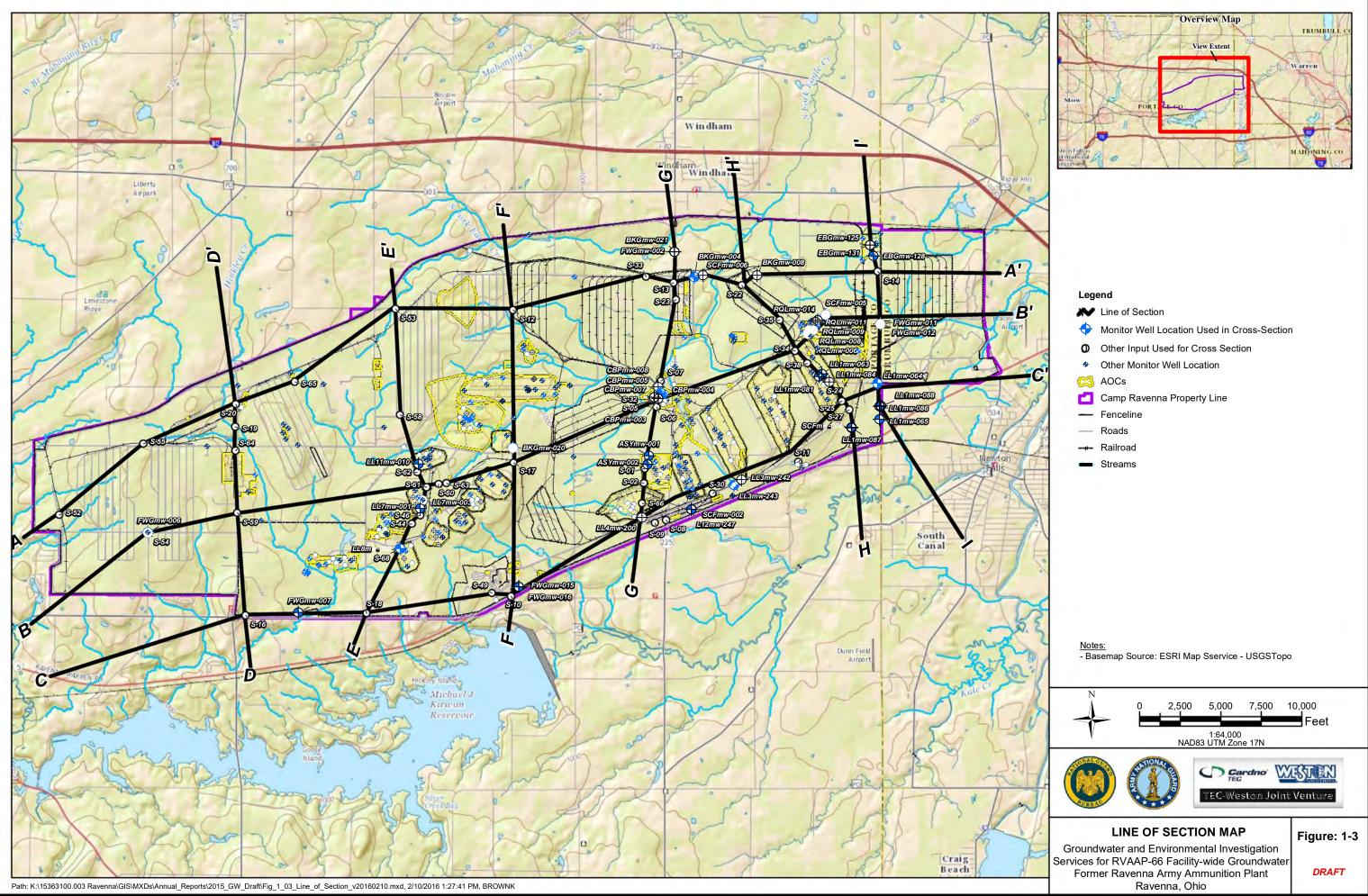
Load Line 12 is located in the southeast portion of Camp Ravenna. It was used for the production of ammonium nitrate and ammonium chloride and for demilitarization activities to recover explosives from bombs. A wastewater treatment plant was also operated on the site. Soil and dry sediment were contaminated by arsenic from these activities. A ROD was signed in 2010 that required excavation and off-site disposal of contaminated soil and dry sediment and land use controls.

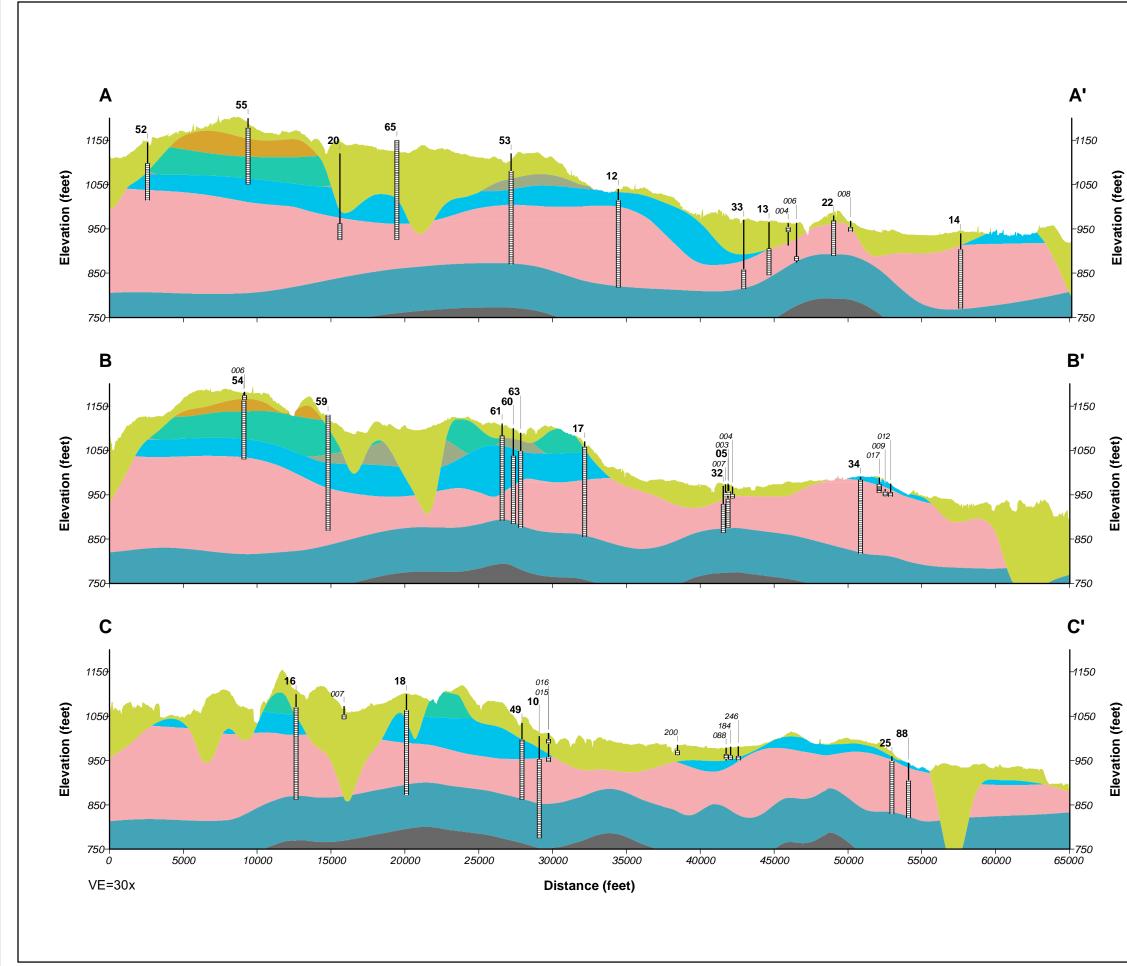
The five-year review will be conducted to determine whether the remedies remain protective of human health and the environment and function as intended by the RODs. The five-year review will also assess factors to determine if the remedies will continue to be protective in the future. The report is scheduled for completion by August 31, 2017.

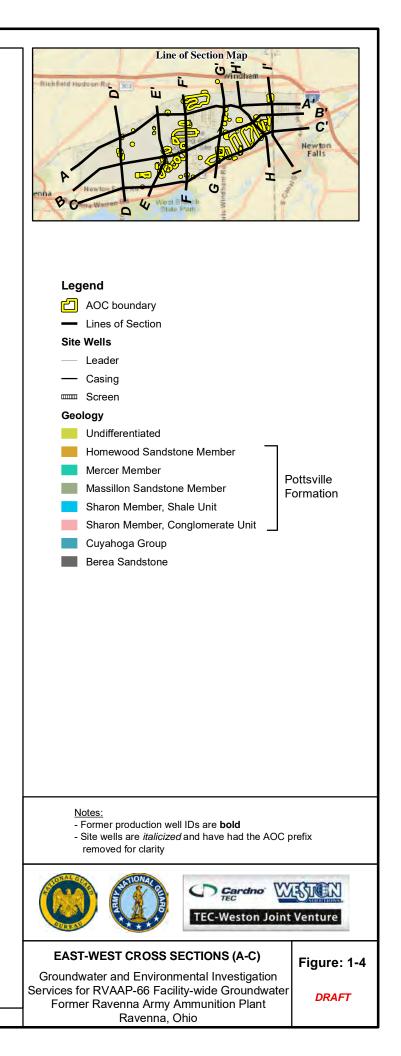
If you have any concerns about these sites, please contact:

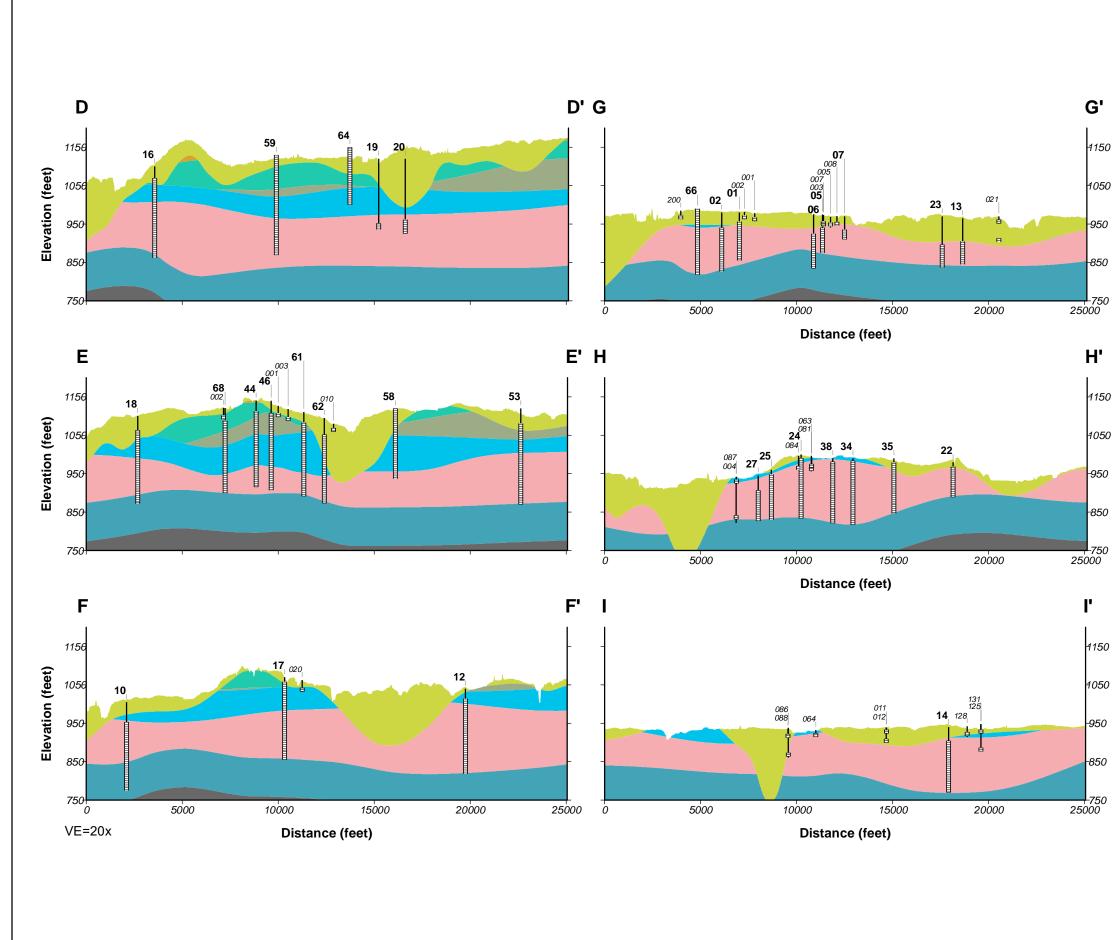

Mr. Mark Leeper Environmental Cleanup Program Manager Army National Guard Directorate Environmental Programs Division ARNG-IED 111 South George Mason Drive Arlington, VA 22204-1382 (703) 607-7955 Mark.s.leeper.civ@mail.mil A copy of the final report will be available at the following locations: Information Repositories: **Contact Information:** Reed Memorial Library (330) 296-2827 Hours: 9 a.m. to 9 p.m. (Monday to Thursday) 167 East Main Street Ravenna OH 44266 9 a.m. to 6 p.m. (Friday) 9 a.m. to 5 p.m. (Saturday) 1:00 p.m. to 5:00 p.m. (Sunday) Newton Falls Public Library (330) 872-1282 204 South Canal Street Newton Falls, OH 44444

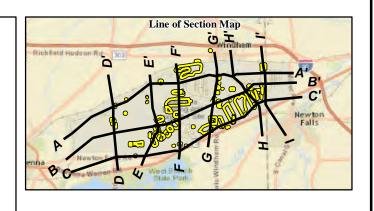
Hours: 10 a.m. to 8 p.m. (Monday to Thursday) 9 a.m. to 5 p.m. (Friday and Saturday)

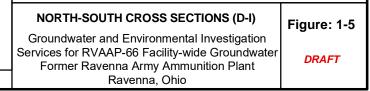

Record-Courier

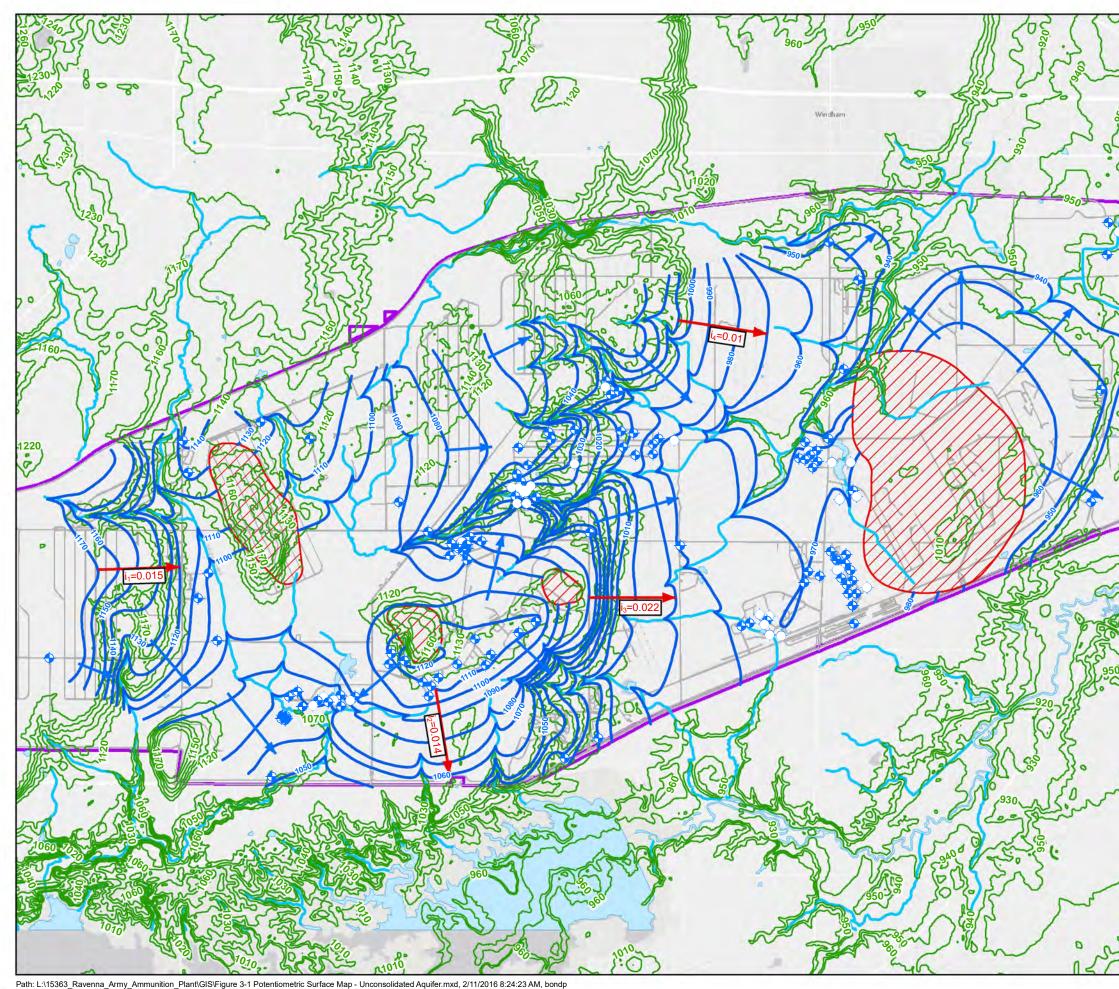

ATTACHMENT 10


Groundwater Information and Data




Geo	logy Formation
	Homewood Sandstone
	Mercer Member
	Massillon Sandstone
	Sharon Member - Shale
	Sharon Member - Sandstone/Conglomerate
	Fenceline
	Roads
	Railroad
	Buildings
	AOCs
	Camp Ravenna Property Line

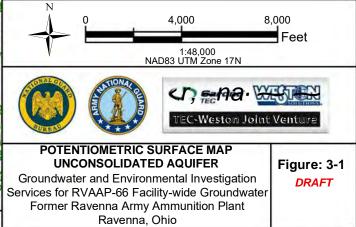


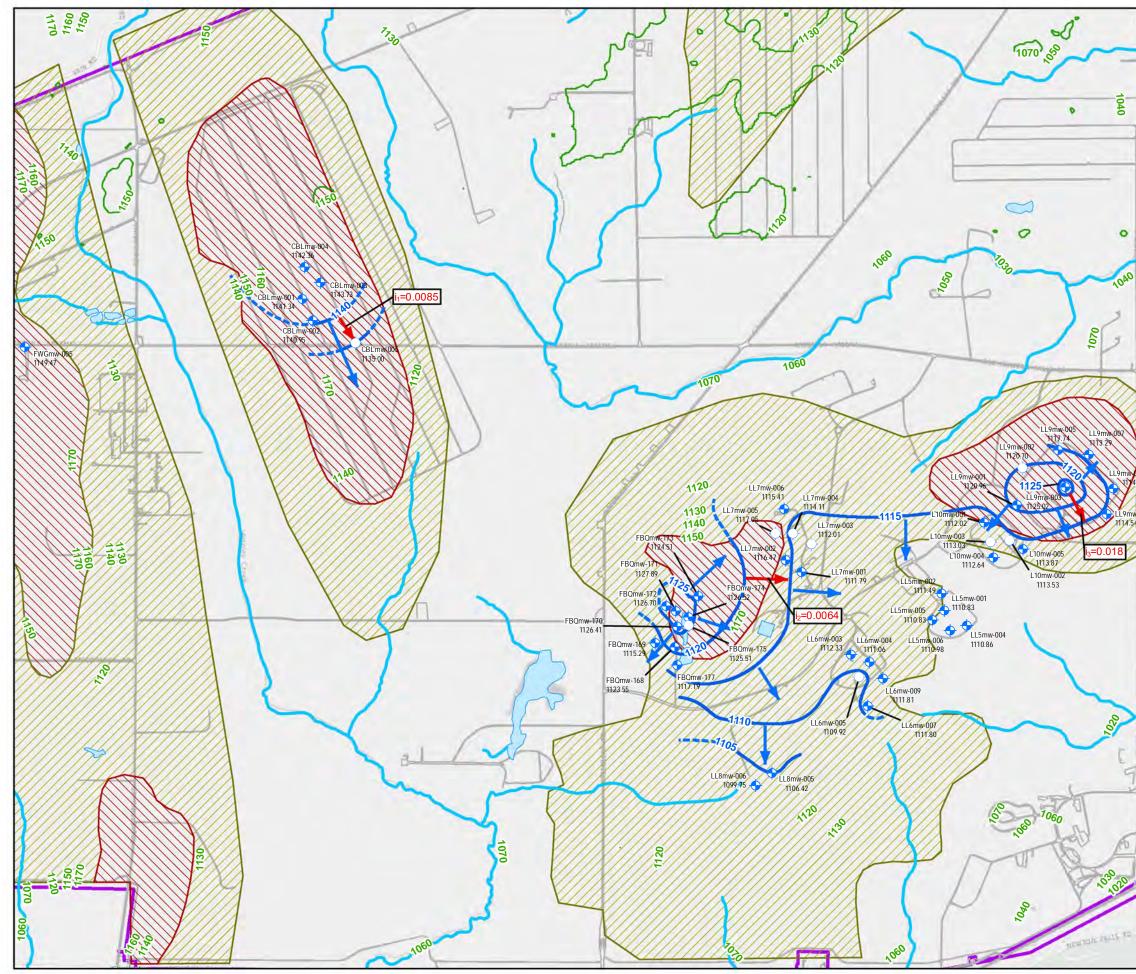


Elevation (feet)

Elevation (feet)

Legend AOC boundary - Lines of Section Site Wells - Leader Casing Screen Geology Undifferentiated Homewood Sandstone Member Mercer Member Pottsville Massillon Sandstone Member Formation Sharon Member, Shale Unit Sharon Member, Conglomerate Unit Cuyahoga Group Berea Sandstone Notes: Former production well IDs are **bold**Site wells are *italicized* and have had the AOC prefix removed for clarity Cardno WESTER **TEC-Weston Joint Venture**




91	0	verview Ma	p	1
MAGEDONIA AURORA	Hantas	View Extent	Southington	Contand 5
NA HUDGON STREETSBORD	Sec. 1	View Extent	Lowinstar	Rigidi Ada
MAN.	+ Portage to		Newton Falls	NILES
		St Sylimit	NT	GIRARD Minaral Finge
ALLMADINE	Rootstown	16 Diamond	Million / glade con	AUSTINION
Akron Akros Folter Infl An Port Megadore	Y.		5 tony Ridge	
t Lakemore	Randolph	ater Deerfield	Berlin Center Cillsworth	BOARD

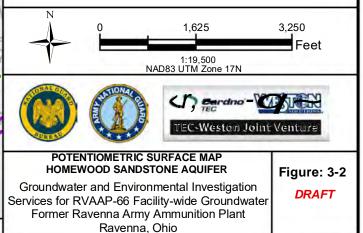
Legend

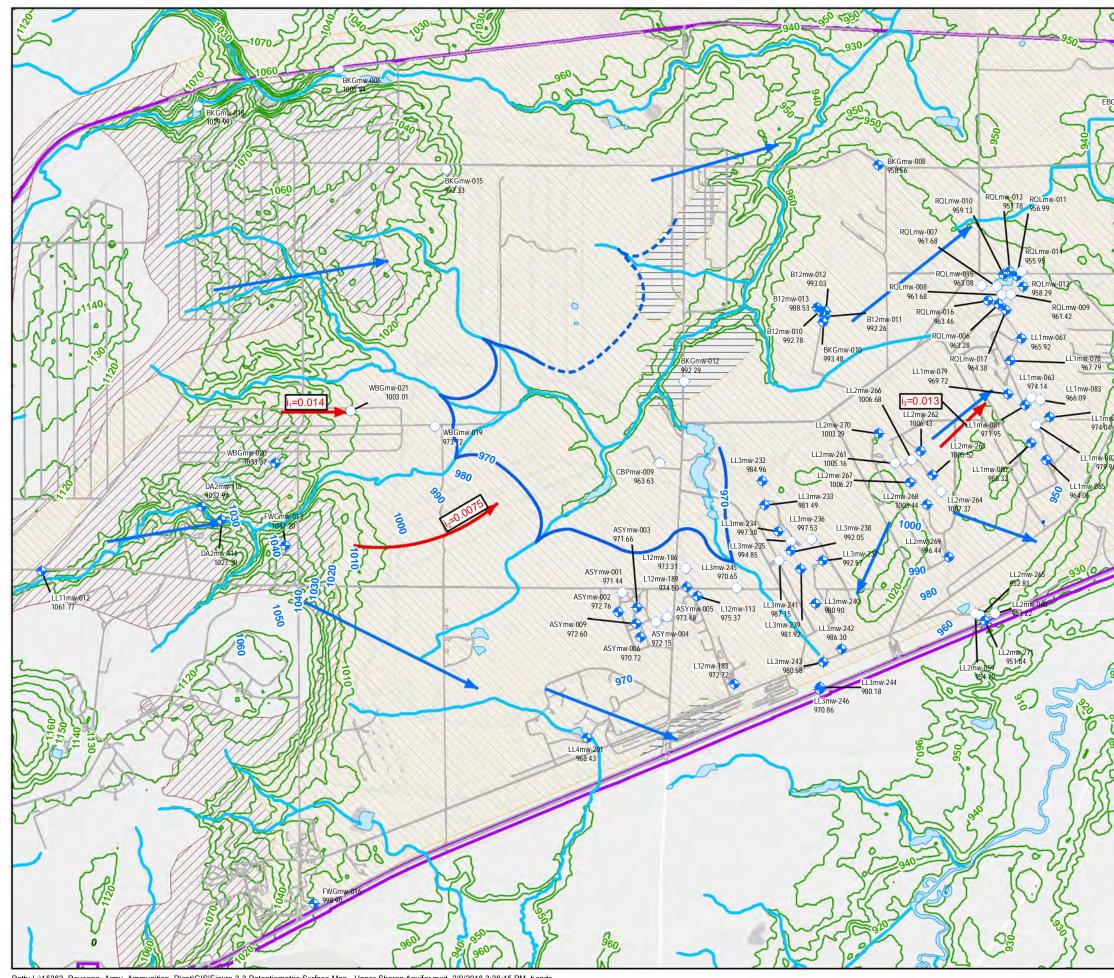
- Unconsolidated Well Location
- Unconsolidated Contours 10ft Interval
- Direction Of Flow
- i1 = Hydraulic Gradient (ft/ft)
- Roads
- Creeks and Streams
- Elevation Contours (Feet)
- Unconsolidated Aquifer Missing (See Notes Below)
- Camp Ravenna Property Line

- Notes: Potentiometric Surfaces based on data collected in July 2015 Basemap Sources: ESRI Map Services -Canvas/World_Light_Gray_Base and World_Street_Map Unconsolidated Aquifer indicated to not be present, based on the most recent Facility Wide Groundwater Monitoring Program Report on the January 2014 Sampling Event

Path: L:\15363_Ravenna_Army_Ammunition_Plant\GIS\Figure 3-2 Potentiometric Surface Map - Homewood Sandstone Aquifer.mxd, 1/4/2016 2:43:20 PM, bondp

Legend


1020

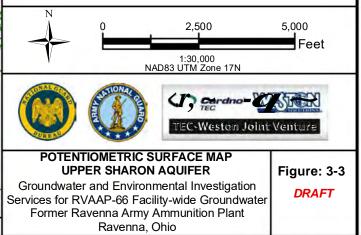

020

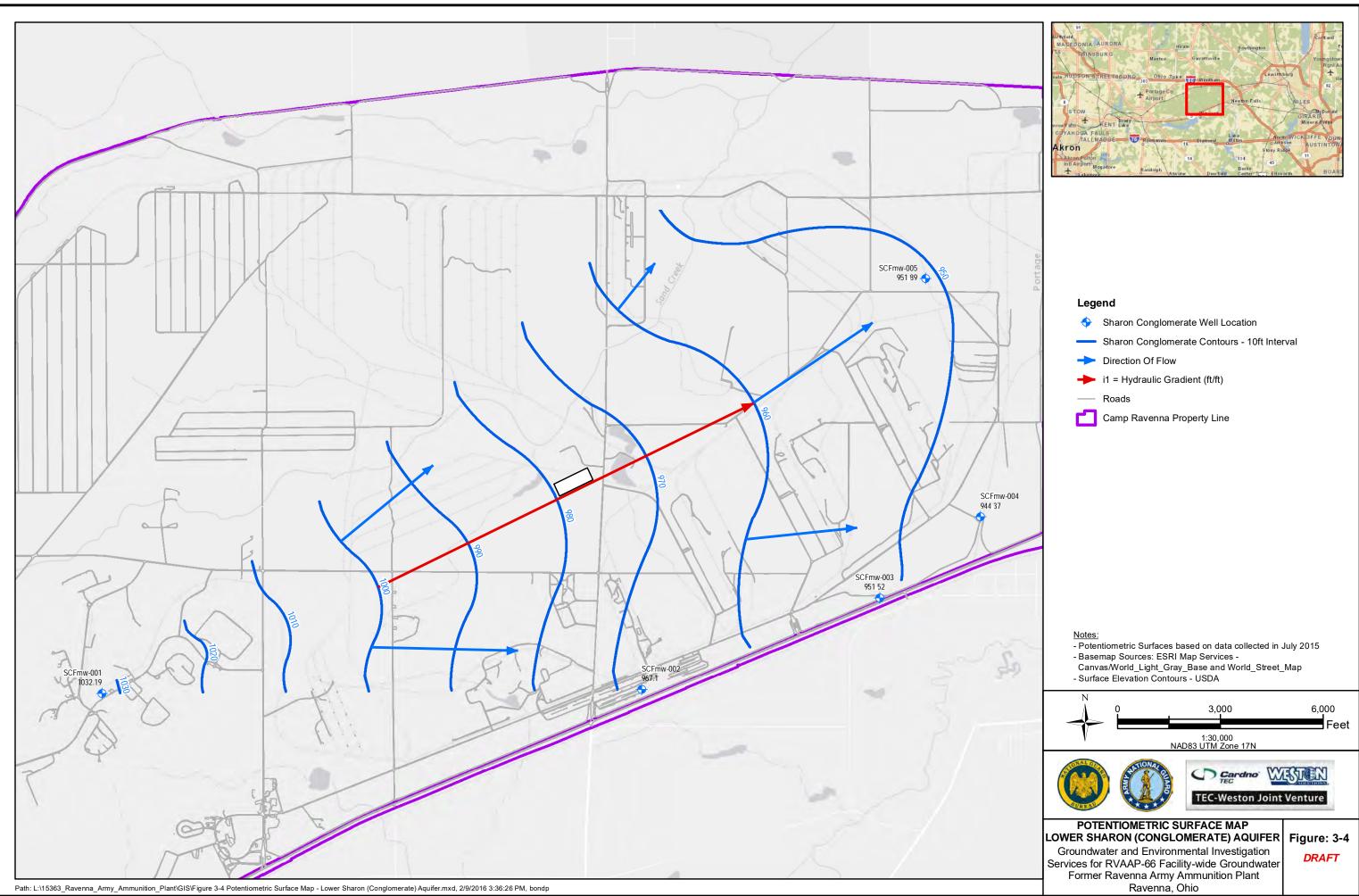
- + Homewood or Mercer Well Locations
- ---- Homewood and Mercer Contour Intervals
- Inferred Homewood and Mercer Contour -Intervals
- Direction Of Flow
- i1 = Hydraulic Gradient (ft/ft)
- Roads
- Creeks and Streams
- Elevation Contours (Feet)
- Camp Ravenna Property Line
- Homewood Sandstone Member
- Mercer Member

Notes:

- Potentiometric Surfaces based on data collected in July 2015
- Basemap Sources: ESRI Map Services -Canvas/World_Light_Gray_Base and World_Street_Map
- Surface Elevation Contours USDA

Path: L:\15363_Ravenna_Army_Ammunition_Plant\GIS\Figure 3-3 Potentiometric Surface Map - Upper Sharon Aquifer.mxd, 2/9/2016 3:36:15 PM, bondp


Legend


- Upper Sharon Well Location
- Upper Sharon Contour Intervals
- -- Upper Sharon Inferred Contour Intervals
- Direction Of Flow
- i1 = Hydraulic Gradient (ft/ft)
- ---- Creeks and Streams
- Roads
- Camp Ravenna Property Line
- Sharon Conglomerate Shale Lens
- Sharon Member
- Sharon Sandstone Conglomerate Unit

Notes:

940

- Potentiometric Surfaces based on data collected July 14-20, 2015 - Basemap Sources: ESRI Map Services -
- Canvas/World_Light_Gray_Base and World_Street_Map
- Surface Elevation Contours USDA

Altroch Difference	RVAAP Area	Well ID	Ohio State Plane Easting	Ohio State Plane Northing	Ground Elevation (ft, AMSL)	Total Drilled Depth (ft, BGS)	TOC Elevation (ft, AMSL)	Well Head Type ¹	Monitored Zone	Top of Screen (ft, BGS)	Bottom of Screen (ft, BGS)	Bottom of Inner Casing Plug or End Cap (ft, BGS)	Stickup height (ft, AGS)	Reported Bottom of Inner Casing (ft, BTOC)	Depth to Water - March 2015 (ft, BTOC)	Groundwater Elevation - March 2015 (ft, AMSL)	Depth to Water - July 2015 (ft, BTOC)	Groundwater Elevation - July 2015 (ft, AMSL)	July 2015 Measured Bottom of Inner Casing (ft, BTOC)	Sediment Accumulation (ft) 2	Description of Bottom
Alt. Supple Struction Struction <				558404.04				A	Sharon						nm	N/A			23.25		hard
Alternal Alternal Option Option No.4 Option No.4 No.4 <td></td> <td></td> <td></td> <td></td> <td>/ 0 = 10 0</td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>- / 10</td> <td>- / .0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td></td>					/ 0 = 10 0		,				- / 10	- / .0								0.00	
Number of the state																				0.00	
Althen of Part Part Part Part Part Part Part Part								A												0.00	
No. No. No. No. No.	Atlas Scrap Yard				2.1.1.0.0			A												0.00	
NATE 00 VALUE 00					/ 0 2 1 1 0		/0//20	Α						-0.0	nm			/		0.00	
CV3 m 00 200803.3 93200.4 99300.4					/ / 0/ = 0			A	enconsonduted		-0.0	=									
bits bits <th< td=""><td></td><td></td><td></td><td></td><td>717170</td><td></td><td></td><td>A</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td></td></th<>					717170			A												0.00	
Hunch () Bunk () 2011(b) 9392 1000																				0.00	
Blagenti Martine Minister Martin Minister Martine Minister	Building 1200-	B12mw-011		565687.82	1,003.76	24.7	1,006.70	Α					2.94		nm			992.26	26.70	0.20	
Internal Number of the state	Dilution/Settling Pond				1		1	Α													
bx/served 52088.19 52088.19 5208.19					1			A												0.00	
BKGere S138ettes S11 LO258 A Statu Job Job Job A Statu Job Job Job Job Job Job A Statu Job Job Job Job <								A			- /	- /								0.00	
Bargene Status						- /		A		0.1			=						_0.00		
BRAGROUL 24277-82 3598/188 097.77 39.8 1.00007 A. Shase 39.6 99.8 2.50 99.3 mm NAA 1.75 992.90 0.00 Ladie BRGmull 2.14167.30 53590.14 90.50 1.55 0.00 Ladie 1.55 0.00 Ladie 1.00 1.00 1.00 NA 1.00 1.00 NA 1.00 1.00 NA 1.00 NA 1.00 NA 0.00 Matter BRGmull 2.14110.53 502.500 1.00.50 A Description 1.00 NA 1.					,,,,,,		,,,,,,,				=		=		nm			/		0.00	
Bikgmond 2016 27.9 35820/1.6 988.99 A. Unconsidered 15.2 <th< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td></td></th<>					1															0.00	
Bickman 10 State 22 Solves 10 Class 42 A Name and 1 State 30 <					,,,,,,,,	67.0	-,					27.0	=						0 - 1 0 0	0.20	
BitCone 07 24611233 562452.01 1123.00 54.6 1125.00 A Uncone 04 22.6 33.0 42.0 73.0 mm NA 17.30 117.90 33.00 0.20 Image Bittorm 0.0 23090341 5207134 10.00 20 10.00 20 10.00 20 10.00 20 10.00 20 10.00 20 10.00 20 10.00 20 10.00 20 10.00 20 10.00 20	Background							A													
Bitchm 2399091 57087383 104.00 237 10425 A Star 210 22 am NA 1577 102.99 21.45 0.00 Isad BK0me/00 2305824 5508465 110.92 A Decombined 33.0 33.0 30.7 33.0 33.0 10.7 10.9 Isad 10.9<					1		-,	Α	Unconsolidated						nm	N/A				0.00	hard
BKGme-010 23988.14 5598.14 1.008.14 34.0 1.1107.3 A UncomoReal 33.0 33.2 23.0 33.7 nm NA 18.3 100.2.2 55.1 0.007 hand BKGme-021 2305255 57101.51 071.6 10.0 716.6 A 0.000 10.0					1		1	A													
BK0me-901 25378-624 5378-624 5378-624 5378-624 1005/00 A. Unconsolidated 20-2 30-2 30-2 30-2 91-2 model NA 7.95 109-35 83.19 0.01 band RK0me-901 23405219 5540161 0.173.10 10.18.10 A. Band NA 10.4 43.4 10.4 10.4 43.4 10.4					1		1	A												0.00	
BKGuw Cd1 2976/230 37/10.153 072.16 19.0 01.48 A Unconsolidated 7.7 17.8 18.1 2.00 mm NA 13.66 961.00 21.46 0.00 Inde CBitew-G02 23458.72.6 35940312 1.175.00 45.3 1.475.4 A Burgerood 31.5 44.5 27.6 67.6 mm NA 53.20 1.10 Inde I					1		1	A												0.07	
C. Bites Your Example C. Bites Your Stable S22 Stop H448 L172 S0 45.3 L172 S4 A Hencewood 33.0 43.0 23.0 43.0 23.					1	2.0.1	1	A											00.07	0.00-	
Cl.Beck Quary Cillarwold 232070.00 2590525 1.172.06 A. Homesond 33.0 43.0 43.0 24.8 45.8 ann N.A. 31.33 1142.37 44.70 1.10 hand CHB.uw/0.01 23408276.00 555056.00 1.175.86 31.0 1.155.10 A Homesond 30.0 30.3 2.50 52.42 am N.A 23.10 115.00 52.41 0.01 hand Clamwold 2360756.05 501616.01 0.727.1 22.3 975.84 A Unconsolited 11.8 21.8 21.8 21.8 21.8 21.9 nm NA 10.31 964.33 32.0 0.01 hand Clamwold 2360756.05 5921330 0.90 985.8 25.0 971.10 A Unconsolitad 17.0 27.0 27.6 27.3 am NA 10.93 961.38 23.69 7.00 median ChBmwold 2500710.0 952138 0.010 <td< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>Α</td><td></td><td></td><td></td><td>.,,</td><td></td><td></td><td>nm</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					1			Α				.,,			nm						
Editave-00 234588.8 5595.8 1,173.88 A.9 Homesond 44.0 44.0 27.6 46.8 nm NA 23.48 113.50 63.50 0.00 hand CBLme-000 234578.53 6616.61 972.11 23.8 975.81 A Unconsolitated 91.8 31.	C Plask Quarry							A	1								· ···=/			0.00	
Image: black black CBLme-001 234/972.00 58986.00 1,158,00 31,0 1,158,00 21,0 22,0 20,0 20,2 21,0 mm NA 11,15 00,1 21,00 20,0 20,0 20,0 20,2 21,0 mm NA 11,15 01,0 21,0 00,0 mm NA 11,15 01,0 21,0 00,0 mm NA 11,0 01,0 mm NA 05,0 05,1 0,0 mm NA 0,0 mm NA 0,0 mm NA 0,0 mm NA 0,0 0,0 mm NA 0,0 MA 0,0 mm NA 0,0 MA 0,0 mm NA 0,0 MA 0,0 MA 0,0 MA MA <td>C-Block Quality</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>Α</u></td> <td></td> <td>2210</td> <td></td> <td>1010</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	C-Block Quality							<u>Α</u>		2210		1010									
Berne-002 257295.66 561805.83 907.33 30.0 971.04 A. Uccossolidated 10.5 29.5 27.1 32.2 mm NA 6.56 963.83 31.61 0.9.9 Inad CBPme-0014 256077.808 562123.80 968.88 27.5 971.13 A. Uccossolidated 14.6 24.5 24.5 24.5 27.6 27.8 nm NA 0.05 961.86 22.47 0.00 mstimu CBPme-0016 236707.846 5211.87 961.01 23.0 407.64 1.0 Uccossolidated 12.4 24.5 24.5 24.6 25.1 nm NA 6.55 961.66 22.10 0.00 mstimu CBPme-006 236714.06 5017.50 A Uccossolidated 15.4 24.5 24.5 26.5 nm NA 8.56 66.2 0.00 mstimu CBPme-009 256971.40 6107.97.0 0.0 77.27 0.0 No 26.5 15.5<								A	1											0.00	
Central Burn Pite GBPmu-colo 2360768.88 501944.14 97.204 22.50 97.471 A Unconsolitated 14.5 24.5 24.5 25.5 77.1 In NA 107.5 95.01.58 29.27 0.00 medium GBPmu-colo 2366919.66 552311.88 968.83 25.0 97.13 A Unconsolitated 14.5 24.5 2.76 2.73 nm NA 19.3 96.66 27.40 0.00 medium GBPmu-dolo 2366712.62 502006.11 97.147 3.00 976.47 A Unconsolitated 15.0 25.0 2.00 2.24 nm NA 14.14 962.23 31.89 0.51 hard CBPmu-dolo 2366174.00 56197.00 969.90 65 972.48 A Stanon 54.0 64.3 2.88 66.53 nm NA 16.0 972.21 16.3 nm NA 16.0 972.21 16.3 nm NA 16.0 972.21<		CBPmw-001	2367095.37		972.71	0 = 10	//	Α	Unconsolidated						nm	N/A	11.51		34.20		soft
Central Burn Pits CSP109-004 2366978.80 SC212.380 996.58 27.5 971.31 A Unconsolidated 17.0 27.0 27.0 27.0 27.5 29.5 nm NA 9.55 961.58 29.70 0.000 medium CBPmw-006 2367132.68 Sc2311.87 965.01 23.0 967.67 A Unconsolidated 12.5 22.5 2.63 23.1 nm NA 45.5 961.09 25.20 0.000 medium (CBPmw-007 2366757.21 S52668.84 970.57 25.5 973.4 A Unconsolidated 15.0 25.0 2.62 27.6 nm NA 14.80 983.3 28.00 0.00 medium (CBPmw-000 2368757.21 S52468.84 970.57 25.5 75.5 15.5 15.5 0.42 15.3 nm NA 48.80 98.03 28.00 0.00 medium (Upper all Durie Cold 2368796.49 S6046.30 973.27 18.5						2 0 0		A													
Central Bum Pits CSP1w-005 2366919.66 562311.88 968.83 25.0 971.59 A Unconsolidated 12.5 22.5 22.6 27.3 ann NA 10.93 960.66 27.40 0.00 medium CBPmw-006 3267312.68 56200.611 77.47 30.0 976.74 A Unconsolidated 12.5 22.5 2.6 2.6 2.1 ann NA 14.4 968.39 28.00 0.00 medium CPmw-008 2366772.12 552.668.44 70.57 2.5 1.6 0.75.5 1.5 1.5 1.5 0.01 1.5 0.00 medium CPmw-002 236674.05 6617.40 0.75.2 F Unconsolidated 5.5 1.5 0.01 1.5.1 nm NA 1.05 94.31 1.1.7 0.00 medium CPmw-602 236670.49 56167.60 0.72.2 1.6.0 0.72.9 F Unconsolidated 5.5 1.5.5 0.41 1.5.1					, <u>, </u>			A										/ 00 // =		0.00	
EBPme-006 2367243.68 5021187 905.01 23.0 976.47 A Unconsolidated 12.5 22.5 22.5 23.0 23.1 nm N/A 6.5 96.00 25.00 0.00 medium CBPme-008 2366757.21 552668.84 970.57 25.5 973.4 A Unconsolidated 15.0 25.0 25.0 27.6 nm N/A 14.40 958.39 28.00 0.00 hard CBPme-008 2360757.21 502668.84 970.47 16.0 972.48 A Unconsolidated 5.5 15.5 -0.20 15.3 nm N/A 4.85 963.63 666.2 0.00 medium CPme-001 236894.81 500440.91 972.48 A Samoolidated 5.5 15.5 -0.20 15.3 nm N/A 4.02 972.21 14.05 970.91 Hard Dacamoolidated 5.5 15.5 -0.5 -0.20 15.3 nm N/A 4.02 0.00 <td>Central Burn Pits</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>A</td> <td></td> <td>0.00</td> <td></td>	Central Burn Pits							A												0.00	
CBPus-008 2360737.21 5526688.4 97057 25.5 973.19 A Unconsolidated 15.0 25.0 25.0 26.2 27.6 nm NA 14.80 958.39 28.00 0.00 hard (CBpus-001 236948.81 560440.91 973.46 16.0 972.32 F Unconsolidated 5.5 15.5 -0.40 15.3 nm NA 4.85 963.63 666.2 0.00 medium Upper and Lower Cobb CPms-002 236876.49 550076.30 973.27 18.5 972.92 F Unconsolidated 8.0 18.0 0.35 17.6 nm NA 9.05 971.94 17.77 0.00 hard Ponds 236970.41 561846.78 970.71 40.0 973.58 A Unconsolidated 9.5 19.5 2.63 2.07 nm NA 9.40 961.18 43.23 CPms-006 2367721.3 56280.13 962.97 18.5 963.1 A					965.01			А									6.55			0.00	
CBPaw-009 2367174.00 561797.00 969.90 65 972.48 A Sharon 54.0 64.0 64.3 2.28 66.55 nm NA 8.85 963.63 66.62 0.00 medium Upper and Lower Cols CPm-v002 2368394.81 506014.01 972.51 16.0 972.31 F Unconsolidated 5.5 15.5 15.5 15.5 15.1 nm NA 0.03 971.91 17.77 0.00 hard Prow-004 236870.431 561845.78 970.71 40.0 973.84 A Unconsolidated 9.5 19.5 2.69 2.22 nm NA 9.40 964.18 43.23 0.00 hard CPm-v004 236870.41 561845.78 970.71 40.0 973.84 A Unconsolidated 8.0 18.0 18.0 18.0 2.65 30.7 2.66 nm NA 7.99 573.4 2.06 0.00 hard Dyam-104 2354773.7 <td></td> <td></td> <td></td> <td></td> <td>710111</td> <td>00.0</td> <td>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td> <td>Α</td> <td></td> <td>- /</td> <td>= /</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0 2 . 0 /</td> <td>0.0 -</td> <td></td>					710111	00.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Α		- /	= /								0 2 . 0 /	0.0 -	
CPuw-001 2368948.81 56041.09.1 975.26 F Unconsolidance 5.5 15.5 15.5 -0.20 15.3 nm NA 1.05 974.21 14.75 0.55 hard Upper and Lowr Cobs 2682392.33 256876.49 560617.63 973.27 18.5 972.92 F Lunconsolidance 5.5 15.5 15.4 0.041 15.1 nm NA 0.93 971.99 17.77 0.00 hard Pones 2366727.13 561843.66 970.71 40.0 973.58 A Unconsolidance 9.5 39.5 2.87 42.4 nm NA 9.40 964.18 43.23 0.00 hard Dave-016 235477.13 56129.59 1.070.82 20.1 1.073.89 A Unconsolidated 8.0 18.0 18.0 2.16 20.2 nm NA 19.41 1054.48 20.8 0.00 hard Dava-104 235457.62 50672.58 1.042.56 1.4								A													
CPmw-00c 236829.23 560311.26 972.21 16.0 972.31 F Unconsolidated 5.5 15.5 1.5 -0.41 15.1 mm N/A -0.20 972.51 15.03 0.07 hard Ponds 236876.43 561843.46 978.51 20.0 981.20 A Unconsolidated 9.5 19.5 2.69 22.2 nm N/A 9.76 971.44 22.60 0.00 hard (Pmw-006 236772.13 56183.03 96.27.51 A Unconsolidated 9.5 2.87 4.2.4 nm N/A 9.40 964.18 4.3.23 0.00 hard (Pmw-06 236772.13 56183.5 1.07.38 A Unconsolidated 8.0 18.0 18.0 2.16 20.2 nm N/A 7.92 57.44 2.0.60 hard DA2mw-104 2354557.62 50572.58 1.07.38 A Unconsolidated 8.3 13.3 15.5 2.60 1.81 nm <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F</td> <td></td> <td>0.00</td> <td></td>								F												0.00	
Ponds CPmw-0d0 236874.31 561843.46 978.51 2.00 981.0 A Unconsolidated 9.5 1.9.5 2.6.9 2.2.2 nm N/A 9.7.6 971.44 22.00 0.00 hard Cmw-006 23677027.13 562830.13 962.97 18.5 965.13 A Unconsolidated 8.0 18.0 18.0 2.16 20.2 nm N/A 7.29 957.84 20.68 0.00 hard DA2mw-104 2354773.79 561129.59 1.070.82 27.0 1.073.89 A Unconsolidated 8.3 13.3 13.5 2.68 16.2 nm N/A 2.95 1042.83 16.2 0.00 hard DA2mw-106 235457.62 506072.88 1.041.33 A Unconsolidated 8.3 15.3 15.5 2.60 18.1 nm N/A 6.30 10.39.99 16.90 1.20 hard DA2mw-102 2354557.62 506072.88 1.041.33 A		CPmw-002						F	0 0 0 0												
CPmw-005 2367900.41 56184.67.8 970.71 40.0 973.58 A Unconsolidated 29.5 39.5 2.87 42.4 nm N/A 9.40 964.18 43.23 0.00 hard CPmw-006 2367727.13 562830.13 962.97 18.5 965.13 A Unconsolidated 8.0 18.0 18.0 21.6 20.2 nm N/A 7.29 957.84 20.68 0.00 hard DA2mw-105 2354557.62 560572.58 1.042.66 14.0 1.045.34 A Unconsolidated 8.3 13.3 13.5 2.68 16.2 nm N/A 2.95 1042.39 16.22 0.00 hard DA2mw-105 235484.85 505050.91 1.041.19 16.0 1.045.34 A Unconsolidated 8.3 13.3 13.5 2.68 16.2 nm N/A 2.95 1042.39 16.20 0.00 hard DA2mw-107 2354924.43 506180.178 1.092.92	Upper and Lower Cobbs				/			F					0.00	17.6	nm	N/A				0.00	hard
CPmw-006 2367727.13 562830.13 962.97 18.5 955.13 A Unconsolidated 8.0 18.0 2.16 20.2 nm N/A 7.29 957.84 20.68 0.00 hard DA2mw-104 2354773.79 56112.9.59 1.070.82 27.0 1.073.89 A Unconsolidated 8.3 13.3 13.5 2.66 1.0 N/A 19.41 1054.43 20.59 0.01 hard DA2mw-105 2354848.85 560560.49 1.041.19 16.0 1.043.79 A Unconsolidated 8.3 15.3 15.5 2.60 18.1 nm N/A 3.80 1039.99 16.90 1.00 hard DA2mw-102 2354942.95 5604.43 560181.78 1.029.92 15.0 1.032.36 A Unconsolidated 9.3 14.3 14.5 2.44 16.9 nm N/A 5.91 1026.45 17.24 0.00 hard DA2mw-102 2354793.14 55897.89 1.06	Ponds							A						22.2							
DA2mw-104 2354773.79 561129.59 1.070.82 27.0 1.073.89 A Unconsolidated 16.3 26.5 3.07 29.6 nm N/A 19.41 1054.48 29.59 0.01 hard DA2mw-105 235457.62 560572.58 1.042.66 14.0 1.045.34 A Unconsolidated 8.3 13.3 13.5 2.66 18.1 nm N/A 2.95 1042.99 16.22 0.00 hard DA2mw-106 2354848.55 56056.04 1.041.63 A Unconsolidated 8.3 15.3 15.5 2.60 18.1 nm N/A 6.46 1035.17 16.91 0.00 hard DA2mw-107 2354924.29 560480.05 1.039.18 15.0 1.002.36 A Unconsolidated 9.3 14.3 14.5 2.44 16.9 nm N/A 5.91 1052.65 1.724 0.00 hard DA2mw-102 2355195.91 559927.02 1.061.39 2.00 1.0								A													
bp DA2mw-105 2354557.62 560572.58 1,042.66 14.0 1.045.34 A Unconsolidated 8.3 13.3 13.5 2.68 16.2 nm N/A 2.95 1042.39 16.22 0.00 hard DA2mw-106 2354848.85 56050.49 1.041.379 A Unconsolidated 8.3 15.5 2.60 18.1 nm N/A 3.80 1039.99 16.90 1.02 hard DA2mw-108 2355604.43 560181.78 1.029.92 15.0 1.023.66 A Unconsolidated 9.3 14.3 14.5 2.44 16.9 nm N/A 5.91 1026.45 17.24 0.00 hard DA2mw-102 235479.314 559897.89 1.068.66 24.0 1.071.29 A Unconsolidated 9.3 14.3 12.3 21.5 2.39 21.9 nm N/A 6.83 1055.95 25.99 1.026.45 17.24 0.00 hard DA2mw-110 2355478.33								A													
backword Data Data 15.0 1.041.63 A Unconsolidated 8.8 13.8 14.0 2.45 16.5 nm N/A 6.46 1035.17 16.91 0.00 hard DA2mw-108 235504.43 560181.78 1.029.92 15.0 1.032.36 A Unconsolidated 9.3 14.3 14.5 2.44 16.9 nm N/A 5.91 1026.45 17.24 0.00 hard DA2mw-109 2354793.14 55997.92 1.066.66 24.0 1.071.29 A Unconsolidated 9.3 19.5 2.39 21.9 nm N/A 6.23 1055.95 22.49 0.00 hard DA2mw-110 2355195.01 55997.20 1.061.39 2.00 1.063.78 A Unconsolidated 9.3 19.3 19.5 2.39 21.9 nm N/A 6.11 1036.01 15.00 0.00 hard M2mw-112 2355105.81 560378.86 1.034.87 15.0 <		DA2mw-105	2354557.62			14.0		Α	Unconsolidated			13.5	2.68		nm	N/A	2.95		16.22	0.00	
backword DA2mw-108 2355604.43 560181.78 1,029.92 15.0 1,032.36 A Unconsolidated 9.3 14.3 14.5 2.44 16.9 nm N/A 5.91 1026.45 17.24 0.00 hard DA2mw-109 2354793.14 559897.89 1,068.66 24.0 1,071.29 A Unconsolidated 11.3 21.3 21.5 2.63 24.1 nm N/A 12.21 1059.08 24.50 0.00 hard 0pen Demolition Area 2355195.91 559927.02 1,061.39 20.0 1,063.78 A Unconsolidated 9.3 19.3 19.5 2.39 21.9 nm N/A 6.13 1036.01 15.00 0.00 hard M2 2354728.33 560378.36 1.034.87 15.0 1.037.44 A Unconsolidated 8.8 13.8 14.0 2.57 16.6 nm N/A 6.91 1032.02 16.39 0.00 hard DA2mw-113 235575.00								A													
DA2mw-109 2354793.14 559897.89 1.068.66 24.0 1.071.29 A Unconsolidated 1.3 21.3 21.5 2.63 24.1 nm N/A 12.21 1059.08 24.50 0.00 soft DA2mw-110 2355195.91 559927.02 1.061.39 20.0 1.063.78 A Unconsolidated 9.3 19.3 19.5 2.39 21.9 nm N/A 6.83 1036.05 22.49 0.00 hard DA2mw-111 2355193.33 56022.94 1.039.03 12.6 1.042.12 A Unconsolidated 7.1 12.1 12.3 2.49 14.8 nm N/A 6.11 1036.01 15.00 0.00 hard DA2mw-112 235518.31 560378.36 1.034.87 15.0 1.037.11 A Unconsolidated 8.3 13.3 13.5 2.60 16.1 nm N/A 6.91 1030.20 16.39 0.00 hard DA2mw-113 2355153.13 56019.00<								A													
DA2mw-110 2355195.91 559927.02 1.061.39 20.0 1.063.78 A Unconsolidated 9.3 19.5 2.39 21.9 nm N/A 6.83 1056.95 22.49 0.00 hard Dopen Demolition Area #2 1 2355178.33 56022.94 1.039.63 12.6 1.042.12 A Unconsolidated 7.1 12.1 12.3 2.49 14.8 nm N/A 6.11 1036.01 15.00 0.00 hard DA2mw-112 2355018.98 560378.36 1.034.87 15.0 1.037.44 A Unconsolidated 8.8 13.8 14.0 2.57 16.6 nm N/A 6.91 1030.20 16.39 0.00 hard DA2mw-113 2355153.13 560394.81 1.034.51 14.0 1,037.11 A Unconsolidated 8.3 13.3 13.5 2.60 16.1 nm N/A 6.91 1030.20 16.39 0.00 hard DA2mw-114 2355785.								A													
Open Demolition Area DA2mw-111 2354728.33 56022.94 1,039.63 12.6 1.042.12 A Unconsolidated 7.1 12.1 12.3 2.49 14.8 nm N/A 6.11 1036.01 15.00 0.00 hard #2 DA2mw-112 2355018.98 560378.36 1.034.87 15.0 1.037.44 A Unconsolidated 8.8 13.8 14.0 2.57 16.6 nm N/A 6.91 1030.20 16.39 0.00 hard DA2mw-113 2355153.13 560394.81 1,034.51 14.0 1,037.11 A Unconsolidated 8.3 13.3 13.5 2.60 16.1 nm N/A 6.91 1030.20 16.39 0.00 hard DA2mw-114 2355785.00 56019.00 1,025.00 16.01 1.031.90 A Sharon Shale 9.16 19.16 19.46 2.40 21.8 nm N/A 4.60 1027.30 21.93 0.00 hard DA2mw		DA2mw-110	2355195.91			20.0		A													
DA2mw-113 2355153.13 560394.81 1,034.51 14.0 1,037.11 A Unconsolidated 8.3 13.3 13.5 2.60 16.1 nm N/A 6.91 1030.20 16.39 0.00 hard DA2mw-114 2355785.00 560109.00 1,029.50 19.5 1,031.90 A Sharon Shale 9.16 19.16 19.46 2.40 21.8 nm N/A 4.60 1027.30 21.93 0.00 hard DA2mw-115 2355269.00 560459.00 1,035.40 44.0 1,038.08 A Sharon 33.75 43.75 44.05 2.68 46.8 5.52 1032.56 5.11 1032.97 47.30 0.00 medium DETmw-01B 2354959.47 560820.03 1,064.35 39.0 1,065.85 A Unconsolidated 34.0 39.0 39.0 1.50 40.5 nm N/A 21.18 1044.67 39.09 1.41 medium DETmw-002 235500.33 <t< td=""><td>Open Demolition Area</td><td>DA2mw-111</td><td></td><td></td><td></td><td></td><td></td><td>A</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td></td></t<>	Open Demolition Area	DA2mw-111						A												0.00	
DA2mw-114 2355785.00 560109.00 1,029.50 19.5 1,031.90 A Sharon Shale 9.16 19.46 2.40 21.8 nm N/A 4.60 1027.30 21.93 0.00 hard DA2mw-115 2355269.00 560459.00 1,035.40 44.0 1.038.08 A Sharon 33.75 43.75 44.05 2.68 46.8 5.52 1032.56 5.11 1032.97 47.30 0.00 medium DETmw-01B 2354959.47 560820.03 1,064.35 39.0 1,065.85 A Unconsolidated 34.0 39.0 39.0 1.50 40.5 nm N/A 21.18 1044.67 39.09 1.41 medium DETmw-002 235506.33 56064.71 1,060.24 39.0 1,001 39.0 39.0 1.00 40.0 nm N/A 31.49 1029.75 42.50 0.00 medium DETmw-003 2355204.94 560456.10 1,035.81 15.0 1,036.81 A Unconsolidated 7.0 12.0 1.00 13.0 8.94 102	#2							A												0.00	
DA2mw-115 2355269.00 560459.00 1,035.40 44.0 1,038.08 A Sharon 33.75 43.75 44.05 2.68 46.8 5.52 1032.56 5.11 1032.97 47.30 0.00 medium DETmw-01B 2354959.47 560820.03 1,064.35 39.0 1,065.85 A Unconsolidated 34.0 39.0 39.0 1.50 40.5 nm N/A 21.18 1044.67 39.09 1.41 medium DETmw-002 2355360.33 56064.71 1,060.24 39.0 1,061.24 A Unconsolidated 34.0 39.0 39.0 1.00 40.0 nm N/A 31.49 1029.75 42.50 0.00 medium DETmw-003 2355204.94 56045.01 1,035.81 15.0 1,036.81 A Unconsolidated 7.0 12.0 1.00 13.0 8.94 1027.87 8.36 1028.45 16.11 0.00 hard					1		1	A													
DETmw-01B 2354959.47 560820.03 1,064.35 39.0 1,065.85 A Unconsolidated 34.0 39.0 1.50 40.5 nm N/A 21.18 1044.67 39.09 1.41 medium DETmw-002 2355360.33 56064.71 1,060.24 39.0 1,061.24 A Unconsolidated 34.0 39.0 39.0 1.00 40.0 nm N/A 31.49 1029.75 42.50 0.00 medium DETmw-003 2355204.94 56045.01 1,035.81 15.0 1,036.81 A Unconsolidated 7.0 12.0 1.00 13.0 8.94 1027.87 8.36 1028.45 16.11 0.00 hard																					
DETmw-003 2355204.94 560456.10 1,035.81 15.0 1,036.81 A Unconsolidated 7.0 12.0 12.0 12.0 13.0 8.94 1027.87 8.36 1028.45 16.11 0.00 hard		DETmw-001B	2354959.47	560820.03	1,064.35	39.0	1,065.85	Α	Unconsolidated	34.0	39.0	39.0	1.50	40.5		N/A	21.18	1044.67	39.09	1.41	
					1								2100							0.00	
1 = 100 +		DETmw-003 DETmw-004	2355204.94 2355072.36	560456.10 560454.22	1,035.81 1,037.68	15.0 11.0	1,036.81 1,038.68		Unconsolidated Unconsolidated	7.0	12.0	12.0 11.0	1.00	13.0	8.94 10.02	1027.87 1028.66	8.36 8.95	1028.45 1029.73	16.11 13.89	0.00 0.00	hard hard

RVAAP Area	Well ID	Ohio State Plane Easting	Ohio State Plane Northing	Ground Elevation (ft, AMSL)	Total Drilled Depth (ft, BGS)	TOC Elevation (ft, AMSL)	Well Head Type ¹	Monitored Zone	Top of Screen (ft, BGS)	Bottom of Screen (ft, BGS)	Bottom of Inner Casing Plug or End Cap (ft, BGS)	Stickup height (ft, AGS)	Reported Bottom of Inner Casing (ft, BTOC)	Depth to Water - March 2015 (ft, BTOC)	Groundwater Elevation - March 2015 (ft, AMSL)	Depth to Water - July 2015 (ft, BTOC)	Groundwater Elevation - July 2015 (ft, AMSL)	July 2015 Measured Bottom of Inner Casing (ft, BTOC)	Sediment Accumulation (ft) 2	Description of Bottom
	EBGmw-123	2380049.21	571747.04	945.59	32.0	947.82	A	Unconsolidated	21.0	31.0	31.5	2.23	33.7	nm	N/A	10.50	937.32	34.78	0.00	hard
	EBGmw-124	2380030.24	571618.07	939.02	32.0	941.39	А	Unconsolidated	20.0	30.0	30.5	2.37	32.9	nm	N/A	4.29	937.10	32.63	0.27	medium
	EBGmw-125	2379679.20	571655.63	947.55	25.0	949.89	A	Unconsolidated	14.0	24.0	24.5	2.34	26.8	nm	N/A	13.15	936.74	27.41	0.00	hard
Erie Burning Grounds	EBGmw-126	2380307.31	572348.81	938.20	28.0	940.61	A	Unconsolidated	15.2	25.2	25.5	2.41	27.9	nm	N/A	2.39	938.22	27.70	0.20	medium
Ene Burning Grounds	EBGmw-127 EBGmw-128	2380172.16 2379892.79	571083.61 570970.32	940.21 942.47	30.0 28.0	943.07 945.13	A	Unconsolidated Unconsolidated	19.0 15.0	29.0 25.0	29.5 25.3	2.86 2.66	32.4 28.0	nm nm	N/A N/A	4.64	938.43 938.11	32.83 28.21	0.00	hard hard
	EBGmw-129	2379240.52	572035.68	941.97	29.0	944.36	A	Unconsolidated	16.0	25.0	25.5	2.39	28.4	nm	N/A N/A	5.84	938.52	30.96	0.00	medium
	EBGmw-130	2379220.69	570695.61	941.18	26.0	944.00	A	Unconsolidated	15.2	25.2	25.5	2.82	28.3	nm	N/A	6.78	937.22	28.39	0.00	hard
	EBGmw-131	2379666.00	571655.00	947.50	71.0	950.08	Α	Sharon	60.5	70.5	70.8	2.58	73.10	nm	N/A	9.07	941.01	23.41	49.69	hard
	FBQmw-166	2349584.33	553123.86	1,104.87	16.0	1,108.86	Α	Unconsolidated	5.5	15.5	15.5	3.99	19.5	nm	N/A	4.32	1104.54	19.86	0.00	hard
	FBQmw-167	2349675.45	553556.12	1,112.05	18.0	1,115.90	A	Unconsolidated	5.0	15.0	15.0	3.85	18.9	nm	N/A	3.66	1112.24	19.09	0.00	hard
	FBQmw-168 FBQmw-169	2350066.87 2349730.90	553620.85 553681.21	1,131.27 1,117.36	19.5 16.0	1,133.91 1,120.58	A	Homewood Homewood	9.0 5.0	19.0 15.0	19.0 15.0	2.64 3.22	21.6	nm nm	N/A N/A	10.36 5.29	1123.55 1115.29	21.26 18.91	0.34	medium hard
	FBQmw-170	2350102.41	553975.40	1,117.50	30.5	1,120.38	A	Homewood	20.0	30.0	30.0	2.59	32.6	nm	N/A N/A	15.85	1113.29	32.75	0.00	hard
Fuze and Booster Quarr		2350072.44	554230.93	1,140.49	30.0	1,143.55	A	Homewood	18.0	28.0	28.0	3.06	31.1	nm	N/A	15.66	1120.41	31.46	0.00	hard
Landfill/Ponds	FBQmw-172	2349907.37	554322.17	1,145.71	33.0	1,150.09	А	Homewood	20.0	30.0	30.0	4.38	34.4	nm	N/A	23.39	1126.70	20.03	14.37	medium
	FBQmw-173	2350449.01	554491.35	1,162.43	50.0	1,165.94	Α	Homewood	29.5	49.5	49.5	3.51	53.0	nm	N/A	41.43	1124.51	53.03	0.00	hard
	FBQmw-174	2350289.81	554142.44	1,135.78	22.5	1,139.97	A	Homewood	12.0	22.0	22.0	4.19	26.2	16.02	1123.95	13.45	1126.52	23.08	3.12	medium
	FBQmw-175	2350297.98 2350219.45	553989.24 553273.33	1,137.16	22.5 21.5	1,140.73	A	Homewood	12.0 11.0	22.0 21.0	22.0 21.0	3.57 2.34	25.6 23.3	nm	N/A	15.22 7.63	1125.51 1124.28	25.81 23.65	0.00	medium soft
	FBQmw-176 FBQmw-177	2350219.45	553273.33	1,129.57 1,125.73	21.5	1,131.91 1,128.57	A	Unconsolidated Homewood	11.0	21.0	21.0	2.34	23.3	nm nm	N/A N/A	11.38	1124.28	23.65	0.00	soft
	FWGmw-001	2368321.00	565739.00	953.60	17.5	956.62	A	Unconsolidated	7	17	17.3	3.02	20.05	nm	N/A N/A	8.05	948.57	20.03	0.00	medium
	FWGmw-002	2367606.00	571015.00	970.60	71.0	973.10	А	Unconsolidated	57	67	67.3	2.50	70.05	23.09	950.01	22.75	950.35	69.61	0.44	soft
	FWGmw-003	2344042.00	563118.00	1,129.40	19.0	1,131.96	Α	Unconsolidated	8.5	18.5	18.8	2.56	21.1	nm	N/A	4.68	1127.28	21.01	0.09	hard
	FWGmw-004	2356970.00	549319.00	1,034.50	20.0	1,037.15	Α	Unconsolidated	9.5	19.5	19.8	2.65	22.6	11.36	1025.79	11.13	1026.02	22.54	0.06	soft
	FWGmw-005	2338973.00	558510.00	1,167.50	29.5	1,170.10	A	Homewood	19.25	29.25	29.55	2.60	31.9	nm	N/A	20.63	1149.47	31.65	0.25	soft
	FWGmw-006 FWGmw-007	2335421.00 2344785.00	553142.00 548356.00	1,181.90 1.072.80	18.0 30.0	1,184.33 1.075.41	A	Unconsolidated Unconsolidated	7.5 19.5	17.5 29.5	17.8 29.8	2.43 2.61	19.25 32.35	nm 22.72	N/A 1052.69	4.03 22.22	1180.30 1053.19	19.20 32.18	0.05	hard hard
Facility-Wide	FWGmw-008	2341569.00	555735.00	1,072.80	21.0	1,075.41	A	Unconsolidated	19.5	29.3	29.8	2.61	22.1	nm	N/A	4.94	1106.67	21.72	0.17	soft
Groundwater	FWGmw-009	2341998.00	556784.00	1,099.50	18.5	1,102.14	A	Unconsolidated	8	18	18.3	2.64	20.4	nm	N/A	2.19	1099.95	20.31	0.09	hard
	FWGmw-010	2379060.00	565077.00	959.50	17.3	962.15	Α	Unconsolidated	6	16	16.3	2.65	19.1	nm	N/A	9.21	952.94	19.12	0.00	hard
	FWGmw-011	2380390.00	566801.00	939.00	17.5	941.61	Α	Unconsolidated	6	16	16.3	2.61	17.8	1.63	939.98	1.58	940.03	17.58	0.22	hard
	FWGmw-012	2380389.00	566790.00	938.90	40.0	941.39	A	Sharon Shale	29.5	39.5	39.8	2.49	42.45	0.00	941.39	0.15	941.24	42.41	0.04	hard
	FWGmw-013 FWGmw-014	2357460.00 2341064.00	559483.00 560957.00	1,057.10 1,135.00	34.5 18.5	1,059.51 1,137.57	A	Sharon Unconsolidated	24 8.25	34 18.25	34.3 18.55	2.41 2.57	36.7 21.15	nm	N/A N/A	17.31 3.18	1042.20 1134.39	37.24 21.08	0.00 0.07	hard hard
	FWGmw-014	2358353.00	550179.00	1.012.10	26.0	1.014.51	A	Unconsolidated	13.5	23.5	23.8	2.37	26.35	nm 4.28	1010.23	3.98	1010.53	26.26	0.07	medium
	FWGmw-016	2358364.00	550171.00	1,011.90	65.0	1,014.39	A	Sharon	54.5	64.5	64.8	2.49	67.5	16.54	997.85	15.49	998.90	67.50	0.00	hard
	LL1mw-063	2376841.36	563650.53	992.20	27.4	994.84	Α	Sharon	17.1	27.1	27.4	2.64	30.0	nm	N/A	20.70	974.14	30.25	0.00	hard
	LL1mw-064	2380286.97	563118.74	932.32	18.4	935.10	Α	Unconsolidated	8.0	18.0	18.4	2.78	21.1	1.42	933.68	0.50	934.60	21.21	0.00	soft
	LL1mw-065	2380452.00	560916.92	941.53	20.5	944.41	A	Unconsolidated	10.2	20.2	20.5	2.88	23.4	11.40	933.01	9.91	934.50	23.21	0.19	hard
	LL1mw-067 LL1mw-078	2376545.30 2376275.85	565201.14 564623.87	977.55 993.40	22.8 38.7	980.36 995.84	A	Sharon Sharon	12.8 28.7	22.5 38.2	22.8 38.7	2.81 2.44	25.6 41.1	nm nm	N/A N/A	14.44 28.05	965.92 967.79	26.10 41.48	0.00	hard soft
	LL1mw-078	2376228.31	563739.63	995.30	29.5	997.87	A	Sharon	29.5	38.9	39.5	2.44	42.0	nm	N/A N/A	28.05	969.72	42.62	0.00	hard
	LL1mw-080	2376845.07	562479.73	993.70	19.5	996.27	A	Sharon	9.5	19.0	19.5	2.57	22.0	nm	N/A	9.95	986.32	22.54	0.00	hard
Load Line 1	LL1mw-081	2376672.66	563462.73	996.40	39.4	998.92	Α	Sharon	29.4	38.9	39.4	2.52	41.9	nm	N/A	26.97	971.95	42.09	0.00	hard
	LL1mw-082	2376977.38		1,003.70	39.0	1,006.45	Α	Sharon	28.9	38.5	39.0	2.75	41.8	nm	N/A	26.49	979.96	41.70	0.10	hard
	LL1mw-083	2377074.80	563612.75	992.80	39.3	995.20	A	Sharon	29.1	38.6	39.3	2.40	41.7	33.90	961.30	29.11	966.09	41.41	0.29	hard
	LL1mw-084 LL1mw-085	2377316.02 2377246.94	563160.44 562046.25	996.40 994.30	37.0 42.1	998.73 996.84	A	Sharon Sharon	26.7 32.2	36.3 41.6	37.0 42.1	2.33 2.54	39.3 44.7	30.52 nm	968.21 N/A	24.69 32.78	974.04 964.06	39.55 45.95	0.00	hard hard
	LL1mw-085	2380437.00	561714.00	938.00	75.0	940.63	A	Unconsolidated	64.5	74.5	74.8	2.63	77.38	7.82	932.81	6.24	934.39	77.80	0.00	hard
	LL1mw-087	2378732.00	560375.00	941.80	17.5	944.32	A	Unconsolidated	7	17	17.3	2.52	18.55	4.25	940.07	5.10	939.22	18.09	0.46	medium
	LL1mw-088	2380525.00	561746.00	936.30	24	938.63	А	Unconsolidated	13.9	23.9	24.51	3.00	27.54	4.39	934.24	4.24	934.39	27.46	0.08	soft
	LL2mw-059	2375453.00	558020.00	964.33	19.5	966.67	Α	Sharon	9.3	19.1	19.5	2.34	21.8	13.15	953.52	11.97	954.70	21.85	0.00	hard
	LL2mw-060	2375978.00	558022.00	958.93	18.3	961.57	A	Sharon	8.1	17.9	18.3	2.64	20.9	9.48	952.09	8.35	953.22	20.90	0.00	hard
	LL2mw-261	2373317.81	561898.25	1,009.55	22.5	1,011.40 1,012.62	A	Sharon	9.8 10.6	19.8 20.6	20.0 20.8	1.85 1.50	21.9 22.3	nm	N/A N/A	6.24 6.19	1005.16 1006.43	22.49 22.68	0.00	hard
	LL2mw-262 LL2mw-263	2373970.79 2374289.51	562219.87 561591.19	1,011.12 1.009.42	21.2 22.2	1.012.62	A A	Sharon Sharon	10.6	20.6	20.8	2.05	22.3	nm nm	N/A N/A	5.95	1006.43	22.68	0.00	hard hard
	LL2mw-264	2374532.00	561173.60	1,010.10	20.5	1,011.47	A	Sharon	9.8	19.8	20.0	1.78	21.7	nm	N/A N/A	4.51	1005.32	22.51	0.00	hard
Load Line 2	LL2mw-265	2375594.06	557972.91	959.47	22.5	961.24	A	Sharon	11.8	21.8	22.0	1.77	23.8	nm	N/A	8.43	952.81	24.50	0.00	hard
	LL2mw-266	2373744.03	561981.86	1,014.09	20.5	1,016.28	Α	Sharon	9.8	19.8	20.0	2.19	22.2	nm	N/A	9.60	1006.68	22.75	0.00	hard
	LL2mw-267	2373715.04	561393.22	1,012.81	20.5	1,014.81	A	Sharon	9.8	19.8	20.0	2.00	22.0	8.64	1006.17	8.54	1006.27	22.08	0.00	soft
	LL2mw-268	2374157.30	550484.12	1,015.47	28.8	1,017.28	A	Sharon	17.3	27.3	27.5	1.81	29.3	nm	N/A N/A	13.84	1003.44	29.90	0.00	soft
	LL2mw-269 LL2mw-270	2374756.07 2372858.41	559484.12 562655.93	1,009.49	28.0 20.5	1,011.62 1,010.18	A A	Sharon Sharon	17.1 9.8	27.1 19.8	27.3 20.0	2.13 0.25	29.4 20.3	nm nm	N/A N/A	15.18 6.89	996.44 1003.29	30.55 22.44	0.00	soft hard
1	LL2mw-270 LL2mw-271	2375714.00	557827.00	958.70	20.5	961.19	A	Sharon	9.8	24.6	20.0	0.25	20.3	10.28	950.91	9.35	951.84	27.74	0.06	hard

RVAAP Area	Well ID	Ohio State Plane Easting	Ohio State Plane Northing	Ground Elevation (ft, AMSL)	Total Drilled Depth (ft, BGS)	TOC Elevation (ft, AMSL)	Well Head Type ¹	Monitored Zone	Top of Screen (ft, BGS)	Bottom of Screen (ft, BGS)	Bottom of Inner Casing Plug or End Cap (ft, BGS)	Stickup height (ft, AGS)	Reported Bottom of Inner Casing (ft, BTOC)	Depth to Water - March 2015 (ft, BTOC)	Groundwater Elevation - March 2015 (ft, AMSL)	Depth to Water - July 2015 (ft, BTOC)	Groundwater Elevation - July 2015 (ft, AMSL)	July 2015 Measured Bottom of Inner Casing (ft, BTOC)	Sediment Accumulation (ft) 2	Description of Bottom
	LL3mw-232	2369862.96	561365.91	998.59	37.8	1,000.41	А	Sharon	26.8	36.8	37.0	1.82	38.8	nm	N/A	15.45	984.96	39.80	0.00	medium
	LL3mw-233	2369934.52	560750.41	1,002.47	31.1	1,004.36	Α	Sharon	20.1	30.1	30.3	1.89	32.2	nm	N/A	22.87	981.49	31.69	0.51	soft
	LL3mw-234	2370297.47	560058.89	1,004.47	20.5	1,006.56	A	Sharon	9.8	19.8	20.0	2.09	22.1	nm	N/A	9.18	997.38	22.67	0.00	hard
	LL3mw-235 LL3mw-236	2370642.47 2371178.58	559812.63 559866.75	1,008.05	21.2 25.5	1,009.94 1.011.17	A	Sharon Sharon	10.1 13.8	20.1 23.8	20.3 24.0	1.89 2.23	22.2 26.2	nm	N/A N/A	15.09 13.64	994.85 997.53	22.99 26.61	0.00	hard hard
	LL3mw-237	2371178.38	559328.09	1.008.94	23.9	1.005.57	A A	Sharon	12.7	23.8	22.9	2.23	26.2	nm nm	N/A N/A	13.04	997.55	25.57	0.00	hard
	LL3mw-238	2370625.34	559569.06	1.004.75	20.7	1.006.91	A	Sharon	10.5	20.5	20.7	2.16	22.9	14.84	992.07	14.86	992.05	23.39	0.00	hard
Load Line 3	LL3mw-239	2370895.01	559101.39	1,001.70	35.7	1,003.50	А	Sharon	24.9	34.9	35.0	1.80	36.8	nm	N/A	21.58	981.92	36.92	0.00	soft
	LL3mw-240	2371309.57	558204.34	1,005.60	35.5	1,007.52	А	Sharon	24.4	34.4	34.6	1.92	36.5	nm	N/A	26.62	980.90	36.68	0.00	medium
	LL3mw-241	2370332.80	559298.09	992.41	23.8	994.65	A	Sharon	12.7	22.7	22.9	2.24	25.1	9.90	984.75	7.50	987.15	25.59	0.00	hard
	LL3mw-242 LL3mw-243	2371993.30 2371532.61	557034.21 556688.92	997.39 989.36	20.5 24.5	999.32 991.16	A	Sharon Sharon	9.8 13.8	19.8 23.8	20.0 24.0	1.93 1.80	21.9 25.8	nm	N/A N/A	<u>13.02</u> 10.58	986.30 980.58	22.56 26.39	0.00 0.00	hard hard
	LL3mw-243	2371352.01	556033.00	986.20	45	988.78	A	Sharon	34.5	44.5	44.8	2.58	47.25	nm 7.29	981.49	8.60	980.18	46.88	0.37	hard
	LL3mw-245	2369249.00	558573.00	978.70	47	981.24	A	Sharon	36.5	46.5	46.8	2.54	48.9	nm	N/A	10.59	970.65	48.80	0.10	hard
	LL3mw-246	2371441.00	555969.00	986.50	43	988.84	А	Sharon	32.8	42.8	43.0	2.75	45.75	18.39	970.45	17.98	970.86	45.69	0.06	hard
	LL4mw-193	2364237.44	554959.74	980.88	21.9	982.92	A	Unconsolidated	11.3	21.3	21.5	2.04	23.5	nm	N/A	5.36	977.56	24.13	0.00	hard
	LL4mw-194	2364584.76	555088.18	981.87	22.0	983.76	A	Unconsolidated	11.3	21.3	21.5	1.89	23.4	nm	N/A	5.36	978.40	23.43	0.00	hard
	LL4mw-195 LL4mw-196	2365198.84 2365297.28	555045.69 555212.59	980.83 982.56	21.0 20.0	982.59 984.55	A	Unconsolidated Unconsolidated	10.3 9.2	20.3 19.2	20.5 19.4	1.76 1.99	22.3 21.4	nm nm	N/A N/A	9.26	973.33 972.31	22.74 21.68	0.00	medium hard
Load Line 4	LL4mw-190	2365385.95	555396.55	983.79	20.0	985.46	A	Unconsolidated	9.2	20.8	21.0	1.99	21.4	nm	N/A N/A	13.04	972.31	23.53	0.00	hard
Loud Line r	LL4mw-198	2364991.12	555440.99	981.61	22.0	983.42	A	Unconsolidated	10.3	20.3	20.5	1.81	22.3	nm	N/A	6.02	977.40	21.69	0.61	hard
	LL4mw-199	2365421.66	554621.06	975.20	22.0	977.28	А	Unconsolidated	10.3	20.3	20.5	2.08	22.6	nm	N/A	6.15	971.13	23.06	0.00	hard
	LL4mw-200	2365904.12	554579.72	985.97	23.5	987.93	А	Unconsolidated	12.6	22.6	23.0	1.96	25.0	nm	N/A	16.89	971.04	25.10	0.00	hard
	LL4mw-201	2365417.00	554607.00	975.90	67	978.02	А	Sharon	56.5	66.5	66.8		70.15	nm	N/A	9.59	968.43	69.89	0.26	hard
	LL5mw-001	2354625.07	554319.25	1,125.00	24.0	1,127.92	Α	Homewood	14.0	24.0	24.0	2.92	26.9	nm	N/A	17.09	1110.83	27.03	0.00	hard
	LL5mw-002	2354571.52	554604.01	1,125.80	25.0	1,128.68	A	Homewood	15.0	25.0	25.0	2.88	27.9	nm	N/A	17.19	1111.49	27.53 23.96	0.37	hard
Load Line 5	LL5mw-003 LL5mw-004	2354964.47 2355006.44	554535.41 554073.73	1,124.70 1.122.90	21.0 22.4	1,127.70 1,125.81	A	Unconsolidated Homewood	11.0 12.0	21.0 22.0	21.0 22.0	2.91	24.0 24.9	nm nm	N/A N/A	15.55	1112.15 1110.86	25.35	0.04	hard medium
	LL5mw-004	2354422.02	554152.73	1,126.50	27.8	1,129.42	A	Homewood	17.0	27.0	27.0	2.92	29.9	nm	N/A N/A	18.59	1110.83	29.65	0.25	soft
	LL5mw-006	2354730.78	553984.82	1,125.10	24.5	1,128.00	А	Homewood	14.0	24.0	24.0	2.90	26.9	nm	N/A	17.02	1110.98	27.08	0.00	medium
	LL6mw-001	2353153.23	554214.84	NA	18.0	1,124.16	F	Unconsolidated	7.0	17.0	17.0	0.00	17.0	nm	N/A	9.46	1114.70	17.63	0.00	hard
	LL6mw-002	2353820.09	553589.88	NA	23.0	1,129.36	F	Unconsolidated	12.5	22.5	22.5	0.00	22.5	nm	N/A	17.65	1111.71	24.51	0.00	hard
	LL6mw-003 LL6mw-004	2353048.68 2353368.79	553544.34 553431.82	NA NA	23.4 23.0	1,125.38 1,125.39	A	Homewood Homewood	12.5 12.5	22.5 22.5	22.5 22.5	3.35 2.58	25.9 25.1	nm nm	N/A N/A	<u>13.05</u> 14.33	1112.33 1111.06	25.66 24.57	0.24 0.53	soft hard
Load Line 6	LL6mw-005	2353308.79	553170.76	NA	19.9	1,120.47	A	Homewood	9.5	19.5	19.5	2.96	22.5	nm	N/A N/A	10.55	1109.92	22.05	0.35	soft
	LL6mw-006	2352419.15	553165.28	NA	20.0	1,124.37	A	Unconsolidated	7.0	17.0	17.0	0.00	17.0	nm	N/A	11.85	1112.52	nm	N/A	N/A
	LL6mw-007	2353354.89	552677.17	NA	20.0	1,115.62	F	Homewood	9.5	19.5	19.5	0.00	19.5	nm	N/A	3.82	1111.80	19.32	0.18	hard
	LL6mw-008	2353616.00	553154.00	1,121.30	17.8	1,124.15	A	Unconsolidated	7.2	17.2	17.5	2.85	20.20	nm	N/A	12.28	1111.87	20.15	0.05	hard
	LL6mw-009 LL7mw-001	2353604.00 2352192.91	553149.00 554925.77	1,121.40 1.126.90	39.5 30.0	1,123.75 1,129.64	A	Homewood Homewood	29 19.5	39 29.5	39.3 29.5	2.35 2.74	41.40	nm 20.18	N/A 1109.46	<u>11.94</u> 17.85	1111.81 1111.79	41.39 33.51	0.01	hard hard
	LL7mw-001	2351918.23	555126.55	1,126.70	26.5	1,129.04	A	Homewood	19.3	29.3	29.3	2.74	27.8	20.18 nm	N/A	13.08	1111.79	27.51	0.00	hard
Load Line 7 Pink Waste	LL7mw-002	2352351.04	555417.04	1,120.70	31.5	1,120.84	A	Homewood	21.0	31.0	31.0	2.61	33.6	nm	N/A	8.83	1110.47	33.92	0.00	hard
Water Treatment	LL7mw-004	2352035.20	555581.14	1,123.30	29.5	1,126.32	А	Homewood	19.5	29.5	29.5	3.02	32.5	nm	N/A	12.21	1114.11	32.69	0.00	hard
	LL7mw-005	2351741.47	555581.80	1,133.30	28.2	1,135.87	A	Homewood	18.0	28.0	28.0	2.57	30.6	nm	N/A	18.82	1117.05	30.78	0.00	hard
	LL7mw-006	2351879.92	555990.59	1,120.70	28.0	1,123.56	A	Homewood	17.5	27.5	27.5	2.86	30.4	nm	N/A	8.15	1115.41	30.66	0.00	hard
	LL8mw-001 LL8mw-002	2351666.10 2351010.33	552607.06 552408.18	1,118.69 1,121.67	24.0 30.4	1,121.46 1,124.51	A	Unconsolidated Unconsolidated	14.0 20.0	24.0 30.0	24.0 30.0	2.77 2.84	26.8 32.8	nm nm	N/A N/A	7.90 14.40	1113.56 1110.11	27.71 33.01	0.00 0.00	hard hard
L 1 L 0	LL8mw-002	2351359.25	552231.14	1.116.30	21.0	1.119.05	A	Unconsolidated	10.5	20.5	20.5	2.84	23.3	nm	N/A N/A	9.05	1110.11	23.21	0.00	medium
Load Line 8	LL8mw-004	2351261.83	551807.58	1,112.73	20.5	1,115.75	A	Unconsolidated	10.0	20.0	20.0	3.02	23.0	nm	N/A N/A	7.60	1108.15	22.92	0.08	hard
	LL8mw-005	2351748.32	551522.48	1,112.51	24.0	1,115.73	A	Homewood	14.0	24.0	24.0	3.22	27.2	nm	N/A	9.31	1106.42	17.06	10.14	medium
	LL8mw-006	2351483.58	551296.77	1,114.33	24.2	1,117.17	A	Homewood	14.0	24.0	24.0	2.84	26.8	nm	N/A	17.42	1099.75	27.40	0.00	hard
	LL9mw-001 LL9mw-002	2355817.04 2355907.76	556125.81 556755.11	NA NA	21.6 21.0	1,134.62 1,127.30	A	Homewood	10.5 10.0	20.5 20.0	20.5 20.0	2.78 2.42	23.3 22.4	nm	N/A N/A	<u>13.66</u> 6.60	1120.96 1120.70	23.35 22.75	0.00	hard hard
	LL9mw-002 LL9mw-003	2355907.76	556445.31	NA	21.0	1,127.30	A	Homewood Homewood	10.0	20.0	20.0	2.42	22.4	nm nm	N/A N/A	10.74	1120.70	22.75	0.00	hard
Load Line 9	LL9mw-004	2357338.76	556002.00	NA	33.0	1,131.83	A	Homewood	22.0	32.0	32.0	2.91	34.9	nm	N/A N/A	17.29	11125.02	34.68	0.22	hard
	LL9mw-005	2356505.95	557063.36	NA	20.6	1,130.93	А	Homewood	10.0	20.0	20.0	3.30	23.3	nm	N/A	13.19	1117.74	23.51	0.00	hard
	LL9mw-006	2357446.67	556434.79	NA	26.8	1,129.88	А	Homewood	16.0	26.0	26.0	2.90	28.9	nm	N/A	15.61	1114.27	25.86	3.04	hard
	LL9mw-007	2357024.34	557000.56	NA	19.0	1,119.99	F	Homewood	8.5	18.5	18.5	0.00	18.5	nm	N/A	6.70	1113.29	18.19	0.31	hard
	LL10mw-001 LL10mw-002	2355272.22 2355710.51	555816.25 555523.36	1,130.00	28.0 28.0	1,132.77 1,127.13	A	Homewood Homewood	17.0 17.0	27.0 27.0	27.0 27.0	2.77 2.73	29.8 29.7	nm	N/A N/A	20.75 13.60	1112.02 1113.53	29.59 29.81	0.21	hard hard
	LL10mw-002 LL10mw-003	2355389.92	555494.71	1,124.40	28.0	1,127.13	A	Homewood	17.0	27.0	27.0	2.73	29.7	nm 21.06	N/A 1109.22	13.60	1113.03	29.81	0.38	hard
Load Line 10	LL10mw-004	2355438.20	555236.59	1,119.60	31.2	1,122.39	A	Homewood	21.0	31.0	31.0	2.79	33.8		N/A	9.75	1112.64	33.55	0.25	hard
	LL10mw-005	2355943.55	555380.53	1,122.90	27.0	1,125.67	А	Homewood	16.5	26.5	26.5	2.77	29.3	nm	N/A	11.80	1113.87	29.26	0.04	hard
	LL10mw-006	2355654.80	554995.25	1,121.20	24.0	1,123.83	А	Unconsolidated	13.5	23.5	23.5	2.63	26.1	nm	N/A	9.53	1114.30	26.50	0.00	hard

RVAAP Area	Well ID	Ohio State Plane Easting	Ohio State Plane Northing	Ground Elevation (ft, AMSL)	Total Drilled Depth (ft, BGS)	TOC Elevation (ft, AMSL)	Well Head Type ¹	Monitored Zone	Top of Screen (ft, BGS)	Bottom of Screen (ft, BGS)	Bottom of Inner Casing Plug or End Cap (ft, BGS)	Stickup height (ft, AGS)	Reported Bottom of Inner Casing (ft, BTOC)	Depth to Water - March 2015 (ft, BTOC)	Groundwater Elevation - March 2015 (ft, AMSL)	Depth to Water - July 2015 (ft, BTOC)	Groundwater Elevation - July 2015 (ft, AMSL)	July 2015 Measured Bottom of Inner Casing (ft, BTOC)	Sediment Accumulation (ft) 2	Description of Bottom
	LL11mw-001	2352778.89	557505.03	1,097.46	23.0	1,100.16	А	Unconsolidated	11.4	21.4	21.4	2.70	24.1	nm	N/A	7.96	1092.20	23.69	0.41	hard
1	LL11mw-002 LL11mw-003	2353354.28 2352737.87	558310.52 557999.62	1,080.29	20.0 17.0	1,080.00 1.088.48	F	Unconsolidated Unconsolidated	6.3 5.9	16.3 15.9	16.3 15.9	-0.29	16.0	nm nm	N/A N/A	1.42 0.25	1078.58 1088.23	<u>16.49</u> 16.11	0.00	hard medium
1	LL11mw-003	2352737.24	558164.36	1,088.45	17.0	1.084.72	F	Unconsolidated	6.1	16.1	16.1	0.03	16.2	nm	N/A N/A	-0.08	1088.25	16.25	0.00	hard
1	LL11mw-005	2352847.56	558501.02	1,079.60	17.0	1,079.40	F	Unconsolidated	6.2	16.2	16.2	-0.20	16.0	nm	N/A	5.12	1074.28	16.44	0.00	hard
Load Line 11	LL11mw-006 LL11mw-007	2352521.36 2352094.81	558263.28 558189.71	1,086.61 1,079.22	17.0 23.0	1.086.50 1.082.00	F	Unconsolidated Unconsolidated	5.6 12.4	15.6 22.4	15.6 22.4	-0.11	15.5 25.2	nm	N/A N/A	2.74 14.45	1083.76 1067.55	<u>15.71</u> 25.64	0.00	hard medium
1	LL11mw-007 LL11mw-008	2352388.60	557981.17	1.079.22	17.0	1.082.00	F	Unconsolidated	5.6	15.6	15.6	-0.16	15.4	nm nm	N/A N/A	0.08	1087.66	<u> </u>	0.00	hard
1	LL11mw-009	2352577.18	557901.18	1,088.38	17.0	1,091.54	F	Unconsolidated	6.7	16.7	16.7	-0.10	16.6	nm	N/A	1.71	1089.83	19.55	0.00	hard
1	LL11mw-010	2352039.00 2351119.00	557675.43 558680.00	1,080.22	22.0 18.5	1,082.68 1.080.20	A	Unconsolidated	10.9 7.8	20.9 17.8	20.9 18.1	2.46	23.4 20.45	nm	N/A	3.34 7.06	1079.34 1073.14	23.54 20.43	0.00 0.02	hard
1	LL11mw-011 LL11mw-012	2351119.00	558691.00	1.077.90	18.5	1,080.20	A	Unconsolidated Sharon Shale	7.8	17.8	18.1	2.80	119.45	nm nm	N/A N/A	18.59	1073.14	20.43	0.02	hard medium
	LL12mw-088	2368667.75	556393.79	978.94	29.0	981.06	A	Unconsolidated	14.8	24.8	25.0	2.12	27.1	nm	N/A	5.11	975.95	27.38	0.00	hard
1	LL12mw-107	2368595.67	556759.02	978.03 977.67	33.0 23.0	980.15	A	Unconsolidated	20.7	30.7	31.0	2.12	33.1	nm	N/A	6.79	973.36	33.66	0.00	hard
1	LL12mw-113 LL12mw-128	2368223.73 2368293.20	558345.37 557371.54	976.21	23.0	980.18 978.24	A	Sharon Shale Unconsolidated	12.3 21.1	22.3 31.1	22.5 31.3	2.51 2.03	25.0 33.3	nm nm	N/A N/A	4.81 7.60	975.37 970.64	20.70	4.30	hard hard
1	LL12mw-153	2368138.87	557823.23	975.34	26.0	977.85	A	Unconsolidated	12.3	22.3	22.5	2.51	25.0	nm	N/A	4.69	973.16	25.03	0.00	hard
1	LL12mw-154	2368183.88	557754.56	977.00	29.0	979.06	A	Unconsolidated	16.4	26.4	26.6	2.06	28.7	nm	N/A	6.78	972.28	28.81	0.00	hard
1	LL12mw-182 LL12mw-182ss	2368853.20 2368867.00	555890.35 555897.00	982.20 982.30	36.1 36	984.42 985.02	A A	Unconsolidated Unconsolidated	25.2 25.25	35.2 35.25	35.5 35.55	2.22 2.72	37.7 38.5	nm nm	N/A N/A	7.88 8.00	976.54 977.02	38.04 37.40	0.00	hard hard
1	LL12mw-183	2369224.36	556068.15	980.59	36.0	982.98	A	Sharon Shale	23.3	33.3	33.6	2.39	36.0	nm	N/A	10.26	972.72	36.30	0.00	hard
1 11: 10	LL12mw-184	2368997.48	556399.46	980.96	29.5	983.16	A	Unconsolidated	18.8	28.8	29.0	2.20	31.2	nm	N/A	10.51	972.65	31.38	0.00	hard
Load Line 12	LL12mw-185 LL12mw-186	2368829.86 2367912.39	556946.75 559065.95	979.09 976.34	24.0 23.0	981.31 978.31	A	Unconsolidated Sharon Shale	10.8 8.8	20.8 18.8	21.0 19.0	2.22	23.2 21.0	7.33 nm	973.98 N/A	5.50 5.00	975.81 973.31	23.23 21.00	0.00	hard hard
1	LL12mw-187	2368524.14	557633.10	977.90	29.0	979.94	A	Unconsolidated	17.2	27.2	27.4	2.04	29.4	8.96	970.98	7.29	972.65	29.89	0.00	hard
1	LL12mw-188	2367908.82	558132.59	978.46	20.5	980.63	А	Unconsolidated	9.8	19.8	20.0	2.17	22.2	nm	N/A	3.91	976.72	22.01	0.19	hard
1	LL12mw-189	2367945.92	558569.27	976.17	18.5	978.04	A	Sharon Shale	7.5	17.5	17.7	1.87	19.6	nm	N/A	3.54	974.50	19.51	0.09	hard
1	LL12mw-242 LL12mw-243	2368545.29 2368190.04	558020.51 557376.32	978.40 978.10	26.3 24.0	981.20 980.79	A	Unconsolidated Unconsolidated	15.5 13.0	25.5 23.0	25.5 23.0	2.80	28.3 25.7	7.89 nm	973.31 N/A	6.94 7.29	974.26 973.50	28.54 24.28	0.00 1.42	hard hard
1	LL12mw-244	2368751.42	557377.17	978.10	30.0	980.65	A	Unconsolidated	19.5	29.5	29.5	2.55	32.1	nm	N/A	9.69	970.96	30.59	1.51	hard
1	LL12mw-245	2368370.74	557044.55	977.50	29.0	980.04	Α	Unconsolidated	18.0	28.0	28.0	2.54	30.5	7.33	972.71	6.07	973.97	29.75	0.75	hard
1	LL12mw-246 LL12mw-247	2369432.17 2368932.00	556658.89 555141.00	982.00 981.30	32.0 20.5	984.83 984.25	A	Unconsolidated Unconsolidated	21.5 10	31.5 20	31.5 20.3	<u>2.83</u> 2.95	34.3 22.6	nm 4.44	N/A 979.81	14.08 4.08	970.75 980.17	<u>35.00</u> 22.58	0.00	hard medium
Landfill North of	LNWmw-024	2358403.21	564825.89	1,035.30	20.3	1,038.00	A	Unconsolidated	10.0	20.0	20.3	2.93	22.0	nm	N/A	10.44	1027.56	22.38	0.02	hard
Winklepeck Burning	LNWmw-025	2358417.06	565071.92	1,027.20	19.0	1,029.13	А	Unconsolidated	8.0	18.0	18.0	1.93	19.9	nm	N/A	3.33	1025.80	20.29	0.00	hard
Grounds	LNWmw-026 LNWmw-027	2358952.24 2358628.75	564658.16 564517.41	1,025.00 1.024.40	24.0 25.0	1,027.80 1.027.13	A	Unconsolidated Unconsolidated	13.0 14.0	23.0 24.0	23.0 24.0	2.80	25.8 26.7	nm	N/A N/A	3.85 5.49	1023.95 1021.64	25.95 26.85	0.00	hard hard
	MBS-001	2345323.00	550759.50	1.079.68	30.0	1.027.13	A	Unconsolidated	14.0	24.0	24.0	2.73	31.5	nm nm	N/A N/A	16.60	1021.64	30.98	0.52	hard
Suspected Mustard	MBS-002	2345322.30	550886.20	1,080.50	30.0	1,083.22	А	Unconsolidated	18	27.3	28	2.72	30.7	nm	N/A	17.11	1066.11	31.10	0.00	hard
Agent Burial	MBS-003	2345172.40	550922.80	1,082.45	30.0	1,084.45	A	Unconsolidated	18.5 14.7	28.2	28.5	2.00	30.5 27.0	nm	N/A	16.79 15.01	1067.66	30.69	0.00	hard
Site	MBS-004 MBS-005	2345134.20 2345354.10	550767.90 550800.70	1,079.55 1,080.50	26.0 30.0	1,081.80 1.082.42	A	Unconsolidated Unconsolidated	14.7	24.4 28	24.7 28.08	2.25	30.2	nm nm	N/A N/A	15.01	1066.79 1065.58	27.16 30.01	0.00	hard soft
<u> </u>	MBS-006	2345282.30	550726.10	1,080.29	28.0	1,081.83	A	Unconsolidated	16.5	26.5	26.56	1.54	28.2	nm	N/A	16.32	1065.51	28.09	0.11	soft
1	NTAmw-107	2345433.40	551697.29	1,077.65	23.0	1,080.30	A	Unconsolidated	12.0	22.0	22.0	2.65	24.6	nm	N/A	11.40	1068.90	24.39	0.21	soft
1	NTAmw-108 NTAmw-109	2345781.60 2345997.72	551916.22 551293.25	1,083.22 1,076.89	23.0 19.0	1,085.62 1,079.84	A A	Unconsolidated Unconsolidated	12.0 8.0	22.0 18.0	22.0 18.0	2.40 2.95	24.4 20.9	nm nm	N/A N/A	16.52 10.57	1069.10 1069.27	24.72 20.60	0.00 0.30	medium soft
1	NTAmw-110	2346438.94	551351.46	1,080.03	28.0	1,082.62	A	Unconsolidated	17.0	27.0	27.0	2.59	29.6	nm	N/A	12.81	1069.81	30.28	0.00	hard
1	NTAmw-111	2346638.01	551538.60	1,078.07	20.0	1,080.94	A	Unconsolidated	9.5	19.5	19.5	2.87	22.4	nm	N/A	3.40	1077.54	22.19	0.21	hard
NACA Test Area	NTAmw-112 NTAmw-113	2346889.48 2347082.83	551712.14 551488.52	1,075.36 1,072.61	23.9 27.5	1,078.33 1,075.68	A	Unconsolidated Unconsolidated	13.9 17.0	23.9 27.0	23.9 27.5	<u>2.97</u> 3.07	26.9 30.6	nm nm	N/A N/A	7.51 5.62	1070.82 1070.06	26.96 29.95	0.00 0.65	soft hard
	NTAmw-114	2347301.57	551592.94	1,075.61	20.0	1,075.08	A	Unconsolidated	9.5	19.5	19.5	3.10	22.6	nm	N/A N/A	4.92	1070.00	22.95	0.00	hard
1	NTAmw-115	2347581.16	551791.78	1,086.91	24.0	1,089.65	А	Unconsolidated	12.5	22.5	22.5	2.74	25.2	nm	N/A	10.93	1078.72	25.65	0.00	hard
1	NTAmw-116	2348196.39	551748.00	1,091.68	22.0	1,094.33 1.094.54	A	Unconsolidated Unconsolidated	10.0	20.0	20.0	2.65	22.6 27.4	nm	N/A	4.31	1090.02	22.68	0.00	hard
1	NTAmw-117 NTAmw-118	2347994.83 2347609.41	551584.57 551335.04	1,091.67 1,078.86	25.0 22.5	1,094.54	A	Unconsolidated	14.5 12.0	24.5 22.0	24.5 22.0	2.87	27.4	nm nm	N/A N/A	12.29 7.34	1082.25 1074.10	<u>27.89</u> 25.03	0.00	hard hard
ļ	NTAmw-119	2346013.00	551286.00	1,077.40	130	1,080.07	A	Unconsolidated	90.0	100.0	100.3	2.67	104.6	11.48	1068.59	11.24	1068.83	104.49	0.11	hard
1	ROLmw-006	2375927.71	566091.26	993.52	42.1	995.39	A	Sharon	19.4	39.4	39.6	1.87	41.4	nm	N/A	32.11	963.28	42.03	0.00	hard
1	RQLmw-007 RQLmw-008	2375872.56 2376011.08	566544.36 566327.94	963.86 963.82	18.7 18.7	965.91 966.08	A	Sharon Sharon	6.0 6.0	16.0 16.0	16.2 16.2	2.05 2.26	18.2 18.5	6.30 6.55	959.61 959.53	4.23 4.40	961.68 961.68	18.63 18.65	0.00	hard hard
1	RQLmw-009	2376253.65	566351.20	962.60	18.8	964.58	A	Sharon	5.9	15.9	16.4	1.98	18.5	5.44	959.14	3.16	961.42	18.78	0.00	hard
1	RQLmw-010	2376048.58	566857.39	980.04	35.4	982.14	Α	Sharon	12.5	32.5	33.0	2.10	35.1	nm	N/A	23.01	959.13	35.34	0.00	hard
Ramsdell Quarry Landfil	II ROLmw-011 ROLmw-012	2376398.19 2376558.19	566819.66 566551.95	974.60 975.12	35.4 30.5	976.57 977.65	A	Sharon Sharon	12.4 19.8	32.4 29.8	32.6 30.0	<u>1.97</u> 2.53	34.6 32.5	22.18 22.55	954.39 955.10	19.58 19.36	956.99 958.29	<u>35.35</u> 32.68	0.00	hard hard
-	RQLmw-012 RQLmw-013	2376204.93	566928.09	975.12	30.5	980.71	A	Sharon	23.7	29.8 33.7	33.9	2.53	32.5	22.55	955.05	22.93	958.29	32.68	0.00	soft
1	RQLmw-014	2376519.38	566941.29	970.83	29.4	973.49	A	Sharon	18.6	28.6	28.9	2.66	31.6	nm	N/A	17.54	955.95	31.52	0.08	hard
1													44.6				0.10.00	10.00		
ļ	RQLmw-015 RQLmw-016	2375490.96 2375649.55	566560.90 566177.68	989.19 994.02	40.1 39.5	991.26 996.60	A	Sharon Sharon	29.2 28.5	39.2 38.5	39.5 39.0	2.07	41.6 41.6	nm nm	N/A N/A	28.18 33.14	963.08 963.46	42.03 41.68	0.00	hard hard

Groundwater and Environmental Investigation Services

RVAAP Area	Well ID	Ohio State Plane Easting	Ohio State Plane Northing	Ground Elevation (ft, AMSL)	Total Drilled Depth (ft, BGS)	TOC Elevation (ft, AMSL)	Well Head Type ¹	Monitored Zone	Top of Screen (ft, BGS)	Bottom of Screen (ft, BGS)	Bottom of Inner Casing Plug or End Cap (ft. BGS)	Stickup height (ft, AGS)	Reported Bottom of Inner Casing (ft, BTOC)	Depth to Water - March 2015 (ft, BTOC)	Groundwater Elevation - March 2015 (ft, AMSL)	Depth to Water - July 2015 (ft, BTOC)	Groundwater Elevation - July 2015 (ft, AMSL)	July 2015 Measured Bottom of Inner Casing (ft, BTOC)	Sediment Accumulation (ft) 2	Description of Bottom
Ryffill fileu	SCFmw-001	2353178.98	554768.62	1.118.53	230	1.120.71	A	Sharon Cong.	201	211	NA	2.18	213.61	nm	N/A	88.52	1032.19	214.30	0.00	hard
	SCFmw-002	2368927.36	555152.38	982.28	153	984.56	A	Sharon Cong.	137	147	NA	2.18	149.65	18.84	965.72	17.46	967.10	150.05	0.00	medium
	SCFmw-002	2375843.20	557957.67	982.28	133	984.36 958.47	A	Sharon Cong.	125.5	135.5	NA	2.28	139.65	18.84 nm	963.72 N/A	6.95	951.52	140.00	0.00	hard
Sharon Conglomerate	SCFmw-003	2378730.23	560361.03	936.14	140	938.47	A	Sharon Cong.	123.5	133.5	NA	2.30	139.65	-0.20	944.37	-0.20	931.32	112.50	0.00	medium
	SCFmw-004	2377014.05	567302.35	958.43	120	960.80	A	Sharon Cong.	139	154	NA	2.30	112.47		944.37 N/A	-0.20	951.89	156 35	0.00	hard
	SCFmw-005	2369394.54	569583.41	958.45	90	965.92	A	Sharon Cong.	76	86	NA	2.23	88.32	nm nm	N/A N/A	17.25	948.67	88.34	0.00	medium
	WBGmw-005	2357163 55	563037.18	1.052.20	19.0	1.054.70	A	Unconsolidated	83	18.3	18.6	2.23	21.1	nm	N/A N/A	4 56	1050.14	21.41	0.00	hard
	WBGmw-006	2359087.79	563008.87	1.012.16	19.0	1.014.66	A	Unconsolidated	8.3 7.6	17.6	17.9	2.50	20.4	5.69	1008.97	5.64	1009.02	20.24	0.16	hard
	WBGmw-007	2360420.44	562479.87	998.09	24.0	1.000.59	AA	Unconsolidated	13.5	23.5	23.8	2.50	26.3		N/A	16.33	984.26	26.69	0.00	hard
	WBGmw-008	2359700.57	562010.35	1.005.71	18.5	1.008.21	Α	Unconsolidated	81	18.2	18.5	2.50	20.3	nm	N/A N/A	13.91	994.30	20.09	0.00	hard
	WBGmw-009	2357159.20	561603.54	1.045.03	24.0	1.047.53	Δ	Unconsolidated	11.4	21.4	21.5	2.50	24.0	11.51	1036.02	10.80	1036.73	24.55	0.00	medium
	WBGmw-010	2356051.96	562893.20	1.067.10	24.0	1.069.85	Δ	Unconsolidated	10.5	20.5	20.8	2.75	23.6		N/A	6.76	1063.09	23.65	0.00	hard
	WBGmw-011	2356187.29	562609.18	1.069.70	22.0	1.072.38	Δ	Unconsolidated	11.0	20.5	20.3	2.68	23.0	nm	N/A N/A	9.52	1062.86	24.23	0.00	medium
	WBGmw-012	2354810.65	562240.90	1.076.50	30.0	1.079.11	Δ	Unconsolidated	19.0	29.0	29.4	2.61	32.0	nm	N/A	15.19	1063.92	31.82	0.18	hard
Winklepeck Burning	WBGmw-012 WBGmw-013	2355223.25	561518.27	1.069.10	22.0	1.071.70	Δ	Unconsolidated	11.0	21.0	21.3	2.60	23.9	nm	N/A	9.62	1062.08	24.32	0.00	naro
Grounds	WBGmw-014	2360439.22	562061.26	994.10	23.0	996.78	A	Unconsolidated	12.0	22.0	22.3	2.68	25.0	nm	N/A	15.40	981.38	25.14	0.00	
	WBGmw-015	2359182.41	562340.12	1.009.10	22.0	1.011.60	A	Unconsolidated	11.0	21.0	21.3	2.50	23.8	nm	N/A	11.24	1000.36	23.75	0.05	hard
	WBGmw-016	2360645.88	562709.13	994.90	24.0	997.03	A	Unconsolidated	13.0	23.0	23.3	2.13	25.4	nm	N/A	16.04	980.99	25.32	0.08	hard
	WBGmw-017	2359603.84	562913.24	1.004.00	22.0	1.006.62	A	Unconsolidated	11.0	21.0	21.3	2.62	23.9	nm	N/A	7.28	999.34	23.59	0.31	hard
	WBGmw-018	2361302.00	562659.00	990.50	24.0	991.45	A	Unconsolidated	13.5	23.5	23.8	0.95	24.8	nm	N/A	14.53	976.92	25.21	0.00	hard
	WBGmw-019	2361304.00	562645.00	989.30	50.0	990.25	A	Sharon	39.55	49.55	49.85	0.95	50.5	nm	N/A	16.53	973.72	51.36	0.00	medium
	WBGmw-020	2357161.00	561623.00	1.043.40	43.3	1.044.31	A	Sharon	32.9	42.9	43.2	0.91	43.8	11.25	1033.06	10.94	1033.37	44.27	0.00	medium
	WBGmw-021	2359106.00	563009.00	1,010.00	42.5	1,010.92	Α	Sharon	32	42	42.3	0.92	43.1	8.28	1002.64	7.91	1003.01	43.66	0.00	hard

Notes and Abbreviations:

 1 A = above grade completion; F = flush-mount completion

² Sediment accumulation is based on historical construction depths that may not be accurate; only positive sediment accumulation is presented. Sediment accumulation values with gray-shading and bold font identify a calculated sediment thickness greater than 0.20 feet, with a "soft" or "medium" bottom description.

AGS = above ground surface

ASML - above mean sea level

BGS = below ground surface BTOC - below top of casing

ft - feet

N/A - not applicable

nm - not measured

TOC - top of casing

Sum Category	CAS Number	Parameter Name	FWCUG	MCL	RSL	Screening Criteria
Common Anions	16887-00-6	Chloride				
Common Anions	14797-55-8	Nitrate	10000	10000	3200	10000
Common Anions	N599	Nitrate/Nitrite (NO3/NO2-N)				
Common Anions	14808-79-8	Sulfate				
Common Anions	18496-25-8	Sulfide				
Common Anions	14265-45-3	Sulfite				
Explosives	99-35-4	1,3,5-Trinitrobenzene (Explosive)			59	59
Explosives	99-65-0	1,3-Dinitrobenzene (Explosive)	0.104		0.2	0.104
Explosives	118-96-7	2,4,6-Trinitrotoluene (Explosive)	0.521		0.98	0.521
Explosives	121-14-2	2,4-Dinitrotoluene (Explosive)	0.12		0.24	0.12
Explosives	606-20-2	2,6-Dinitrotoluene (Explosive)	0.122		0.049	0.122
Explosives	35572-78-2	2-Amino-4,6-Dinitrotoluene (Explosive)	0.209		3.9	0.209
Explosives	88-72-2	2-Nitrotoluene (Explosive)	0.37		0.31	0.37
Explosives	99-08-1	3-Nitrotoluene (Explosive)	0.07		0.31	0.17
Enprositios	// UO 1				0.17	0.17
Explosives	19406-51-0	4-Amino-2,6-Dinitrotoluene (Explosive)	0.209		3.9	0.209
Explosives	99-99-0	4-Nitrotoluene (Explosive)	5.01		4.3	5.01
Explosives	80251-29-2	DNX (Explosive)				
Explosives	2691-41-0	HMX (Explosive)			100	100
Explosives	5755-27-1	MNX (Explosive)				
Explosives	98-95-3	Nitrobenzene (Explosive)	0.521		0.14	0.521
Explosives	9004-70-0	Nitrocellulose (Explosive)			6000000	6000000
Explosives	55-63-0	Nitroglycerin (Explosive)	5.01		0.2	5.01
Explosives	556-88-7	Nitroguanidine (Explosive)			200	200
Explosives	78-11-5	PETN (Explosive)			3.9	3.9
Explosives	121-82-4	RDX (Explosive)	0.774		0.7	0.774
Explosives	479-45-8	Tetryl (Explosive)			3.9	3.9
Explosives	13980-04-6	TNX (Explosive)				
Herbicides	93-76-5	2,4,5-T			16	16
Herbicides	94-75-7	2,4-D		70	17	17
Herbicides	88-85-7	Dinoseb		7	1.5	1.5
Herbicides	93-72-1	Silvex		50	11	11
Metals	7429-90-5	Aluminum			2000	2000
Metals	7440-36-0	Antimony		6	0.78	0.78
Metals	7440-38-2	Arsenic		10	0.052	0.052
Metals	7440-39-3	Barium		2000	380	380
Metals	7440-41-7	Beryllium		4	2.5	2.5
Metals	7440-43-9	Cadmium		5	0.92	0.92
Metals	7440-70-2	Calcium				
Metals	7440-47-3	Chromium		100		
Metals	7440-48-4	Cobalt			0.6	0.6
Metals	7440-50-8	Copper		1300	80	80
Metals	7439-89-6	Iron			1400	1400
Metals	7439-92-1	Lead		15	15	15
Metals	7439-95-4	Magnesium				
Metals	7439-96-5	Manganese			43	43
Metals	7439-97-6	Mercury		2	0.063	0.063
Metals	7440-02-0	Nickel		-	39	39
Metals	7440-09-7	Potassium				
Metals	7782-49-2	Selenium		50	10	10

Sum Category	CAS Number	Parameter Name	FWCUG	MCL	RSL	Screening Criteria
Metals	7440-22-4	Silver			9.4	9.4
Metals	7440-23-5	Sodium				
Metals	7440-28-0	Thallium		2	0.02	0.02
Metals	7440-29-1	Thorium				
Metals	7440-31-5	Tin			1200	1200
Metals	7440-61-1	Uranium (inorg)				
Metals	7440-62-2	Vanadium			8.6	8.6
Metals	7440-66-6	Zinc			600	600
Miscellaneous	57-14-7	1,1-Dimethylhydrazine (UDMH)			0.00042	0.00042
Miscellaneous	505-29-3	1,4-Dithiane			20	20
Miscellaneous	15980-15-1	1,4-Oxathiane				
Miscellaneous	N33	Alkalinity				
Miscellaneous	7664-41-7	Ammonia				
Miscellaneous	N179	Chemical Oxygen Demand				
Miscellaneous	18540-29-9	Chromium, hexavalent			0.035	0.035
Miscellaneous	124-38-9	CO2				
Miscellaneous	N237	Conductivity				
Miscellaneous	57-12-5	Cyanide		200	0.15	0.15
Miscellaneous	302-01-2	Hydrazine			0.0011	0.0011
Miscellaneous	N522	Kjeldahl Nitrogen				
Miscellaneous	74-82-8	Methane				
Miscellaneous	67-56-1	Methanol			2000	2000
Miscellaneous	14797-73-0	Perchlorate			1.4	1.4
Miscellaneous	N704	pH				
Miscellaneous	64743-03-9	Phenols (misc)				
Miscellaneous	111-48-8	Thiodiglycol			140	140
Miscellaneous	N340	Total Dissolved Solids				
Miscellaneous	N997	Total Organic Carbon				
Miscellaneous	7723-14-0	Total Phosphorus as P			0.04	0.04
Miscellaneous	NS791	TPH - Diesel Range Organics (misc)			0.01	
Miscellaneous	NS834	TPH - Gasoline Range Organics (misc)				
PCBs	12674-11-2	PCB-1016			0.14	0.14
PCBs	11104-28-2	PCB-1221			0.0047	0.0047
PCBs	11141-16-5	PCB-1232	-		0.0047	0.0047
PCBs	53469-21-9	PCB-1242	0.213		0.0078	0.213
PCBs	12672-29-6	PCB-1242	0.213		0.0078	0.0078
PCBs	11097-69-1	PCB-1254	0.021		0.0078	0.021
PCBs	11097-09-1	PCB-1254 PCB-1260	0.021		0.0078	0.213
Pesticides	72-54-8	4.4'-DDD	0.213		0.0078	0.213
	72-34-8	·	0.039		0.032	0.039
Pesticides		4,4'-DDE	0.047			
Pesticides	50-29-3	4,4'-DDT			0.23	0.027
Pesticides	309-00-2	Aldrin	0.005		0.00092	0.005
Pesticides	319-84-6	alpha-BHC	0.014		0.0072	0.014
Pesticides	5103-71-9	alpha-Chlordane	0.047		0.025	
Pesticides	319-85-7	beta-BHC	0.047	~	0.025	0.047
Pesticides	57-74-9	Chlordane	-	2	0.045	0.045
Pesticides	319-86-8	delta-BHC	0.004		0.0010	
Pesticides	60-57-1	Dieldrin	0.004		0.0018	0.004
Pesticides	959-98-8	Endosulfan I				
Pesticides	33213-65-9	Endosulfan II				
Pesticides	1031-07-8	Endosulfan sulfate				

Sum Category	CAS Number	Parameter Name	FWCUG	MCL	RSL	Screening Criteria
Pesticides	72-20-8	Endrin		2	0.23	0.23
Pesticides	7421-93-4	Endrin aldehyde				
Pesticides	53494-70-5	Endrin ketone				
Pesticides	5103-74-2	gamma-Chlordane				
Pesticides	76-44-8	Heptachlor	0.4	0.4	0.0014	0.4
Pesticides	1024-57-3	Heptachlor epoxide	0.2	0.2	0.0014	0.2
Pesticides	465-73-6	Isodrin				
Pesticides	143-50-0	Kepone			0.0035	0.0035
Pesticides	58-89-9	Lindane	0.2	0.2	0.042	0.2
Pesticides	72-43-5	Methoxychlor		40	3.7	3.7
Pesticides	298-00-0	Methyl parathion			0.45	0.45
Pesticides	56-38-2	Parathion			8.6	8.6
Pesticides	8001-35-2	Toxaphene	3	3	0.071	3
Radiological	14952-40-0	Actinium-227				
Radiological	14331-83-0	Actinium-228				
Radiological	12587-46-1	Alpha activity				
Radiological	12587-47-2	Beta activity				
Radiological	14913-49-6	Bismuth-212				
Radiological	14733-03-0	Bismuth-214				
Radiological	10045-97-3	Cesium-137				
Radiological	14255-04-0	Lead-210				
Radiological	15092-94-1	Lead-212				
Radiological	15067-28-4	Lead-214				
Radiological	13966-00-2	Potassium-40				
Radiological	14331-85-2	Protactinium-231				
Radiological	7440-14-4	Radium				
Radiological	13982-63-3	Radium-226				
Radiological	15262-20-1	Radium-228				
Radiological	14913-50-9	Thallium-208				
Radiological	15065-10-8	Thorium-234				
Radiological	7440-61-1	Uranium				
Radiological	15117-96-1	Uranium-235				
Radiological	24678-82-8	Uranium-238				
SVOCs	92-52-4	1,1-Biphenyl			0.083	0.083
SVOCs	95-94-3	1,2,4,5-Tetrachlorobenzene			0.003	0.083
SVOCs	120-82-1	1,2,4,5-Tetrachlorobenzene (SVOC)		70	0.17	0.17
SVOCs	95-50-1	1,2-Dichlorobenzene (SVOC)		600	30	30
SVOCs	99-35-4	1,3,5-Trinitrobenzene (SVOC)		000	59	59
					59	
SVOCs	541-73-1 99-65-0	1,3-Dichlorobenzene (SVOC)	0.104		0.2	0.104
SVOCs SVOCs		1,3-Dinitrobenzene	0.104	75	0.2	
	106-46-7	1,4-Dichlorobenzene (SVOC)		75	0.48	0.48
SVOCs	130-15-4	1,4-Naphthoquinone				
SVOCs	134-32-7	1-Naphthalenamine			24	
SVOCs	58-90-2	2,3,4,6-Tetrachlorophenol			24	24
SVOCs	95-95-4	2,4,5-Trichlorophenol			120	120
SVOCs	88-06-2	2,4,6-Trichlorophenol			1.2	1.2
SVOCs	120-83-2	2,4-Dichlorophenol			4.6	4.6
SVOCs	105-67-9	2,4-Dimethylphenol			36	36
SVOCs	51-28-5	2,4-Dinitrophenol			3.9	3.9
SVOCs	121-14-2	2,4-Dinitrotoluene	0.12		0.24	0.12
SVOCs	87-65-0	2,6-Dichlorophenol				

Sum Category	CAS Number	Parameter Name	FWCUG	MCL	RSL	Screening Criteria
SVOCs	606-20-2	2,6-Dinitrotoluene	0.122		0.049	0.122
SVOCs	53-96-3	2-Acetylaminofluorene			0.016	0.016
SVOCs	91-58-7	2-Chloronaphthalene			75	75
SVOCs	95-57-8	2-Chlorophenol			9.1	9.1
SVOCs	534-52-1	2-Methyl-4,6-dinitrophenol			0.15	0.15
SVOCs	91-57-6	2-Methylnaphthalene			3.6	3.6
SVOCs	95-48-7	2-Methylphenol			93	93
SVOCs	91-59-8	2-Naphthalenamine			0.039	0.039
SVOCs	88-74-4	2-Nitrobenzenamine			19	19
SVOCs	88-75-5	2-Nitrophenol				
SVOCs	91-94-1	3,3'-Dichlorobenzidine			0.13	0.13
SVOCs	119-93-7	3,3'-Dimethylbenzidine			0.0065	0.0065
SVOCs	15831-10-4	3+4-Methylphenol				
SVOCs	56-49-5	3-Methylcholanthrene			0.0011	0.0011
SVOCs	108-39-4	3-Methylphenol			93	93
SVOCs	99-09-2	3-Nitrobenzenamine				
SVOCs	92-67-1	4-Aminobiphenyl			0.003	0.003
SVOCs	101-55-3	4-Bromophenyl phenyl ether				
SVOCs	59-50-7	4-Chloro-3-methylphenol			140	140
SVOCs	106-47-8	4-Chlorobenzenamine			0.37	0.37
SVOCs	7005-72-3	4-Chlorophenyl phenyl ether				
SVOCs	106-44-5	4-Methylphenol			190	190
SVOCs	100-01-6	4-Nitrobenzenamine	3.13		3.8	3.13
SVOCs	100-02-7	4-Nitrophenol				
SVOCs	94-59-7	(Safrole)			0.096	0.096
SVOCs	99-55-8	5-Nitro-o-toluidine			8.2	8.2
SVOCs	57-97-6	7,12-Dimethylbenz(a)anthracene			0.0001	0.0001
SVOCs	83-32-9	Acenaphthene			53	53
SVOCs	208-96-8	Acenaphthylene				
SVOCs	98-86-2	Acetophenone			190	190
SVOCs	120-12-7	Anthracene			180	180
SVOCs	1912-24-9	Atrazine		3	0.3	0.3
SVOCs	56-55-3	Benz(a)anthracene	0.004		0.012	0.004
SVOCs	100-52-7	Benzaldehyde			190	190
SVOCs	100-51-6	Benzenemethanol			200	200
SVOCs	50-32-8	Benzo(a)pyrene	0.2	0.2	0.0034	0.2
SVOCs	205-99-2	Benzo(b)fluoranthene	0.002		0.034	0.002
SVOCs	191-24-2	Benzo(ghi)perylene				
SVOCs	207-08-9	Benzo(k)fluoranthene			0.34	0.34
SVOCs	65-85-0	Benzoic acid			7500	7500
SVOCs	111-91-1	bis(2-Chloroethoxy)methane			5.9	5.9
SVOCs	111-44-4	bis(2-Chloroethyl) ether			0.014	0.014
SVOCs	108-60-1	Bis(2-chloroisopropyl) ether			71	71
SVOCs	117-81-7	Bis(2-ethylhexyl)phthalate	6	6	5.6	6
SVOCs	85-68-7	Butyl benzyl phthalate	~	~	16	16
SVOCs	105-60-2	Caprolactam			990	990
SVOCs	86-74-8	Carbazole				
SVOCs	510-15-6	Chlorobenzilate			0.31	0.31
SVOCs	218-01-9	Chrysene			3.4	3.4
SVOCs	2303-16-4	Diallate			0.54	0.54
SVOCs	53-70-3	Dibenz(a,h)anthracene	0.002		0.0034	0.002

Sum Category	CAS Number	Parameter Name	FWCUG	MCL	RSL	Screening Criteria
SVOCs	132-64-9	Dibenzofuran			0.79	0.79
SVOCs	84-66-2	Diethyl phthalate			1500	1500
SVOCs	60-51-5	Dimethoate			0.4	0.4
SVOCs	131-11-3	Dimethyl phthalate				
SVOCs	84-74-2	Di-n-butyl phthalate			90	90
SVOCs	117-84-0	Di-n-octylphthalate			20	20
SVOCs	122-39-4	Diphenylamine			31	31
SVOCs	298-04-4	Disulfoton			0.05	0.05
SVOCs	62-50-0	Ethyl methanesulfonate				
SVOCs	52-85-7	Famphur				
SVOCs	206-44-0	Fluoranthene			80	80
SVOCs	86-73-7	Fluorene			29	29
SVOCs	1888-71-7	Hexachloro-1-propene				
SVOCs	118-74-1	Hexachlorobenzene		1	0.0098	0.0098
SVOCs	87-68-3	Hexachlorobutadiene (SVOC)			0.14	0.14
SVOCs	77-47-4	Hexachlorocyclopentadiene		50	0.041	0.041
SVOCs	67-72-1	Hexachloroethane			0.33	0.33
SVOCs	193-39-5	Indeno(1,2,3-cd)pyrene	0.002		0.034	0.002
SVOCs	78-59-1	Isophorone	-		78	78
SVOCs	120-58-1	Isosafrole				
SVOCs	91-80-5	Methapyrilene				
SVOCs	66-27-3	Methyl methanesulfonate			0.79	0.79
SVOCs	91-20-3	Naphthalene (SVOC)			0.17	0.17
SVOCs	98-95-3	Nitrobenzene	0.521		0.14	0.521
SVOCs	55-18-5	N-Nitrosodiethylamine			0.00017	0.00017
SVOCs	62-75-9	N-Nitrosodimethylamine			0.00011	0.00011
SVOCs	924-16-3	N-Nitroso-di-n-butylamine			0.0027	0.0027
SVOCs	621-64-7	N-Nitroso-di-n-propylamine			0.011	0.011
SVOCs	86-30-6	N-Nitrosodiphenylamine			12	12
SVOCs	10595-95-6	N-Nitrosomethylethylamine			0.00071	0.00071
SVOCs	100-75-4	N-Nitrosopiperidine			0.0082	0.0082
SVOCs	930-55-2	N-Nitrosopyrrolidine			0.037	0.037
SVOCs	126-68-1	O,O,O-Triethylphosphorothioate			0.007	
SVOCs	95-53-4	o-Toluidine				
SVOCs	60-11-7	p-Dimethylaminoazobenzene			0.005	0.005
SVOCs	608-93-5	Pentachlorobenzene			0.32	0.32
SVOCs	82-68-8	Pentachloronitrobenzene			0.32	0.12
SVOCs	87-86-5	Pentachlorophenol	1	1	0.041	1
SVOCs	62-44-2	Phenacetin	-	1	34	34
SVOCs	85-01-8	Phenanthrene			34	
SVOCs	108-95-2	Phenol			580	580
SVOCs	64743-03-9	Phenols			500	
SVOCs	298-02-2	Phorate			0.3	0.3
SVOCs	298-02-2 106-50-3	p-Phenylenediamine			380	380
SVOCs	23950-58-5	p-Phenylenediamine Pronamide			120	120
SVOCs	23950-58-5 129-00-0				120	
SVOCs	297-97-2	Pyrene Thionazin			12	12
					0.57	
VOCs	630-20-6	1,1,1,2-Tetrachloroethane		200		0.57
VOCs	71-55-6	1,1,1-Trichloroethane	0.070	200	800	800
VOCs	79-34-5	1,1,2,2-Tetrachloroethane	0.069		0.076	0.069
VOCs	76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane			5500	5500

Sum Category	CAS Number	Parameter Name	FWCUG	MCL	RSL	Screening Criteria
VOCs	79-00-5	1,1,2-Trichloroethane		5	0.041	0.041
VOCs	75-34-3	1,1-Dichloroethane			2.8	2.8
VOCs	75-35-4	1,1-Dichloroethene		7	28	28
VOCs	563-58-6	1,1-Dichloropropene				
VOCs	96-18-4	1,2,3-Trichloropropane			0.00075	0.00075
VOCs	120-82-1	1,2,4-Trichlorobenzene (VOC)		70	0.4	0.4
VOCs	96-12-8	1,2-Dibromo-3-chloropropane		0.2	0.00033	0.00033
VOCs	106-93-4	1,2-Dibromoethane		0.05	0.0075	0.0075
VOCs	95-50-1	1,2-Dichlorobenzene (VOC)		600	30	30
VOCs	107-06-2	1,2-Dichloroethane	5	5	0.17	5
VOCs	540-59-0	1,2-Dichloroethene				
VOCs	78-87-5	1,2-Dichloropropane		5	0.44	0.44
VOCs	541-73-1	1,3-Dichlorobenzene (VOC)				
VOCs	142-28-9	1,3-Dichloropropane			37	37
VOCs	106-46-7	1,4-Dichlorobenzene (VOC)		75	0.48	0.48
VOCs	594-20-7	2,2-Dichloropropane				
VOCs	78-93-3	2-Butanone			560	560
VOCs	126-99-8	2-Chloro-1,3-butadiene			0.019	0.019
VOCs	110-75-8	2-Chloroethyl vinyl ether				
VOCs	591-78-6	2-Hexanone			3.8	3.8
VOCs	1634-04-4	2-Methoxy-2-methylpropane			14	14
VOCs	108-10-1	4-Methyl-2-pentanone			630	630
VOCs	67-64-1	Acetone			1400	1400
VOCs	75-05-8	Acetonitrile			13	13
VOCs	107-02-8	Acrolein			0.0042	0.0042
VOCs	107-13-1	Acrylonitrile			0.052	0.052
VOCs	107-05-1	Allyl chloride			0.21	0.21
VOCs	71-43-2	Benzene	5	5	0.46	5
VOCs	74-97-5	Bromochloromethane			8.3	8.3
VOCs	75-27-4	Bromodichloromethane			0.13	0.13
VOCs	75-25-2	Bromoform			3.3	3.3
VOCs	74-83-9	Bromomethane			0.75	0.75
VOCs	75-15-0	Carbon disulfide			81	81
VOCs	56-23-5	Carbon tetrachloride	5	5	0.46	5
VOCs	108-90-7	Chlorobenzene		100	7.8	7.8
VOCs	75-00-3	Chloroethane			2100	2100
VOCs	67-66-3	Chloroform	0.207		0.22	0.207
VOCs	74-87-3	Chloromethane			19	19
VOCs	156-59-2	cis-1,2-Dichloroethene		70	3.6	3.6
VOCs	10061-01-5	cis-1,3-Dichloropropene				
VOCs	98-82-8	Cumene			45	45
VOCs	110-82-7	Cyclohexane			1300	1300
VOCs	124-48-1	Dibromochloromethane			0.87	0.87
VOCs	74-95-3	Dibromomethane			0.83	0.83
VOCs	75-71-8	Dichlorodifluoromethane			20	20
VOCs	107-12-0	Ethyl cyanide			_•	
VOCs	97-63-2	Ethyl methacrylate			63	63
VOCs	100-41-4	Ethylbenzene		700	1.5	1.5
VOCs	74-88-4	Iodomethane		, 50		
VOCs	78-83-1	Isobutanol			590	590
VOCs	126-98-7	Methacrylonitrile			0.19	0.19

Sum Category	CAS Number	Parameter Name	FWCUG	MCL	RSL	Screening Criteria
VOCs	79-20-9	Methyl acetate			2000	2000
VOCs	80-62-6	Methyl methacrylate			140	140
VOCs	108-87-2	Methylcyclohexane				
VOCs	75-09-2	Methylene chloride	5.34	5	11	5.34
VOCs	100-42-5	Styrene		100	120	120
VOCs	127-18-4	Tetrachloroethene	5	5	4.1	5
VOCs	108-88-3	Toluene		1000	110	110
VOCs	156-60-5	trans-1,2-Dichloroethene		100	36	36
VOCs	10061-02-6	trans-1,3-Dichloropropene				
VOCs	110-57-6	trans-1,4-Dichloro-2-butene			0.0013	0.0013
VOCs	79-01-6	Trichloroethene	5	5	0.28	5
VOCs	75-69-4	Trichlorofluoromethane			520	520
VOCs	108-05-4	Vinyl acetate			41	41
VOCs	75-01-4	Vinyl chloride		2	0.019	0.019
VOCs	179601-23-1	Xylene, m+p				
VOCs	95-47-6	Xylene, ortho			19	19
VOCs	1330-20-7	Xylenes, total		10000	19	19

Notes and Abbreviations:

FWCUG - Facility Wide Cleanup Goal, from the Final Facility-Wide Human Health Cleanup Goals for the Ravenna Army ammunition Plant, Ravenna, Ohio, dated March 23, 2010, prepared by EQM.

MCL - U.S. EPA Maximum Contaminant Level

PCBs - Polychlorinated biphenyls

RSL - Regional Screening Level, from November 2015 (using a THQ=0.1, and HQ=10e-6).

SVOCs - Semivolatile Organic Compounds

VOCs - Volatile Organic Compounds

Highlighted and Bold values identify the screening value.

Note that the FWCUG for metals are not included in this table; these will be revised during the pending Remedial Investigation.

Load Line 1

Table A10-1 Load Line 1 Groundwater Data Summary

Well	Zone Monitored	сос	Discussion
LL1mw-067	Sandstone bedrock	Aluminum	5 samples collected after the remedial action, all results < RSL, 4 results ND
		Antimony	5 samples collected after the remedial action, all results ND
		Arsenic	5 samples collected after the remedial action, 4 results ND
		Barium	5 samples collected after the remedial action, all results < RSL, no apparent trend
		Cadmium Chromium (hexavalent)	5 samples collected after the remedial action, all results ND No samples collected after the remedial action
		Manganese	5 samples collected after the remedial action, all results > RSL, no apparent trend
		Lead	5 samples collected after the remedial action, 4 results ND
		2,4,6-TNT	4 samples collected after the remedial action, all results ND
		RDX	4 samples collected after the remedial action, all results ND
		Aroclor-1254	4 samples collected after the remedial action, all results ND
		Benz(a)anthracene Benzo(a)pyrene	4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND
		Benzo(b)fluoranthene	4 samples collected after the remedial action, all results ND
		Dibenz(a,h)anthracene	4 samples collected after the remedial action, all results ND
LL1mw-078	Sandstone bedrock		3 samples collected after the remedial action, all results < RSL
		Antimony Arsenic	3 samples collected after the remedial action, 2 results ND, all results < RSL
		Barium	3 samples collected after the remedial action, 2 results ND 3 samples collected after the remedial action, all results < RSL, no apparent trend
		Cadmium	3 samples collected after the remedial action, all results ND
		Chromium (hexavalent)	No samples collected after the remedial action
		Manganese	3 samples collected after the remedial action, all results > RSL, no apparent trend
		Lead	3 samples collected after the remedial action, 2 results ND, all results < RSL
		2,4,6-TNT	2 samples collected after the remedial action, all results ND
		RDX Aroclor-1254	2 samples collected after the remedial action, 1 result ND, 1 result < FWCUG 2 samples collected after the remedial action, all results ND
		Benz(a)anthracene	2 samples collected after the remedial action, all results ND
		Benzo(a)pyrene	2 samples collected after the remedial action, all results ND
		Benzo(b)fluoranthene	2 samples collected after the remedial action, all results ND
		Dibenz(a,h)anthracene	2 samples collected after the remedial action, all results ND
LL1mw-081	Sandstone bedrock	Aluminum	6 samples collected after the remedial action, 5 results ND & 1 result estimated (< detection limit)
		Antimony	6 samples collected after the remedial action, all results ND
		Arsenic	6 samples collected after the remedial action, 5 results ND & 2 results estimated (< detection limit)
		Barium	6 samples collected after the remedial action, all results < RSL, no apparent trend
		Cadmium Chromium (hexavalent)	6 samples collected after the remedial action, all results ND 1 sample collected since the remedial action, ND result
		Manganese	6 samples collected after the remedial action, all results > RSL, no apparent trend
		Lead	6 samples collected after the remedial action, all results ND
		2,4,6-TNT	5 samples collected after the remedial action, 3 results ND & 2 results estimated (< detection limit)
		RDX	5 samples collected after the remedial action, 3 results estimated (< detection limit), all results < FWCUG
		Aroclor-1254	4 samples collected after the remedial action, all results ND
		Benz(a)anthracene	4 samples collected after the remedial action, all results ND
		Benzo(a)pyrene Benzo(b)fluoranthene	4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND
		Dibenz(a,h)anthracene	4 samples collected after the remedial action, all results ND
LL1mw-082	Sandstone bedrock	Aluminum	6 samples collected after the remedial action, 5 results ND
LL IIIW-002	Gandstone bedrock	Antimony	6 samples collected after the remedial action, all results ND
		Arsenic	6 samples collected after the remedial action, 3 results ND, 2 results estimated (< detection limit)
		Barium	6 samples collected after the remedial action, all results < RSL, no apparent trend
		Cadmium	6 samples collected after the remedial action, 1 result ND, 5 results estimated (< detection limit), all results < RSL
		Chromium (hexavalent)	1 sample collected since the remedial action, ND result
		Manganese Lead	6 samples collected after the remedial action, all results > RSL, upward trend 6 samples collected after the remedial action, 5 results ND
		2,4,6-TNT	5 samples collected after the remedial action, 3 results ND
		RDX	5 samples collected after the remedial action, 4 results ND
		Aroclor-1254	4 samples collected after the remedial action, all results ND
		Benz(a)anthracene	4 samples collected after the remedial action, all results ND
		Benzo(a)pyrene	4 samples collected after the remedial action, all results ND
		Benzo(b)fluoranthene Dibenz(a,h)anthracene	4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND
LL1mw-084	Sandstone bedrock	Aluminum	11 samples collected after the remedial action, 10 results < RSL, downward trend
		Antimony Arsenic	11 samples collected after the remedial action, all results ND 11 samples collected after the remedial action, 9 results ND & 1 result estimated (< detection limit)
		Barium	11 samples collected after the remedial action, all results < RSL, no trend
		Cadmium	11 samples collected after the remedial action, all results > RSL, no trend
		Cadmium Chromium (hexavalent)	1 sample collected since the remedial action, ND result
		Chromium (hexavalent) Manganese	1 sample collected since the remedial action, ND result 11 samples collected after the remedial action, all results > RSL, decreasing trend
		Chromium (hexavalent) Manganese Lead	1 sample collected since the remedial action, ND result 11 samples collected after the remedial action, all results > RSL, decreasing trend 11 samples collected after the remedial action, 9 results ND
		Chromium (hexavalent) Manganese Lead 2,4,6-TNT	1 sample collected since the remedial action, ND result 11 samples collected after the remedial action, all results > RSL, decreasing trend 11 samples collected after the remedial action, 9 results ND 10 samples collected after the remedial action, 9 results estimated (< detection limit), all results > FWCUG, no trend
		Chromium (hexavalent) Manganese Lead 2,4,6-TNT RDX	1 sample collected since the remedial action, ND result 11 samples collected after the remedial action, all results > RSL, decreasing trend 11 samples collected after the remedial action, 9 results ND 10 samples collected after the remedial action, 9 results estimated (< detection limit), all results > FWCUG, no trend 10 samples collected after the remedial action, 9 results estimated (< detection limit), 5 results > FWCUG, no trend
		Chromium (hexavalent) Manganese Lead 2,4,6-TNT	1 sample collected since the remedial action, ND result 11 samples collected after the remedial action, all results > RSL, decreasing trend 11 samples collected after the remedial action, 9 results ND 10 samples collected after the remedial action, 9 results estimated (< detection limit), all results > FWCUG, no trend
		Chromium (hexavalent) Manganese Lead 2,4,6-TNT RDX Aroclor-1254	1 sample collected since the remedial action, ND result 11 samples collected after the remedial action, all results > RSL, decreasing trend 11 samples collected after the remedial action, 9 results ND 10 samples collected after the remedial action, 9 results estimated (< detection limit), all results > FWCUG, no trend 10 samples collected after the remedial action, 9 results estimated (< detection limit), 5 results > FWCUG, no trend 4 samples collected after the remedial action, all results ND
		Chromium (hexavalent) Manganese Lead 2,4,6-TNT RDX Aroclor-1254 Benz(a)anthracene	1 sample collected since the remedial action, ND result 11 samples collected after the remedial action, all results > RSL, decreasing trend 11 samples collected after the remedial action, 9 results ND 10 samples collected after the remedial action, 9 results estimated (< detection limit), all results > FWCUG, no trend 10 samples collected after the remedial action, 9 results estimated (< detection limit), 5 results > FWCUG, no trend 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND

Table A10-1 Load Line 1 Groundwater Data Summary

Well	Zone Monitored	COC	Discussion
LL1mw-085	Sandstone bedrock	Aluminum	6 samples collected after the remedial action, 5 results ND
		Antimony	6 samples collected after the remedial action, all results ND
		Arsenic	6 samples collected after the remedial action, all results < RSL
		Barium	6 samples collected after the remedial action, all results < RSL
		Cadmium	6 samples collected after the remedial action, all results ND
		Chromium (hexavalent)	1 sample collected since the remedial action, ND result
		Manganese	6 samples collected after the remedial action, all results > RSL, upward trend
		Lead	6 samples collected after the remedial action, all results ND
		2,4,6-TNT	5 samples collected after the remedial action, all results ND
		RDX	5 samples collected after the remedial action, all results ND
		Aroclor-1254	4 samples collected after the remedial action, all results ND
		Benz(a)anthracene	4 samples collected after the remedial action, all results ND
		Benzo(a)pyrene	4 samples collected after the remedial action, all results ND
		Benzo(b)fluoranthene	4 samples collected after the remedial action, all results ND
		Dibenz(a,h)anthracene	4 samples collected after the remedial action, all results ND

Notes:

FWCUG = Facility Wide Cleanup Goal from EQM, 2010, Final Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio. March 23

ND = not detected

RSL = USEPA Regional Screeing Level from Table 3-3 Screening Criteria, Draft Facility-Wide Groundwater Monitoring Program RVAAP-66 Facility-Wide Groundwater Annual Report for 2015. February 2016

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL1mw-067	LL1MW067-080107	8/1/2007	2,4,6-Trinitrotoluene	0.001	mg/L	
LL1mw-067	FWGLL1mw-067C-1523-GW	7/14/2010	2,4,6-Trinitrotoluene	0.0001	mg/L	U
LL1mw-067	FWGLL1mw-067C-1589-GW	10/11/2010	2,4,6-Trinitrotoluene	0.00011	mg/L	U
LL1mw-067	FWGLL1mw-067C-1640-GW	1/17/2011	2,4,6-Trinitrotoluene	0.000099	mg/L	U
LL1mw-067	FWGLL1mw-067C-1715-GW	4/5/2011	2,4,6-Trinitrotoluene	0.00011	mg/L	U
LL1mw-067	LL1MW067-080107	8/1/2007	Aluminum	0.1	mg/L	
LL1mw-067	FWGLL1mw-067-024-GF	10/19/2009	Aluminum	0.05	mg/L	U
LL1mw-067	FWGLL1mw-067-024-GW	10/19/2009	Aluminum	1.71	mg/L	
LL1mw-067	FWGLL1mw-067C-1523-GF	7/14/2010	Aluminum	0.05	mg/L	U
LL1mw-067	FWGLL1mw-067C-1589-GF	10/11/2010	Aluminum	0.05	mg/L	U
LL1mw-067	FWGLL1mw-067C-1640-GF	1/17/2011	Aluminum	0.05	mg/L	U
LL1mw-067	FWGLL1mw-067C-1715-GF	4/5/2011	Aluminum	0.05	mg/L	U
LL1mw-067	LL1MW067-080107	8/1/2007	Antimony	0.00088	mg/L	
LL1mw-067	FWGLL1mw-067-024-GF	10/19/2009	Antimony	0.002	mg/L	U
LL1mw-067	FWGLL1mw-067-024-GW	10/19/2009	Antimony	0.00015	mg/L	UJ
LL1mw-067	FWGLL1mw-067C-1523-GF	7/14/2010	Antimony	0.002	mg/L	U
LL1mw-067	FWGLL1mw-067C-1589-GF	10/11/2010	Antimony	0.002	mg/L	U
LL1mw-067	FWGLL1mw-067C-1640-GF	1/17/2011	Antimony	0.002	mg/L	U
LL1mw-067	FWGLL1mw-067C-1715-GF	4/5/2011	Antimony	0.002	mg/L	U
LL1mw-067	LL1MW067-080107	8/1/2007	Arsenic	0.001	mg/L	
LL1mw-067	FWGLL1mw-067-024-GF	10/19/2009	Arsenic	0.005	mg/L	U
LL1mw-067	FWGLL1mw-067-024-GW	10/19/2009	Arsenic	0.0084	mg/L	
LL1mw-067	FWGLL1mw-067C-1523-GF	7/14/2010	Arsenic	0.005	mg/L	U
LL1mw-067	FWGLL1mw-067C-1589-GF	10/11/2010	Arsenic	0.005	mg/L	U
LL1mw-067	FWGLL1mw-067C-1640-GF	1/17/2011	Arsenic	0.005	mg/L	U
LL1mw-067	FWGLL1mw-067C-1715-GF	4/5/2011	Arsenic	0.005	mg/L	U
LL1mw-067	LL1MW067-080107	8/1/2007	Barium	0.0203	mg/L	
LL1mw-067	FWGLL1mw-067-024-GF	10/19/2009	Barium	0.0195	mg/L	
LL1mw-067	FWGLL1mw-067-024-GW	10/19/2009	Barium	0.0277	mg/L	
LL1mw-067	FWGLL1mw-067C-1523-GF	7/14/2010	Barium	0.0112	mg/L	
LL1mw-067	FWGLL1mw-067C-1589-GF	10/11/2010	Barium	0.015	mg/L	
LL1mw-067	FWGLL1mw-067C-1640-GF	1/17/2011	Barium	0.0341	0	
LL1mw-067	FWGLL1mw-067C-1715-GF	4/5/2011	Barium	0.0274	mg/L	
LL1mw-067	LL1MW067-080107	8/1/2007	Benz(a)anthracene	0.00549	•	
LL1mw-067	FWGLL1mw-067C-1523-GW	7/14/2010	Benz(a)anthracene	0.0002	-	U
LL1mw-067	FWGLL1mw-067C-1589-GW	10/11/2010	Benz(a)anthracene	0.0002	-	U
LL1mw-067	FWGLL1mw-067C-1640-GW	1/17/2011	Benz(a)anthracene	0.00025	-	U
LL1mw-067	FWGLL1mw-067C-1715-GW	4/5/2011	Benz(a)anthracene	0.0002		U
LL1mw-067	LL1MW067-080107	8/1/2007	Benzo(a)pyrene	0.00549	-	
LL1mw-067	FWGLL1mw-067C-1523-GW	7/14/2010	Benzo(a)pyrene	0.0002	-	U
LL1mw-067	FWGLL1mw-067C-1589-GW	10/11/2010	Benzo(a)pyrene	0.0002	-	U
LL1mw-067	FWGLL1mw-067C-1640-GW	1/17/2011	Benzo(a)pyrene	0.00025	-	U
LL1mw-067	FWGLL1mw-067C-1715-GW	4/5/2011	Benzo(a)pyrene	0.0002		U
LL1mw-067	LL1MW067-080107	8/1/2007	Benzo(b)fluoranthene	0.00549	-	
LL1mw-067	FWGLL1mw-067C-1523-GW	7/14/2010	Benzo(b)fluoranthene	0.0002	-	U
LL1mw-067	FWGLL1mw-067C-1589-GW	10/11/2010	Benzo(b)fluoranthene	0.0002	-	U
LL1mw-067	FWGLL1mw-067C-1640-GW	1/17/2011	Benzo(b)fluoranthene	0.00025	-	U
LL1mw-067	FWGLL1mw-067C-1715-GW	4/5/2011	Benzo(b)fluoranthene	0.0002		U
LL1mw-067	LL1MW067-080107	8/1/2007	Cadmium	0.01	-	
LL1mw-067	FWGLL1mw-067-024-GF	10/19/2009	Cadmium	0.0005	-	U
LL1mw-067	FWGLL1mw-067-024-GW	10/19/2009	Cadmium	0.0005	ing/L	U

LL1mw-067 FWGLL1mw-067C-1523-GF 7/14/2010 Cadmium 0.0005 mg/L U LL1mw-067 FWGLL1mw-067C-1589-GF 10/11/2010 Cadmium 0.0005 mg/L U LL1mw-067 FWGLL1mw-067C-1640-GF 1/17/2011 Cadmium 0.0005 mg/L U	
•	
11 1mw-067 EWG11 1mw-067C-1640-GE 1/17/2011 Cadmium 0.0005 mg/l 11	
LETITIV-007 TWGLETITIV-007-040-GT 1/17/2011 Cautilium 0.0003 Mg/L 0	
LL1mw-067 FWGLL1mw-067C-1715-GF 4/5/2011 Cadmium 0.0005 mg/L U	
LL1mw-067 LL1MW067-080107 8/1/2007 Dibenz(a,h)anthracene 0.00549 mg/L	
LL1mw-067 FWGLL1mw-067C-1523-GW 7/14/2010 Dibenz(a,h)anthracene 0.0002 mg/L U	
LL1mw-067 FWGLL1mw-067C-1589-GW 10/11/2010 Dibenz(a,h)anthracene 0.0002 mg/L U	
LL1mw-067 FWGLL1mw-067C-1640-GW 1/17/2011 Dibenz(a,h)anthracene 0.00025 mg/L U	
LL1mw-067 FWGLL1mw-067C-1715-GW 4/5/2011 Dibenz(a,h)anthracene 0.0002 mg/L U	
LL1mw-067 LL1MW067-080107 8/1/2007 Lead 0.001 mg/L	
LL1mw-067 FWGLL1mw-067-024-GF 10/19/2009 Lead 0.003 mg/L U	
LL1mw-067 FWGLL1mw-067-024-GW 10/19/2009 Lead 0.0049 mg/L	
LL1mw-067 FWGLL1mw-067C-1523-GF 7/14/2010 Lead 0.003 mg/L U	
LL1mw-067 FWGLL1mw-067C-1589-GF 10/11/2010 Lead 0.003 mg/L U	
LL1mw-067 FWGLL1mw-067C-1640-GF 1/17/2011 Lead 0.003 mg/L U	
LL1mw-067 FWGLL1mw-067C-1715-GF 4/5/2011 Lead 0.003 mg/L U	
LL1mw-067 LL1MW067-080107 8/1/2007 Manganese 0.0454 mg/L	
LL1mw-067 FWGLL1mw-067-024-GF 10/19/2009 Manganese 0.0132 mg/L	
LL1mw-067 FWGLL1mw-067-024-GW 10/19/2009 Manganese 0.104 mg/L	
LL1mw-067 FWGLL1mw-067C-1523-GF 7/14/2010 Manganese 0.0131 mg/L	
LL1mw-067 FWGLL1mw-067C-1589-GF 10/11/2010 Manganese 0.0119 mg/L	
LL1mw-067 FWGLL1mw-067C-1715-GF 4/5/2011 Manganese 0.085 mg/L	
LL1mw-067 LL1MW067-080107 8/1/2007 PCB-1254 0.00051 mg/L LL1mw-067 FWGLL1mw-067C-1523-GW 7/14/2010 PCB-1254 0.0005 mg/L U	
LL1mw-067 FWGLL1mw-067C-1589-GW 10/11/2010 PCB-1254 0.0005 mg/L U	
LL1mw-067 FWGLL1mw-067C-1640-GW 1/17/2011 PCB-1254 0.0005 mg/L U	
LL1mw-067 FWGLL1mw-067C-1715-GW 4/5/2011 PCB-1254 0.0005 mg/L U	
LL1mw-067 LL1MW067-080107 8/1/2007 RDX 0.001 mg/L	
LL1mw-067 FWGLL1mw-067C-1523-GW 7/14/2010 RDX 0.0001 mg/L U	
LL1mw-067 FWGLL1mw-067C-1589-GW 10/11/2010 RDX 0.00011 mg/L U	
LL1mw-067 FWGLL1mw-067C-1640-GW 1/17/2011 RDX 0.000099 mg/L U	
LL1mw-067 FWGLL1mw-067C-1715-GW 4/5/2011 RDX 0.00011 mg/L U	_
LL1mw-078 LL1MW078-080207 8/2/2007 2,4,6-Trinitrotoluene 0.00102 mg/L	
LL1mw-078 FWGLL1mw-078C-0535-GW 10/8/2007 2,4,6-Trinitrotoluene 0.0001 mg/L U	
LL1mw-078 FWGLL1mw-078C-1524-GW 7/14/2010 2,4,6-Trinitrotoluene 0.00011 mg/L U	
LL1mw-078 LL1MW078-080207 8/2/2007 Aluminum 0.1 mg/L	
LL1mw-078 FWGLL1mw-078C-0535-GF 10/8/2007 Aluminum 0.0698 mg/L J	
LL1mw-078 FWGLL1mw-078-025-GF 10/19/2009 Aluminum 0.253 mg/L	
LL1mw-078 FWGLL1mw-078-025-GW 10/19/2009 Aluminum 3.12 mg/L	
LL1mw-078 FWGLL1mw-078C-1524-GF 7/14/2010 Aluminum 0.11 mg/L	
LL1mw-078 LL1MW078-080207 8/2/2007 Antimony 0.000385 mg/L	
LL1mw-078 FWGLL1mw-078C-0535-GF 10/8/2007 Antimony 0.00024 mg/L J	
LL1mw-078 FWGLL1mw-078-025-GF 10/19/2009 Antimony 0.002 mg/L U	
LL1mw-078 FWGLL1mw-078-025-GW 10/19/2009 Antimony 0.002 mg/L U	
LL1mw-078 FWGLL1mw-078C-1524-GF 7/14/2010 Antimony 0.002 mg/L U	
LL1mw-078 LL1MW078-080207 8/2/2007 Arsenic 0.001 mg/L	
LL1mw-078 FWGLL1mw-078C-0535-GF 10/8/2007 Arsenic 0.005 mg/L U	
LL1mw-078 FWGLL1mw-078-025-GF 10/19/2009 Arsenic 0.005 mg/L U	
LL1mw-078 FWGLL1mw-078-025-GW 10/19/2009 Arsenic 0.0071 mg/L	
LL1mw-078 FWGLL1mw-078C-1524-GF 7/14/2010 Arsenic 0.005 mg/L U	

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL1mw-078	LL1MW078-080207	8/2/2007	Barium	0.0115 ו	mg/L	
LL1mw-078	FWGLL1mw-078C-0535-GF	10/8/2007	Barium	0.0163 ו	mg/L	
LL1mw-078	FWGLL1mw-078-025-GF	10/19/2009	Barium	0.0093 ו	mg/L	J
LL1mw-078	FWGLL1mw-078-025-GW	10/19/2009	Barium	0.0272 ו	mg/L	
LL1mw-078	FWGLL1mw-078C-1524-GF	7/14/2010	Barium	0.0162 ו	ng/L	
LL1mw-078	LL1MW078-080207	8/2/2007	Benz(a)anthracene	0.0051 ו	ng/L	
LL1mw-078	FWGLL1mw-078C-0535-GW	10/8/2007	Benz(a)anthracene	0.0002 ו	ng/L	U
LL1mw-078	FWGLL1mw-078C-1524-GW	7/14/2010	Benz(a)anthracene	0.0002 ו	-	U
LL1mw-078	LL1MW078-080207	8/2/2007	Benzo(a)pyrene	0.0051 ו		
LL1mw-078	FWGLL1mw-078C-0535-GW	10/8/2007	Benzo(a)pyrene	0.0002 1	0	U
LL1mw-078	FWGLL1mw-078C-1524-GW	7/14/2010	Benzo(a)pyrene	0.0002 1	-	U
LL1mw-078	LL1MW078-080207	8/2/2007	Benzo(b)fluoranthene	0.0051 1		
LL1mw-078	FWGLL1mw-078C-0535-GW	10/8/2007	Benzo(b)fluoranthene	0.0002 1	0	U
LL1mw-078	FWGLL1mw-078C-1524-GW	7/14/2010	Benzo(b)fluoranthene	0.0002 1	-	U
LL1mw-078	LL1MW078-080207	8/2/2007	Cadmium	0.0002 1		0
LL1mw-078	FWGLL1mw-078C-0535-GF	10/8/2007	Cadmium	0.0005 1	0	U
LL1mw-078	FWGLL1mw-078-025-GF	10/19/2009	Cadmium	0.0005 1	0	U
LL1mw-078	FWGLL1mw-078-025-GW	10/19/2009	Cadmium	0.0005 1	0	U
LL1mw-078	FWGLL1mw-078C-1524-GF	7/14/2010	Cadmium	0.0005 1	0	U
LL1mw-078						U
	LL1MW078-080207	8/2/2007	Dibenz(a,h)anthracene	0.0051 1	0	
LL1mw-078	FWGLL1mw-078C-0535-GW	10/8/2007	Dibenz(a,h)anthracene	0.0002 1	0	U
LL1mw-078	FWGLL1mw-078C-1524-GW	7/14/2010	Dibenz(a,h)anthracene	0.0002 1		U
LL1mw-078	LL1MW078-080207	8/2/2007	Lead	0.001 1	0	
LL1mw-078	FWGLL1mw-078C-0535-GF	10/8/2007	Lead	0.003 ו	-	U
LL1mw-078	FWGLL1mw-078-025-GF	10/19/2009	Lead	0.003 ו	-	U
LL1mw-078	FWGLL1mw-078-025-GW	10/19/2009	Lead	0.0061 ו	-	
LL1mw-078	FWGLL1mw-078C-1524-GF	7/14/2010	Lead	0.003 ו		U
LL1mw-078	LL1MW078-080207	8/2/2007	Manganese	0.0559 1	•	
LL1mw-078	FWGLL1mw-078C-0535-GF	10/8/2007	Manganese	0.12 ו		
LL1mw-078	FWGLL1mw-078-025-GF	10/19/2009	Manganese	0.0338 ו	-	
LL1mw-078	FWGLL1mw-078-025-GW	10/19/2009	Manganese	0.159 ו	-	
LL1mw-078	FWGLL1mw-078C-1524-GF	7/14/2010	Manganese	ا 0.071 ا		
LL1mw-078	LL1MW078-080207	8/2/2007	PCB-1254	0.0005 ו	0	
LL1mw-078	FWGLL1mw-078C-0535-GW	10/8/2007	PCB-1254	0.0005 ו	•	UJ
LL1mw-078	FWGLL1mw-078C-1524-GW	7/14/2010	PCB-1254	0.0005 ו		UJ
LL1mw-078	LL1MW078-080207	8/2/2007	RDX	0.00102 ו	mg/L	
LL1mw-078	FWGLL1mw-078C-0535-GW	10/8/2007	RDX	0.0001 เ	-	U
LL1mw-078	FWGLL1mw-078C-1524-GW	7/14/2010	RDX	0.000095 ו	mg/L	J
LL1mw-081	LL1MW081-080207	8/2/2007	2,4,6-Trinitrotoluene	0.00102 ו	mg/L	
LL1mw-081	FWGLL1mw-081C-1526-GW	7/14/2010	2,4,6-Trinitrotoluene	0.000097 ו	mg/L	U
LL1mw-081	FWGLL1mw-081C-1590-GW	10/11/2010	2,4,6-Trinitrotoluene	0.0001 เ	mg/L	U
LL1mw-081	FWGLL1mw-081C-1641-GW	1/17/2011	2,4,6-Trinitrotoluene	0.00011 เ	mg/L	U
LL1mw-081	FWGLL1mw-081C-1716-GW	4/5/2011	2,4,6-Trinitrotoluene	0.000057 ו	mg/L	J
LL1mw-081	FWGLL1mw-081C-1765-GW	8/1/2011	2,4,6-Trinitrotoluene	0.00005 ו	ng/L	J
LL1mw-081	LL1MW081-080207	8/2/2007	Aluminum	0.1 ו	ng/L	
LL1mw-081	FWGLL1mw-081-028-GF	10/19/2009	Aluminum	0.05 ו	mg/L	U
LL1mw-081	FWGLL1mw-081-028-GW	10/19/2009	Aluminum	0.0262 ו	mg/L	UJB
LL1mw-081	FWGLL1mw-081C-1526-GF	7/14/2010	Aluminum	0.05 ו	mg/L	U
LL1mw-081	FWGLL1mw-081C-1590-GF	10/11/2010	Aluminum	0.05 ו	mg/L	U
LL1mw-081	FWGLL1mw-081C-1641-GF	1/17/2011	Aluminum	0.05 ו	mg/L	U
LL1mw-081	FWGLL1mw-081C-1716-GF	4/5/2011	Aluminum	0.05 ו	-	U

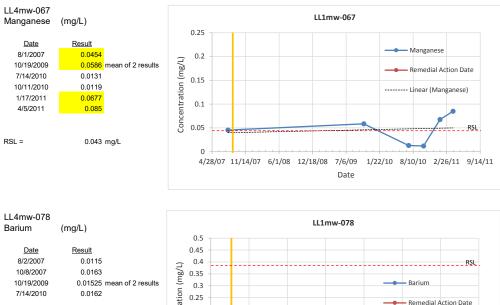
Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL1mw-081	FWGLL1mw-081C-1765-GF	8/1/2011	Aluminum	0.025 r	mg/L	J
LL1mw-081	LL1MW081-080207	8/2/2007	Antimony	0.001 r	ng/L	
LL1mw-081	FWGLL1mw-081-028-GF	10/19/2009	Antimony	0.002 r	mg/L	U
LL1mw-081	FWGLL1mw-081-028-GW	10/19/2009	Antimony	0.002 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1526-GF	7/14/2010	Antimony	0.002 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1590-GF	10/11/2010	Antimony	0.002 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1641-GF	1/17/2011	Antimony	0.002 r	ng/L	U
LL1mw-081	FWGLL1mw-081C-1716-GF	4/5/2011	Antimony	0.002 r	ng/L	U
LL1mw-081	FWGLL1mw-081C-1765-GF	8/1/2011	Antimony	0.00018 r	ng/L	U
LL1mw-081	LL1MW081-080207	8/2/2007	Arsenic	0.00102 r	ng/L	
LL1mw-081	FWGLL1mw-081-028-GF	10/19/2009	Arsenic	0.005 r	ng/L	U
LL1mw-081	FWGLL1mw-081-028-GW	10/19/2009	Arsenic	0.0044 r	ng/L	J
LL1mw-081	FWGLL1mw-081C-1526-GF	7/14/2010	Arsenic	0.005 r	ng/L	U
LL1mw-081	FWGLL1mw-081C-1590-GF	10/11/2010	Arsenic	0.005 r	ng/L	U
LL1mw-081	FWGLL1mw-081C-1641-GF	1/17/2011	Arsenic	0.005 r	ng/L	U
LL1mw-081	FWGLL1mw-081C-1716-GF	4/5/2011	Arsenic	0.005 r	ng/L	U
LL1mw-081	FWGLL1mw-081C-1765-GF	8/1/2011	Arsenic	0.0032 r	ng/L	J
LL1mw-081	LL1MW081-080207	8/2/2007	Barium	0.0236 r	ng/L	
LL1mw-081	FWGLL1mw-081-028-GF	10/19/2009	Barium	0.0168 r	ng/L	
LL1mw-081	FWGLL1mw-081-028-GW	10/19/2009	Barium	0.0188 r	mg/L	
LL1mw-081	FWGLL1mw-081C-1526-GF	7/14/2010	Barium	0.0182 r	ng/L	
LL1mw-081	FWGLL1mw-081C-1590-GF	10/11/2010	Barium	0.0195 r	ng/L	
LL1mw-081	FWGLL1mw-081C-1641-GF	1/17/2011	Barium	0.0206 r	ng/L	
LL1mw-081	FWGLL1mw-081C-1716-GF	4/5/2011	Barium	0.0214 r	ng/L	
LL1mw-081	FWGLL1mw-081C-1765-GF	8/1/2011	Barium	0.018 r	mg/L	
LL1mw-081	LL1MW081-080207	8/2/2007	Benz(a)anthracene	0.0051 r	ng/L	
LL1mw-081	FWGLL1mw-081C-1526-GW	7/14/2010	Benz(a)anthracene	0.0002 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1590-GW	10/11/2010	Benz(a)anthracene	0.0002 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1641-GW	1/17/2011	Benz(a)anthracene	0.0002 r	ng/L	U
LL1mw-081	FWGLL1mw-081C-1716-GW	4/5/2011	Benz(a)anthracene	0.0002 r	ng/L	U
LL1mw-081	LL1MW081-080207	8/2/2007	Benzo(a)pyrene	0.0051 r	ng/L	
LL1mw-081	FWGLL1mw-081C-1526-GW	7/14/2010	Benzo(a)pyrene	0.0002 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1590-GW	10/11/2010	Benzo(a)pyrene	0.0002 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1641-GW	1/17/2011	Benzo(a)pyrene	0.0002 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1716-GW	4/5/2011	Benzo(a)pyrene	0.0002 r	ng/L	U
LL1mw-081	LL1MW081-080207	8/2/2007	Benzo(b)fluoranthene	0.0051 r	ng/L	
LL1mw-081	FWGLL1mw-081C-1526-GW	7/14/2010	Benzo(b)fluoranthene	0.0002 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1590-GW	10/11/2010	Benzo(b)fluoranthene	0.0002 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1641-GW	1/17/2011	Benzo(b)fluoranthene	0.0002 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1716-GW	4/5/2011	Benzo(b)fluoranthene	0.0002 r	ng/L	U
LL1mw-081	LL1MW081-080207	8/2/2007	Cadmium	0.01 r	ng/L	
LL1mw-081	FWGLL1mw-081-028-GF	10/19/2009	Cadmium	0.0005 r	mg/L	U
LL1mw-081	FWGLL1mw-081-028-GW	10/19/2009	Cadmium	0.0005 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1526-GF	7/14/2010	Cadmium	0.0005 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1590-GF	10/11/2010	Cadmium	0.0005 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1641-GF	1/17/2011	Cadmium	0.0005 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1716-GF	4/5/2011	Cadmium	0.0005 r	mg/L	U
LL1mw-081	FWGLL1mw-081C-1765-GF	8/1/2011	Cadmium	0.0005 r	-	U
LL1mw-081	FWGLL1mw-081C-1765-GF	8/1/2011	Chromium, hexavalent	0.02 r		UJ
LL1mw-081	LL1MW081-080207	8/2/2007	Dibenz(a,h)anthracene	0.0051 r	ng/L	
LL1mw-081	FWGLL1mw-081C-1526-GW	7/14/2010	Dibenz(a,h)anthracene	0.0002 r	mg/L	U

LLTmv-081 FWGLLTmv-081C-1590-GW 10/11/2010 Dibenz(a,h)anthracene 0.0002 mg/L U LLTmv-081 FWGLLTmv-081C-1716-GW 4/5/2011 Dibenz(a,h)anthracene 0.0002 mg/L U LLTmv-081 FWGLLTmv-081C-1716-GW 4/5/2011 Dibenz(a,h)anthracene 0.0003 mg/L U LLTmv-081 FWGLLTmv-081C-2586-GF 7/14/2010 Lead 0.003 mg/L U LLTmv-081 FWGLLTmv-081C-1586-GF 7/14/2010 Lead 0.003 mg/L U LLTmv-081 FWGLLTmv-081C-1786-GF 7/14/2011 Lead 0.003 mg/L U LLTmv-081 FWGLLTmv-081C-1786-GF 8/1/2011 Manganese 1.85 mg/L LLTmv-081 FWGLLTmv-081C-1786-GF 1/17/2010 Manganese 1.85 mg/L LLTmw-081 <th>Station</th> <th>Sample ID</th> <th>Date Collected</th> <th>Chemical</th> <th>Results</th> <th>Units</th> <th>Data Qual</th>	Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL1mw-081 FWGLL1mw-081-C1716-GW 4/5/2011 Dibenzia, hanthracene 0.0002_mg/L U LL1mw-081 LL1MW081-080207 8/2/2007 Lead 0.003_mg/L U LL1mw-081 FWGLL1mw-081-028-GW 10/19/2009 Lead 0.003_mg/L U LL1mw-081 FWGLL1mw-081-C1526-GF 10/11/2010 Lead 0.003_mg/L U LL1mw-081 FWGLL1mw-081C-1786-GF 11/12/2010 Lead 0.003_mg/L U LL1mw-081 FWGLL1mw-081C-1786-GF 8/1/2011 Lead 0.003_mg/L U LL1mw-081 FWGLL1mw-081C-1786-GF 8/1/2011 Lead 0.003_mg/L U LL1mw-081 FWGLL1mw-081C-1526-GF 8/1/2011 Lead 0.003_mg/L U LL1mw-081 FWGLL1mw-081C-1526-GF 10/11/2010 Manganese 1.9 mg/L LL1mw-081 LL1mw-081 FWGLL1mw-081C-1526-GF 10/11/2010 Manganese 2.9 mg/L LL1mw-081 LL1mw-081 FWGLL1mw-081C-1526-GF 10/11/2010 Manganese 2.1 mg/L LL1mw-081 L1mw-08	LL1mw-081	FWGLL1mw-081C-1590-GW	10/11/2010	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL1mw-081 LL1MW081-080207 8/2/2007 Lead 0.001 mg/L LL1mw-081 FWGLL1mw-081-028-GF 10/19/2009 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081-028-GF 10/11/2010 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081-028-GF 10/11/2010 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081-021-026 10/11/2010 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081-021-026 8/1/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081-021-026 8/1/2011 Lead 0.003 mg/L U LL1mw-081 L1MW081-080207 8/2/2007 Manganese 1.85 mg/L U LL1mw-081 FWGLL1mw-081-028-GF 10/19/2009 Manganese 1.85 mg/L U LL1mw-081 FWGLL1mw-081-028-GF 10/11/2010 Manganese 2.03 mg/L U LL1mw-081 FWGLL1mw-081-028-GF 10/11/2010 Manganese 2.17 mg/L U LL1mw-081 FWGLL1mw-081-026-GF	LL1mw-081	FWGLL1mw-081C-1641-GW	1/17/2011	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL1mw-081 FWGLL1mw-081-028-GF 10/19/2009 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081-028-GW 10/19/2009 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-1580-GF 10/11/2010 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-1641-GF 1/17/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-1768-GF 8/1/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-1768-GF 8/1/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-28-GF 8/1/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-28-GF 10/19/2009 Manganese 1.8 mg/L LL1mw-081 LL1mw-081 FWGLL1mw-081C-1780-GF 10/11/2010 Manganese 2.0 mg/L LL1mw-081 LL1mw-081 FWGLL1mw-081C-1780-GF 8/1/2011 Manganese 2.17 mg/L LL1mw-081 FWGLL1mw-081C-1780-GF 8/1/2011 Manganese 2.17 mg/L LL1mw-081 FWGLL1mw-081C-1780-GF	LL1mw-081	FWGLL1mw-081C-1716-GW	4/5/2011	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL1mw-081 FWGLL1mw-081C-152e-GF 1/14/2010 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-152e-GF 1/14/2010 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-178-GF 1/17/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-1718-GF 4/5/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-1718-GF 8/1/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-178-GF 8/1/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081-028-GF 10/19/2009 Manganese 1.9 mg/L LL1mw-081 LL1mw-081 FWGLL1mw-081-028-GF 10/14/2010 Manganese 1.95 mg/L LL1mw-081 LL1mw-081 FWGLL1mw-081-028-GF 1/17/2011 Manganese 2.03 mg/L LL1mw-081 LL1mw-081 FWGLL1mw-081-028-GF 1/17/2010 Manganese 2.03 mg/L LL1mw-081 LL1mw-081 FWGLL1mw-081-028-GF 1/17/2011 Manganese 2.03 mg/L LL1mw-081 <tr< td=""><td>LL1mw-081</td><td>LL1MW081-080207</td><td>8/2/2007</td><td>Lead</td><td>0.001</td><td>mg/L</td><td></td></tr<>	LL1mw-081	LL1MW081-080207	8/2/2007	Lead	0.001	mg/L	
LL1mw-081 FWGLL1mw-081C-1526-GF 7/14/2010 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-1516-GF 1/17/2010 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-1716-GF 1/17/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-1716-GF 4/5/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081-028-GF 10/19/2009 Manganese 2.09 mg/L LL1mw-081 FWGLL1mw-081-028-GF 10/19/2009 Manganese 1.85 mg/L LL1mw-081 FWGLL1mw-081-011-66F 7/14/2010 Manganese 1.85 mg/L LL1mw-081 FWGLL1mw-081C-1766-GF 81/2011 Manganese 2.17 mg/L LL1mw-081 FWGLL1mw-081C-1766-GF 81/2011 Manganese 2.mg/L LL1mw-081 FWGLL1mw-081C-1766-GF 81/2011 Manganese 2.mg/L LL1mw-081 FWGLL1mw-081C-164-GF 4/5/2011 Monganese 2.mg/L LL1mw-081 FWGLL1mw-081C-164-GF 4/5/2011 Monganese 2.mg/L <	LL1mw-081	FWGLL1mw-081-028-GF	10/19/2009	Lead	0.003	mg/L	U
LL1mw-081 FWGLL1mw-081C-1590-GF 10/11/2010 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-1765-GF 4/5/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-1765-GF 8/1/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-1765-GF 8/1/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-1765-GF 8/1/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081-028-GF 10/19/2009 Manganese 1.9 mg/L LL1mw-081 LL1mw-081 FWGLL1mw-081C-1652-GF 10/11/2010 Manganese 1.9 mg/L LL1mw-081 LL1mw-081 FWGLL1mw-081C-1644-GF 1/17/2011 Manganese 2.03 mg/L LL1mw-081 LL1mw-081 FWGLL1mw-081C-1652-GW 7/14/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1644-GW 1/17/2011 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1644-GW 1/17/2011 PCB-1254 0.0005 mg/L U <tr< td=""><td>LL1mw-081</td><td>FWGLL1mw-081-028-GW</td><td>10/19/2009</td><td>Lead</td><td>0.003</td><td>mg/L</td><td>U</td></tr<>	LL1mw-081	FWGLL1mw-081-028-GW	10/19/2009	Lead	0.003	mg/L	U
LL1mw-081 FWGLL1mw-081C-1641-GF 1/17/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-1716-GF 4/5/2011 Lead 0.003 mg/L U LL1mw-081 LL1MW081-080207 8/2/2007 Manganese 2.09 mg/L U LL1mw-081 FWGLL1mw-081C-282-GF 10/19/2009 Manganese 1.85 mg/L LL1mw-081 FWGLL1mw-081-028-GF 10/19/2009 Manganese 1.85 mg/L LL1mw-081 FWGLL1mw-081-028-GF 10/11/2010 Manganese 2.03 mg/L LL1mw-081 FWGLL1mw-081C-6156-GF 11/1/2010 Manganese 2.03 mg/L LL1mw-081 FWGLL1mw-081C-61716-GF 4/5/2011 Manganese 2.mg/L LL1mw-081 FWGLL1mw-081C-152-GW 7/14/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-152-GW 7/14/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-152-GW 7/14/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-152-GW 7/14/2010 RDX	LL1mw-081	FWGLL1mw-081C-1526-GF	7/14/2010	Lead	0.003	mg/L	U
LL1mw-081 FWGLL1mw-081C-1716-GF 4/5/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081C-1765-GF 8/1/2011 Lead 0.003 mg/L U LL1mw-081 FWGLL1mw-081-028-GF 10/19/2009 Manganese 1.9 mg/L LL1mw-081 FWGLL1mw-081C-1528-GF 10/19/2009 Manganese 1.85 mg/L LL1mw-081 FWGLL1mw-081C-1528-GF 10/11/2010 Manganese 1.95 mg/L LL1mw-081 FWGLL1mw-081C-1716-GF 1/17/2011 Manganese 2.03 mg/L LL1mw-081 FWGLL1mw-081C-1716-GF 8/1/2011 Manganese 2.17 mg/L LL1mw-081 FWGLL1mw-081C-1716-GF 8/1/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1636-GW 1/1/1/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1641-GW 1/17/2011 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1716-GF 8/1/2011 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1641-GW 1/17/2011 <t< td=""><td>LL1mw-081</td><td>FWGLL1mw-081C-1590-GF</td><td>10/11/2010</td><td>Lead</td><td>0.003</td><td>mg/L</td><td>U</td></t<>	LL1mw-081	FWGLL1mw-081C-1590-GF	10/11/2010	Lead	0.003	mg/L	U
LL1mw-081 FWGLL1mw-081C-1765-GF B/1/2011 Lead 0.003 mg/L U LL1mw-081 LL1MW081-0820207 8/2/2007 Manganese 2.09 mg/L LL1mw-081 FWGLL1mw-081-028-GF 10/19/2009 Manganese 1.8 mg/L LL1mw-081 FWGLL1mw-081-01526-GF 10/19/2009 Manganese 1.85 mg/L LL1mw-081 FWGLL1mw-081C-1526-GF 1/1/1/2011 Manganese 2.03 mg/L LL1mw-081 FWGLL1mw-081C-1716-GF 4/5/2011 Manganese 2.017 mg/L LL1mw-081 FWGLL1mw-081C-1765-GF 8/1/2010 PC8-1254 0.0005 mg/L LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 PC8-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 RDX <td< td=""><td>LL1mw-081</td><td>FWGLL1mw-081C-1641-GF</td><td>1/17/2011</td><td>Lead</td><td>0.003</td><td>mg/L</td><td>U</td></td<>	LL1mw-081	FWGLL1mw-081C-1641-GF	1/17/2011	Lead	0.003	mg/L	U
LL1mw-081 LL1MW081-080207 8/2/2007 Manganese 2.09 mg/L LL1mw-081 FWGLL1mw-081-028-GF 10/19/2009 Manganese 1.8 mg/L LL1mw-081 FWGLL1mw-081-028-GF 10/19/2009 Manganese 1.8 mg/L LL1mw-081 FWGLL1mw-081C-1526-GF 7/14/2010 Manganese 1.8 mg/L LL1mw-081 FWGLL1mw-081C-1626-GF 10/11/2010 Manganese 2.03 mg/L LL1mw-081 FWGL1mw-081C-1765-GF 8//2011 Manganese 2.17 mg/L LL1mw-081 FWGL1mw-081C-1765-GF 8//2010 PC8-1254 0.0005 mg/L U LL1mw-081 FWGL1mw-081C-1765-GW 7/14/2010 PC8-1254 0.0005 mg/L U LL1mw-081 FWGL1mw-081C-1716-GW 4//5/2011 PC8-1254 0.0005 mg/L U LL1mw-081 FWGL1mw-081C-1716-GW 4//5/2011 PC8-1254 0.0005 mg/L U LL1mw-081 FWGL1mw-081C-1716-GW 4//5/2011 RDX 0.0011 mg/L L LL1mw-081 FWGL1mw-081C-1716-GW 4//5/2011 RDX 0.0016 mg/	LL1mw-081	FWGLL1mw-081C-1716-GF	4/5/2011	Lead	0.003	mg/L	U
LL1mw-081 FWGLL1mw-081-028-GF 10/19/2009 Manganese 1.9 mg/L LL1mw-081 FWGLL1mw-0810-1526-GF 7/14/2010 Manganese 1.85 mg/L LL1mw-081 FWGLL1mw-0810-1526-GF 7/14/2010 Manganese 1.85 mg/L LL1mw-081 FWGLL1mw-0810-1526-GF 10/11/2010 Manganese 2.03 mg/L LL1mw-081 FWGLL1mw-0810-1716-GF 4/5/2011 Manganese 2.07 mg/L LL1mw-081 FWGLL1mw-0810-1786-GF 8/1/2011 Manganese 2 mg/L LL1mw-081 FWGLL1mw-0810-1526-GW 7/14/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-0810-1526-GW 7/14/2010 PCB-1254 0.0005 mg/L UJ LL1mw-081 FWGLL1mw-0810-1526-GW 7/14/2010 RDX 0.0010 mg/L UJ LL1mw-081 FWGLL1mw-0810-1526-GW 7/14/2010 RDX 0.0001 mg/L UJ LL1mw-081 FWGLL1mw-0810-1765-GW 8/1/2011 RDX 0.0011 mg/L J LL1mw-081 FWGLL1mw-0810-1765-GW 8/1/2011 RDX 0.0	LL1mw-081	FWGLL1mw-081C-1765-GF	8/1/2011	Lead	0.003	mg/L	U
LL1mw-081 FWGLL1mw-081-028-GW 10/19/2009 Manganese 1.85 mg/L LL1mw-081 FWGLL1mw-081C-1526-GF 7/14/2010 Manganese 1.33 mg/L LL1mw-081 FWGLL1mw-081C-1526-GF 10/11/2010 Manganese 2.03 mg/L LL1mw-081 FWGLL1mw-081C-1765-GF 4/5/2011 Manganese 2.17 mg/L LL1mw-081 FWGLL1mw-081C-1765-GF 8/1/2011 Manganese 2.mg/L LL1mw-081 FWGLL1mw-081C-1765-GF 8/1/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1580-GW 10/11/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1580-GW 10/11/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1580-GW 10/11/2010 RDX 0.0010 mg/L UL LL1mw-081 FWGLL1mw-081C-1580-GW 10/11/2010 RDX 0.0011 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0011 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RD	LL1mw-081	LL1MW081-080207	8/2/2007	Manganese	2.09	mg/L	
LL1mw-081 FWGLL1mw-081C-1526-GF 7/14/2010 Manganese 1.83 mg/L LL1mw-081 FWGLL1mw-081C-1590-GF 10/11/2010 Manganese 2.03 mg/L LL1mw-081 FWGLL1mw-081C-1765-GF 4//5/2011 Manganese 2.17 mg/L LL1mw-081 FWGLL1mw-081C-1765-GF 8/1/2011 Manganese 2.17 mg/L LL1mw-081 FWGLL1mw-081C-1765-GF 8/1/2011 Manganese 2.mg/L LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1761-GW 4/5/2011 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 PCB-1254 0.0001 mg/L U LL1mw-081 FWGLL1mw-081C-1786-GW 7/14/2010 RDX 0.0011 mg/L J LL1mw-081 FWGLL1mw-081C-1786-GW 4/5/2011 RDX 0.0016 mg/L J LL1mw-081 FWGLL1mw-082C-7776CW 7/14/2010 RDX	LL1mw-081	FWGLL1mw-081-028-GF	10/19/2009	Manganese	1.9	mg/L	
LL1mw-081 FWGLL1mw-081C-1526-GF 7/14/2010 Manganese 1.83 mg/L LL1mw-081 FWGLL1mw-081C-1590-GF 10/11/2010 Manganese 2.03 mg/L LL1mw-081 FWGLL1mw-081C-176-GF 4//5/2011 Manganese 2.17 mg/L LL1mw-081 FWGLL1mw-081C-1765-GF 8//2017 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-176-GF 4//5/2011 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1716-GW 4//5/2011 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1716-GW 4//5/2011 PCB-1254 0.00016 mg/L U LL1mw-081 FWGLL1mw-081C-1716-GW 4//5/2011 RDX 0.0011 mg/L J LL1mw-081 FWGLL1mw-081C-1716-GW 4//5/2011 RDX 0.0011 mg/L J LL1mw-081 FWGLL1mw-082C-1785-GW<	LL1mw-081	FWGLL1mw-081-028-GW	10/19/2009	Manganese	1.85	mg/L	
LL1mw-081 FWGLL1mw-081C-1590-GF 10/11/2010 Manganese 1.95 mg/L LL1mw-081 FWGLL1mw-081C-1641-GF 1/17/2011 Manganese 2.03 mg/L LL1mw-081 FWGLL1mw-081C-1765-GF 8/1/2011 Manganese 2 mg/L LL1mw-081 FWGLL1mw-081C-1765-GF 8/1/2011 Manganese 2 mg/L LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1520-GW 7/14/2010 PCB-1254 0.0005 mg/L UJ LL1mw-081 FWGLL1mw-081C-1520-GW 7/14/2010 PCB-1254 0.0005 mg/L UJ LL1mw-081 FWGLL1mw-081C-1520-GW 7/14/2010 RDX 0.0001 mg/L UL LL1mw-081 FWGLL1mw-081C-1626-GW 1/17/2011 RDX 0.0001 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0011 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0011 mg/L J LL1mw-082 FWGLL1mw-082C-1527-GW 7/15/2010	LL1mw-081	FWGLL1mw-081C-1526-GF	7/14/2010	Manganese			
LL1mw-081 FWGLL1mw-081C-1716-GF 4/5/2011 Manganese 2.17 mg/L LL1mw-081 FWGLL1mw-081C-1765-GF 8/1/2011 Manganese 2 mg/L LL1mw-081 LL1MW081-080207 8/2/2007 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1759-GW 1/11/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1641-GW 1/17/2011 PCB-1254 0.0005 mg/L UJ LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 PCB-1254 0.0005 mg/L UJ LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 PCB-1254 0.0005 mg/L UJ LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 RDX 0.0011 mg/L LL1mw-081 LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 RDX 0.0016 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0016 mg/L J LL1mw-082 FWGLL1mw-082C-1527-GW 7/15/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 <	LL1mw-081	FWGLL1mw-081C-1590-GF	10/11/2010	Manganese			
LL1mw-081 FWGLL1mw-081C-1785-GF 8/1/2011 Manganese 2 mg/L LL1mw-081 LL1MW081-080207 8/2/2007 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1590-GW 10/11/2010 PCB-1254 0.0005 mg/L UJ LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 PCB-1254 0.0005 mg/L UJ LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 PCB-1254 0.00035 mg/L UJ LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 RDX 0.0011 g/L L LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 RDX 0.0016 mg/L J LL1mw-081 FWGL1mw-081C-176-GW 8/1/2011 RDX 0.0016 mg/L J LL1mw-081 FWGL1mw-081C-1716-GW 4/5/2011 RDX 0.0016 mg/L J LL1mw-082 FWGL1mw-082C-1527-GW 7/15/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082	LL1mw-081	FWGLL1mw-081C-1641-GF	1/17/2011	-		-	
LL1mw-081 LL1MW081-080207 8/2/2007 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1590-GW 10/11/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1641-GW 1/17/2011 PCB-1254 0.0005 mg/L UJ LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 RDX 0.0010 mg/L LL1mw-081 LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 RDX 0.0001 mg/L J LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 RDX 0.0016 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0016 mg/L J LL1mw-081 FWGLL1mw-082C-1776-GW 8/1/2011 RDX 0.0016 mg/L J LL1mw-082 FWGL1mw-082C-1527-GW 7/15/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GM 1/17/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U <td>LL1mw-081</td> <td>FWGLL1mw-081C-1716-GF</td> <td>4/5/2011</td> <td>Manganese</td> <td>2.17</td> <td>mg/L</td> <td></td>	LL1mw-081	FWGLL1mw-081C-1716-GF	4/5/2011	Manganese	2.17	mg/L	
LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1590-GW 10/11/2010 PCB-1254 0.0005 mg/L UJ LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 PCB-1254 0.0005 mg/L UJ LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2017 RDX 0.00102 mg/L UJ LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 RDX 0.00035 mg/L J LL1mw-081 FWGLL1mw-081C-1690-GW 10/11/2010 RDX 0.0001 mg/L J LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 RDX 0.0016 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0016 mg/L J LL1mw-082 FWGLL1mw-082C-1527-GW 7/15/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-162-GW 1/17/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1786-GW 8/1/2011 2,4,6-Trinitrotoluene 0.00011 mg/L <td< td=""><td>LL1mw-081</td><td>FWGLL1mw-081C-1765-GF</td><td>8/1/2011</td><td>Manganese</td><td>2</td><td>mg/L</td><td></td></td<>	LL1mw-081	FWGLL1mw-081C-1765-GF	8/1/2011	Manganese	2	mg/L	
LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 PCB-1254 0.0005 mg/L U LL1mw-081 FWGLL1mw-081C-1590-GW 10/11/2010 PCB-1254 0.0005 mg/L UJ LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 PCB-1254 0.0005 mg/L UJ LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2017 RDX 0.00102 mg/L UJ LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 RDX 0.00035 mg/L J LL1mw-081 FWGLL1mw-081C-1690-GW 10/11/2010 RDX 0.0001 mg/L J LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 RDX 0.0016 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0016 mg/L J LL1mw-082 FWGLL1mw-082C-1527-GW 7/15/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-162-GW 1/17/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1786-GW 8/1/2011 2,4,6-Trinitrotoluene 0.00011 mg/L <td< td=""><td>LL1mw-081</td><td>LL1MW081-080207</td><td>8/2/2007</td><td>PCB-1254</td><td>0.0005</td><td>mg/L</td><td></td></td<>	LL1mw-081	LL1MW081-080207	8/2/2007	PCB-1254	0.0005	mg/L	
LL1mw-081 FWGLL1mw-081C-1590-GW 10/11/2010 PCB-1254 0.0005 mg/L UJ LL1mw-081 FWGLL1mw-081C-1716-GW 1/17/2011 PCB-1254 0.0005 mg/L UJ LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2017 RDX 0.0012 mg/L UJ LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 RDX 0.0011 mg/L J LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 RDX 0.0011 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 1/17/2011 RDX 0.0011 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 4/5/2011 RDX 0.0016 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0016 mg/L J LL1mw-082 FWGLL1mw-082C-1527-GW 7/15/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GW 1/17/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Aluminum 0.001 mg/L U	LL1mw-081	FWGLL1mw-081C-1526-GW	7/14/2010	PCB-1254		-	U
LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 PCB-1254 0.0005 mg/L UJ LL1mw-081 LL1MW081-080207 8/2/2007 RDX 0.00102 mg/L LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 RDX 0.00035 mg/L J LL1mw-081 FWGLL1mw-081C-1590-GW 10/11/2010 RDX 0.00013 mg/L J LL1mw-081 FWGLL1mw-081C-1641-GW 1/17/2011 RDX 0.0016 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0016 mg/L J LL1mw-081 FWGLL1mw-082C-1527-GW 7/15/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GW 10/11/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GW 10/11/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-178-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1581-GF 10/19/2009 Aluminum 0.1 mg/L U </td <td>LL1mw-081</td> <td>FWGLL1mw-081C-1590-GW</td> <td>10/11/2010</td> <td>PCB-1254</td> <td></td> <td>-</td> <td>U</td>	LL1mw-081	FWGLL1mw-081C-1590-GW	10/11/2010	PCB-1254		-	U
LL1mw-081 LL1MW081-080207 8/2/2007 RDX 0.00102 mg/L LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 RDX 0.00103 mg/L LL1mw-081 FWGLL1mw-081C-1590-GW 10/11/2010 RDX 0.0011 mg/L LL1mw-081 FWGLL1mw-081C-1641-GW 1/17/2011 RDX 0.0011 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0016 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0016 mg/L J LL1mw-082 LL1MW082-080207 8/2/2007 2/4,6-Trinitrotoluene 0.0010 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GW 7/15/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-178-GW 1/17/2011 2,4,6-Trinitrotoluene 0.00011 mg/L U LL1mw-082 FWGLL1mw-082C-178-GW 8/1/2011 2,4,6-Trinitrotoluene 0.00011 mg/L U LL1mw-082 FWGLL1mw-082C-178-GW 8/1/2011 2,4,6-Trinitrotoluene 0.00011 mg/L U LL1mw-082	LL1mw-081	FWGLL1mw-081C-1641-GW	1/17/2011	PCB-1254	0.0005	mg/L	UJ
LL1mw-081 LL1MW081-080207 8/2/2007 RDX 0.00102 mg/L LL1mw-081 FWGLL1mw-081C-1526-GW 7/14/2010 RDX 0.0011 mg/L LL1mw-081 FWGLL1mw-081C-1526-GW 10/11/2010 RDX 0.00013 mg/L J LL1mw-081 FWGLL1mw-081C-1641-GW 10/11/2011 RDX 0.0011 mg/L J LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 RDX 0.0016 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0016 mg/L J LL1mw-082 LL1MW082-080207 8/2/2007 2.4.6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GW 7/15/2010 2.4.6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1786-GW 10/11/2010 2.4.6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1786-GW 8/1/2011 2.4.6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1786-GW 8/1/2011 2.4.6-Trinitrotoluene 0.00011 mg/L U	LL1mw-081	FWGLL1mw-081C-1716-GW	4/5/2011	PCB-1254	0.0005	mg/L	UJ
LL1mw-081 FWGLL1mw-081C-1590-GW 10/11/2010 RDX 0.00035 mg/L J LL1mw-081 FWGLL1mw-081C-1641-GW 1/17/2011 RDX 0.0011 mg/L J LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 RDX 0.0016 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0016 mg/L J LL1mw-082 LL1MW082-080207 8/2/2007 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GW 7/15/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GW 7/15/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1764-GW 1/17/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-0776-GF 1/19/2009 Aluminum 0.1 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Aluminum 0.05 mg/L<	LL1mw-081	LL1MW081-080207	8/2/2007	RDX	0.00102	mg/L	
LL1mw-081 FWGLL1mw-081C-1641-GW 1/17/2011 RDX 0.0011 mg/L J LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 RDX 0.0016 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0016 mg/L J LL1mw-082 LL1MW082-080207 8/2/2007 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GW 7/15/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GW 10/11/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GW 1/17/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GW 4/5/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Alumin	LL1mw-081	FWGLL1mw-081C-1526-GW	7/14/2010	RDX	0.001	mg/L	
LL1mw-081 FWGLL1mw-081C-1716-GW 4/5/2011 RDX 0.0016 mg/L J LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0016 mg/L J LL1mw-082 LL1MW082-080207 8/2/2007 2,4,6-Trinitrotoluene 0.001 mg/L J LL1mw-082 FWGLL1mw-082C-1527-GW 7/15/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GW 10/11/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GW 10/11/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GW 4/5/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GW 4/5/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GW 4/5/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GF 10/19/2009 Aluminum 0.15 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 A	LL1mw-081	FWGLL1mw-081C-1590-GW	10/11/2010	RDX	0.00035	mg/L	J
LL1mw-081 FWGLL1mw-081C-1765-GW 8/1/2011 RDX 0.0016 mg/L J LL1mw-082 LL1MW082-080207 8/2/2007 2,4,6-Trinitrotoluene 0.001 mg/L LL1mw-082 FWGLL1mw-082C-1527-GW 7/15/2010 2,4,6-Trinitrotoluene 0.000098 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GW 10/11/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GW 1/17/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1786-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-029-GF 10/19/2009 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Al	LL1mw-081	FWGLL1mw-081C-1641-GW	1/17/2011	RDX	0.0011	mg/L	J
LL1mw-082 LL1MW082-080207 8/2/2007 2,4,6-Trinitrotoluene 0.001 mg/L LL1mw-082 FWGLL1mw-082C-1527-GW 7/15/2010 2,4,6-Trinitrotoluene 0.000098 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GW 10/11/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GW 1/17/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GW 4/5/2011 2,4,6-Trinitrotoluene 0.00011 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GW 8/1/2011 2,4,6-Trinitrotoluene 0.00011 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GW 8/1/2011 2,4,6-Trinitrotoluene 0.00011 mg/L U LL1mw-082 FWGLL1mw-082C-080207 8/2/2007 Aluminum 0.11 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Aluminum <td>LL1mw-081</td> <td>FWGLL1mw-081C-1716-GW</td> <td>4/5/2011</td> <td>RDX</td> <td>0.0016</td> <td>mg/L</td> <td></td>	LL1mw-081	FWGLL1mw-081C-1716-GW	4/5/2011	RDX	0.0016	mg/L	
LL1mw-082 FWGLL1mw-082C-1527-GW 7/15/2010 2,4,6-Trinitrotoluene 0.000098 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GW 10/11/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GW 1/17/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GW 4/5/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-029-GF 10/19/2009 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011	LL1mw-081	FWGLL1mw-081C-1765-GW	8/1/2011	RDX	0.0016	mg/L	J
LL1mw-082 FWGLL1mw-082C-1591-GW 10/11/2010 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GW 1/17/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GW 4/5/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011	LL1mw-082	LL1MW082-080207	8/2/2007	2,4,6-Trinitrotoluene	0.001	mg/L	
LL1mw-082 FWGLL1mw-082C-1642-GW 1/17/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GW 4/5/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-029-GF 10/19/2009 Aluminum 0.1 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/11/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082-01527-GF 7/15/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GF 1/17/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L <td>LL1mw-082</td> <td>FWGLL1mw-082C-1527-GW</td> <td>7/15/2010</td> <td>2,4,6-Trinitrotoluene</td> <td>0.000098</td> <td>mg/L</td> <td>U</td>	LL1mw-082	FWGLL1mw-082C-1527-GW	7/15/2010	2,4,6-Trinitrotoluene	0.000098	mg/L	U
LL1mw-082 FWGLL1mw-082C-1718-GW 4/5/2011 2,4,6-Trinitrotoluene 0.00011 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082-029-GW 10/19/2009 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082-01527-GF 7/15/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-178-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Antimony 0.002 mg/L <t< td=""><td>LL1mw-082</td><td>FWGLL1mw-082C-1591-GW</td><td>10/11/2010</td><td>2,4,6-Trinitrotoluene</td><td>0.0001</td><td>mg/L</td><td>U</td></t<>	LL1mw-082	FWGLL1mw-082C-1591-GW	10/11/2010	2,4,6-Trinitrotoluene	0.0001	mg/L	U
LL1mw-082 FWGLL1mw-082C-1766-GW 8/1/2011 2,4,6-Trinitrotoluene 0.0001 mg/L U LL1mw-082 LL1MW082-080207 8/2/2007 Aluminum 0.1 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Aluminum 5.2 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/11/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GF 4/5/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Antimony 0.002 mg/L U	LL1mw-082	FWGLL1mw-082C-1642-GW	1/17/2011	2,4,6-Trinitrotoluene	0.0001	mg/L	U
LL1mw-082 LL1MW082-080207 8/2/2007 Aluminum 0.1 mg/L LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082-029-GW 10/19/2009 Aluminum 5.2 mg/L U LL1mw-082 FWGLL1mw-082-029-GW 10/19/2009 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GF 4/5/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082-080207 8/2/2007 Antimony 0.001 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Antimony 0.002 mg/L U LL1mw-082 FWGLL1	LL1mw-082	FWGLL1mw-082C-1718-GW	4/5/2011	2,4,6-Trinitrotoluene	0.00011	mg/L	U
LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082-029-GW 10/19/2009 Aluminum 5.2 mg/L LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GF 4/5/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-029-GF 10/19/2009 Antimony 0.001 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Antimony 0.002 mg/L U LL1	LL1mw-082	FWGLL1mw-082C-1766-GW	8/1/2011	2,4,6-Trinitrotoluene	0.0001	mg/L	U
LL1mw-082 FWGLL1mw-082-029-GW 10/19/2009 Aluminum 5.2 mg/L LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GF 4/5/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 10/19/2009 Antimony 0.001 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Antimony 0.002 mg/L U LL1mw-082	LL1mw-082	LL1MW082-080207	8/2/2007	Aluminum	0.1	mg/L	
LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GF 4/5/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.001 mg/L U LL1mw-082 FWGLL1mw-082C-029-GF 10/19/2009 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Antimony 0.002 mg/L U <t< td=""><td>LL1mw-082</td><td>FWGLL1mw-082-029-GF</td><td>10/19/2009</td><td>Aluminum</td><td>0.05</td><td>mg/L</td><td>U</td></t<>	LL1mw-082	FWGLL1mw-082-029-GF	10/19/2009	Aluminum	0.05	mg/L	U
LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GF 4/5/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2007 Antimony 0.001 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Antimony 0.002 mg/L U	LL1mw-082	FWGLL1mw-082-029-GW	10/19/2009	Aluminum	5.2	mg/L	
LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1718-GF 4/5/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2007 Antimony 0.001 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082-029-GW 10/19/2009 Antimony 0.002 mg/L UJ LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Antimony 0.002 mg/L U	LL1mw-082	FWGLL1mw-082C-1527-GF	7/15/2010	Aluminum	0.05	mg/L	U
LL1mw-082 FWGLL1mw-082C-1718-GF 4/5/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 LL1MW082-080207 8/2/2007 Antimony 0.001 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Antimony 0.00014 mg/L UJ LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Antimony 0.002 mg/L U	LL1mw-082	FWGLL1mw-082C-1591-GF	10/11/2010	Aluminum	0.05	mg/L	U
LL1mw-082 FWGLL1mw-082C-1766-GF 8/1/2011 Aluminum 0.05 mg/L U LL1mw-082 LL1MW082-080207 8/2/2007 Antimony 0.001 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Antimony 0.00014 mg/L UJ LL1mw-082 FWGLL1mw-082-029-GW 10/19/2009 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082-01527-GF 7/15/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Antimony 0.002 mg/L U	LL1mw-082	FWGLL1mw-082C-1642-GF	1/17/2011	Aluminum	0.05	mg/L	U
LL1mw-082 LL1MW082-080207 8/2/2007 Antimony 0.001 mg/L LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Antimony 0.00014 mg/L UJ LL1mw-082 FWGLL1mw-082-029-GW 10/19/2009 Antimony 0.00014 mg/L UJ LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Antimony 0.002 mg/L U	LL1mw-082	FWGLL1mw-082C-1718-GF	4/5/2011	Aluminum	0.05	mg/L	U
LL1mw-082 FWGLL1mw-082-029-GF 10/19/2009 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082-029-GW 10/19/2009 Antimony 0.00014 mg/L UJ LL1mw-082 FWGLL1mw-082-029-GW 10/19/2009 Antimony 0.00014 mg/L UJ LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Antimony 0.002 mg/L U	LL1mw-082	FWGLL1mw-082C-1766-GF	8/1/2011	Aluminum	0.05	mg/L	U
LL1mw-082 FWGLL1mw-082-029-GW 10/19/2009 Antimony 0.00014 mg/L UJ LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Antimony 0.002 mg/L U	LL1mw-082	LL1MW082-080207	8/2/2007	Antimony	0.001	mg/L	
LL1mw-082 FWGLL1mw-082C-1527-GF 7/15/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Antimony 0.002 mg/L U	LL1mw-082	FWGLL1mw-082-029-GF	10/19/2009	Antimony	0.002	mg/L	U
LL1mw-082 FWGLL1mw-082C-1591-GF 10/11/2010 Antimony 0.002 mg/L U LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Antimony 0.002 mg/L U	LL1mw-082	FWGLL1mw-082-029-GW	10/19/2009	Antimony	0.00014	mg/L	UJ
LL1mw-082 FWGLL1mw-082C-1642-GF 1/17/2011 Antimony 0.002 mg/L U	LL1mw-082	FWGLL1mw-082C-1527-GF	7/15/2010	Antimony	0.002	mg/L	U
	LL1mw-082	FWGLL1mw-082C-1591-GF	10/11/2010	Antimony	0.002	mg/L	U
LL1mw-082 FWGLL1mw-082C-1718-GF 4/5/2011 Antimony 0.002 mg/L U	LL1mw-082	FWGLL1mw-082C-1642-GF	1/17/2011	Antimony	0.002	mg/L	U
	LL1mw-082	FWGLL1mw-082C-1718-GF	4/5/2011	Antimony	0.002	mg/L	U

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL1mw-082	FWGLL1mw-082C-1766-GF	8/1/2011	Antimony	0.002	mg/L	U
LL1mw-082	LL1MW082-080207	8/2/2007	Arsenic	0.00191	mg/L	
LL1mw-082	FWGLL1mw-082-029-GF	10/19/2009	Arsenic	0.005	mg/L	U
LL1mw-082	FWGLL1mw-082-029-GW	10/19/2009	Arsenic	0.018	mg/L	
LL1mw-082	FWGLL1mw-082C-1527-GF	7/15/2010	Arsenic	0.005	mg/L	U
LL1mw-082	FWGLL1mw-082C-1591-GF	10/11/2010	Arsenic	0.005	mg/L	U
LL1mw-082	FWGLL1mw-082C-1642-GF	1/17/2011	Arsenic	0.005	•	U
LL1mw-082	FWGLL1mw-082C-1718-GF	4/5/2011	Arsenic	0.0036	•	J
LL1mw-082	FWGLL1mw-082C-1766-GF	8/1/2011	Arsenic	0.0049	•	J
LL1mw-082	LL1MW082-080207	8/2/2007	Barium	0.0103		
LL1mw-082	FWGLL1mw-082-029-GF	10/19/2009	Barium	0.0118	•	
LL1mw-082	FWGLL1mw-082-029-GW	10/19/2009	Barium	0.045	-	
LL1mw-082	FWGLL1mw-082C-1527-GF	7/15/2010	Barium	0.0099	•	J
LL1mw-082	FWGLL1mw-082C-1591-GF	10/11/2010	Barium	0.0096	•	J
LL1mw-082	FWGLL1mw-082C-1642-GF	1/17/2011	Barium	0.0111	•	U
LL1mw-082	FWGLL1mw-082C-1718-GF	4/5/2011	Barium	0.0109	•	
LL1mw-082	FWGLL1mw-082C-1766-GF	8/1/2011	Barium	0.010	-	
LL1mw-082	LL1MW082-080207	8/2/2007	Benz(a)anthracene	0.0051		
LL1mw-082	FWGLL1mw-082C-1527-GW	7/15/2010	Benz(a)anthracene	0.0002	0	U
LL1mw-082	FWGLL1mw-082C-1527-GW	10/11/2010	Benz(a)anthracene	0.0002	•	U
LL1mw-082	FWGLL1mw-082C-1642-GW	1/17/2011	()	0.0002	•	U
LL1mw-082	FWGLL1mw-082C-1718-GW	4/5/2011	Benz(a)anthracene Benz(a)anthracene		•	U
				0.0002		0
LL1mw-082	LL1MW082-080207	8/2/2007	Benzo(a)pyrene	0.0051	•	
LL1mw-082 LL1mw-082	FWGLL1mw-082C-1527-GW	7/15/2010	Benzo(a)pyrene	0.0002	•	U U
LL1mw-082	FWGLL1mw-082C-1591-GW	10/11/2010	Benzo(a)pyrene	0.0002	-	
	FWGLL1mw-082C-1642-GW	1/17/2011	Benzo(a)pyrene	0.0002	-	U
LL1mw-082	FWGLL1mw-082C-1718-GW	4/5/2011	Benzo(a)pyrene	0.0002		U
LL1mw-082	LL1MW082-080207	8/2/2007	Benzo(b)fluoranthene	0.0051	•	
LL1mw-082	FWGLL1mw-082C-1527-GW	7/15/2010	Benzo(b)fluoranthene	0.0002	-	U
LL1mw-082	FWGLL1mw-082C-1591-GW	10/11/2010	Benzo(b)fluoranthene	0.0002	-	U
LL1mw-082	FWGLL1mw-082C-1642-GW	1/17/2011	Benzo(b)fluoranthene	0.0002	-	U
LL1mw-082	FWGLL1mw-082C-1718-GW	4/5/2011	Benzo(b)fluoranthene	0.0002		U
LL1mw-082	LL1MW082-080207	8/2/2007	Cadmium	0.01	•	
LL1mw-082	FWGLL1mw-082-029-GF	10/19/2009	Cadmium	0.0005	0	U
LL1mw-082	FWGLL1mw-082-029-GW	10/19/2009	Cadmium	0.00032	-	J
LL1mw-082	FWGLL1mw-082C-1527-GF	7/15/2010	Cadmium	0.00018	-	J
LL1mw-082	FWGLL1mw-082C-1591-GF	10/11/2010	Cadmium	0.00019	-	J
LL1mw-082	FWGLL1mw-082C-1642-GF	1/17/2011	Cadmium	0.0002	-	J
LL1mw-082	FWGLL1mw-082C-1718-GF	4/5/2011	Cadmium	0.00017	-	J
LL1mw-082	FWGLL1mw-082C-1766-GF	8/1/2011	Cadmium	0.0005		U
LL1mw-082	FWGLL1mw-082C-1766-GF	8/1/2011	Chromium, hexavalent	0.02		UJ
LL1mw-082	LL1MW082-080207	8/2/2007	Dibenz(a,h)anthracene	0.0051	-	
LL1mw-082	FWGLL1mw-082C-1527-GW	7/15/2010	Dibenz(a,h)anthracene	0.0002	-	U
LL1mw-082	FWGLL1mw-082C-1591-GW	10/11/2010	Dibenz(a,h)anthracene	0.0002	-	U
LL1mw-082	FWGLL1mw-082C-1642-GW	1/17/2011	Dibenz(a,h)anthracene	0.0002	-	U
LL1mw-082	FWGLL1mw-082C-1718-GW	4/5/2011	Dibenz(a,h)anthracene	0.0002		U
LL1mw-082	LL1MW082-080207	8/2/2007	Lead	0.001	•	
LL1mw-082	FWGLL1mw-082-029-GF	10/19/2009	Lead	0.003	•	U
LL1mw-082	FWGLL1mw-082-029-GW	10/19/2009	Lead	0.0237	-	
LL1mw-082	FWGLL1mw-082C-1527-GF	7/15/2010	Lead	0.003	-	U
LL1mw-082	FWGLL1mw-082C-1591-GF	10/11/2010	Lead	0.003	mg/L	U

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL1mw-082	FWGLL1mw-082C-1642-GF	1/17/2011	Lead	0.003 n	ng/L	U
LL1mw-082	FWGLL1mw-082C-1718-GF	4/5/2011	Lead	0.003 n	ng/L	U
LL1mw-082	FWGLL1mw-082C-1766-GF	8/1/2011	Lead	0.003 n	ng/L	U
LL1mw-082	LL1MW082-080207	8/2/2007	Manganese	0.693 n	ng/L	
LL1mw-082	FWGLL1mw-082-029-GF	10/19/2009	Manganese	0.945 n	ng/L	
LL1mw-082	FWGLL1mw-082-029-GW	10/19/2009	Manganese	1 n	ng/L	
LL1mw-082	FWGLL1mw-082C-1527-GF	7/15/2010	Manganese	1.08 n	ng/L	
LL1mw-082	FWGLL1mw-082C-1591-GF	10/11/2010	Manganese	0.456 n	ng/L	
LL1mw-082	FWGLL1mw-082C-1642-GF	1/17/2011	Manganese	2.66 n	ng/L	
LL1mw-082	FWGLL1mw-082C-1718-GF	4/5/2011	Manganese	1.64 n	ng/L	
LL1mw-082	FWGLL1mw-082C-1766-GF	8/1/2011	Manganese	1.2 n	ng/L	
LL1mw-082	LL1MW082-080207	8/2/2007	PCB-1254	0.0005 n	ng/L	
LL1mw-082	FWGLL1mw-082C-1527-GW	7/15/2010	PCB-1254	0.0005 n	ng/L	U
LL1mw-082	FWGLL1mw-082C-1591-GW	10/11/2010	PCB-1254	0.0005 n	-	U
LL1mw-082	FWGLL1mw-082C-1642-GW	1/17/2011	PCB-1254	0.0005 n	-	UJ
LL1mw-082	FWGLL1mw-082C-1718-GW	4/5/2011	PCB-1254	0.0005 n	-	U
LL1mw-082	LL1MW082-080207	8/2/2007	RDX	0.001 n		
LL1mw-082	FWGLL1mw-082C-1527-GW	7/15/2010	RDX	0.000098 n	ng/L	U
LL1mw-082	FWGLL1mw-082C-1591-GW	10/11/2010	RDX	0.0001 n	-	U
LL1mw-082	FWGLL1mw-082C-1642-GW	1/17/2011	RDX	0.0001 n	ng/L	U
LL1mw-082	FWGLL1mw-082C-1718-GW	4/5/2011	RDX	0.00042 n	ng/L	
LL1mw-082	FWGLL1mw-082C-1766-GW	8/1/2011	RDX	0.0001 n	ng/L	UJ
LL1mw-084	LL1MW084-080207	8/2/2007	2,4,6-Trinitrotoluene	0.00918 n	ng/L	
LL1mw-084	FWGLL1mw-084C-1529-GW	7/14/2010	2,4,6-Trinitrotoluene	0.0092 n	ng/L	J
LL1mw-084	FWGLL1mw-084C-1592-GW	10/11/2010	2,4,6-Trinitrotoluene	0.01 n	ng/L	J
LL1mw-084	FWGLL1mw-DUP2-1625-GW	10/11/2010	2,4,6-Trinitrotoluene	0.009 n	ng/L	J
LL1mw-084	FWGLL1mw-084C-1643-GW	1/17/2011	2,4,6-Trinitrotoluene	0.013 n	ng/L	J
LL1mw-084	FWGLL1mw-DUP2-1693-GW	1/17/2011	2,4,6-Trinitrotoluene	0.012 n	ng/L	J
LL1mw-084	FWGLL1mw-084C-1719-GW	4/5/2011	2,4,6-Trinitrotoluene	0.0084 n	ng/L	J
LL1mw-084	FWGLL1mw-DUP2-1747-GW	4/5/2011	2,4,6-Trinitrotoluene	0.0098 n	ng/L	J
LL1mw-084	FWGLL1mw-084C-1768-GW	8/1/2011	2,4,6-Trinitrotoluene	0.0073 n	ng/L	
LL1mw-084	FWGLL1mw-084C-0355-GW	8/21/2013	2,4,6-Trinitrotoluene	0.012 n	ng/L	J
LL1mw-084	FWGLL1mw-084C-0392-GW	1/21/2014	2,4,6-Trinitrotoluene	0.012 n	ng/L	J
LL1mw-084	FWGLL1mw-084C-0465-GW	7/21/2014	2,4,6-Trinitrotoluene	0.01 n	ng/L	J
LL1mw-084	FWGLL1mw-084C-0522-GW	3/10/2015	2,4,6-Trinitrotoluene	0.012 n	ng/L	J
LL1mw-084	FWGLL1mw-084C-0584-GW	7/20/2015	2,4,6-Trinitrotoluene	0.0058 n	ng/L	J
LL1mw-084	LL1MW084-080207	8/2/2007	Aluminum	1.59 n	ng/L	
LL1mw-084	FWGLL1mw-084-031-GF	10/19/2009	Aluminum	0.53 n	ng/L	
LL1mw-084	FWGLL1mw-084-031-GW	10/19/2009	Aluminum	14.1 n	ng/L	
LL1mw-084	FWGLL1mw-084C-1529-GF	7/14/2010	Aluminum	0.335 n	ng/L	
LL1mw-084	FWGLL1mw-084C-1592-GF	10/11/2010	Aluminum	0.515 n	ng/L	
LL1mw-084	FWGLL1mw-DUP2-1625-GF	10/11/2010	Aluminum	0.465 n	ng/L	
LL1mw-084	FWGLL1mw-084C-1643-GF	1/17/2011	Aluminum	0.337 n	ng/L	
LL1mw-084	FWGLL1mw-DUP2-1693-GF	1/17/2011	Aluminum	0.357 n	ng/L	
LL1mw-084	FWGLL1mw-084C-1719-GF	4/5/2011	Aluminum	0.246 n	ng/L	
LL1mw-084	FWGLL1mw-DUP2-1747-GF	4/5/2011	Aluminum	0.244 n	ng/L	
LL1mw-084	FWGLL1mw-084C-1768-GF	8/1/2011	Aluminum	0.59 n	ng/L	
LL1mw-084	FWGLL1mw-084C-0355-GF	8/21/2013	Aluminum	1.3 n	ng/L	
LL1mw-084	FWGLL1mw-084C-0392-GF	1/21/2014	Aluminum	0.21 n	ng/L	
LL1mw-084	FWGLL1mw-084C-0465-GF	7/21/2014	Aluminum	0.22 n	ng/L	
LL1mw-084	FWGLL1mw-084C-0522-GF	3/10/2015	Aluminum	0.24 n	ng/L	

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL1mw-084	FWGLL1mw-084C-0584-GF	7/20/2015	Aluminum	0.44	mg/L	
LL1mw-084	LL1MW084-080207	8/2/2007	Antimony	0.000322	mg/L	
LL1mw-084	FWGLL1mw-084-031-GF	10/19/2009	Antimony	0.002	mg/L	U
LL1mw-084	FWGLL1mw-084-031-GW	10/19/2009	Antimony	0.00029	mg/L	UJ
LL1mw-084	FWGLL1mw-084C-1529-GF	7/14/2010	Antimony	0.002	mg/L	U
LL1mw-084	FWGLL1mw-084C-1592-GF	10/11/2010	Antimony	0.002	mg/L	U
LL1mw-084	FWGLL1mw-DUP2-1625-GF	10/11/2010	Antimony	0.002	mg/L	U
LL1mw-084	FWGLL1mw-084C-1643-GF	1/17/2011	Antimony	0.002	mg/L	U
LL1mw-084	FWGLL1mw-DUP2-1693-GF	1/17/2011	Antimony	0.002	mg/L	U
LL1mw-084	FWGLL1mw-084C-1719-GF	4/5/2011	Antimony	0.002	mg/L	U
LL1mw-084	FWGLL1mw-DUP2-1747-GF	4/5/2011	Antimony	0.002	mg/L	U
LL1mw-084	FWGLL1mw-084C-1768-GF	8/1/2011	Antimony	0.002	mg/L	U
LL1mw-084	FWGLL1mw-084C-0355-GF	8/21/2013	Antimony	0.001	•	U
LL1mw-084	FWGLL1mw-084C-0392-GF	1/21/2014	Antimony	0.001	•	U
LL1mw-084	FWGLL1mw-084C-0465-GF	7/21/2014	Antimony	0.001	•	U
LL1mw-084	FWGLL1mw-084C-0522-GF	3/10/2015	Antimony	0.001	•	U
LL1mw-084	FWGLL1mw-084C-0584-GF	7/20/2015	Antimony	0.001	•	U
LL1mw-084	LL1MW084-080207	8/2/2007	Arsenic	0.001		
LL1mw-084	FWGLL1mw-084-031-GF	10/19/2009	Arsenic	0.005	•	U
LL1mw-084	FWGLL1mw-084-031-GW	10/19/2009	Arsenic	0.0125	•	
LL1mw-084	FWGLL1mw-084C-1529-GF	7/14/2010	Arsenic	0.005	•	U
LL1mw-084	FWGLL1mw-084C-1592-GF	10/11/2010	Arsenic	0.005	•	U
LL1mw-084	FWGLL1mw-DUP2-1625-GF	10/11/2010	Arsenic	0.005	•	U
LL1mw-084	FWGLL1mw-084C-1643-GF	1/17/2011	Arsenic	0.005	•	U
LL1mw-084	FWGLL1mw-DUP2-1693-GF	1/17/2011	Arsenic	0.005	•	U
LL1mw-084	FWGLL1mw-084C-1719-GF	4/5/2011	Arsenic	0.005	-	U
LL1mw-084	FWGLL1mw-DUP2-1747-GF	4/5/2011	Arsenic	0.0044	mg/L	J
LL1mw-084	FWGLL1mw-084C-1768-GF	8/1/2011	Arsenic	0.005	mg/L	U
LL1mw-084	FWGLL1mw-084C-0355-GF	8/21/2013	Arsenic	0.01	mg/L	U
LL1mw-084	FWGLL1mw-084C-0392-GF	1/21/2014	Arsenic	0.01	mg/L	U
LL1mw-084	FWGLL1mw-084C-0465-GF	7/21/2014	Arsenic	0.01	mg/L	U
LL1mw-084	FWGLL1mw-084C-0522-GF	3/10/2015	Arsenic	0.01	mg/L	U
LL1mw-084	FWGLL1mw-084C-0584-GF	7/20/2015	Arsenic		mg/L	U
LL1mw-084	LL1MW084-080207	8/2/2007	Barium	0.0166	mg/L	
LL1mw-084	FWGLL1mw-084-031-GF	10/19/2009	Barium	0.0142	mg/L	
LL1mw-084	FWGLL1mw-084-031-GW	10/19/2009	Barium	0.0368	mg/L	
LL1mw-084	FWGLL1mw-084C-1529-GF	7/14/2010	Barium	0.014	-	
LL1mw-084	FWGLL1mw-084C-1592-GF	10/11/2010	Barium	0.0161	-	
LL1mw-084	FWGLL1mw-DUP2-1625-GF	10/11/2010	Barium	0.0155	-	
LL1mw-084	FWGLL1mw-084C-1643-GF	1/17/2011	Barium	0.0178	mg/L	
LL1mw-084	FWGLL1mw-DUP2-1693-GF	1/17/2011	Barium	0.0188	-	
LL1mw-084	FWGLL1mw-084C-1719-GF	4/5/2011	Barium	0.0167	-	
LL1mw-084	FWGLL1mw-DUP2-1747-GF	4/5/2011	Barium	0.0171	-	
LL1mw-084	FWGLL1mw-084C-1768-GF	8/1/2011	Barium	0.015	-	
LL1mw-084	FWGLL1mw-084C-0355-GF	8/21/2013	Barium	0.018	-	
LL1mw-084	FWGLL1mw-084C-0392-GF	1/21/2014	Barium	0.017	mg/L	
LL1mw-084	FWGLL1mw-084C-0465-GF	7/21/2014	Barium	0.016	-	
LL1mw-084	FWGLL1mw-084C-0522-GF	3/10/2015	Barium	0.015	-	J
LL1mw-084	FWGLL1mw-084C-0584-GF	7/20/2015	Barium	0.015	-	В
LL1mw-084	LL1MW084-080207	8/2/2007	Benz(a)anthracene	0.0051	mg/L	
LL1mw-084	FWGLL1mw-084C-1529-GW	7/14/2010	Benz(a)anthracene	0.0002	mg/L	U


Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL1mw-084	FWGLL1mw-084C-1592-GW	10/11/2010	Benz(a)anthracene	0.0002	mg/L	U
LL1mw-084	FWGLL1mw-DUP2-1625-GW	10/11/2010	Benz(a)anthracene	0.0002	mg/L	U
LL1mw-084	FWGLL1mw-084C-1643-GW	1/17/2011	Benz(a)anthracene	0.0002	mg/L	U
LL1mw-084	FWGLL1mw-DUP2-1693-GW	1/17/2011	Benz(a)anthracene	0.0002	mg/L	U
LL1mw-084	FWGLL1mw-084C-1719-GW	4/5/2011	Benz(a)anthracene	0.0002	mg/L	U
LL1mw-084	FWGLL1mw-DUP2-1747-GW	4/5/2011	Benz(a)anthracene	0.0002	•	U
LL1mw-084	LL1MW084-080207	8/2/2007	Benzo(a)pyrene	0.0051		
LL1mw-084	FWGLL1mw-084C-1529-GW	7/14/2010	Benzo(a)pyrene	0.0002	0	U
LL1mw-084	FWGLL1mw-084C-1592-GW	10/11/2010	Benzo(a)pyrene	0.0002	-	U
LL1mw-084	FWGLL1mw-DUP2-1625-GW	10/11/2010	Benzo(a)pyrene	0.0002	0	U
LL1mw-084	FWGLL1mw-084C-1643-GW	1/17/2011	Benzo(a)pyrene	0.0002	0	U
LL1mw-084	FWGLL1mw-DUP2-1693-GW	1/17/2011	Benzo(a)pyrene	0.0002	0	U
LL1mw-084	FWGLL1mw-084C-1719-GW	4/5/2011	Benzo(a)pyrene	0.0002	0	U
LL1mw-084	FWGLL1mw-DUP2-1747-GW	4/5/2011	Benzo(a)pyrene	0.0002	0	U
LL1mw-084	LL1MW084-080207	8/2/2007	Benzo(b)fluoranthene	0.0051		
LL1mw-084	FWGLL1mw-084C-1529-GW	7/14/2010	Benzo(b)fluoranthene	0.0002	0	U
LL1mw-084	FWGLL1mw-084C-1592-GW	10/11/2010	Benzo(b)fluoranthene	0.0002	•	U
LL1mw-084	FWGLL1mw-DUP2-1625-GW	10/11/2010	Benzo(b)fluoranthene	0.0002	-	U
LL1mw-084	FWGLL1mw-084C-1643-GW	1/17/2011	Benzo(b)fluoranthene	0.0002	0	U
LL1mw-084	FWGLL1mw-DUP2-1693-GW	1/17/2011	Benzo(b)fluoranthene	0.0002	-	U
LL1mw-084	FWGLL1mw-084C-1719-GW	4/5/2011	Benzo(b)fluoranthene	0.0002	-	U
LL1mw-084	FWGLL1mw-DUP2-1747-GW	4/5/2011	Benzo(b)fluoranthene	0.0002	-	U
LL1mw-084	LL1MW084-080207	8/2/2007	Cadmium		mg/L	0
LL1mw-084	FWGLL1mw-084-031-GF	10/19/2009	Cadmium	0.0019	0	
LL1mw-084	FWGLL1mw-084-031-GW	10/19/2009	Cadmium	0.0019	-	
LL1mw-084	FWGLL1mw-084C-1529-GF	7/14/2010	Cadmium	0.0016	-	
LL1mw-084	FWGLL1mw-084C-1592-GF	10/11/2010	Cadmium	0.002	-	
LL1mw-084	FWGLL1mw-DUP2-1625-GF	10/11/2010	Cadmium	0.002	U	
LL1mw-084	FWGLL1mw-084C-1643-GF	1/17/2011	Cadmium	0.0018	U	
LL1mw-084	FWGLL1mw-DUP2-1693-GF	1/17/2011	Cadmium	0.0019	•	
LL1mw-084	FWGLL1mw-084C-1719-GF	4/5/2011	Cadmium	0.0015	-	
LL1mw-084	FWGLL1mw-DUP2-1747-GF	4/5/2011	Cadmium	0.0015	-	
LL1mw-084	FWGLL1mw-084C-1768-GF	8/1/2011	Cadmium	0.0015	-	
LL1mw-084	FWGLL1mw-084C-0355-GF	8/21/2013	Cadmium	0.0013	0	
LL1mw-084	FWGLL1mw-084C-0392-GF	1/21/2014	Cadmium	0.0014	-	
LL1mw-084	FWGLL1mw-084C-0465-GF	7/21/2014	Cadmium	0.0012	-	
LL1mw-084	FWGLL1mw-084C-0522-GF	3/10/2015	Cadmium	0.0017	-	J
LL1mw-084	FWGLL1mw-084C-0584-GF	7/20/2015	Cadmium	0.0017	-	5
LL1mw-084	FWGLL1mw-084C-1768-GF	8/1/2011	Chromium, hexavalent		mg/L	111
LL1mw-084	LL1MW084-080207	8/2/2007	Dibenz(a,h)anthracene	0.002		UJ
LL1mw-084	FWGLL1mw-084C-1529-GW	7/14/2010	Dibenz(a,h)anthracene	0.0001	-	U
LL1mw-084	FWGLL1mw-084C-1529-GW	10/11/2010	Dibenz(a,h)anthracene	0.0002	-	U
LL1mw-084	FWGLL1mw-DUP2-1625-GW	10/11/2010			-	U
LL1mw-084 LL1mw-084	FWGLL1mw-084C-1643-GW	1/17/2010	Dibenz(a,h)anthracene Dibenz(a,h)anthracene	0.0002 0.0002	-	U
LL1mw-084	FWGLL1mw-DUP2-1693-GW	1/17/2011	Dibenz(a,h)anthracene	0.0002	-	U
LL1mw-084	FWGLL1mw-084C-1719-GW	4/5/2011	Dibenz(a,h)anthracene	0.0002	-	U
LL1mw-084	FWGLL1mw-DUP2-1747-GW	4/5/2011 4/5/2011	Dibenz(a,h)anthracene	0.0002	-	U
LL1mw-084	LL1MW084-080207	8/2/2007	Lead	0.0002		0
LL 111w-084 LL1mw-084	FWGLL1mw-084-031-GF	10/19/2009	Lead	0.00281	0	U
LL1mw-084	FWGLL1mw-084-031-GP	10/19/2009	Lead	0.003	-	0
LL1mw-084	FWGLL1mw-084C-1529-GF	7/14/2010	Lead	0.003	-	U
	1 W GLL 111W-004C-1529-GF	1/14/2010	LEdu	0.003	mg/∟	0

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL1mw-084	FWGLL1mw-084C-1592-GF	10/11/2010	Lead	0.003	mg/L	U
LL1mw-084	FWGLL1mw-DUP2-1625-GF	10/11/2010	Lead	0.003	mg/L	U
LL1mw-084	FWGLL1mw-084C-1643-GF	1/17/2011	Lead	0.0027	mg/L	J
LL1mw-084	FWGLL1mw-DUP2-1693-GF	1/17/2011	Lead	0.003	mg/L	U
LL1mw-084	FWGLL1mw-084C-1719-GF	4/5/2011	Lead	0.003	mg/L	U
LL1mw-084	FWGLL1mw-DUP2-1747-GF	4/5/2011	Lead	0.003	mg/L	U
LL1mw-084	FWGLL1mw-084C-1768-GF	8/1/2011	Lead	0.003	mg/L	U
LL1mw-084	FWGLL1mw-084C-0355-GF	8/21/2013	Lead	0.005	-	U
LL1mw-084	FWGLL1mw-084C-0392-GF	1/21/2014	Lead	0.005	-	U
LL1mw-084	FWGLL1mw-084C-0465-GF	7/21/2014	Lead	0.005	mg/L	U
LL1mw-084	FWGLL1mw-084C-0522-GF	3/10/2015	Lead	0.005	-	U
LL1mw-084	FWGLL1mw-084C-0584-GF	7/20/2015	Lead	0.0025	-	U
LL1mw-084	LL1MW084-080207	8/2/2007	Manganese	0.306		
LL1mw-084	FWGLL1mw-084-031-GF	10/19/2009	Manganese	0.153	-	
LL1mw-084	FWGLL1mw-084-031-GW	10/19/2009	Manganese	0.184	-	
LL1mw-084	FWGLL1mw-084C-1529-GF	7/14/2010	Manganese	0.196	-	
LL1mw-084	FWGLL1mw-084C-1592-GF	10/11/2010	Manganese	0.164	-	
LL1mw-084	FWGLL1mw-DUP2-1625-GF	10/11/2010	Manganese	0.157	-	
LL1mw-084	FWGLL1mw-084C-1643-GF	1/17/2011	Manganese	0.222	-	
LL1mw-084	FWGLL1mw-DUP2-1693-GF	1/17/2011	Manganese	0.237	-	
LL1mw-084	FWGLL1mw-084C-1719-GF	4/5/2011	Manganese	0.192	-	
LL1mw-084	FWGLL1mw-DUP2-1747-GF	4/5/2011	Manganese	0.196	-	
LL1mw-084	FWGLL1mw-084C-1768-GF	8/1/2011	Manganese		mg/L	
LL1mw-084	FWGLL1mw-084C-0355-GF	8/21/2013	Manganese	0.067	-	
LL1mw-084	FWGLL1mw-084C-0392-GF	1/21/2014	Manganese		mg/L	J
LL1mw-084	FWGLL1mw-084C-0465-GF	7/21/2014	Manganese		mg/L	
LL1mw-084	FWGLL1mw-084C-0522-GF	3/10/2015	Manganese		mg/L	
LL1mw-084	FWGLL1mw-084C-0584-GF	7/20/2015	Manganese		mg/L	
LL1mw-084	LL1MW084-080207	8/2/2007	PCB-1254	0.000538		
LL1mw-084	FWGLL1mw-084C-1529-GW	7/14/2010	PCB-1254	0.0005	mg/L	U
LL1mw-084	FWGLL1mw-084C-1592-GW	10/11/2010	PCB-1254	0.0005	mg/L	UJ
LL1mw-084	FWGLL1mw-DUP2-1625-GW	10/11/2010	PCB-1254	0.0005	mg/L	UJ
LL1mw-084	FWGLL1mw-084C-1643-GW	1/17/2011	PCB-1254	0.0005	-	U
LL1mw-084	FWGLL1mw-DUP2-1693-GW	1/17/2011	PCB-1254	0.0005	mg/L	U
LL1mw-084	FWGLL1mw-084C-1719-GW	4/5/2011	PCB-1254	0.0005	mg/L	UJ
LL1mw-084	FWGLL1mw-DUP2-1747-GW	4/5/2011	PCB-1254	0.0005	mg/L	UJ
LL1mw-084	LL1MW084-080207	8/2/2007	RDX	0.00242	mg/L	
LL1mw-084	FWGLL1mw-084C-1529-GW	7/14/2010	RDX	0.00076	mg/L	J
LL1mw-084	FWGLL1mw-084C-1592-GW	10/11/2010	RDX	0.0001	mg/L	U
LL1mw-084	FWGLL1mw-DUP2-1625-GW	10/11/2010	RDX	0.000097	mg/L	U
LL1mw-084	FWGLL1mw-084C-1643-GW	1/17/2011	RDX	0.00069	mg/L	J
LL1mw-084	FWGLL1mw-DUP2-1693-GW	1/17/2011	RDX	0.00066	mg/L	J
LL1mw-084	FWGLL1mw-084C-1719-GW	4/5/2011	RDX	0.00042	mg/L	J
LL1mw-084	FWGLL1mw-DUP2-1747-GW	4/5/2011	RDX	0.00049	mg/L	J
LL1mw-084	FWGLL1mw-084C-1768-GW	8/1/2011	RDX	0.00069	mg/L	J
LL1mw-084	FWGLL1mw-084C-0355-GW	8/21/2013	RDX	0.0021	mg/L	J
LL1mw-084	FWGLL1mw-084C-0392-GW	1/21/2014	RDX	0.0018	mg/L	J
LL1mw-084	FWGLL1mw-084C-0465-GW	7/21/2014	RDX	0.0015	mg/L	J
LL1mw-084	FWGLL1mw-084C-0522-GW	3/10/2015	RDX	0.00092	mg/L	J
LL1mw-084	FWGLL1mw-084C-0584-GW	7/20/2015	RDX	0.0013	mg/L	J
LL1mw-085	LL1MW085-080207	8/2/2007	2,4,6-Trinitrotoluene	0.00105	mg/L	

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL1mw-085	FWGLL1mw-085C-1530-GW	7/15/2010	2,4,6-Trinitrotoluene	0.0001	mg/L	U
LL1mw-085	FWGLL1mw-085C-1593-GW	10/11/2010	2,4,6-Trinitrotoluene	0.0001	mg/L	U
LL1mw-085	FWGLL1mw-085C-1644-GW	1/17/2011	2,4,6-Trinitrotoluene	0.00011	mg/L	U
LL1mw-085	FWGLL1mw-085C-1720-GW	4/5/2011	2,4,6-Trinitrotoluene	0.0001	mg/L	U
LL1mw-085	FWGLL1mw-085C-1769-GW	8/1/2011	2,4,6-Trinitrotoluene	0.0001	-	U
LL1mw-085	LL1MW085-080207	8/2/2007	Aluminum		mg/L	
LL1mw-085	FWGLL1mw-085-032-GF	10/20/2009	Aluminum		mg/L	U
LL1mw-085	FWGLL1mw-085-032-GW	10/20/2009	Aluminum	0.0322	-	J
LL1mw-085	FWGLL1mw-085C-1530-GF	7/15/2010	Aluminum		mg/L	U
LL1mw-085	FWGLL1mw-085C-1593-GF	10/11/2010	Aluminum	0.05	-	U
LL1mw-085	FWGLL1mw-085C-1644-GF	1/17/2011	Aluminum	0.05	-	U
LL1mw-085	FWGLL1mw-085C-1720-GF	4/5/2011	Aluminum		mg/L	U
LL1mw-085	FWGLL1mw-085C-1769-GF	8/1/2011	Aluminum		mg/L	U
LL1mw-085	LL1MW085-080207	8/2/2007	Antimony	0.000432		
LL1mw-085	FWGLL1mw-085-032-GF	10/20/2009	Antimony	0.002	•	U
LL1mw-085	FWGLL1mw-085-032-GW	10/20/2009	Antimony	0.002	-	U
LL1mw-085	FWGLL1mw-085C-1530-GF	7/15/2010	Antimony	0.002	-	U
LL1mw-085	FWGLL1mw-085C-1593-GF	10/11/2010	Antimony	0.002	0	U
LL1mw-085	FWGLL1mw-085C-1644-GF	1/17/2011	Antimony	0.002	-	U
LL1mw-085	FWGLL1mw-085C-1720-GF	4/5/2011	Antimony	0.002	•	U
LL1mw-085	FWGLL1mw-085C-1769-GF	8/1/2011	Antimony	0.002	-	U
LL1mw-085	LL1MW085-080207	8/2/2007	Arsenic	0.00427		
LL1mw-085	FWGLL1mw-085-032-GF	10/20/2009	Arsenic	0.005	-	U
LL1mw-085	FWGLL1mw-085-032-GW	10/20/2009	Arsenic	0.0137		U
LL1mw-085	FWGLL1mw-085C-1530-GF	7/15/2010	Arsenic	0.005	-	U
LL1mw-085	FWGLL1mw-085C-1593-GF	10/11/2010	Arsenic	0.0057	-	C
LL1mw-085	FWGLL1mw-085C-1644-GF	1/17/2011	Arsenic	0.005	-	U
LL1mw-085	FWGLL1mw-085C-1720-GF	4/5/2011	Arsenic	0.0057	•	C
LL1mw-085	FWGLL1mw-085C-1769-GF	8/1/2011	Arsenic	0.0048	•	J
LL1mw-085	LL1MW085-080207	8/2/2007	Barium	0.016		
LL1mw-085	FWGLL1mw-085-032-GF	10/20/2009	Barium	0.0161	•	
LL1mw-085	FWGLL1mw-085-032-GW	10/20/2009	Barium	0.0232	-	
LL1mw-085	FWGLL1mw-085C-1530-GF	7/15/2010	Barium	0.0134	-	
LL1mw-085	FWGLL1mw-085C-1593-GF	10/11/2010	Barium	0.0176	•	
LL1mw-085	FWGLL1mw-085C-1644-GF	1/17/2011	Barium	0.0163	-	
LL1mw-085	FWGLL1mw-085C-1720-GF	4/5/2011	Barium	0.022	-	
LL1mw-085	FWGLL1mw-085C-1769-GF	8/1/2011	Barium	0.016	-	
LL1mw-085	LL1MW085-080207	8/2/2007	Benz(a)anthracene	0.005		
LL1mw-085	FWGLL1mw-085C-1530-GW	7/15/2010	Benz(a)anthracene	0.0002	-	U
LL1mw-085	FWGLL1mw-085C-1593-GW	10/11/2010	Benz(a)anthracene	0.0002	-	U
LL1mw-085	FWGLL1mw-085C-1644-GW	1/17/2011	Benz(a)anthracene	0.0002	-	U
LL1mw-085	FWGLL1mw-085C-1720-GW	4/5/2011	Benz(a)anthracene	0.0002	-	U
LL1mw-085	LL1MW085-080207	8/2/2007	Benzo(a)pyrene	0.005		
LL1mw-085	FWGLL1mw-085C-1530-GW	7/15/2010	Benzo(a)pyrene	0.0002	-	U
LL1mw-085	FWGLL1mw-085C-1593-GW	10/11/2010	Benzo(a)pyrene	0.0002	-	U
LL1mw-085	FWGLL1mw-085C-1644-GW	1/17/2011	Benzo(a)pyrene	0.0002	-	U
LL1mw-085	FWGLL1mw-085C-1720-GW	4/5/2011	Benzo(a)pyrene	0.0002	-	U
LL1mw-085	LL1MW085-080207	8/2/2007	Benzo(b)fluoranthene	0.005		<u> </u>
LL1mw-085	FWGLL1mw-085C-1530-GW	7/15/2010	Benzo(b)fluoranthene	0.0002	•	U
LL1mw-085	FWGLL1mw-085C-1593-GW	10/11/2010	Benzo(b)fluoranthene	0.0002	-	U
LL1mw-085	FWGLL1mw-085C-1644-GW	1/17/2011	Benzo(b)fluoranthene	0.0002	-	U
		1/17/2011	20120(b)ndorantinone	0.0002	g,∟	0

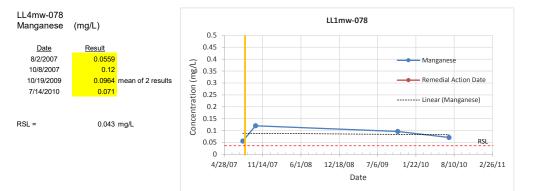

Station	Sample ID	Date Collected	Chemical	Results L	Jnits	Data Qual
LL1mw-085	FWGLL1mw-085C-1720-GW	4/5/2011	Benzo(b)fluoranthene	0.0002 m	ig/L	U
LL1mw-085	LL1MW085-080207	8/2/2007	Cadmium	0.01 m	ig/L	
LL1mw-085	FWGLL1mw-085-032-GF	10/20/2009	Cadmium	0.0005 m	ig/L	U
LL1mw-085	FWGLL1mw-085-032-GW	10/20/2009	Cadmium	0.0005 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1530-GF	7/15/2010	Cadmium	0.0005 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1593-GF	10/11/2010	Cadmium	0.0005 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1644-GF	1/17/2011	Cadmium	0.0005 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1720-GF	4/5/2011	Cadmium	0.0005 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1769-GF	8/1/2011	Cadmium	0.0005 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1769-GF	8/1/2011	Chromium, hexavalent	0.02 m	ıg/L	UJ
LL1mw-085	LL1MW085-080207	8/2/2007	Dibenz(a,h)anthracene	0.005 m		
LL1mw-085	FWGLL1mw-085C-1530-GW	7/15/2010	Dibenz(a,h)anthracene	0.0002 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1593-GW	10/11/2010	Dibenz(a,h)anthracene	0.0002 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1644-GW	1/17/2011	Dibenz(a,h)anthracene	0.0002 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1720-GW	4/5/2011	Dibenz(a,h)anthracene	0.0002 m	ig/L	U
LL1mw-085	LL1MW085-080207	8/2/2007	Lead	0.001 m	ig/L	
LL1mw-085	FWGLL1mw-085-032-GF	10/20/2009	Lead	0.003 m	ig/L	U
LL1mw-085	FWGLL1mw-085-032-GW	10/20/2009	Lead	0.003 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1530-GF	7/15/2010	Lead	0.003 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1593-GF	10/11/2010	Lead	0.003 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1644-GF	1/17/2011	Lead	0.003 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1720-GF	4/5/2011	Lead	0.003 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1769-GF	8/1/2011	Lead	0.003 m	ıg/L	U
LL1mw-085	LL1MW085-080207	8/2/2007	Manganese	0.613 m	ig/L	
LL1mw-085	FWGLL1mw-085-032-GF	10/20/2009	Manganese	0.546 m	ig/L	
LL1mw-085	FWGLL1mw-085-032-GW	10/20/2009	Manganese	0.575 m	ig/L	
LL1mw-085	FWGLL1mw-085C-1530-GF	7/15/2010	Manganese	0.564 m	ig/L	
LL1mw-085	FWGLL1mw-085C-1593-GF	10/11/2010	Manganese	0.638 m	ig/L	
LL1mw-085	FWGLL1mw-085C-1644-GF	1/17/2011	Manganese	0.179 m	ig/L	
LL1mw-085	FWGLL1mw-085C-1720-GF	4/5/2011	Manganese	1.18 m	ig/L	
LL1mw-085	FWGLL1mw-085C-1769-GF	8/1/2011	Manganese	0.84 m	ıg/L	
LL1mw-085	LL1MW085-080207	8/2/2007	PCB-1254	0.00051 m	ig/L	
LL1mw-085	FWGLL1mw-085C-1530-GW	7/15/2010	PCB-1254	0.0005 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1593-GW	10/11/2010	PCB-1254	0.0005 m	ıg/L	U
LL1mw-085	FWGLL1mw-085C-1644-GW	1/17/2011	PCB-1254	0.0005 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1720-GW	4/5/2011	PCB-1254	0.0005 m	ıg/L	UJ
LL1mw-085	LL1MW085-080207	8/2/2007	RDX	0.00105 m	ıg/L	
LL1mw-085	FWGLL1mw-085C-1530-GW	7/15/2010	RDX	0.0001 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1593-GW	10/11/2010	RDX	0.0001 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1644-GW	1/17/2011	RDX	0.00011 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1720-GW	4/5/2011	RDX	0.0001 m	ig/L	U
LL1mw-085	FWGLL1mw-085C-1769-GW	8/1/2011	RDX	0.0001 m	ig/L	UJ

Table A10-3 Load Line 1 Groundwater Trend Plots

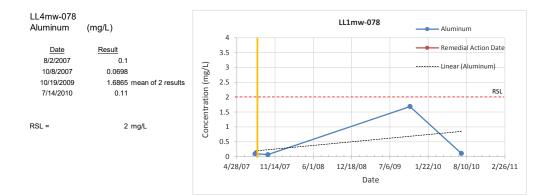
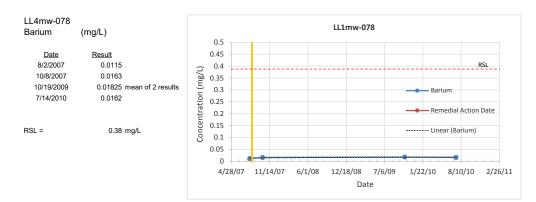
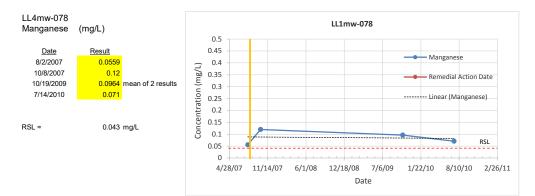
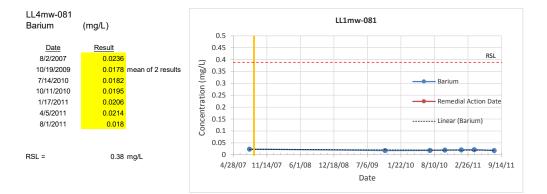





Table A10-3 Load Line 1 Groundwater Trend Plots

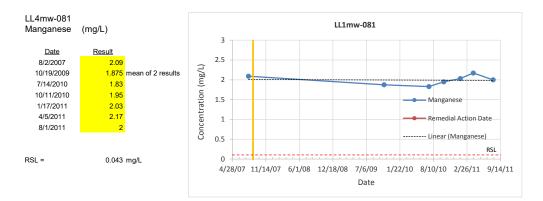
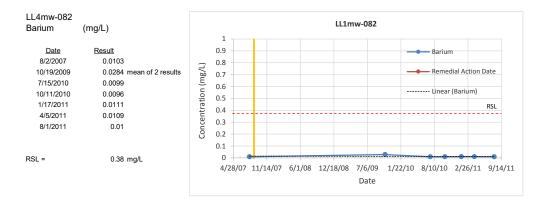
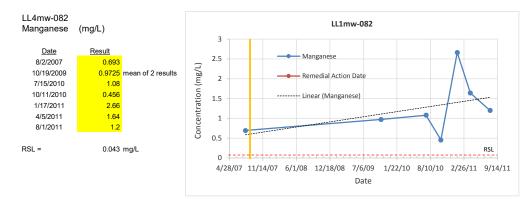
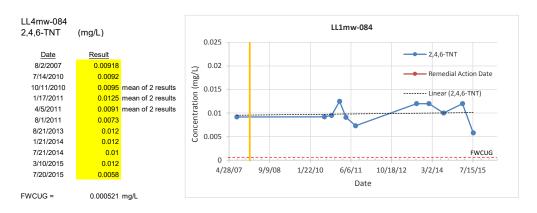
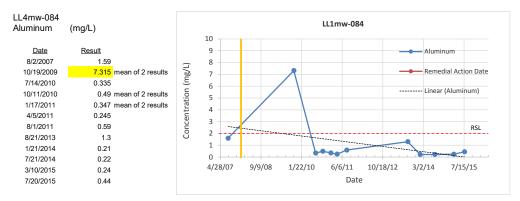




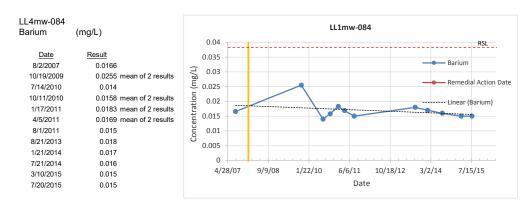
Table A10-3 Load Line 1 Groundwater Trend Plots

Mann-Kendall Test Using Normal Approximation for Small Sample Size

7
9
0.115
0.1
No trend
Upward trend

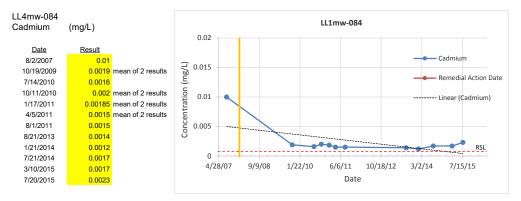
p>α Ho rejected at 90% level of confidence; upward trend


Table A10-3 Load Line 1 Groundwater Trend Plots

RSL = 2 mg/L Mann-Kendall Test Using Normal Approximation for Larger Sample Size 12 n -24 s 0 No. tied groups g 2 No. data points in each tied group 212.667 v(s) -1.577 z -1.28 (Table B-15, EM 200-1-16) Z(0.9) Ho: No trend Ha: Downward trend

Reject Ho if z < Z(0.9)


Ho rejected at 90% level of confidence, downward trend

RSL = 0.38 mg/L

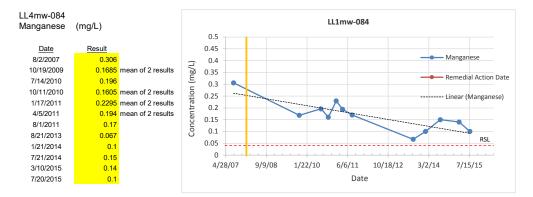
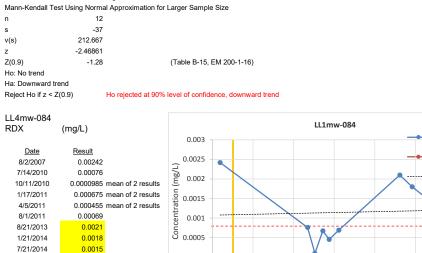

d

Table A10-3 Load Line 1 Groundwater Trend Plots



RSL = 0.00092 mg/L

Mann-Kendall Test Usi	ng Norma	I Approximation for Larger Sample Size
n	12	
s	-18	
g	2	No. tied groups
	2	No. data points in each tied group
v(s)	176.667	
z	-1.279	
Z(0.9)	-1.28	(Table B-15, EM 200-1-16)
Ho: No trend		
Ha: Downward trend		
Reject Ho if z < Z(0.9)	I	Ho accepted at 90% level of confidence, no trend

RSL = 0.043 mg/L

0

4/28/07

9/9/08

1/22/10

6/6/11

Date

10/18/12

3/2/14

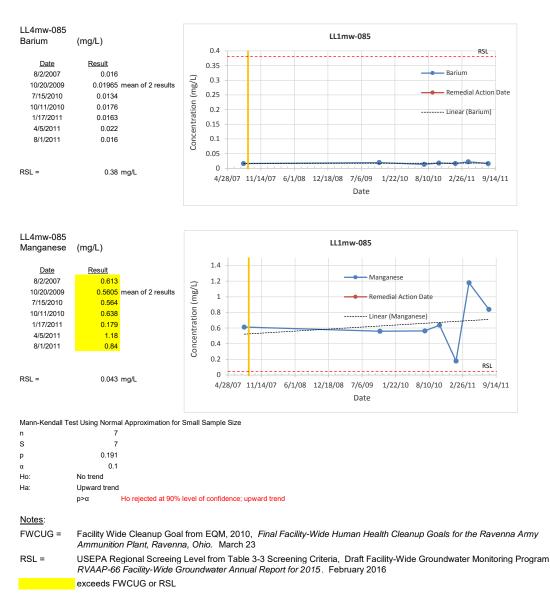
0.00092

0.0013

3/10/2015

7/20/2015

RDX


Remedial Action Date

FWCUG

Linear (RDX)

7/15/15

Table A10-3 Load Line 1 Groundwater Trend Plots

Load Line 2

Table A10-4 Load Line 2 Groundwater Data Summary

	Eoud	
Well Zone Monitored	coc	Discussion
LL2mw-262 Sandstone bedrock	Aluminum	3 samples collected after the remedial action, 1 result ND, all results < RSL
	Antimony	3 samples collected after the remedial action, all results ND
	Arsenic	3 samples collected after the remedial action, 2 results ND
	Barium	3 samples collected after the remedial action, all results < RSL
	Cadmium	3 samples collected after the remedial action, all results ND
	Chromium (hexavalent)	No samples collected after the remedial action
	Manganese	3 samples collected after the remedial action, all results > RSL
	Lead	3 samples collected after the remedial action, 2 results ND, all results < RSL
	2,4,6-TNT	2 samples collected after the remedial action, all results ND
	RDX	2 samples collected after the remedial action, all results ND
	Aroclor-1254	2 samples collected after the remedial action, all results ND
	Benz(a)anthracene	2 samples collected after the remedial action, all results ND
	Benzo(a)pyrene	2 samples collected after the remedial action, all results ND
	Benzo(b)fluoranthene	2 samples collected after the remedial action, all results ND
	Dibenz(a,h)anthracene	2 samples collected after the remedial action, all results ND
	Dibenz(a,n)antinacene	
LL2mw-263	Aluminum	3 samples collected after the remedial action, 2 results ND, all results < RSL
	Antimony	3 samples collected after the remedial action, all results ND
	Arsenic	3 samples collected after the remedial action, all results > RSL
	Barium	3 samples collected after the remedial action, all results < RSL
	Cadmium	3 samples collected after the remedial action, all results ND
	Chromium (hexavalent)	No samples collected after the remedial action
	Manganese	3 samples collected after the remedial action, all results > RSL
	Lead	3 samples collected after the remedial action, 2 results ND, 1 result estimated (< detection limit)
	2,4,6-TNT	2 samples collected after the remedial action, 2 results ND, 1 result estimated (< detection initity)
	RDX	2 samples collected after the remedial action, all results ND
	Aroclor-1254	2 samples collected after the remedial action, all results ND
	Benz(a)anthracene	2 samples collected after the remedial action, all results ND
	Benzo(a)pyrene	2 samples collected after the remedial action, all results ND
	Benzo(b)fluoranthene	2 samples collected after the remedial action, all results ND
	Dibenz(a,h)anthracene	2 samples collected after the remedial action, all results ND
LL2mw-266	Aluminum	5 samples collected after the remedial action, 2 results ND, all results < RSL
LL2IIIW-200		
	Antimony Arsenic	5 samples collected after the remedial action, all results ND 5 samples collected after the remedial action, 2 results ND, all results > RSL
	Barium	
		5 samples collected since the remedial action, all results < RSL
	Cadmium	5 samples collected after the remedial action, 2 results ND, all results < RSL
	Chromium (hexavalent)	No samples collected after the remedial action
	Manganese	3 samples collected after the remedial action, all results > RSL
	Lead	5 samples collected after the remedial action, 4 results ND, all results < RSL
	2,4,6-TNT	4 samples collected after the remedial action, all results ND
	RDX	4 samples collected after the remedial action, all results ND
	Aroclor-1254	4 samples collected after the remedial action, all results ND
	Benz(a)anthracene	4 samples collected after the remedial action, all results ND
	Benzo(a)pyrene	4 samples collected after the remedial action, all results ND
	Benzo(b)fluoranthene	4 samples collected after the remedial action, all results ND
	Dibenz(a,h)anthracene	4 samples collected after the remedial action, all results ND
LL2mw-267	Aluminum	10 samples collected after the remedial action, 6 results ND, 9 results < RSL
	Antimony	10 samples collected after the remedial action, 9 results ND, 1 result estimated (< detection limit)
	Arsenic	10 samples collected after the remedial action, 8 results ND
	Barium	10 samples collected after the remedial action, all results < RSL, downward trend
	Cadmium	10 samples collected after the remedial action, 9 results ND
	Chromium (hexavalent)	No samples collected after the remedial action
	Manganese	10 samples collected after the remedial action, all results > RSL, downward trend
	Lead	10 samples collected after the remedial action, 9 results ND, 1 result estimated (< detection limit)
	2,4,6-TNT	9 samples collected since the remedial action, 2 results > FWCUG, no trend
	RDX	9 samples collected since the remedial action, all results > FWCUG, no trend
	Aroclor-1254	4 samples collected since the remedial action, all results ND
	Benz(a)anthracene	4 samples collected since the remedial action, all results ND
	Benzo(a)pyrene	4 samples collected since the remedial action, all results ND
	Benzo(b)fluoranthene	4 samples collected since the remedial action, all results ND
	Dibenz(a,h)anthracene	4 samples collected since the remedial action, all results ND
LL2mw-269	Aluminum	5 samples collected after the remedial action, 4 results ND
	Antimony	5 samples collected after the remedial action, all results ND
	Arsenic	5 samples collected after the remedial action, all results ND
	Barium	5 samples collected after the remedial action, all results < RSL, downward trend
	Cadmium	5 samples collected after the remedial action, all results ND
	Chromium (hexavalent)	No samples collected after the remedial action
	Manganese	10 samples collected after the remedial action, all results > RSL, downward trend
		5 samples collected after the remedial action, all results ND
	Lead	
	Lead 2.4.6-TNT	
	2,4,6-TNT	4 samples collected since the remedial action, all results ND
	2,4,6-TNT RDX	4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND
	2,4,6-TNT RDX Aroclor-1254	4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND
	2,4,6-TNT RDX Aroclor-1254 Benz(a)anthracene	 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND
	2,4,6-TNT RDX Aroclor-1254 Benz(a)anthracene Benzo(a)pyrene	 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND
	2,4,6-TNT RDX Aroclor-1254 Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND
	2,4,6-TNT RDX Aroclor-1254 Benz(a)anthracene Benzo(a)pyrene	 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND 4 samples collected since the remedial action, all results ND

Table A10-4 Load Line 2 Groundwater Data Summary

Notes:

FWCUG = Facility Wide Cleanup Goal from EQM, 2010, Final Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio. March 23

ND = not detected

RSL = USEPA Regional Screeing Level from Table 3-3 Screening Criteria, Draft Facility-Wide Groundwater Monitoring Program *RVAAP-66 Facility-Wide Groundwater Annual Report for 2015*. February 2016

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL2mw-262	LL2MW262-080107	8/1/2007	2,4,6-Trinitrotoluene	0.00105	mg/L	
LL2mw-262	LL2MW262DUP-080107	8/1/2007	2,4,6-Trinitrotoluene	0.00106	mg/L	
LL2mw-262	FWGLL2mw-262C-0539-GW	10/8/2007	2,4,6-Trinitrotoluene	0.00011	mg/L	U
LL2mw-262	FWGLL2mw-262C-1534-GW	7/9/2010	2,4,6-Trinitrotoluene	0.000098	mg/L	U
LL2mw-262	LL2MW262-080107	8/1/2007	Aluminum	0.1	mg/L	
LL2mw-262	LL2MW262DUP-080107	8/1/2007	Aluminum	0.1	mg/L	
LL2mw-262	FWGLL2mw-262C-0539-GF	10/8/2007	Aluminum	0.05	mg/L	UJ
LL2mw-262	FWGLL2mw-262C-036-GF	10/19/2009	Aluminum	0.05	mg/L	U
LL2mw-262	FWGLL2mw-262C-036-GW	10/19/2009	Aluminum	0.639	mg/L	
LL2mw-262	FWGLL2mw-262C-1534-GF	7/9/2010	Aluminum	0.0249	mg/L	J
LL2mw-262	LL2MW262-080107	8/1/2007	Antimony	0.000315		
LL2mw-262	LL2MW262DUP-080107	8/1/2007	Antimony	0.000422	mg/L	
LL2mw-262	FWGLL2mw-262C-0539-GF	10/8/2007	Antimony	0.002	mg/L	U
LL2mw-262	FWGLL2mw-262C-036-GF	10/19/2009	Antimony	0.002	•	U
LL2mw-262	FWGLL2mw-262C-036-GW	10/19/2009	Antimony	0.00014	•	UJ
LL2mw-262	FWGLL2mw-262C-1534-GF	7/9/2010	Antimony	0.002	•	U
LL2mw-262	LL2MW262-080107	8/1/2007	Arsenic	0.000312		
LL2mw-262	LL2MW262DUP-080107	8/1/2007	Arsenic	0.000268	•	
LL2mw-262	FWGLL2mw-262C-0539-GF	10/8/2007	Arsenic	0.005	•	U
LL2mw-262	FWGLL2mw-262C-036-GF	10/19/2009	Arsenic	0.005	•	U
LL2mw-262	FWGLL2mw-262C-036-GW	10/19/2009	Arsenic	0.0375	0	0
LL2mw-262	FWGLL2mw-262C-1534-GF	7/9/2010	Arsenic	0.005	-	U
LL2mw-262	LL2MW262-080107	8/1/2007	Barium	0.005		0
LL2mw-262	LL2MW262DUP-080107	8/1/2007	Barium	0.0156	•	
LL2mw-262	FWGLL2mw-262C-0539-GF	10/8/2007	Barium	0.0194	•	
LL2mw-262	FWGLL2mw-262C-036-GF	10/19/2009	Barium	0.0148	-	
LL2mw-262	FWGLL2mw-262C-036-GW	10/19/2009	Barium	0.0471	•	
LL2mw-262	FWGLL2mw-262C-1534-GF	7/9/2010	Barium	0.0162	•	
LL2mw-262	LL2MW262-080107	8/1/2007	Benz(a)anthracene	0.00538		
LL2mw-262	LL2MW262DUP-080107	8/1/2007	Benz(a)anthracene	0.00543	•	
LL2mw-262	FWGLL2mw-262C-0539-GW	10/8/2007	Benz(a)anthracene	0.00043	-	U
LL2mw-262	FWGLL2mw-262C-1534-GW	7/9/2010	Benz(a)anthracene	0.0002	-	U
LL2mw-262	LL2MW262-080107	8/1/2007	Benzo(a)pyrene	0.00538		U
LL2mw-262	LL2MW262DUP-080107	8/1/2007	Benzo(a)pyrene	0.00543	0	
LL2mw-262	FWGLL2mw-262C-0539-GW				0	U
LL2mw-262	FWGLL2mw-262C-0539-GW	10/8/2007 7/9/2010	Benzo(a)pyrene	0.0002 0.0002	-	U
			Benzo(a)pyrene			U
LL2mw-262 LL2mw-262	LL2MW262-080107	8/1/2007 8/1/2007	Benzo(b)fluoranthene	0.00538 0.00543	-	
LL2mw-262	LL2MW262DUP-080107 FWGLL2mw-262C-0539-GW	8/1/2007 10/8/2007	Benzo(b)fluoranthene		•	U
	FWGLL2mw-262C-0539-GW		Benzo(b)fluoranthene	0.0002	-	U
LL2mw-262	LL2MW262-080107	7/9/2010 8/1/2007	Benzo(b)fluoranthene Cadmium	0.0002		U
LL2mw-262				0.01	-	
LL2mw-262	LL2MW262DUP-080107	8/1/2007	Cadmium	0.01	•	
LL2mw-262	FWGLL2mw-262C-0539-GF	10/8/2007	Cadmium	0.0005	-	U
LL2mw-262	FWGLL2mw-262C-036-GF	10/19/2009	Cadmium	0.0005	-	U
LL2mw-262	FWGLL2mw-262C-036-GW	10/19/2009	Cadmium	0.00013	-	UJ
LL2mw-262	FWGLL2mw-262C-1534-GF	7/9/2010	Cadmium	0.0005		U
LL2mw-262	LL2MW262-080107	8/1/2007	Dibenz(a,h)anthracene	0.00538	0	
LL2mw-262	LL2MW262DUP-080107	8/1/2007	Dibenz(a,h)anthracene	0.00543	-	
LL2mw-262	FWGLL2mw-262C-0539-GW	10/8/2007	Dibenz(a,h)anthracene	0.0002	-	U
LL2mw-262	FWGLL2mw-262C-1534-GW	7/9/2010	Dibenz(a,h)anthracene	0.0002		U
LL2mw-262	LL2MW262-080107	8/1/2007	Lead	0.001	mg/L	

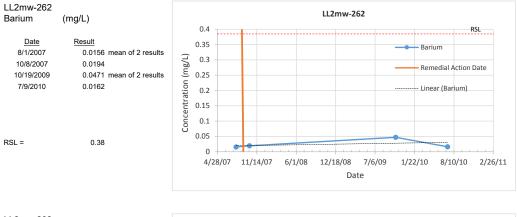
Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL2mw-262	LL2MW262DUP-080107	8/1/2007	Lead	0.001	mg/L	
LL2mw-262	FWGLL2mw-262C-0539-GF	10/8/2007	Lead	0.003	mg/L	U
LL2mw-262	FWGLL2mw-262C-036-GF	10/19/2009	Lead	0.003	mg/L	U
LL2mw-262	FWGLL2mw-262C-036-GW	10/19/2009	Lead	0.0018	mg/L	J
LL2mw-262	FWGLL2mw-262C-1534-GF	7/9/2010	Lead	0.003	mg/L	U
LL2mw-262	LL2MW262-080107	8/1/2007	Manganese	0.291	mg/L	
LL2mw-262	LL2MW262DUP-080107	8/1/2007	Manganese	0.263	mg/L	
LL2mw-262	FWGLL2mw-262C-0539-GF	10/8/2007	Manganese	0.922	mg/L	
LL2mw-262	FWGLL2mw-262C-036-GF	10/19/2009	Manganese	1.12	mg/L	
LL2mw-262	FWGLL2mw-262C-036-GW	10/19/2009	Manganese	6.24	mg/L	
LL2mw-262	FWGLL2mw-262C-1534-GF	7/9/2010	Manganese	0.0774	mg/L	
LL2mw-262	LL2MW262-080107	8/1/2007	PCB-1254	0.000526		
LL2mw-262	LL2MW262DUP-080107	8/1/2007	PCB-1254	0.000532	mg/L	
LL2mw-262	FWGLL2mw-262C-0539-GW	10/8/2007	PCB-1254	0.0005		U
LL2mw-262	FWGLL2mw-262C-1534-GW	7/9/2010	PCB-1254	0.0005	0	U
LL2mw-262	LL2MW262-080107	8/1/2007	RDX	0.00105		
LL2mw-262	LL2MW262DUP-080107	8/1/2007	RDX	0.00106	-	
LL2mw-262	FWGLL2mw-262C-0539-GW	10/8/2007	RDX	0.00011	-	U
LL2mw-262	FWGLL2mw-262C-1534-GW	7/9/2010	RDX	0.000098	-	Ŭ
LL2mw-263	LL2MW263-080107	8/1/2007	2,4,6-Trinitrotoluene	0.00102	-	
LL2mw-263	FWGLL2mw-263C-0540-GW	10/8/2007	2,4,6-Trinitrotoluene	0.00011	0	U
LL2mw-263	FWGLL2mw-263C-1535-GW	7/9/2010	2,4,6-Trinitrotoluene	0.000098	-	U
LL2mw-263	LL2MW263-080107	8/1/2007	Aluminum		mg/L	Ŭ
LL2mw-263	FWGLL2mw-263C-0540-GF	10/8/2007	Aluminum		mg/L	UJ
LL2mw-263	FWGLL2mw-263-037-GF	10/19/2009	Aluminum	0.0572	0	В
LL2mw-263	FWGLL2mw-263-037-GW	10/19/2009	Aluminum		mg/L	_
LL2mw-263	FWGLL2mw-263C-1535-GF	7/9/2010	Aluminum		mg/L	U
LL2mw-263	LL2MW263-080107	8/1/2007	Antimony	0.001		
LL2mw-263	FWGLL2mw-263C-0540-GF	10/8/2007	Antimony	0.002	0	U
LL2mw-263	FWGLL2mw-263-037-GF	10/19/2009	Antimony	0.002	-	U
LL2mw-263	FWGLL2mw-263-037-GW	10/19/2009	Antimony	0.00017	0	UJ
LL2mw-263	FWGLL2mw-263C-1535-GF	7/9/2010	Antimony	0.002	-	U
LL2mw-263	LL2MW263-080107	8/1/2007	Arsenic	0.0104		
LL2mw-263	FWGLL2mw-263C-0540-GF	10/8/2007	Arsenic	0.0168	0	
LL2mw-263	FWGLL2mw-263-037-GF	10/19/2009	Arsenic	0.0172	0	
LL2mw-263	FWGLL2mw-263-037-GW	10/19/2009	Arsenic	0.0227	0	
LL2mw-263	FWGLL2mw-263C-1535-GF	7/9/2010	Arsenic	0.0154	-	
LL2mw-263	LL2MW263-080107	8/1/2007	Barium	0.0311		
LL2mw-263	FWGLL2mw-263C-0540-GF	10/8/2007	Barium	0.027	0	
LL2mw-263	FWGLL2mw-263-037-GF	10/19/2009	Barium	0.0261	-	
LL2mw-263	FWGLL2mw-263-037-GW	10/19/2009	Barium	0.0368	-	
LL2mw-263	FWGLL2mw-263C-1535-GF	7/9/2010	Barium	0.0215	-	
LL2mw-263	LL2MW263-080107	8/1/2007	Benz(a)anthracene	0.00538		
LL2mw-263	FWGLL2mw-263C-0540-GW	10/8/2007	Benz(a)anthracene	0.0002	-	U
LL2mw-263	FWGLL2mw-263C-1535-GW	7/9/2010	Benz(a)anthracene	0.0002	-	U
LL2mw-263	LL2MW263-080107	8/1/2007	Benzo(a)pyrene	0.00538		-
LL2mw-263	FWGLL2mw-263C-0540-GW	10/8/2007	Benzo(a)pyrene	0.0002	-	U
LL2mw-263	FWGLL2mw-263C-1535-GW	7/9/2010	Benzo(a)pyrene	0.0002	-	U
LL2mw-263	LL2MW263-080107	8/1/2007	Benzo(b)fluoranthene	0.00538		Ŭ.
LL2mw-263	FWGLL2mw-263C-0540-GW	10/8/2007	Benzo(b)fluoranthene	0.0002	-	U
LL2mw-263	FWGLL2mw-263C-1535-GW	7/9/2010	Benzo(b)fluoranthene	0.0002	-	U
				0.0002	····ə/ —	~

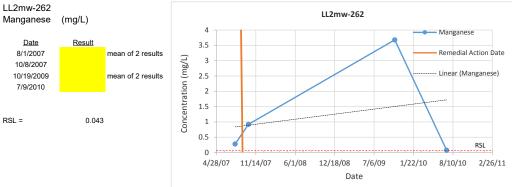
Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL2mw-263	LL2MW263-080107	8/1/2007	Cadmium	0.01	mg/L	
LL2mw-263	FWGLL2mw-263C-0540-GF	10/8/2007	Cadmium	0.0005	mg/L	U
LL2mw-263	FWGLL2mw-263-037-GF	10/19/2009	Cadmium	0.0005	mg/L	U
LL2mw-263	FWGLL2mw-263-037-GW	10/19/2009	Cadmium	0.0005	mg/L	U
LL2mw-263	FWGLL2mw-263C-1535-GF	7/9/2010	Cadmium	0.0005	mg/L	U
LL2mw-263	LL2MW263-080107	8/1/2007	Dibenz(a,h)anthracene	0.00538		
LL2mw-263	FWGLL2mw-263C-0540-GW	10/8/2007	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL2mw-263	FWGLL2mw-263C-1535-GW	7/9/2010	Dibenz(a,h)anthracene	0.0002	-	U
LL2mw-263	LL2MW263-080107	8/1/2007	Lead	0.001		
LL2mw-263	FWGLL2mw-263C-0540-GF	10/8/2007	Lead	0.003	0	U
LL2mw-263	FWGLL2mw-263-037-GF	10/19/2009	Lead	0.003	-	U
LL2mw-263	FWGLL2mw-263-037-GW	10/19/2009	Lead	0.0017	0	J
LL2mw-263	FWGLL2mw-263C-1535-GF	7/9/2010	Lead	0.003	0	U
LL2mw-263	LL2MW263-080107	8/1/2007	Manganese	0.837		
LL2mw-263	FWGLL2mw-263C-0540-GF	10/8/2007	Manganese		mg/L	
LL2mw-263	FWGLL2mw-263-037-GF	10/19/2009	Manganese		mg/L	
LL2mw-263	FWGLL2mw-263-037-GW	10/19/2009	Manganese		mg/L	
LL2mw-263	FWGLL2mw-263C-1535-GF	7/9/2010	Manganese		mg/L	
LL2mw-263	LL2MW263-080107	8/1/2007	PCB-1254	0.000521		
LL2mw-263	FWGLL2mw-263C-0540-GW	10/8/2007	PCB-1254	0.0005	0	UJ
LL2mw-263	FWGLL2mw-263C-1535-GW	7/9/2010	PCB-1254	0.0005	-	U
LL2mw-263	LL2MW263-080107	8/1/2007	RDX	0.00003		0
LL2mw-263	FWGLL2mw-263C-0540-GW	10/8/2007	RDX	0.000102	-	U
LL2mw-263	FWGLL2mw-263C-1535-GW	7/9/2010	RDX	0.000098	-	U
LL2mw-266	LL2MW266-080107	8/1/2007	2,4,6-Trinitrotoluene	0.00103	-	
LL2mw-266	LL2MW266DUP-080107	8/1/2007	2,4,6-Trinitrotoluene	0.00106	0	
LL2mw-266	FWGLL2mw-266C-1537-GW	7/9/2010	2,4,6-Trinitrotoluene	0.0001	0	U
LL2mw-266	FWGLL2mw-266C-1594-GW	10/11/2010	2,4,6-Trinitrotoluene	0.000099	0	U
LL2mw-266	FWGLL2mw-266C-1645-GW	1/18/2011	2,4,6-Trinitrotoluene	0.00011	0	U
LL2mw-266	FWGLL2mw-266C-1721-GW	4/7/2011	2,4,6-Trinitrotoluene	0.00011	0	U
LL2mw-266	LL2MW266-080107	8/1/2007	Aluminum		mg/L	U
LL2mw-266	LL2MW266DUP-080107	8/1/2007	Aluminum		mg/L	
LL2mw-266	FWGLL2mw-266-040-GF	10/20/2009	Aluminum		mg/L	U
LL2mw-266	FWGLL2mw-266-040-GF	10/20/2009	Aluminum		mg/L	0
LL2mw-266	FWGLL2mw-266C-1537-GF	7/9/2010	Aluminum		-	
LL2mw-266	FWGLL2mw-266C-1594-GF	10/11/2010	Aluminum	0.0567	mg/L	
LL2mw-266	FWGLL2mw-266C-1645-GF	1/18/2011	Aluminum		mg/L	
LL2mw-266	FWGLL2mw-266C-1721-GF				-	U U
LL2mw-266	LL2MW266-080107	4/7/2011	Aluminum		mg/L	U
LL2mw-266		8/1/2007	Antimony	0.000452	-	
LL2mw-266	LL2MW266DUP-080107	8/1/2007	Antimony	0.001	-	
LL2mw-266	FWGLL2mw-266-040-GF	10/20/2009	Antimony	0.002	-	U
	FWGLL2mw-266-040-GW	10/20/2009	Antimony	0.00021	-	UJB
LL2mw-266	FWGLL2mw-266C-1537-GF	7/9/2010	Antimony	0.002	-	U
LL2mw-266	FWGLL2mw-266C-1594-GF FWGLL2mw-266C-1645-GF	10/11/2010 1/18/2011	Antimony	0.002 0.002	-	U
LL2mw-266			Antimony		-	U
LL2mw-266	FWGLL2mw-266C-1721-GF	4/7/2011	Antimony	0.002		U
LL2mw-266	LL2MW266-080107	8/1/2007	Arsenic	0.00488	0	
LL2mw-266	LL2MW266DUP-080107	8/1/2007	Arsenic	0.00554	-	
LL2mw-266	FWGLL2mw-266-040-GF	10/20/2009	Arsenic	0.005	-	U
LL2mw-266	FWGLL2mw-266-040-GW	10/20/2009	Arsenic	0.0177	-	
LL2mw-266	FWGLL2mw-266C-1537-GF	7/9/2010	Arsenic	0.0056	iiig/∟	

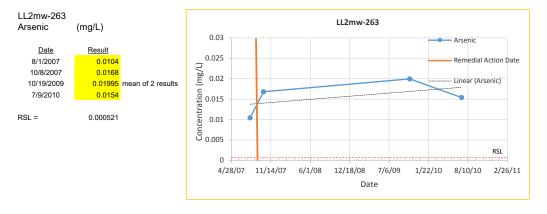
Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL2mw-266	FWGLL2mw-266C-1594-GF	10/11/2010	Arsenic	0.0042	mg/L	J
LL2mw-266	FWGLL2mw-266C-1645-GF	1/18/2011	Arsenic	0.005	mg/L	U
LL2mw-266	FWGLL2mw-266C-1721-GF	4/7/2011	Arsenic	0.005	mg/L	U
LL2mw-266	LL2MW266-080107	8/1/2007	Barium	0.0215	mg/L	
LL2mw-266	LL2MW266DUP-080107	8/1/2007	Barium	0.0266	mg/L	
LL2mw-266	FWGLL2mw-266-040-GF	10/20/2009	Barium	0.01	mg/L	U
LL2mw-266	FWGLL2mw-266-040-GW	10/20/2009	Barium	0.0352	mg/L	
LL2mw-266	FWGLL2mw-266C-1537-GF	7/9/2010	Barium	0.0191	mg/L	
LL2mw-266	FWGLL2mw-266C-1594-GF	10/11/2010	Barium	0.0155	mg/L	
LL2mw-266	FWGLL2mw-266C-1645-GF	1/18/2011	Barium	0.021	-	
LL2mw-266	FWGLL2mw-266C-1721-GF	4/7/2011	Barium	0.0139	-	
LL2mw-266	LL2MW266-080107	8/1/2007	Benz(a)anthracene	0.00532		
LL2mw-266	LL2MW266DUP-080107	8/1/2007	Benz(a)anthracene	0.00532	mg/L	
LL2mw-266	FWGLL2mw-266C-1537-GW	7/9/2010	Benz(a)anthracene	0.0002	-	U
LL2mw-266	FWGLL2mw-266C-1594-GW	10/11/2010	Benz(a)anthracene	0.0002	0	U
LL2mw-266	FWGLL2mw-266C-1645-GW	1/18/2011	Benz(a)anthracene	0.0002	0	U
LL2mw-266	FWGLL2mw-266C-1721-GW	4/7/2011	Benz(a)anthracene	0.0002	•	U
LL2mw-266	LL2MW266-080107	8/1/2007	Benzo(a)pyrene	0.00532		Ŭ
LL2mw-266	LL2MW266DUP-080107	8/1/2007	Benzo(a)pyrene	0.00532	•	
LL2mw-266	FWGLL2mw-266C-1537-GW	7/9/2010	Benzo(a)pyrene	0.0002	0	U
LL2mw-266	FWGLL2mw-266C-1594-GW	10/11/2010	Benzo(a)pyrene	0.0002	0	U
LL2mw-266	FWGLL2mw-266C-1645-GW	1/18/2011	Benzo(a)pyrene	0.0002	0	U
LL2mw-266	FWGLL2mw-266C-1721-GW	4/7/2011	Benzo(a)pyrene	0.0002	•	U
LL2mw-266	LL2MW266-080107	8/1/2007	Benzo(b)fluoranthene	0.0002		U
LL2mw-266	LL2MW266DUP-080107	8/1/2007	Benzo(b)fluoranthene	0.00532	•	
LL2mw-266	FWGLL2mw-266C-1537-GW	7/9/2010	Benzo(b)fluoranthene	0.00032	-	U
LL2mw-266	FWGLL2mw-266C-1594-GW	10/11/2010	Benzo(b)fluoranthene	0.0002	-	U
LL2mw-266	FWGLL2mw-266C-1645-GW	1/18/2011	Benzo(b)fluoranthene	0.0002	-	U
LL2mw-266	FWGLL2mw-266C-1721-GW	4/7/2011	Benzo(b)fluoranthene	0.0002	-	U
LL2mw-266	LL2MW266-080107	8/1/2007	Cadmium		mg/L	0
LL2mw-266	LL2MW266DUP-080107	8/1/2007	Cadmium		mg/L	
LL2mw-266	FWGLL2mw-266-040-GF	10/20/2009	Cadmium			J
LL2mw-266	FWGLL2mw-266-040-GP	10/20/2009	Cadmium	0.00019 0.00079	-	J
LL2mw-266	FWGLL2mw-266C-1537-GF	7/9/2010	Cadmium	0.00079	0	J
		10/11/2010	Cadmium		0	
LL2mw-266 LL2mw-266	FWGLL2mw-266C-1594-GF FWGLL2mw-266C-1645-GF	1/18/2011	Cadmium	0.00014 0.0005	-	J U
LL2mw-266	FWGLL2mw-266C-1721-GF	4/7/2011	Cadmium	0.0005	-	U
	LL2MW266-080107		Dibenz(a,h)anthracene	0.0003		U
LL2mw-266 LL2mw-266		8/1/2007			0	
LL2mw-266	LL2MW266DUP-080107	8/1/2007 7/9/2010	Dibenz(a,h)anthracene	0.00532	-	U
	FWGLL2mw-266C-1537-GW	10/11/2010	Dibenz(a,h)anthracene	0.0002	-	
LL2mw-266	FWGLL2mw-266C-1594-GW		Dibenz(a,h)anthracene	0.0002	-	U
LL2mw-266	FWGLL2mw-266C-1645-GW	1/18/2011	Dibenz(a,h)anthracene	0.0002	-	U
LL2mw-266	FWGLL2mw-266C-1721-GW	4/7/2011	Dibenz(a,h)anthracene	0.0002		U
LL2mw-266	LL2MW266-080107	8/1/2007	Lead	0.001	-	
LL2mw-266	LL2MW266DUP-080107	8/1/2007	Lead	0.001	-	
LL2mw-266	FWGLL2mw-266-040-GF	10/20/2009	Lead	0.003	-	U
LL2mw-266	FWGLL2mw-266-040-GW	10/20/2009	Lead	0.006	0	
LL2mw-266	FWGLL2mw-266C-1537-GF	7/9/2010	Lead	0.003	•	U
LL2mw-266	FWGLL2mw-266C-1594-GF	10/11/2010	Lead	0.003	-	U
LL2mw-266	FWGLL2mw-266C-1645-GF	1/18/2011	Lead	0.003	-	U
LL2mw-266	FWGLL2mw-266C-1721-GF	4/7/2011	Lead	0.003	rng/L	U

Station	Sample ID	Date Collected	Chemical	Results Units	Data Qual
LL2mw-266	LL2MW266-080107	8/1/2007	Manganese	1.12 mg/L	
LL2mw-266	LL2MW266DUP-080107	8/1/2007	Manganese	0.982 mg/L	
LL2mw-266	FWGLL2mw-266-040-GF	10/20/2009	Manganese	0.856 mg/L	
LL2mw-266	FWGLL2mw-266-040-GW	10/20/2009	Manganese	4.37 mg/L	
LL2mw-266	FWGLL2mw-266C-1537-GF	7/9/2010	Manganese	1.39 mg/L	
LL2mw-266	FWGLL2mw-266C-1594-GF	10/11/2010	Manganese	1.25 mg/L	
LL2mw-266	FWGLL2mw-266C-1645-GF	1/18/2011	Manganese	0.936 mg/L	
LL2mw-266	FWGLL2mw-266C-1721-GF	4/7/2011	Manganese	0.761 mg/L	J
LL2mw-266	LL2MW266-080107	8/1/2007	PCB-1254	0.000549 mg/L	
LL2mw-266	LL2MW266DUP-080107	8/1/2007	PCB-1254	0.000556 mg/L	
LL2mw-266	FWGLL2mw-266C-1537-GW	7/9/2010	PCB-1254	0.0005 mg/L	UJ
LL2mw-266	FWGLL2mw-266C-1594-GW	10/11/2010	PCB-1254	0.0005 mg/L	UJ
LL2mw-266	FWGLL2mw-266C-1645-GW	1/18/2011	PCB-1254	0.0005 mg/L	UJ
LL2mw-266	FWGLL2mw-266C-1721-GW	4/7/2011	PCB-1254	0.0005 mg/L	UJ
LL2mw-266	LL2MW266-080107	8/1/2007	RDX	0.00103 mg/L	
LL2mw-266	LL2MW266DUP-080107	8/1/2007	RDX	0.00106 mg/L	
LL2mw-266	FWGLL2mw-266C-1537-GW	7/9/2010	RDX	0.0001 mg/L	U
LL2mw-266	FWGLL2mw-266C-1594-GW	10/11/2010	RDX	0.000099 mg/L	U
LL2mw-266	FWGLL2mw-266C-1645-GW	1/18/2011	RDX	0.00011 mg/L	U
LL2mw-266	FWGLL2mw-266C-1721-GW	4/7/2011	RDX	0.00011 mg/L	U
LL2mw-267	LL2MW267-080107	8/1/2007	2,4,6-Trinitrotoluene	0.00104 mg/L	<u> </u>
LL2mw-267	FWGLL2mw-267C-1565-GW	7/9/2010	2,4,6-Trinitrotoluene	0.00027 mg/L	
LL2mw-267	FWGLL2mw-267C-1595-GW	10/12/2010	2,4,6-Trinitrotoluene	0.00027 mg/L 0.00016 mg/L	
LL2mw-267	FWGLL2mw-DUP3-1627-GW	10/12/2010		0.00010 mg/L	
LL2mw-267	FWGLL2mw-267C-1646-GW	1/18/2011	2,4,6-Trinitrotoluene 2,4,6-Trinitrotoluene	0.00012 mg/L 0.00067 mg/L	
LL2mw-267	FWGLL2mw-DUP3-1694-GW	1/18/2011		0.00056 mg/L	
LL2mw-267	FWGLL2mw-267C-1722-GW	4/7/2011	2,4,6-Trinitrotoluene	0.00038 mg/L	
LL2mw-267	FWGLL2mw-DUP3-1748-GW	4/7/2011	2,4,6-Trinitrotoluene	0.00049 mg/L 0.00047 mg/L	
			2,4,6-Trinitrotoluene	Ũ	
LL2mw-267 LL2mw-267	FWGLL2mw-267C-0358-GW	8/21/2013	2,4,6-Trinitrotoluene	0.00054 mg/L	
	FWGLL2mw-267c-0398-GW	1/21/2014	2,4,6-Trinitrotoluene	0.00044 mg/L	
LL2mw-267	FWGLL2mw-267C-0472-GW	7/23/2014	2,4,6-Trinitrotoluene	0.00049 mg/L	
LL2mw-267	FWGLL2mw-267C-0528-GW	3/11/2015	2,4,6-Trinitrotoluene	0.00038 mg/L	
LL2mw-267	FWGLL2mw-267C-0590-GW	7/23/2015	2,4,6-Trinitrotoluene	0.00035 mg/L	
LL2mw-267	LL2MW267-080107	8/1/2007	Aluminum	0.1 mg/L	P
LL2mw-267	FWGLL2mw-267C-041-GF	10/19/2009	Aluminum	0.0589 mg/L	В
LL2mw-267	FWGLL2mw-267C-041-GW	10/19/2009	Aluminum	0.577 mg/L	
LL2mw-267	FWGLL2mw-267C-1565-GF	7/9/2010	Aluminum	0.05 mg/L	U
LL2mw-267	FWGLL2mw-267C-1595-GF	10/12/2010	Aluminum	51.3 mg/L	
LL2mw-267	FWGLL2mw-DUP3-1627-GF	10/12/2010	Aluminum	43.9 mg/L	
LL2mw-267	FWGLL2mw-267C-1646-GF	1/18/2011	Aluminum	0.318 mg/L	
LL2mw-267	FWGLL2mw-DUP3-1694-GF	1/18/2011	Aluminum	0.367 mg/L	
LL2mw-267	FWGLL2mw-267C-1722-GF	4/7/2011	Aluminum	0.033 mg/L	J
LL2mw-267	FWGLL2mw-DUP3-1748-GF	4/7/2011	Aluminum	0.0357 mg/L	J
LL2mw-267	FWGLL2mw-267C-0358-GF	8/21/2013	Aluminum	0.06 mg/L	U
LL2mw-267	FWGLL2mw-267c-0398-GF	1/21/2014	Aluminum	0.06 mg/L	U
LL2mw-267	FWGLL2mw-267C-0472-GF	7/23/2014	Aluminum	0.06 mg/L	U
LL2mw-267	FWGLL2mw-267C-0528-GF	3/11/2015	Aluminum	0.06 mg/L	U
LL2mw-267	FWGLL2mw-267C-0590-GF	7/23/2015	Aluminum	0.06 mg/L	U
LL2mw-267	LL2MW267-080107	8/1/2007	Antimony	0.000525 mg/L	
LL2mw-267	FWGLL2mw-267C-041-GF	10/19/2009	Antimony	0.00016 mg/L	UJ
LL2mw-267	FWGLL2mw-267C-041-GW	10/19/2009	Antimony	0.002 mg/L	U

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL2mw-267	FWGLL2mw-267C-1565-GF	7/9/2010	Antimony	0.002	mg/L	U
LL2mw-267	FWGLL2mw-267C-1595-GF	10/12/2010	Antimony	0.0006	mg/L	J
LL2mw-267	FWGLL2mw-DUP3-1627-GF	10/12/2010	Antimony	0.00056	mg/L	J
LL2mw-267	FWGLL2mw-267C-1646-GF	1/18/2011	Antimony	0.002	mg/L	U
LL2mw-267	FWGLL2mw-DUP3-1694-GF	1/18/2011	Antimony	0.002	mg/L	U
LL2mw-267	FWGLL2mw-267C-1722-GF	4/7/2011	Antimony	0.002	mg/L	U
LL2mw-267	FWGLL2mw-DUP3-1748-GF	4/7/2011	Antimony	0.002	mg/L	U
LL2mw-267	FWGLL2mw-267C-0358-GF	8/21/2013	Antimony	0.001	0	U
LL2mw-267	FWGLL2mw-267c-0398-GF	1/21/2014	Antimony	0.001	0	U
LL2mw-267	FWGLL2mw-267C-0472-GF	7/23/2014	Antimony	0.001	-	U
LL2mw-267	FWGLL2mw-267C-0528-GF	3/11/2015	Antimony	0.00059	ma/L	U
LL2mw-267	FWGLL2mw-267C-0590-GF	7/23/2015	Antimony	0.001	-	U
LL2mw-267	LL2MW267-080107	8/1/2007	Arsenic	0.00438		
LL2mw-267	FWGLL2mw-267C-041-GF	10/19/2009	Arsenic	0.005	•	U
LL2mw-267	FWGLL2mw-267C-041-GW	10/19/2009	Arsenic	0.0081	-	-
LL2mw-267	FWGLL2mw-267C-1565-GF	7/9/2010	Arsenic	0.005	•	U
LL2mw-267	FWGLL2mw-267C-1595-GF	10/12/2010	Arsenic	0.137	0	U
LL2mw-267	FWGLL2mw-DUP3-1627-GF	10/12/2010	Arsenic	0.102	0	
LL2mw-267	FWGLL2mw-267C-1646-GF	1/18/2011	Arsenic	0.005	-	U
LL2mw-267	FWGLL2mw-DUP3-1694-GF	1/18/2011	Arsenic	0.005	-	U
LL2mw-267	FWGLL2mw-267C-1722-GF	4/7/2011	Arsenic	0.005	•	U
LL2mw-267	FWGLL2mw-DUP3-1748-GF	4/7/2011	Arsenic	0.005	0	U
LL2mw-267	FWGLL2mw-267C-0358-GF	8/21/2013	Arsenic		mg/L	U
LL2mw-267	FWGLL2mw-267c-0398-GF	1/21/2013	Arsenic		mg/L	U
LL2mw-267	FWGLL2mw-267C-0472-GF	7/23/2014	Arsenic		mg/L	U
LL2mw-267	FWGLL2mw-267C-0528-GF	3/11/2015	Arsenic		mg/L	U
LL2mw-267	FWGLL2mw-267C-0590-GF	7/23/2015	Arsenic		mg/L	U
LL2mw-267	LL2MW267-080107	8/1/2007	Barium	0.0241		Ŭ
LL2mw-267	FWGLL2mw-267C-041-GF	10/19/2009	Barium	0.0196	-	
LL2mw-267	FWGLL2mw-267C-041-GW	10/19/2009	Barium	0.0241	-	
LL2mw-267	FWGLL2mw-267C-1565-GF	7/9/2010	Barium	0.0149	0	
LL2mw-267	FWGLL2mw-267C-1595-GF	10/12/2010	Barium	0.274	-	
LL2mw-267	FWGLL2mw-DUP3-1627-GF	10/12/2010	Barium	0.248	-	
LL2mw-267	FWGLL2mw-267C-1646-GF	1/18/2011	Barium	0.240	0	
LL2mw-267	FWGLL2mw-DUP3-1694-GF	1/18/2011	Barium	0.0140	-	
LL2mw-267	FWGLL2mw-267C-1722-GF	4/7/2011	Barium	0.0101	-	
LL2mw-267	FWGLL2mw-DUP3-1748-GF	4/7/2011	Barium	0.0117	-	
LL2mw-267	FWGLL2mw-267C-0358-GF	8/21/2013	Barium	0.011	-	
LL2mw-267	FWGLL2mw-267c-0398-GF	1/21/2013	Barium		mg/L	
LL2mw-267	FWGLL2mw-267C-0472-GF	7/23/2014	Barium	0.0091	-	
LL2mw-267	FWGLL2mw-267C-0528-GF	3/11/2015	Barium	0.0078	-	
LL2mw-267	FWGLL2mw-267C-0590-GF	7/23/2015	Barium	0.0079	-	
LL2mw-267	LL2MW267-080107	8/1/2007	Benz(a)anthracene	0.0073		
LL2mw-267	FWGLL2mw-267C-1565-GW	7/9/2010	Benz(a)anthracene	0.0002	0	U
LL2mw-267	FWGLL2mw-267C-1595-GW	10/12/2010	Benz(a)anthracene	0.0002	-	U
LL2mw-267	FWGLL2mw-DUP3-1627-GW	10/12/2010	Benz(a)anthracene	0.0002	-	U
LL2mw-267 LL2mw-267	FWGLL2mw-267C-1646-GW	1/18/2011	Benz(a)anthracene	0.0002	-	U
LL2mw-267 LL2mw-267	FWGLL2mw-DUP3-1694-GW	1/18/2011	Benz(a)anthracene	0.0002	0	U
LL2mw-267 LL2mw-267	FWGLL2mw-267C-1722-GW	4/7/2011	Benz(a)anthracene	0.0002	0	U
LL2mw-267	FWGLL2mw-DUP3-1748-GW	4/7/2011	Benz(a)anthracene	0.0002	-	U
LL2mw-267	LL2MW267-080107	8/1/2011	Benzo(a)pyrene	0.0002		U
	LL210100207-000107	0/1/2007	Бенго(а)ругене	0.005	mg/∟	


Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL2mw-267	FWGLL2mw-267C-1565-GW	7/9/2010	Benzo(a)pyrene	0.0002	mg/L	U
LL2mw-267	FWGLL2mw-267C-1595-GW	10/12/2010	Benzo(a)pyrene	0.0002	mg/L	U
LL2mw-267	FWGLL2mw-DUP3-1627-GW	10/12/2010	Benzo(a)pyrene	0.0002	mg/L	U
LL2mw-267	FWGLL2mw-267C-1646-GW	1/18/2011	Benzo(a)pyrene	0.0002	mg/L	U
LL2mw-267	FWGLL2mw-DUP3-1694-GW	1/18/2011	Benzo(a)pyrene	0.0002	mg/L	U
LL2mw-267	FWGLL2mw-267C-1722-GW	4/7/2011	Benzo(a)pyrene	0.0002	mg/L	U
LL2mw-267	FWGLL2mw-DUP3-1748-GW	4/7/2011	Benzo(a)pyrene	0.0002	-	U
LL2mw-267	LL2MW267-080107	8/1/2007	Benzo(b)fluoranthene	0.005		
LL2mw-267	FWGLL2mw-267C-1565-GW	7/9/2010	Benzo(b)fluoranthene	0.0002	mg/L	U
LL2mw-267	FWGLL2mw-267C-1595-GW	10/12/2010	Benzo(b)fluoranthene	0.0002	mg/L	U
LL2mw-267	FWGLL2mw-DUP3-1627-GW	10/12/2010	Benzo(b)fluoranthene	0.0002	mg/L	U
LL2mw-267	FWGLL2mw-267C-1646-GW	1/18/2011	Benzo(b)fluoranthene	0.0002	0	U
LL2mw-267	FWGLL2mw-DUP3-1694-GW	1/18/2011	Benzo(b)fluoranthene	0.0002	•	U
LL2mw-267	FWGLL2mw-267C-1722-GW	4/7/2011	Benzo(b)fluoranthene	0.0002	-	U
LL2mw-267	FWGLL2mw-DUP3-1748-GW	4/7/2011	Benzo(b)fluoranthene	0.0002	0	U
LL2mw-267	LL2MW267-080107	8/1/2007	Cadmium		mg/L	
LL2mw-267	FWGLL2mw-267C-041-GF	10/19/2009	Cadmium	0.0005	-	U
LL2mw-267	FWGLL2mw-267C-041-GW	10/19/2009	Cadmium	0.0005	0	U
LL2mw-267	FWGLL2mw-267C-1565-GF	7/9/2010	Cadmium	0.0005	-	U
LL2mw-267	FWGLL2mw-267C-1595-GF	10/12/2010	Cadmium	0.00097	0	Ū
LL2mw-267	FWGLL2mw-DUP3-1627-GF	10/12/2010	Cadmium	0.00075	0	
LL2mw-267	FWGLL2mw-267C-1646-GF	1/18/2011	Cadmium	0.0005	0	U
LL2mw-267	FWGLL2mw-DUP3-1694-GF	1/18/2011	Cadmium	0.0005	0	U
LL2mw-267	FWGLL2mw-267C-1722-GF	4/7/2011	Cadmium	0.0005	0	U
LL2mw-267	FWGLL2mw-DUP3-1748-GF	4/7/2011	Cadmium	0.0005	0	U
LL2mw-267	FWGLL2mw-267C-0358-GF	8/21/2013	Cadmium	0.001	-	U
LL2mw-267	FWGLL2mw-267c-0398-GF	1/21/2014	Cadmium	0.001	0	U
LL2mw-267	FWGLL2mw-267C-0472-GF	7/23/2014	Cadmium	0.001	0	U
LL2mw-267	FWGLL2mw-267C-0528-GF	3/11/2015	Cadmium	0.001	0	U
LL2mw-267	FWGLL2mw-267C-0590-GF	7/23/2015	Cadmium	0.001	0	U
LL2mw-267	LL2MW267-080107	8/1/2007	Dibenz(a,h)anthracene	0.005		Ŭ
LL2mw-267	FWGLL2mw-267C-1565-GW	7/9/2010	Dibenz(a,h)anthracene	0.0002	0	U
LL2mw-267	FWGLL2mw-267C-1595-GW	10/12/2010	Dibenz(a,h)anthracene	0.0002	-	U
LL2mw-267	FWGLL2mw-DUP3-1627-GW	10/12/2010	Dibenz(a,h)anthracene	0.0002	0	U
LL2mw-267	FWGLL2mw-267C-1646-GW	1/18/2011	Dibenz(a,h)anthracene	0.0002	0	U
LL2mw-267	FWGLL2mw-DUP3-1694-GW	1/18/2011	Dibenz(a,h)anthracene	0.0002	-	U
LL2mw-267	FWGLL2mw-267C-1722-GW	4/7/2011	Dibenz(a,h)anthracene	0.0002	-	U
LL2mw-267	FWGLL2mw-DUP3-1748-GW	4/7/2011	Dibenz(a,h)anthracene	0.0002	-	U
LL2mw-267	LL2MW267-080107	8/1/2007	Lead	0.0002	Ŭ.	U
LL2mw-267	FWGLL2mw-267C-041-GF	10/19/2009	Lead	0.003	-	U
LL2mw-267	FWGLL2mw-267C-041-GW	10/19/2009	Lead	0.003	-	U
LL2mw-267	FWGLL2mw-267C-1565-GF	7/9/2010	Lead	0.003	•	U
LL2mw-267	FWGLL2mw-267C-1595-GF	10/12/2010	Lead	0.069	0	J
LL2mw-267	FWGLL2mw-DUP3-1627-GF	10/12/2010	Lead	0.048	-	J
LL2mw-267	FWGLL2mw-267C-1646-GF	1/18/2011	Lead	0.048	-	U
LL2mw-267	FWGLL2mw-DUP3-1694-GF	1/18/2011	Lead	0.003	-	U
LL2mw-267	FWGLL2mw-267C-1722-GF	4/7/2011	Lead	0.003	-	U
LL2mw-267	FWGLL2mw-DUP3-1748-GF	4/7/2011	Lead	0.003	-	U
LL2mw-267	FWGLL2mw-267C-0358-GF	8/21/2013	Lead	0.005	-	U
LL2mw-267	FWGLL2mw-267c-0398-GF	1/21/2013	Lead	0.005	-	U
LL2mw-267	FWGLL2mw-267C-0472-GF	7/23/2014	Lead	0.005	-	U
	1 WOLL211W-2070-0472-GF	112512014	LEau	0.005	iiig/L	0


Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL2mw-267	FWGLL2mw-267C-0528-GF	3/11/2015	Lead	0.005	mg/L	U
LL2mw-267	FWGLL2mw-267C-0590-GF	7/23/2015	Lead	0.005	mg/L	U
LL2mw-267	LL2MW267-080107	8/1/2007	Manganese	0.594	mg/L	
LL2mw-267	FWGLL2mw-267C-041-GF	10/19/2009	Manganese	0.652	mg/L	
LL2mw-267	FWGLL2mw-267C-041-GW	10/19/2009	Manganese	0.673	mg/L	
LL2mw-267	FWGLL2mw-267C-1565-GF	7/9/2010	Manganese	0.622	mg/L	
LL2mw-267	FWGLL2mw-267C-1595-GF	10/12/2010	Manganese	2.85	mg/L	
LL2mw-267	FWGLL2mw-DUP3-1627-GF	10/12/2010	Manganese	2.24	mg/L	
LL2mw-267	FWGLL2mw-267C-1646-GF	1/18/2011	Manganese	0.547	mg/L	
LL2mw-267	FWGLL2mw-DUP3-1694-GF	1/18/2011	Manganese	0.551	mg/L	
LL2mw-267	FWGLL2mw-267C-1722-GF	4/7/2011	Manganese	0.564	mg/L	J
LL2mw-267	FWGLL2mw-DUP3-1748-GF	4/7/2011	Manganese	0.568	mg/L	J
LL2mw-267	FWGLL2mw-267C-0358-GF	8/21/2013	Manganese	0.49	mg/L	
LL2mw-267	FWGLL2mw-267c-0398-GF	1/21/2014	Manganese	0.45	mg/L	J
LL2mw-267	FWGLL2mw-267C-0472-GF	7/23/2014	Manganese	0.49	mg/L	
LL2mw-267	FWGLL2mw-267C-0528-GF	3/11/2015	Manganese	0.49	mg/L	
LL2mw-267	FWGLL2mw-267C-0590-GF	7/23/2015	Manganese	0.46	mg/L	
LL2mw-267	LL2MW267-080107	8/1/2007	PCB-1254	0.000532	mg/L	
LL2mw-267	FWGLL2mw-267C-1565-GW	7/9/2010	PCB-1254	0.0005	mg/L	U
LL2mw-267	FWGLL2mw-267C-1595-GW	10/12/2010	PCB-1254	0.0005	mg/L	UJ
LL2mw-267	FWGLL2mw-DUP3-1627-GW	10/12/2010	PCB-1254	0.0005	mg/L	UJ
LL2mw-267	FWGLL2mw-267C-1646-GW	1/18/2011	PCB-1254	0.0005	mg/L	UJ
LL2mw-267	FWGLL2mw-DUP3-1694-GW	1/18/2011	PCB-1254	0.0005	mg/L	UJ
LL2mw-267	FWGLL2mw-267C-1722-GW	4/7/2011	PCB-1254	0.0005	mg/L	UJ
LL2mw-267	FWGLL2mw-DUP3-1748-GW	4/7/2011	PCB-1254	0.0005	mg/L	UJ
LL2mw-267	LL2MW267-080107	8/1/2007	RDX	0.00104	mg/L	
LL2mw-267	FWGLL2mw-267C-1565-GW	7/9/2010	RDX	0.0011	mg/L	
LL2mw-267	FWGLL2mw-267C-1595-GW	10/12/2010	RDX	0.00093	mg/L	
LL2mw-267	FWGLL2mw-DUP3-1627-GW	10/12/2010	RDX	0.00086	mg/L	J
LL2mw-267	FWGLL2mw-267C-1646-GW	1/18/2011	RDX	0.0017	mg/L	J
LL2mw-267	FWGLL2mw-DUP3-1694-GW	1/18/2011	RDX	0.0015	mg/L	J
LL2mw-267	FWGLL2mw-267C-1722-GW	4/7/2011	RDX	0.0013	mg/L	J
LL2mw-267	FWGLL2mw-DUP3-1748-GW	4/7/2011	RDX	0.0014	mg/L	
LL2mw-267	FWGLL2mw-267C-0358-GW	8/21/2013	RDX	0.0015	mg/L	
LL2mw-267	FWGLL2mw-267c-0398-GW	1/21/2014	RDX	0.0013	mg/L	
LL2mw-267	FWGLL2mw-267C-0472-GW	7/23/2014	RDX	0.0014	mg/L	
LL2mw-267	FWGLL2mw-267C-0528-GW	3/11/2015	RDX	0.0011	mg/L	
LL2mw-267	FWGLL2mw-267C-0590-GW	7/23/2015	RDX	0.0013	mg/L	
LL2mw-269	LL2MW269-073107	7/31/2007	2,4,6-Trinitrotoluene	0.00104	mg/L	
LL2mw-269	FWGLL2mw-269C-1538-GW	7/15/2010	2,4,6-Trinitrotoluene	0.000098	mg/L	U
LL2mw-269	FWGLL2mw-269C-1596-GW	10/12/2010	2,4,6-Trinitrotoluene	0.000096	mg/L	U
LL2mw-269	FWGLL2mw-269C-1647-GW	1/18/2011	2,4,6-Trinitrotoluene	0.0001	mg/L	U
LL2mw-269	FWGLL2mw-269C-1723-GW	4/7/2011	2,4,6-Trinitrotoluene	0.0001	mg/L	U
LL2mw-269	LL2MW269-073107	7/31/2007	Aluminum	0.1	mg/L	
LL2mw-269	FWGLL2mw-269-043-GF	10/20/2009	Aluminum	0.05	mg/L	U
LL2mw-269	FWGLL2mw-269-043-GW	10/20/2009	Aluminum	0.448	mg/L	
LL2mw-269	FWGLL2mw-269C-1538-GF	7/15/2010	Aluminum	0.05	0	U
LL2mw-269	FWGLL2mw-269C-1596-GF	10/12/2010	Aluminum	0.05	mg/L	U
LL2mw-269	FWGLL2mw-269C-1647-GF	1/18/2011	Aluminum	0.05	mg/L	U
LL2mw-269	FWGLL2mw-269C-1723-GF	4/7/2011	Aluminum	0.05	mg/L	U
LL2mw-269	LL2MW269-073107	7/31/2007	Antimony	0.001	mg/L	


Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL2mw-269	FWGLL2mw-269-043-GF	10/20/2009	Antimony	0.002	mg/L	U
LL2mw-269	FWGLL2mw-269-043-GW	10/20/2009	Antimony	0.002	mg/L	U
LL2mw-269	FWGLL2mw-269C-1538-GF	7/15/2010	Antimony	0.002	mg/L	U
LL2mw-269	FWGLL2mw-269C-1596-GF	10/12/2010	Antimony	0.002	mg/L	U
LL2mw-269	FWGLL2mw-269C-1647-GF	1/18/2011	Antimony	0.002	mg/L	U
LL2mw-269	FWGLL2mw-269C-1723-GF	4/7/2011	Antimony	0.002	mg/L	U
LL2mw-269	LL2MW269-073107	7/31/2007	Arsenic	0.000623	mg/L	
LL2mw-269	FWGLL2mw-269-043-GF	10/20/2009	Arsenic	0.005	mg/L	U
LL2mw-269	FWGLL2mw-269-043-GW	10/20/2009	Arsenic	0.0041	mg/L	J
LL2mw-269	FWGLL2mw-269C-1538-GF	7/15/2010	Arsenic	0.005	mg/L	U
LL2mw-269	FWGLL2mw-269C-1596-GF	10/12/2010	Arsenic	0.005	mg/L	U
LL2mw-269	FWGLL2mw-269C-1647-GF	1/18/2011	Arsenic	0.005	mg/L	U
LL2mw-269	FWGLL2mw-269C-1723-GF	4/7/2011	Arsenic	0.005	mg/L	U
LL2mw-269	LL2MW269-073107	7/31/2007	Barium	0.263	mg/L	
LL2mw-269	FWGLL2mw-269-043-GF	10/20/2009	Barium	0.23	mg/L	
LL2mw-269	FWGLL2mw-269-043-GW	10/20/2009	Barium	0.289	mg/L	
LL2mw-269	FWGLL2mw-269C-1538-GF	7/15/2010	Barium	0.215	mg/L	
LL2mw-269	FWGLL2mw-269C-1596-GF	10/12/2010	Barium	0.216	mg/L	
LL2mw-269	FWGLL2mw-269C-1647-GF	1/18/2011	Barium	0.232	mg/L	
LL2mw-269	FWGLL2mw-269C-1723-GF	4/7/2011	Barium	0.218	mg/L	
LL2mw-269	LL2MW269-073107	7/31/2007	Benz(a)anthracene	0.00521	mg/L	
LL2mw-269	FWGLL2mw-269C-1538-GW	7/15/2010	Benz(a)anthracene	0.0002	mg/L	U
LL2mw-269	FWGLL2mw-269C-1596-GW	10/12/2010	Benz(a)anthracene	0.0002	mg/L	U
LL2mw-269	FWGLL2mw-269C-1647-GW	1/18/2011	Benz(a)anthracene	0.0002	mg/L	U
LL2mw-269	FWGLL2mw-269C-1723-GW	4/7/2011	Benz(a)anthracene	0.0002	mg/L	UJ
LL2mw-269	LL2MW269-073107	7/31/2007	Benzo(a)pyrene	0.00521	mg/L	
LL2mw-269	FWGLL2mw-269C-1538-GW	7/15/2010	Benzo(a)pyrene	0.0002	mg/L	U
LL2mw-269	FWGLL2mw-269C-1596-GW	10/12/2010	Benzo(a)pyrene	0.0002	mg/L	U
LL2mw-269	FWGLL2mw-269C-1647-GW	1/18/2011	Benzo(a)pyrene	0.0002	mg/L	U
LL2mw-269	FWGLL2mw-269C-1723-GW	4/7/2011	Benzo(a)pyrene	0.0002	mg/L	UJ
LL2mw-269	LL2MW269-073107	7/31/2007	Benzo(b)fluoranthene	0.00521	mg/L	
LL2mw-269	FWGLL2mw-269C-1538-GW	7/15/2010	Benzo(b)fluoranthene	0.0002	mg/L	U
LL2mw-269	FWGLL2mw-269C-1596-GW	10/12/2010	Benzo(b)fluoranthene	0.0002	mg/L	U
LL2mw-269	FWGLL2mw-269C-1647-GW	1/18/2011	Benzo(b)fluoranthene	0.0002	mg/L	U
LL2mw-269	FWGLL2mw-269C-1723-GW	4/7/2011	Benzo(b)fluoranthene	0.0002	mg/L	UJ
LL2mw-269	LL2MW269-073107	7/31/2007	Cadmium	0.01	mg/L	
LL2mw-269	FWGLL2mw-269-043-GF	10/20/2009	Cadmium	0.0005	-	U
LL2mw-269	FWGLL2mw-269-043-GW	10/20/2009	Cadmium	0.0005	mg/L	U
LL2mw-269	FWGLL2mw-269C-1538-GF	7/15/2010	Cadmium	0.0005	mg/L	U
LL2mw-269	FWGLL2mw-269C-1596-GF	10/12/2010	Cadmium	0.0005	-	U
LL2mw-269	FWGLL2mw-269C-1647-GF	1/18/2011	Cadmium	0.0005	mg/L	U
LL2mw-269	FWGLL2mw-269C-1723-GF	4/7/2011	Cadmium	0.0005	mg/L	U
LL2mw-269	LL2MW269-073107	7/31/2007	Dibenz(a,h)anthracene	0.00521	mg/L	
LL2mw-269	FWGLL2mw-269C-1538-GW	7/15/2010	Dibenz(a,h)anthracene	0.0002	-	U
LL2mw-269	FWGLL2mw-269C-1596-GW	10/12/2010	Dibenz(a,h)anthracene	0.0002	-	U
LL2mw-269	FWGLL2mw-269C-1647-GW	1/18/2011	Dibenz(a,h)anthracene	0.0002	0	U
LL2mw-269	FWGLL2mw-269C-1723-GW	4/7/2011	Dibenz(a,h)anthracene	0.0002		UJ
LL2mw-269	LL2MW269-073107	7/31/2007	Lead	0.000423	-	
LL2mw-269	FWGLL2mw-269-043-GF	10/20/2009	Lead	0.003	-	U
LL2mw-269	FWGLL2mw-269-043-GW	10/20/2009	Lead	0.003	-	U
LL2mw-269	FWGLL2mw-269C-1538-GF	7/15/2010	Lead	0.003	mg/L	U

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL2mw-269	FWGLL2mw-269C-1596-GF	10/12/2010	Lead	0.003	mg/L	U
LL2mw-269	FWGLL2mw-269C-1647-GF	1/18/2011	Lead	0.003	mg/L	U
LL2mw-269	FWGLL2mw-269C-1723-GF	4/7/2011	Lead	0.003	mg/L	U
LL2mw-269	LL2MW269-073107	7/31/2007	Manganese	1.78	mg/L	
LL2mw-269	FWGLL2mw-269-043-GF	10/20/2009	Manganese	1.77	mg/L	
LL2mw-269	FWGLL2mw-269-043-GW	10/20/2009	Manganese	1.75	mg/L	
LL2mw-269	FWGLL2mw-269C-1538-GF	7/15/2010	Manganese	1.54	mg/L	
LL2mw-269	FWGLL2mw-269C-1596-GF	10/12/2010	Manganese	1.52	mg/L	
LL2mw-269	FWGLL2mw-269C-1647-GF	1/18/2011	Manganese	1.57	mg/L	
LL2mw-269	FWGLL2mw-269C-1723-GF	4/7/2011	Manganese	1.59	mg/L	J
LL2mw-269	LL2MW269-073107	7/31/2007	PCB-1254	0.00051	mg/L	
LL2mw-269	FWGLL2mw-269C-1538-GW	7/15/2010	PCB-1254	0.0005	mg/L	UJ
LL2mw-269	FWGLL2mw-269C-1596-GW	10/12/2010	PCB-1254	0.0005	mg/L	U
LL2mw-269	FWGLL2mw-269C-1647-GW	1/18/2011	PCB-1254	0.0005	mg/L	U
LL2mw-269	FWGLL2mw-269C-1723-GW	4/7/2011	PCB-1254	0.0005	mg/L	UJ
LL2mw-269	LL2MW269-073107	7/31/2007	RDX	0.00104	mg/L	
LL2mw-269	FWGLL2mw-269C-1538-GW	7/15/2010	RDX	0.000098	mg/L	U
LL2mw-269	FWGLL2mw-269C-1596-GW	10/12/2010	RDX	0.000096	mg/L	U
LL2mw-269	FWGLL2mw-269C-1647-GW	1/18/2011	RDX	0.0001	mg/L	U
LL2mw-269	FWGLL2mw-269C-1723-GW	4/7/2011	RDX	0.0001	mg/L	U

Table A10-6 Load Line 2 Groundwater Trend Plots

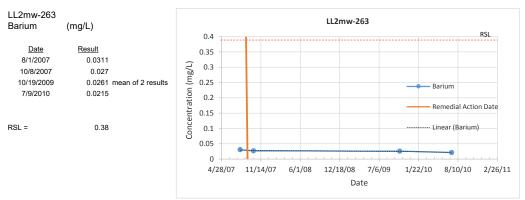
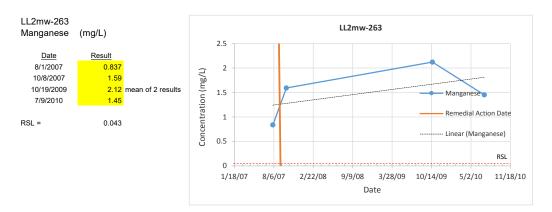
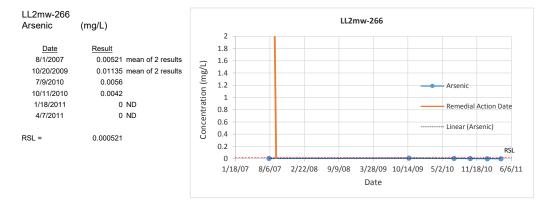
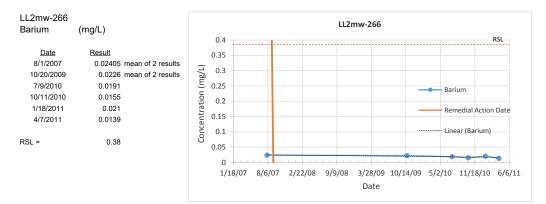
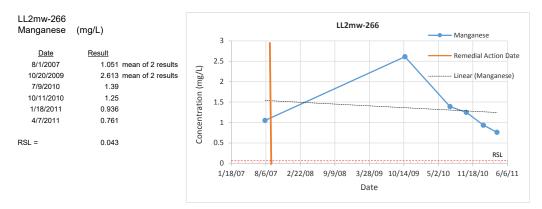
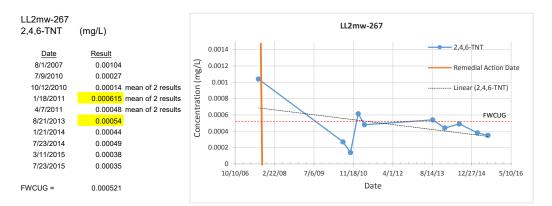






Table A10-6 Load Line 2 Groundwater Trend Plots



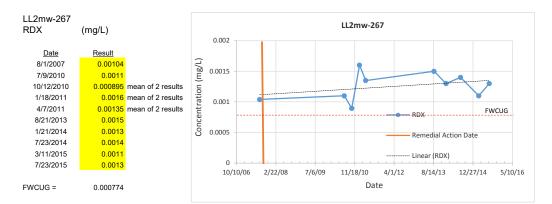
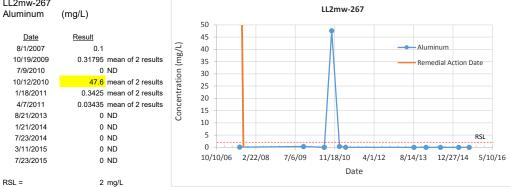
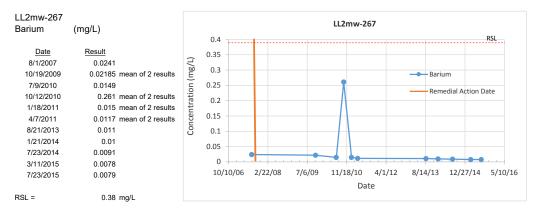


Table A10-6 Load Line 2 Groundwater Trend Plots

Mann-Kendall Test Using Normal Approximation for Larger Sample Size


n	10	
s	-11	
g	0	No. tied groups
	2	No. data points in each tied group
v(s)	125.0	
z	-0.894	
Z(0.9)	-1.28	(Table B-15, EM 200-1-16)
Ho:	No trend	
Ha:	Downward tre	nd
Reject Ho if z < Z	(0.9)	Ho accepted at 90% level of confidence, no trend


Mann-Kendall Test Using Normal Approximation for Larger Sample Size

n	10	
s	7	
g	2	No. tied groups
	2	No. data points in each tied group
v(s)	89.0	
z	0.848	
Z(0.9)	1.28	(Table B-15, EM 200-1-16)
Ho:	No trend	
Ha:	Upward trend	
Reject Ho if z > Z	2(0.9)	Ho accepted at 90% level of confidence, no trend

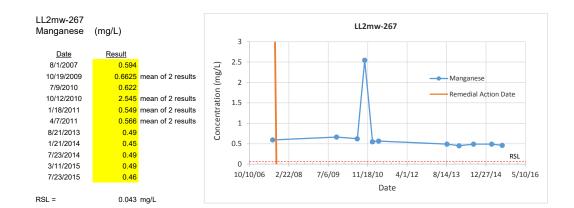
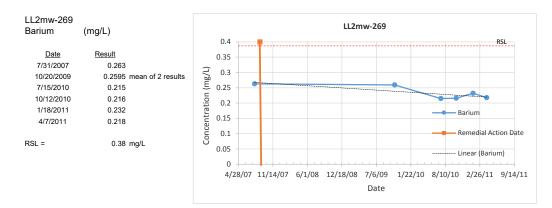


Table A10-6 Load Line 2 Groundwater Trend Plots


Mann-Kendall Test Using Normal Approximation for Larger Sample Size

n	11	
s	-45	
g	0	No. tied groups
	2	No. data points in each tied group
v(s)	165.0	
z	-3.425	
Z(0.9)	-1.28	(Table B-15, EM 200-1-16)
Ho:	No trend	
Ha:	Downward tre	nd
Reject Ho if z < Z(0.9)		Ho rejected at 90% level of confidence, downward trend

Mann-Kendall Test Using Normal Approximation for Larger Sample Size

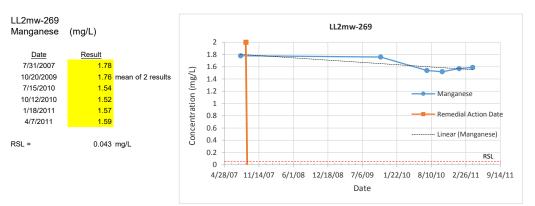
n	11	
s	-34	
g	3	No. tied groups
	2	No. data points in each tied group
v(s)	111.0	
z	-3.132	
Z(0.9)	-1.28	(Table B-15, EM 200-1-16)
Ho:	No trend	
Ha:	Downward tre	end
Reject Ho if z < Z(0.9)		Ho rejected at 90% level of confidence, downward trend

Table A10-6 Load Line 2 Groundwater Trend Plots

 Mann-Kendall Test Using Normal Approximation for Small Sample Size

 n
 6

 S
 -5


 p
 -0.235

 α
 -0.1

 Ho:
 No trend

 Ha:
 Downward trend

 p<q</td>
 Ho rejected at 90% level of confidence; downward trend

Mann-Kendall Test Using Normal Approximation for Small Sample Size

- n 6 S -5
- p -0.235 α -0.1
- Ho: No trend
- Ha: Downward trend

p>α Ho rejected at 90% level of confidence; downward trend

Notes:

 FWCUG =
 Facility Wide Cleanup Goal from EQM, 2010, Final Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio. March 23

 RSL =
 USEPA Regional Screeing Level from Table 3-3 Screening Criteria, Draft Facility-Wide Groundwater Monitoring Program RVAAP-66 Facility-Wide Groundwater Annual Report for 2015. February 2016

Exceeds FWCUG or RSL

Load Line 3

[This page intentionally left blank]

Table A10-7 Load Line 3 Groundwater Data Summary

Well Zone Monitored	coc	Discussion
LL3mw-236 Sandstone bedrock	Aluminum	6 samples collected after the remedial action, 4 results ND
	Antimony	6 samples collected after the remedial action, 5 results ND
	Arsenic	6 samples collected after the remedial action, all results ND
	Barium	6 samples collected after the remedial action, 4 results ND
	Cadmium	6 samples collected after the remedial action, all results ND
	Chromium (hexavalent)	No samples collected after the remedial action
	Manganese	6 samples collected after the remedial action, all results > RSL, downward trend
	Lead	6 samples collected after the remedial action, all results ND
	2,4,6-TNT	5 samples collected after the remedial action, 1 result > FWCUG, downward trend
	RDX	5 samples collected after the remedial action, all results ND
	Aroclor-1254	4 samples collected after the remedial action, all results ND
	Benz(a)anthracene	4 samples collected after the remedial action, all results ND
	Benzo(a)pyrene	4 samples collected after the remedial action, all results ND
	Benzo(b)fluoranthene	4 samples collected after the remedial action, all results ND
	Dibenz(a,h)anthracene	4 samples collected after the remedial action, all results ND
	Dibenz(u,n)antinacene	
LL3mw-238 Sandstone bedrock	Aluminum	9 samples collected after the remedial action, 7 results ND
	Antimony	9 samples collected after the remedial action, 8 results ND
	Arsenic	9 samples collected after the remedial action, 8 results ND
	Barium	9 samples collected after the remedial action, all results < RSL, no apparent trend
	Cadmium	9 samples collected after the remedial action, all results ND
	Chromium (hexavalent)	No samples collected after the remedial action
	Manganese	9 samples collected after the remedial action, 4 results ND, 2 results estimated (< detection limit)
	Lead	9 samples collected after the remedial action, 8 results ND
	2,4,6-TNT	8 samples collected after the remedial action, all results > FWCUG, downward trend
	RDX	8 samples collected after the remedial action, all results > FWCUG, downward trend
	Aroclor-1254	2 samples collected after the remedial action, all results ND
	Benz(a)anthracene	4 samples collected after the remedial action, all results ND
	Benzo(a)pyrene	4 samples collected after the remedial action, all results ND
	Benzo(b)fluoranthene	4 samples collected after the remedial action, all results ND
	Dibenz(a,h)anthracene	4 samples collected after the remedial action, all results ND
	(,)	
LL3mw-239 Sandstone bedrock	Aluminum	5 samples collected after the remedial action, 2 results ND, all results < RSL
	Antimony	5 samples collected after the remedial action, all results ND
	Arsenic	5 samples collected after the remedial action, 2 results ND, 2 results estimated (< detection limit)
	Barium	5 samples collected after the remedial action, all results < RSL, no apparent trend
	Cadmium	5 samples collected after the remedial action, all results ND
	Chromium (hexavalent)	No samples collected after the remedial action
	Manganese	5 samples collected after the remedial action, all results > RSL, downward trend
	Lead	5 samples collected after the remedial action, 4 results ND
	2,4,6-TNT	4 samples collected after the remedial action, all results < FWCUG, downward trend
	RDX	4 samples collected after the remedial action, 4 results > FWCUG, upward trend
	Aroclor-1254	4 samples collected after the remedial action, all results ND
	Benz(a)anthracene	4 samples collected after the remedial action, all results ND
	Benzo(a)pyrene	4 samples collected after the remedial action, all results ND
	Benzo(b)fluoranthene	4 samples collected after the remedial action, all results ND
	Dibenz(a,h)anthracene	4 samples collected after the remedial action, all results ND
	(, ,)	•

Notes:

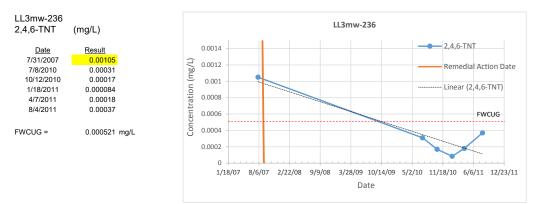
FWCUG = Facility Wide Cleanup Goal from EQM, 2010, Final Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio. March 23

ND = not detected

RSL = USEPA Regional Screeing Level from Table 3-3 Screening Criteria, *Draft Facility-Wide Groundwater Monitoring Program* RVAAP-66 Facility-Wide Groundwater Annual Report for 2015. February 2016

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL3mw-236	LL3MW236-073107	7/31/2007	2,4,6-Trinitrotoluene	0.00105	mg/L	
LL3mw-236	FWGLL3mw-236C-1542-GW	7/8/2010	2,4,6-Trinitrotoluene	0.00031	mg/L	J
LL3mw-236	FWGLL3mw-236C-1597-GW	10/12/2010	2,4,6-Trinitrotoluene	0.00017	mg/L	
LL3mw-236	FWGLL3mw-236C-1648-GW	1/18/2011	2,4,6-Trinitrotoluene	0.000084	mg/L	J
LL3mw-236	FWGLL3mw-236C-1724-GW	4/7/2011	2,4,6-Trinitrotoluene	0.00018	mg/L	
LL3mw-236	FWGLL3mw-236C-1775-GW	8/4/2011	2,4,6-Trinitrotoluene	0.00037	mg/L	
LL3mw-236	LL3MW236-073107	7/31/2007	Aluminum	0.1	mg/L	
LL3mw-236	FWGLL3mw-236-049-GF	10/20/2009	Aluminum	0.05	mg/L	U
LL3mw-236	FWGLL3mw-236-049-GW	10/20/2009	Aluminum	0.05	mg/L	
LL3mw-236	FWGLL3mw-236C-1542-GF	7/8/2010	Aluminum	0.05	mg/L	U
LL3mw-236	FWGLL3mw-236C-1597-GF	10/12/2010	Aluminum	0.05	mg/L	U
LL3mw-236	FWGLL3mw-236C-1648-GF	1/18/2011	Aluminum	0.05	mg/L	U
LL3mw-236	FWGLL3mw-236C-1724-GF	4/7/2011	Aluminum	0.05	mg/L	U
LL3mw-236	FWGLL3mw-236C-1775-GF	8/4/2011	Aluminum	0.04	mg/L	В
LL3mw-236	LL3MW236-073107	7/31/2007	Antimony	0.001	mg/L	
LL3mw-236	FWGLL3mw-236-049-GF	10/20/2009	Antimony	0.002	mg/L	U
LL3mw-236	FWGLL3mw-236-049-GW	10/20/2009	Antimony	0.002	mg/L	U
LL3mw-236	FWGLL3mw-236C-1542-GF	7/8/2010	Antimony	0.00015	mg/L	J
LL3mw-236	FWGLL3mw-236C-1597-GF	10/12/2010	Antimony	0.002	mg/L	U
LL3mw-236	FWGLL3mw-236C-1648-GF	1/18/2011	Antimony	0.002	mg/L	U
LL3mw-236	FWGLL3mw-236C-1724-GF	4/7/2011	Antimony	0.002	mg/L	U
LL3mw-236	FWGLL3mw-236C-1775-GF	8/4/2011	Antimony	0.002	-	U
LL3mw-236	LL3MW236-073107	7/31/2007	Arsenic	0.000277		
LL3mw-236	FWGLL3mw-236-049-GF	10/20/2009	Arsenic	0.005	mg/L	U
LL3mw-236	FWGLL3mw-236-049-GW	10/20/2009	Arsenic	0.005	mg/L	U
LL3mw-236	FWGLL3mw-236C-1542-GF	7/8/2010	Arsenic	0.005	mg/L	U
LL3mw-236	FWGLL3mw-236C-1597-GF	10/12/2010	Arsenic	0.005	mg/L	U
LL3mw-236	FWGLL3mw-236C-1648-GF	1/18/2011	Arsenic	0.005	mg/L	U
LL3mw-236	FWGLL3mw-236C-1724-GF	4/7/2011	Arsenic	0.005	mg/L	U
LL3mw-236	FWGLL3mw-236C-1775-GF	8/4/2011	Arsenic	0.005	mg/L	U
LL3mw-236	LL3MW236-073107	7/31/2007	Barium	0.01	mg/L	
LL3mw-236	FWGLL3mw-236-049-GF	10/20/2009	Barium	0.01	mg/L	U
LL3mw-236	FWGLL3mw-236-049-GW	10/20/2009	Barium	0.0095	mg/L	J
LL3mw-236	FWGLL3mw-236C-1542-GF	7/8/2010	Barium	0.01	mg/L	U
LL3mw-236	FWGLL3mw-236C-1597-GF	10/12/2010	Barium	0.01	mg/L	U
LL3mw-236	FWGLL3mw-236C-1648-GF	1/18/2011	Barium	0.01	mg/L	U
LL3mw-236	FWGLL3mw-236C-1724-GF	4/7/2011	Barium	0.01	mg/L	U
LL3mw-236	FWGLL3mw-236C-1775-GF	8/4/2011	Barium	0.003	mg/L	В
LL3mw-236	LL3MW236-073107	7/31/2007	Benz(a)anthracene	0.00526	mg/L	
LL3mw-236	FWGLL3mw-236C-1542-GW	7/8/2010	Benz(a)anthracene	0.0002	mg/L	U
LL3mw-236	FWGLL3mw-236C-1597-GW	10/12/2010	Benz(a)anthracene	0.0002	mg/L	U
LL3mw-236	FWGLL3mw-236C-1648-GW	1/18/2011	Benz(a)anthracene	0.0002	mg/L	U
LL3mw-236	FWGLL3mw-236C-1724-GW	4/7/2011	Benz(a)anthracene	0.0002	mg/L	UJ
LL3mw-236	LL3MW236-073107	7/31/2007	Benzo(a)pyrene	0.00526	mg/L	
LL3mw-236	FWGLL3mw-236C-1542-GW	7/8/2010	Benzo(a)pyrene	0.0002	mg/L	U
LL3mw-236	FWGLL3mw-236C-1597-GW	10/12/2010	Benzo(a)pyrene	0.0002	mg/L	U
LL3mw-236	FWGLL3mw-236C-1648-GW	1/18/2011	Benzo(a)pyrene	0.0002	mg/L	U
LL3mw-236	FWGLL3mw-236C-1724-GW	4/7/2011	Benzo(a)pyrene	0.0002	mg/L	UJ
LL3mw-236	LL3MW236-073107	7/31/2007	Benzo(b)fluoranthene	0.00526	mg/L	
LL3mw-236	FWGLL3mw-236C-1542-GW	7/8/2010	Benzo(b)fluoranthene	0.0002	mg/L	U
LL3mw-236	FWGLL3mw-236C-1597-GW	10/12/2010	Benzo(b)fluoranthene	0.0002	mg/L	U

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL3mw-236	FWGLL3mw-236C-1648-GW	1/18/2011	Benzo(b)fluoranthene	0.0002	mg/L	U
LL3mw-236	FWGLL3mw-236C-1724-GW	4/7/2011	Benzo(b)fluoranthene	0.0002	mg/L	UJ
LL3mw-236	LL3MW236-073107	7/31/2007	Cadmium	0.01	mg/L	
LL3mw-236	FWGLL3mw-236-049-GF	10/20/2009	Cadmium	0.0005	mg/L	U
LL3mw-236	FWGLL3mw-236-049-GW	10/20/2009	Cadmium	0.0005	mg/L	U
LL3mw-236	FWGLL3mw-236C-1542-GF	7/8/2010	Cadmium	0.0005	mg/L	U
LL3mw-236	FWGLL3mw-236C-1597-GF	10/12/2010	Cadmium	0.0005	mg/L	U
LL3mw-236	FWGLL3mw-236C-1648-GF	1/18/2011	Cadmium	0.0005	mg/L	U
LL3mw-236	FWGLL3mw-236C-1724-GF	4/7/2011	Cadmium	0.0005	mg/L	U
LL3mw-236	FWGLL3mw-236C-1775-GF	8/4/2011	Cadmium	0.0005	mg/L	U
LL3mw-236	LL3MW236-073107	7/31/2007	Dibenz(a,h)anthracene	0.00526	mg/L	***************
LL3mw-236	FWGLL3mw-236C-1542-GW	7/8/2010	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL3mw-236	FWGLL3mw-236C-1597-GW	10/12/2010	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL3mw-236	FWGLL3mw-236C-1648-GW	1/18/2011	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL3mw-236	FWGLL3mw-236C-1724-GW	4/7/2011	Dibenz(a,h)anthracene	0.0002	mg/L	UJ
LL3mw-236	LL3MW236-073107	7/31/2007	Lead	0.001		
LL3mw-236	FWGLL3mw-236-049-GF	10/20/2009	Lead	0.003	mg/L	U
LL3mw-236	FWGLL3mw-236-049-GW	10/20/2009	Lead	0.003	0	U
LL3mw-236	FWGLL3mw-236C-1542-GF	7/8/2010	Lead	0.003	-	U
LL3mw-236	FWGLL3mw-236C-1597-GF	10/12/2010	Lead	0.003	-	U
LL3mw-236	FWGLL3mw-236C-1648-GF	1/18/2011	Lead	0.003	-	U
LL3mw-236	FWGLL3mw-236C-1724-GF	4/7/2011	Lead	0.003	-	U
LL3mw-236	FWGLL3mw-236C-1775-GF	8/4/2011	Lead	0.003	-	U
LL3mw-236	LL3MW236-073107	7/31/2007	Manganese	0.599		
LL3mw-236	FWGLL3mw-236-049-GF	10/20/2009	Manganese	0.0039	0	J
LL3mw-236	FWGLL3mw-236-049-GW	10/20/2009	Manganese	2.13	-	-
LL3mw-236	FWGLL3mw-236C-1542-GF	7/8/2010	Manganese	0.235	0	
LL3mw-236	FWGLL3mw-236C-1597-GF	10/12/2010	Manganese	0.24	-	
LL3mw-236	FWGLL3mw-236C-1648-GF	1/18/2011	Manganese	0.129	0	
LL3mw-236	FWGLL3mw-236C-1724-GF	4/7/2011	Manganese	0.344	0	J
LL3mw-236	FWGLL3mw-236C-1775-GF	8/4/2011	Manganese	0.97	0	-
LL3mw-236	LL3MW236-073107	7/31/2007	PCB-1254	0.000562		
LL3mw-236	FWGLL3mw-236C-1542-GW	7/8/2010	PCB-1254	0.0005	0	U
LL3mw-236	FWGLL3mw-236C-1597-GW	10/12/2010	PCB-1254	0.0005	0	U
LL3mw-236	FWGLL3mw-236C-1648-GW	1/18/2011	PCB-1254	0.0005	0	U
LL3mw-236	FWGLL3mw-236C-1724-GW	4/7/2011	PCB-1254	0.0005	-	UJ
LL3mw-236	LL3MW236-073107	7/31/2007	RDX	0.00105		
LL3mw-236	FWGLL3mw-236C-1542-GW	7/8/2010	RDX	0.000098	-	U
LL3mw-236	FWGLL3mw-236C-1597-GW	10/12/2010	RDX	0.00011	-	U
LL3mw-236	FWGLL3mw-236C-1648-GW	1/18/2011	RDX	0.0001	-	U
LL3mw-236	FWGLL3mw-236C-1724-GW	4/7/2011	RDX	0.0001	0	U
LL3mw-236	FWGLL3mw-236C-1775-GW	8/4/2011	RDX	0.0001	-	U
LL3mw-238	LL3MW238-073107	7/31/2007	2,4,6-Trinitrotoluene	0.0642		_
LL3mw-238	FWGLL3mw-238C-0541-GW	10/8/2007	2,4,6-Trinitrotoluene	0.096	-	J
LL3mw-238	FWGLL3mw-238C-1650-GW	1/19/2011	2,4,6-Trinitrotoluene	0.069	-	Ū
LL3mw-238	FWGLL3mw-238C-1776-GW	8/3/2011	2,4,6-Trinitrotoluene	0.095	-	J
LL3mw-238	FWGLL3mw-238C-0359-GW	8/19/2013	2,4,6-Trinitrotoluene	0.079	-	č
LL3mw-238	FWGLL3mw-238C-0400-GW	1/21/2014	2,4,6-Trinitrotoluene	0.12	-	J
LL3mw-238	FWGLL3mw-238C-0474-GW	7/23/2014	2,4,6-Trinitrotoluene	0.062	-	Ũ
LL3mw-238	FWGLL3mw-238C-0530-GW	3/11/2015	2,4,6-Trinitrotoluene	0.045	-	J
LL3mw-238	FWGLL3mw-238C-0592-GW	7/20/2015	2,4,6-Trinitrotoluene	0.055	-	J
		112012010		0.000	<u>9</u> , –	<u> </u>


Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL3mw-238	LL3MW238-073107	7/31/2007	Aluminum	0.1	mg/L	
LL3mw-238	FWGLL3mw-238C-0541-GF	10/8/2007	Aluminum	0.0165	mg/L	J
LL3mw-238	FWGLL3mw-238C-051-GF	10/20/2009	Aluminum	0.0583	mg/L	
LL3mw-238	FWGLL3mw-238C-051-GW	10/20/2009	Aluminum	5.84	mg/L	
LL3mw-238	FWGLL3mw-238C-1650-GF	1/19/2011	Aluminum	0.05	mg/L	U
LL3mw-238	FWGLL3mw-238C-1776-GF	8/3/2011	Aluminum	0.05	mg/L	UJ
LL3mw-238	FWGLL3mw-238C-0359-GF	8/19/2013	Aluminum	0.027	mg/L	J
LL3mw-238	FWGLL3mw-238C-0400-GF	1/21/2014	Aluminum	0.06	mg/L	U
LL3mw-238	FWGLL3mw-238C-0474-GF	7/23/2014	Aluminum	0.06	mg/L	U
LL3mw-238	FWGLL3mw-238C-0530-GF	3/11/2015	Aluminum	0.06	mg/L	U
LL3mw-238	FWGLL3mw-238C-0592-GF	7/20/2015	Aluminum	0.079	mg/L	
LL3mw-238	LL3MW238-073107	7/31/2007	Antimony	0.001		
LL3mw-238	FWGLL3mw-238C-0541-GF	10/8/2007	Antimony	0.002	0	U
LL3mw-238	FWGLL3mw-238C-051-GF	10/20/2009	Antimony	0.002	0	U
LL3mw-238	FWGLL3mw-238C-051-GW	10/20/2009	Antimony	0.00026	•	J
LL3mw-238	FWGLL3mw-238C-1650-GF	1/19/2011	Antimony	0.002	-	U
LL3mw-238	FWGLL3mw-238C-1776-GF	8/3/2011	Antimony	0.002	•	U
LL3mw-238	FWGLL3mw-238C-0359-GF	8/19/2013	Antimony	0.001	0	U
LL3mw-238	FWGLL3mw-238C-0400-GF	1/21/2014	Antimony	0.001	•	U
LL3mw-238	FWGLL3mw-238C-0474-GF	7/23/2014	Antimony	0.001	0	U
LL3mw-238	FWGLL3mw-238C-0530-GF	3/11/2015	Antimony	0.001	•	U
LL3mw-238	FWGLL3mw-238C-0592-GF	7/20/2015	Antimony	0.001	-	U
LL3mw-238	LL3MW238-073107	7/31/2007	Arsenic	0.000434		0
LL3mw-238	FWGLL3mw-238C-0541-GF	10/8/2007	Arsenic	0.000434	-	U
LL3mw-238	FWGLL3mw-238C-051-GF	10/20/2009	Arsenic	0.005	-	U
LL3mw-238	FWGLL3mw-238C-051-GW	10/20/2009	Arsenic	0.0117	0	0
LL3mw-238	FWGLL3mw-238C-1650-GF	1/19/2011	Arsenic	0.005	0	U
LL3mw-238	FWGLL3mw-238C-1776-GF	8/3/2011	Arsenic	0.005	0	U
LL3mw-238	FWGLL3mw-238C-0359-GF	8/19/2013	Arsenic		mg/L	U
LL3mw-238	FWGLL3mw-238C-0400-GF	1/21/2014	Arsenic		mg/L	U
LL3mw-238	FWGLL3mw-238C-0474-GF	7/23/2014	Arsenic		mg/L	U
LL3mw-238	FWGLL3mw-238C-0530-GF	3/11/2015	Arsenic		mg/L	U
LL3mw-238	FWGLL3mw-238C-0592-GF	7/20/2015	Arsenic		mg/L	U
LL3mw-238	LL3MW238-073107	7/31/2007	Barium		mg/L	0
LL3mw-238	FWGLL3mw-238C-0541-GF	10/8/2007	Barium	0.0067	0	J
LL3mw-238	FWGLL3mw-238C-051-GF	10/20/2009	Barium	0.0108	-	0
LL3mw-238	FWGLL3mw-238C-051-GW	10/20/2009	Barium	0.0416	-	
LL3mw-238	FWGLL3mw-238C-1650-GF	1/19/2011	Barium	0.00410	•	J
LL3mw-238	FWGLL3mw-238C-1776-GF	8/3/2011	Barium	0.0084	0	J
LL3mw-238	FWGLL3mw-238C-0359-GF	8/19/2013	Barium	0.0079		J
LL3mw-238	FWGLL3mw-238C-0400-GF	1/21/2014	Barium	0.0079	-	
LL3mw-238	FWGLL3mw-238C-0474-GF			0.0073	-	
LL3mw-238	FWGLL3mw-238C-0474-GF	7/23/2014	Barium Barium		-	
		3/11/2015		0.0051	-	Р
LL3mw-238 LL3mw-238	FWGLL3mw-238C-0592-GF	7/20/2015	Barium Bonz(a)anthracano	0.0076		В
LL3mw-238 LL3mw-238	LL3MW238-073107 FWGLL3mw-238C-0541-GW	7/31/2007	Benz(a)anthracene		0	U
		10/8/2007	Benz(a)anthracene	0.0002	-	
LL3mw-238	FWGLL3mw-238C-1650-GW	1/19/2011	Benz(a)anthracene	0.0002		U
LL3mw-238	LL3MW238-073107	7/31/2007	Benzo(a)pyrene	0.0051	•	
LL3mw-238	FWGLL3mw-238C-0541-GW	10/8/2007	Benzo(a)pyrene	0.0002	-	U U
LL3mw-238	FWGLL3mw-238C-1650-GW	1/19/2011 7/31/2007	Benzo(a)pyrene	0.0002		U
LL3mw-238	LL3MW238-073107	7/31/2007	Benzo(b)fluoranthene	0.0051	iiig/L	

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL3mw-238	FWGLL3mw-238C-0541-GW	10/8/2007	Benzo(b)fluoranthene	0.0002	mg/L	U
LL3mw-238	FWGLL3mw-238C-1650-GW	1/19/2011	Benzo(b)fluoranthene	0.0002	mg/L	U
LL3mw-238	LL3MW238-073107	7/31/2007	Cadmium	0.01	mg/L	
LL3mw-238	FWGLL3mw-238C-0541-GF	10/8/2007	Cadmium	0.0005	mg/L	U
LL3mw-238	FWGLL3mw-238C-051-GF	10/20/2009	Cadmium	0.0005	mg/L	U
LL3mw-238	FWGLL3mw-238C-051-GW	10/20/2009	Cadmium	0.0005	mg/L	U
LL3mw-238	FWGLL3mw-238C-1650-GF	1/19/2011	Cadmium	0.0005	mg/L	U
LL3mw-238	FWGLL3mw-238C-1776-GF	8/3/2011	Cadmium	0.0005	mg/L	U
LL3mw-238	FWGLL3mw-238C-0359-GF	8/19/2013	Cadmium	0.001	mg/L	U
LL3mw-238	FWGLL3mw-238C-0400-GF	1/21/2014	Cadmium	0.001	mg/L	U
LL3mw-238	FWGLL3mw-238C-0474-GF	7/23/2014	Cadmium	0.001	mg/L	U
LL3mw-238	FWGLL3mw-238C-0530-GF	3/11/2015	Cadmium	0.001	mg/L	U
LL3mw-238	FWGLL3mw-238C-0592-GF	7/20/2015	Cadmium	0.001	mg/L	U
LL3mw-238	LL3MW238-073107	7/31/2007	Dibenz(a,h)anthracene	0.0051	mg/L	
LL3mw-238	FWGLL3mw-238C-0541-GW	10/8/2007	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL3mw-238	FWGLL3mw-238C-1650-GW	1/19/2011	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL3mw-238	LL3MW238-073107	7/31/2007	Lead	0.001		
LL3mw-238	FWGLL3mw-238C-0541-GF	10/8/2007	Lead	0.003	mg/L	U
LL3mw-238	FWGLL3mw-238C-051-GF	10/20/2009	Lead	0.003	mg/L	U
LL3mw-238	FWGLL3mw-238C-051-GW	10/20/2009	Lead	0.0056	-	
LL3mw-238	FWGLL3mw-238C-1650-GF	1/19/2011	Lead	0.003	-	U
LL3mw-238	FWGLL3mw-238C-1776-GF	8/3/2011	Lead	0.003	0	U
LL3mw-238	FWGLL3mw-238C-0359-GF	8/19/2013	Lead	0.005	-	U
LL3mw-238	FWGLL3mw-238C-0400-GF	1/21/2014	Lead	0.005	-	U
LL3mw-238	FWGLL3mw-238C-0474-GF	7/23/2014	Lead	0.005	-	U
LL3mw-238	FWGLL3mw-238C-0530-GF	3/11/2015	Lead	0.005	0	U
LL3mw-238	FWGLL3mw-238C-0592-GF	7/20/2015	Lead	0.005	0	U
LL3mw-238	LL3MW238-073107	7/31/2007	Manganese	0.01		
LL3mw-238	FWGLL3mw-238C-0541-GF	10/8/2007	Manganese	0.0019	mg/L	J
LL3mw-238	FWGLL3mw-238C-051-GF	10/20/2009	Manganese	0.0056	-	J
LL3mw-238	FWGLL3mw-238C-051-GW	10/20/2009	Manganese	0.279	mg/L	
LL3mw-238	FWGLL3mw-238C-1650-GF	1/19/2011	Manganese	0.01	-	U
LL3mw-238	FWGLL3mw-238C-1776-GF	8/3/2011	Manganese	0.0012	-	J
LL3mw-238	FWGLL3mw-238C-0359-GF	8/19/2013	Manganese	0.0026	-	В
LL3mw-238	FWGLL3mw-238C-0400-GF	1/21/2014	Manganese	0.005	mg/L	UJ
LL3mw-238	FWGLL3mw-238C-0474-GF	7/23/2014	Manganese	0.005	-	U
LL3mw-238	FWGLL3mw-238C-0530-GF	3/11/2015	Manganese	0.005	-	U
LL3mw-238	FWGLL3mw-238C-0592-GF	7/20/2015	Manganese	0.0031	-	В
LL3mw-238	LL3MW238-073107	7/31/2007	PCB-1254	0.00051		
LL3mw-238	FWGLL3mw-238C-0541-GW	10/8/2007	PCB-1254	0.0005	-	UJ
LL3mw-238	FWGLL3mw-238C-1650-GW	1/19/2011	PCB-1254	0.0005	-	UJ
LL3mw-238	LL3MW238-073107	7/31/2007	RDX	0.00842		
LL3mw-238	FWGLL3mw-238C-0541-GW	10/8/2007	RDX	0.0066	-	J
LL3mw-238	FWGLL3mw-238C-1650-GW	1/19/2011	RDX	0.011	-	J
LL3mw-238	FWGLL3mw-238C-1776-GW	8/3/2011	RDX	0.0048	-	J
LL3mw-238	FWGLL3mw-238C-0359-GW	8/19/2013	RDX	0.0072	0	-
LL3mw-238	FWGLL3mw-238C-0400-GW	1/21/2014	RDX	0.0058	-	J
LL3mw-238	FWGLL3mw-238C-0474-GW	7/23/2014	RDX	0.0064	-	J
LL3mw-238	FWGLL3mw-238C-0530-GW	3/11/2015	RDX	0.0045	-	J
LL3mw-238	FWGLL3mw-238C-0592-GW	7/20/2015	RDX	0.0068	-	J
LL3mw-239	LL3MW239-073007	7/30/2007	2,4,6-Trinitrotoluene	0.00105		-
			_, .,	0.00100	· J· =	

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL3mw-239	FWGLL3mw-239C-1543-GW	7/8/2010	2,4,6-Trinitrotoluene	0.00026	mg/L	J
LL3mw-239	FWGLL3mw-239C-1598-GW	10/12/2010	2,4,6-Trinitrotoluene	0.00019	mg/L	
LL3mw-239	FWGLL3mw-239C-1651-GW	1/19/2011	2,4,6-Trinitrotoluene	0.00015	mg/L	
LL3mw-239	FWGLL3mw-239C-1725-GW	4/7/2011	2,4,6-Trinitrotoluene	0.0002	mg/L	
LL3mw-239	LL3MW239-073007	7/30/2007	Aluminum	0.1	mg/L	
LL3mw-239	FWGLL3mw-239-052-GF	10/20/2009	Aluminum	0.0384	mg/L	J
LL3mw-239	FWGLL3mw-239-052-GW	10/20/2009	Aluminum	1.36	mg/L	
LL3mw-239	FWGLL3mw-239C-1543-GF	7/8/2010	Aluminum	0.0466	mg/L	J
LL3mw-239	FWGLL3mw-239C-1598-GF	10/12/2010	Aluminum	0.05	mg/L	U
LL3mw-239	FWGLL3mw-239C-1651-GF	1/19/2011	Aluminum	0.394	mg/L	
LL3mw-239	FWGLL3mw-239C-1725-GF	4/7/2011	Aluminum	0.05	mg/L	U
LL3mw-239	LL3MW239-073007	7/30/2007	Antimony	0.00053	mg/L	
LL3mw-239	FWGLL3mw-239-052-GF	10/20/2009	Antimony	0.002	mg/L	U
LL3mw-239	FWGLL3mw-239-052-GW	10/20/2009	Antimony	0.00013	mg/L	UJ
LL3mw-239	FWGLL3mw-239C-1543-GF	7/8/2010	Antimony	0.002	mg/L	U
LL3mw-239	FWGLL3mw-239C-1598-GF	10/12/2010	Antimony	0.002	mg/L	U
LL3mw-239	FWGLL3mw-239C-1651-GF	1/19/2011	Antimony	0.002	mg/L	U
LL3mw-239	FWGLL3mw-239C-1725-GF	4/7/2011	Antimony	0.002	mg/L	U
LL3mw-239	LL3MW239-073007	7/30/2007	Arsenic	0.000981	mg/L	
LL3mw-239	FWGLL3mw-239-052-GF	10/20/2009	Arsenic	0.005	mg/L	U
LL3mw-239	FWGLL3mw-239-052-GW	10/20/2009	Arsenic	0.0134	mg/L	
LL3mw-239	FWGLL3mw-239C-1543-GF	7/8/2010	Arsenic	0.005	mg/L	U
LL3mw-239	FWGLL3mw-239C-1598-GF	10/12/2010	Arsenic	0.0039	mg/L	J
LL3mw-239	FWGLL3mw-239C-1651-GF	1/19/2011	Arsenic	0.005	mg/L	U
LL3mw-239	FWGLL3mw-239C-1725-GF	4/7/2011	Arsenic	0.0036	mg/L	J
LL3mw-239	LL3MW239-073007	7/30/2007	Barium	0.0133	mg/L	
LL3mw-239	FWGLL3mw-239-052-GF	10/20/2009	Barium	0.0122	mg/L	
LL3mw-239	FWGLL3mw-239-052-GW	10/20/2009	Barium	0.0205	mg/L	
LL3mw-239	FWGLL3mw-239C-1543-GF	7/8/2010	Barium	0.0104	mg/L	
LL3mw-239	FWGLL3mw-239C-1598-GF	10/12/2010	Barium	0.0147	mg/L	
LL3mw-239	FWGLL3mw-239C-1651-GF	1/19/2011	Barium	0.0192	mg/L	
LL3mw-239	FWGLL3mw-239C-1725-GF	4/7/2011	Barium	0.0111	mg/L	
LL3mw-239	LL3MW239-073007	7/30/2007	Benz(a)anthracene	0.00521	mg/L	
LL3mw-239	FWGLL3mw-239C-1543-GW	7/8/2010	Benz(a)anthracene	0.0002	mg/L	U
LL3mw-239	FWGLL3mw-239C-1598-GW	10/12/2010	Benz(a)anthracene	0.0002	mg/L	U
LL3mw-239	FWGLL3mw-239C-1651-GW	1/19/2011	Benz(a)anthracene	0.0002	mg/L	U
LL3mw-239	FWGLL3mw-239C-1725-GW	4/7/2011	Benz(a)anthracene	0.0002	mg/L	U
LL3mw-239	LL3MW239-073007	7/30/2007	Benzo(a)pyrene	0.00521	mg/L	
LL3mw-239	FWGLL3mw-239C-1543-GW	7/8/2010	Benzo(a)pyrene	0.0002	mg/L	U
LL3mw-239	FWGLL3mw-239C-1598-GW	10/12/2010	Benzo(a)pyrene	0.0002	mg/L	U
LL3mw-239	FWGLL3mw-239C-1651-GW	1/19/2011	Benzo(a)pyrene	0.0002	mg/L	U
LL3mw-239	FWGLL3mw-239C-1725-GW	4/7/2011	Benzo(a)pyrene	0.0002	mg/L	U
LL3mw-239	LL3MW239-073007	7/30/2007	Benzo(b)fluoranthene	0.00521	mg/L	
LL3mw-239	FWGLL3mw-239C-1543-GW	7/8/2010	Benzo(b)fluoranthene	0.0002	mg/L	U
LL3mw-239	FWGLL3mw-239C-1598-GW	10/12/2010	Benzo(b)fluoranthene	0.0002	mg/L	U
LL3mw-239	FWGLL3mw-239C-1651-GW	1/19/2011	Benzo(b)fluoranthene	0.0002	-	U
LL3mw-239	FWGLL3mw-239C-1725-GW	4/7/2011	Benzo(b)fluoranthene	0.0002	mg/L	U
LL3mw-239	LL3MW239-073007	7/30/2007	Cadmium	0.01	mg/L	
LL3mw-239	FWGLL3mw-239-052-GF	10/20/2009	Cadmium	0.0005	mg/L	U
LL3mw-239	FWGLL3mw-239-052-GW	10/20/2009	Cadmium	0.0005	-	U
LL3mw-239	FWGLL3mw-239C-1543-GF	7/8/2010	Cadmium	0.0005	mg/L	U

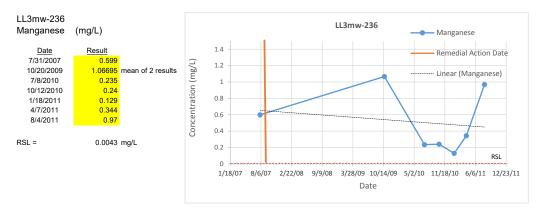
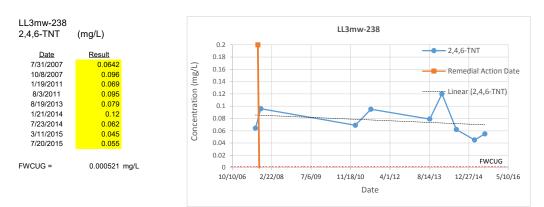
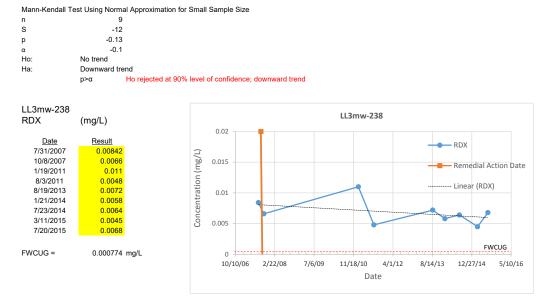

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL3mw-239	FWGLL3mw-239C-1598-GF	10/12/2010	Cadmium	0.0005	mg/L	U
LL3mw-239	FWGLL3mw-239C-1651-GF	1/19/2011	Cadmium	0.0005	mg/L	U
LL3mw-239	FWGLL3mw-239C-1725-GF	4/7/2011	Cadmium	0.0005	mg/L	U
LL3mw-239	LL3MW239-073007	7/30/2007	Dibenz(a,h)anthracene	0.00521	mg/L	
LL3mw-239	FWGLL3mw-239C-1543-GW	7/8/2010	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL3mw-239	FWGLL3mw-239C-1598-GW	10/12/2010	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL3mw-239	FWGLL3mw-239C-1651-GW	1/19/2011	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL3mw-239	FWGLL3mw-239C-1725-GW	4/7/2011	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL3mw-239	LL3MW239-073007	7/30/2007	Lead	0.001	mg/L	
LL3mw-239	FWGLL3mw-239-052-GF	10/20/2009	Lead	0.003	mg/L	U
LL3mw-239	FWGLL3mw-239-052-GW	10/20/2009	Lead	0.0018	mg/L	J
LL3mw-239	FWGLL3mw-239C-1543-GF	7/8/2010	Lead	0.003	mg/L	U
LL3mw-239	FWGLL3mw-239C-1598-GF	10/12/2010	Lead	0.003	mg/L	U
LL3mw-239	FWGLL3mw-239C-1651-GF	1/19/2011	Lead	0.003	mg/L	U
LL3mw-239	FWGLL3mw-239C-1725-GF	4/7/2011	Lead	0.003	mg/L	U
LL3mw-239	LL3MW239-073007	7/30/2007	Manganese	0.413	mg/L	
LL3mw-239	FWGLL3mw-239-052-GF	10/20/2009	Manganese	0.137	mg/L	
LL3mw-239	FWGLL3mw-239-052-GW	10/20/2009	Manganese	0.125	mg/L	
LL3mw-239	FWGLL3mw-239C-1543-GF	7/8/2010	Manganese	0.101	mg/L	
LL3mw-239	FWGLL3mw-239C-1598-GF	10/12/2010	Manganese	0.175	mg/L	
LL3mw-239	FWGLL3mw-239C-1651-GF	1/19/2011	Manganese	0.182	mg/L	
LL3mw-239	FWGLL3mw-239C-1725-GF	4/7/2011	Manganese	0.101	mg/L	J
LL3mw-239	LL3MW239-073007	7/30/2007	PCB-1254	0.000532	mg/L	
LL3mw-239	FWGLL3mw-239C-1543-GW	7/8/2010	PCB-1254	0.0005	mg/L	U
LL3mw-239	FWGLL3mw-239C-1598-GW	10/12/2010	PCB-1254	0.0005	mg/L	U
LL3mw-239	FWGLL3mw-239C-1651-GW	1/19/2011	PCB-1254	0.0005	mg/L	U
LL3mw-239	FWGLL3mw-239C-1725-GW	4/7/2011	PCB-1254	0.0005	mg/L	UJ
LL3mw-239	LL3MW239-073007	7/30/2007	RDX	0.00105	mg/L	
LL3mw-239	FWGLL3mw-239C-1543-GW	7/8/2010	RDX	0.0017	mg/L	
LL3mw-239	FWGLL3mw-239C-1598-GW	10/12/2010	RDX	0.0016	mg/L	
LL3mw-239	FWGLL3mw-239C-1651-GW	1/19/2011	RDX	0.0016	mg/L	J
LL3mw-239	FWGLL3mw-239C-1725-GW	4/7/2011	RDX	0.0017	mg/L	

Table A10-9 Load Line 3 Groundwater Trend Plots

Mann-Kendall Test Using Normal Approximation for Small Sample Size

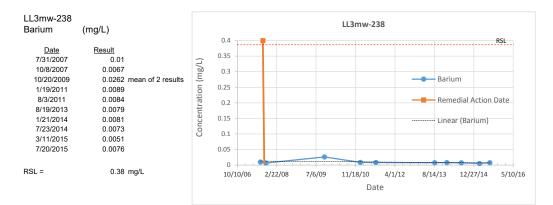

n		6
S		-3
р	-0	0.36
α		-0.1
Ho:	No trend	
Ha:	Downware	d trend
	p>α	Ho rejected at 90% level of confidence; downward trend

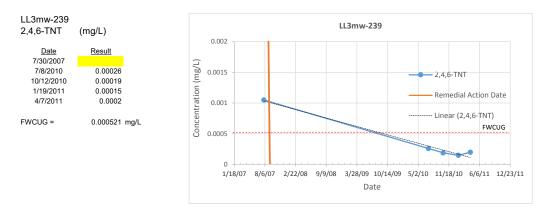

Mann-Kendall Test Using Normal Approximation for Small Sample Size

n	7	
S	-1	
р	-0.5	
α	-0.1	
Ho:	No trend	
Ha	Downward trend	

p>α Ho rejected at 90% level of confidence; downward trend

Table A10-9 Load Line 3 Groundwater Trend Plots

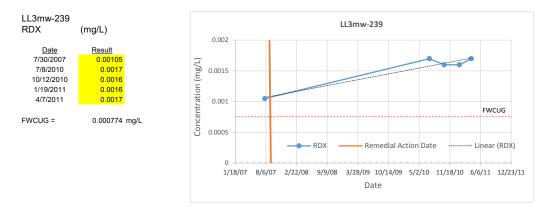



Mann-Kendall Test Using Normal Approximation for Small Sample Size

n	9
S	-8
р	-0.238
α	-0.1
Ho:	No trend

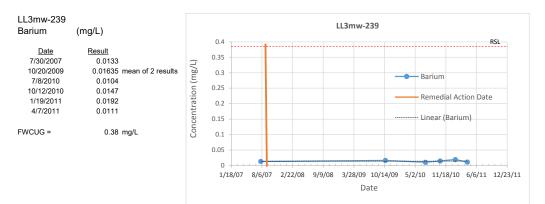
Ha: Downward trend

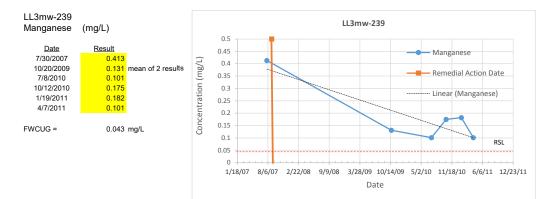
p>α Ho rejected at 90% level of confidence; downward trend



Mann-Kendall Test Using Normal Approximation for Small Sample Size

n	5
\$	-6


- p -0.117
- α -0.1 Ho: No trend
- Ha: Downward trend
 - p>α Ho rejected at 90% level of confidence; downward trend


Table A10-9 Load Line 3 Groundwater Trend Plots

Mann-Kendall Test Using Normal Approximation for Small Sample Size

 $\begin{array}{cccc} n & 5 \\ S & 4 \\ p & 0.242 \\ \alpha & 0.1 \\ Ho: & No trend \\ Ha: & Upward trend \\ p > \alpha & Ho rejected at 90\% level of confidence; upward trend \\ \end{array}$

Mann-Kendall Test Using Normal Approximation for Small Sample Size

n	6	
S	-4	
р	-0.2934	
α	-0.1	
Ho:	Downward tre	nd
Ha:	p>α	Ho rejected at 90% level of confidence; downward trend

Notes:

FWCUG =	Facility Wide Cleanup Goal from EQM, 2010, <i>Final Facility-Wide Human Health Cleanup Goals for the Ravenna Army Ammunition Plant, Ravenna, Ohio.</i> March 23
RSL =	USEPA Regional Screeing Level from Table 3-3 Screening Criteria, Draft Facility-Wide Groundwater Monitoring Program RVAAP-66 Facility-Wide Groundwater Annual Report for 2015. February 2016
	Exceeds FWCUG or RSL

Load Line 4

[This page intentionally left blank]

Table A10-10Load Line 4 Groundwater Data Summary

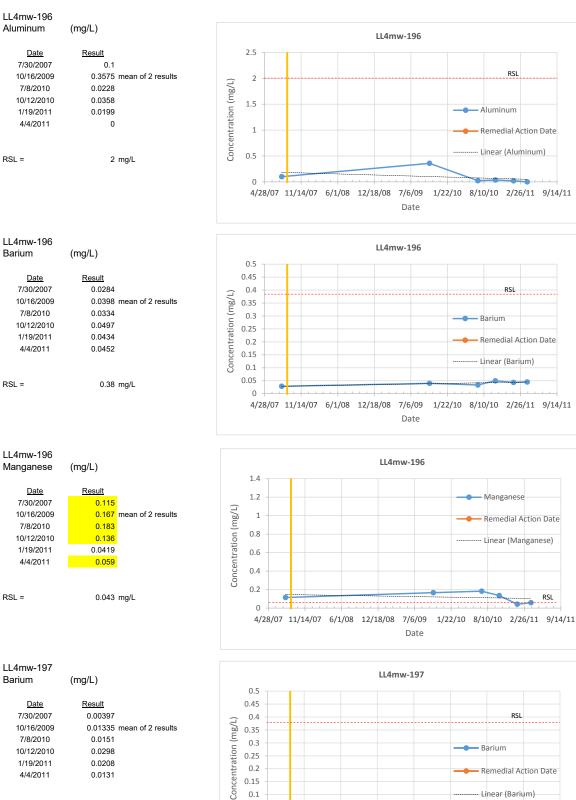
Well	Zone Monitored	сос	Discussion
LL4mw-196	Unconsolidated	Aluminum Antimony Arsenic Barium Cadmium Chromium (hexavalent) Manganese Lead 2,4,6-TNT RDX Aroclor-1254 Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracene	 5 samples collected after the remedial action, all results < RSL, no apparent trend 5 samples collected after the remedial action, all results ND 5 samples collected after the remedial action, all results < RSL, 3 results ND 5 samples collected after the remedial action, all results < RSL, no apparent trend 5 samples collected after the remedial action, all results ND No samples collected after the remedial action, all results ND No samples collected after the remedial action, all results ND No samples collected after the remedial action, all results > RSL, no apparent trend 5 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND
LL4mw-197	Unconsolidated	Aluminum Antimony Arsenic Barium Cadmium Chromium (hexavalent) Manganese Lead 2,4,6-TNT RDX Aroclor-1254 Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracene	 5 samples collected after the remedial action, 3 results ND & 1 result estimated (< detection limit) 5 samples collected after the remedial action, 4 results ND & 1 result estimated (< detection limit) 5 samples collected after the remedial action, all results ND 5 samples collected after the remedial action, all results ND No samples collected after the remedial action, all results ND No samples collected after the remedial action, all results ND No samples collected after the remedial action, all results ND No samples collected after the remedial action 5 samples collected after the remedial action, 3 results ND 4 samples collected after the remedial action, 3 results ND & 1 result estimated (< detection limit) 5 samples collected after the remedial action, 3 results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND 4 samples collected after the remedial action, all results ND
LL4mw-198	Unconsolidated	Aluminum Antimony Arsenic Barium Cadmium Chromium (hexavalent) Manganese Lead 2,4,6-TNT RDX Aroclor-1254 Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracene	3 samples collected after the remedial action, 2 results < RSL 3 samples collected after the remedial action, all results ND 3 samples collected after the remedial action, 2 results ND, all results < RSL 3 samples collected after the remedial action, all results < RSL 3 samples collected after the remedial action, 2 results ND No samples collected after the remedial action 3 samples collected after the remedial action, all results > RSL 3 samples collected after the remedial action, all results > RSL 3 samples collected after the remedial action, all results ND 2 samples collected after the remedial action, all results ND 2 samples collected after the remedial action, all results ND 2 samples collected after the remedial action, all results ND 2 samples collected after the remedial action, all results ND 2 samples collected after the remedial action, all results ND 2 samples collected after the remedial action, all results ND 2 samples collected after the remedial action, all results ND 2 samples collected after the remedial action, all results ND 2 samples collected after the remedial action, all results ND 2 samples collected after the remedial action, all results ND 2 samples collected after the remedial action, all results ND 2 samples collected after the remedial action, all results ND 2 samples collected after the remedial action, all results ND 2 samples collected after the remedial action, all results ND 2 samples collected after the remedial action, all results ND 3 samples collected after the remedial action, all results ND 3 samples collected after the remedial action, all results ND 3 samples collected after the remedial action, all results ND 3 samples collected after the remedial action, all results ND 3 samples collected after the remedial action, all results ND 3 samples collected after the remedial action, all results ND 3 samples collected after the remedial action, all results ND 3 samples collected after the remedial action, all results ND 3 samples collected

Notes:

ND = not detected

RSL = USEPA Regional Screeing Level from Table 3-3 Screening Criteria, Draft Facility-Wide Groundwater Monitoring Program *RVAAP-66 Facility-Wide Groundwater Annual Report for 2015*. February 2016

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL4mw-196	LL4MW196-073007	7/30/2007	2,4,6-Trinitrotoluene	0.00102	mg/L	
LL4mw-196	FWGLL4mw-196C-1544-GW	7/8/2010	2,4,6-Trinitrotoluene	0.0001	mg/L	U
LL4mw-196	FWGLL4mw-196C-1599-GW	10/12/2010	2,4,6-Trinitrotoluene	0.000096	mg/L	U
LL4mw-196	FWGLL4mw-196C-1653-GW	1/19/2011	2,4,6-Trinitrotoluene	0.000096	mg/L	U
LL4mw-196	FWGLL4mw-196C-1728-GW	4/4/2011	2,4,6-Trinitrotoluene	0.0001	mg/L	U
LL4mw-196	LL4MW196-073007	7/30/2007	Aluminum	0.1	mg/L	
LL4mw-196	FWGLL4mw-196C-060-GF	10/16/2009	Aluminum	0.05	mg/L	U
LL4mw-196	FWGLL4mw-196C-060-GW	10/16/2009	Aluminum	0.715	mg/L	
LL4mw-196	FWGLL4mw-196C-1544-GF	7/8/2010	Aluminum	0.0228	mg/L	J
LL4mw-196	FWGLL4mw-196C-1599-GF	10/12/2010	Aluminum	0.0358	mg/L	J
LL4mw-196	FWGLL4mw-196C-1653-GF	1/19/2011	Aluminum	0.0199	mg/L	J
LL4mw-196	FWGLL4mw-196C-1728-GF	4/4/2011	Aluminum	0.05	mg/L	U
LL4mw-196	LL4MW196-073007	7/30/2007	Antimony	0.001	mg/L	
LL4mw-196	FWGLL4mw-196C-060-GF	10/16/2009	Antimony	0.002	mg/L	U
LL4mw-196	FWGLL4mw-196C-060-GW	10/16/2009	Antimony	0.002	mg/L	U
LL4mw-196	FWGLL4mw-196C-1544-GF	7/8/2010	Antimony	0.002	mg/L	U
LL4mw-196	FWGLL4mw-196C-1599-GF	10/12/2010	Antimony	0.002	mg/L	U
LL4mw-196	FWGLL4mw-196C-1653-GF	1/19/2011	Antimony	0.002	mg/L	U
LL4mw-196	FWGLL4mw-196C-1728-GF	4/4/2011	Antimony	0.002	mg/L	U
LL4mw-196	LL4MW196-073007	7/30/2007	Arsenic	0.000709		
LL4mw-196	FWGLL4mw-196C-060-GF	10/16/2009	Arsenic	0.005	mg/L	U
LL4mw-196	FWGLL4mw-196C-060-GW	10/16/2009	Arsenic	0.0066	Ũ	
LL4mw-196	FWGLL4mw-196C-1544-GF	7/8/2010	Arsenic	0.005	Ũ	U
LL4mw-196	FWGLL4mw-196C-1599-GF	10/12/2010	Arsenic	0.0046	Ũ	J
LL4mw-196	FWGLL4mw-196C-1653-GF	1/19/2011	Arsenic	0.005	•	U
LL4mw-196	FWGLL4mw-196C-1728-GF	4/4/2011	Arsenic	0.005	-	U
LL4mw-196	LL4MW196-073007	7/30/2007	Barium	0.0284		
LL4mw-196	FWGLL4mw-196C-060-GF	10/16/2009	Barium	0.0358	mg/L	
LL4mw-196	FWGLL4mw-196C-060-GW	10/16/2009	Barium	0.0438	mg/L	
LL4mw-196	FWGLL4mw-196C-1544-GF	7/8/2010	Barium	0.0334	mg/L	
LL4mw-196	FWGLL4mw-196C-1599-GF	10/12/2010	Barium	0.0497	mg/L	
LL4mw-196	FWGLL4mw-196C-1653-GF	1/19/2011	Barium	0.0434	mg/L	
LL4mw-196	FWGLL4mw-196C-1728-GF	4/4/2011	Barium	0.0452	-	
LL4mw-196	LL4MW196-073007	7/30/2007	Benz(a)anthracene	0.0051	mg/L	
LL4mw-196	FWGLL4mw-196C-1544-GW	7/8/2010	Benz(a)anthracene	0.0002	mg/L	U
LL4mw-196	FWGLL4mw-196C-1599-GW	10/12/2010	Benz(a)anthracene	0.0002	mg/L	U
LL4mw-196	FWGLL4mw-196C-1653-GW	1/19/2011	Benz(a)anthracene	0.0002	mg/L	U
LL4mw-196	FWGLL4mw-196C-1728-GW	4/4/2011	Benz(a)anthracene	0.0002	mg/L	U
LL4mw-196	LL4MW196-073007	7/30/2007	Benzo(a)pyrene	0.0051	mg/L	
LL4mw-196	FWGLL4mw-196C-1544-GW	7/8/2010	Benzo(a)pyrene	0.0002	mg/L	U
LL4mw-196	FWGLL4mw-196C-1599-GW	10/12/2010	Benzo(a)pyrene	0.0002	mg/L	U
LL4mw-196	FWGLL4mw-196C-1653-GW	1/19/2011	Benzo(a)pyrene	0.0002	mg/L	U
LL4mw-196	FWGLL4mw-196C-1728-GW	4/4/2011	Benzo(a)pyrene	0.0002	mg/L	U
LL4mw-196	LL4MW196-073007	7/30/2007	Benzo(b)fluoranthene	0.0051		
LL4mw-196	FWGLL4mw-196C-1544-GW	7/8/2010	Benzo(b)fluoranthene	0.0002	-	U
LL4mw-196	FWGLL4mw-196C-1599-GW	10/12/2010	Benzo(b)fluoranthene	0.0002	-	U
LL4mw-196	FWGLL4mw-196C-1653-GW	1/19/2011	Benzo(b)fluoranthene	0.0002	-	U
LL4mw-196	FWGLL4mw-196C-1728-GW	4/4/2011	Benzo(b)fluoranthene	0.0002	-	U
LL4mw-196	LL4MW196-073007	7/30/2007	Cadmium		mg/L	******
LL4mw-196	FWGLL4mw-196C-060-GF	10/16/2009	Cadmium	0.0005	•	U
LL4mw-196	FWGLL4mw-196C-060-GW	10/16/2009	Cadmium	0.0005	-	U
					-	


Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL4mw-196	FWGLL4mw-196C-1544-GF	7/8/2010	Cadmium	0.0005	mg/L	U
LL4mw-196	FWGLL4mw-196C-1599-GF	10/12/2010	Cadmium	0.0005	mg/L	U
LL4mw-196	FWGLL4mw-196C-1653-GF	1/19/2011	Cadmium	0.0005	mg/L	U
LL4mw-196	FWGLL4mw-196C-1728-GF	4/4/2011	Cadmium	0.0005	mg/L	U
LL4mw-196	LL4MW196-073007	7/30/2007	Dibenz(a,h)anthracene	0.0051	mg/L	
LL4mw-196	FWGLL4mw-196C-1544-GW	7/8/2010	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL4mw-196	FWGLL4mw-196C-1599-GW	10/12/2010	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL4mw-196	FWGLL4mw-196C-1653-GW	1/19/2011	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL4mw-196	FWGLL4mw-196C-1728-GW	4/4/2011	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL4mw-196	LL4MW196-073007	7/30/2007	Lead	0.001	mg/L	
LL4mw-196	FWGLL4mw-196C-060-GF	10/16/2009	Lead	0.003	mg/L	U
LL4mw-196	FWGLL4mw-196C-060-GW	10/16/2009	Lead	0.003	mg/L	U
LL4mw-196	FWGLL4mw-196C-1544-GF	7/8/2010	Lead	0.003	mg/L	U
LL4mw-196	FWGLL4mw-196C-1599-GF	10/12/2010	Lead	0.003	mg/L	U
LL4mw-196	FWGLL4mw-196C-1653-GF	1/19/2011	Lead	0.003	mg/L	U
LL4mw-196	FWGLL4mw-196C-1728-GF	4/4/2011	Lead	0.003	mg/L	U
LL4mw-196	LL4MW196-073007	7/30/2007	Manganese	0.115	mg/L	
LL4mw-196	FWGLL4mw-196C-060-GF	10/16/2009	Manganese	0.149	mg/L	
LL4mw-196	FWGLL4mw-196C-060-GW	10/16/2009	Manganese	0.185	-	
LL4mw-196	FWGLL4mw-196C-1544-GF	7/8/2010	Manganese	0.183	-	
LL4mw-196	FWGLL4mw-196C-1599-GF	10/12/2010	Manganese	0.136	-	
LL4mw-196	FWGLL4mw-196C-1653-GF	1/19/2011	Manganese	0.0419	-	
LL4mw-196	FWGLL4mw-196C-1728-GF	4/4/2011	Manganese	0.059	-	
LL4mw-196	LL4MW196-073007	7/30/2007	PCB-1254	0.00051	mg/L	
LL4mw-196	FWGLL4mw-196C-1544-GW	7/8/2010	PCB-1254	0.0005	mg/L	U
LL4mw-196	FWGLL4mw-196C-1599-GW	10/12/2010	PCB-1254	0.0005	-	UJ
LL4mw-196	FWGLL4mw-196C-1653-GW	1/19/2011	PCB-1254	0.0005	mg/L	UJ
LL4mw-196	FWGLL4mw-196C-1728-GW	4/4/2011	PCB-1254	0.0005	mg/L	UJ
LL4mw-196	LL4MW196-073007	7/30/2007	RDX	0.00102	mg/L	
LL4mw-196	FWGLL4mw-196C-1544-GW	7/8/2010	RDX	0.0001	mg/L	U
LL4mw-196	FWGLL4mw-196C-1599-GW	10/12/2010	RDX	0.000096	mg/L	U
LL4mw-196	FWGLL4mw-196C-1653-GW	1/19/2011	RDX	0.000096	mg/L	U
LL4mw-196	FWGLL4mw-196C-1728-GW	4/4/2011	RDX	0.0001	mg/L	U
LL4mw-197	LL4MW197-073007	7/30/2007	2,4,6-Trinitrotoluene	0.00102	mg/L	
LL4mw-197	FWGLL4mw-197C-1545-GW	7/8/2010	2,4,6-Trinitrotoluene	0.000097	mg/L	U
LL4mw-197	FWGLL4mw-197C-1600-GW	10/12/2010	2,4,6-Trinitrotoluene	0.000096	mg/L	U
LL4mw-197	FWGLL4mw-197C-1654-GW	1/19/2011	2,4,6-Trinitrotoluene	0.000075	mg/L	J
LL4mw-197	FWGLL4mw-197C-1729-GW	4/4/2011	2,4,6-Trinitrotoluene	0.000099	mg/L	U
LL4mw-197	LL4MW197-073007	7/30/2007	Aluminum	0.1	mg/L	
LL4mw-197	FWGLL4mw-197C-061-GF	10/16/2009	Aluminum	0.05	mg/L	U
LL4mw-197	FWGLL4mw-197C-061-GW	10/16/2009	Aluminum	0.872	mg/L	
LL4mw-197	FWGLL4mw-197C-1545-GF	7/8/2010	Aluminum	0.05	mg/L	U
LL4mw-197	FWGLL4mw-197C-1600-GF	10/12/2010	Aluminum	0.05	mg/L	U
LL4mw-197	FWGLL4mw-197C-1654-GF	1/19/2011	Aluminum	0.0268	mg/L	J
LL4mw-197	FWGLL4mw-197C-1729-GF	4/4/2011	Aluminum	0.05	mg/L	U
LL4mw-197	LL4MW197-073007	7/30/2007	Antimony	0.000333	mg/L	
LL4mw-197	FWGLL4mw-197C-061-GF	10/16/2009	Antimony	0.002	mg/L	U
LL4mw-197	FWGLL4mw-197C-061-GW	10/16/2009	Antimony	0.002	mg/L	U
LL4mw-197	FWGLL4mw-197C-1545-GF	7/8/2010	Antimony	0.00016	mg/L	J
LL4mw-197	FWGLL4mw-197C-1600-GF	10/12/2010	Antimony	0.002	mg/L	U
LL4mw-197	FWGLL4mw-197C-1654-GF	1/19/2011	Antimony	0.002	mg/L	U

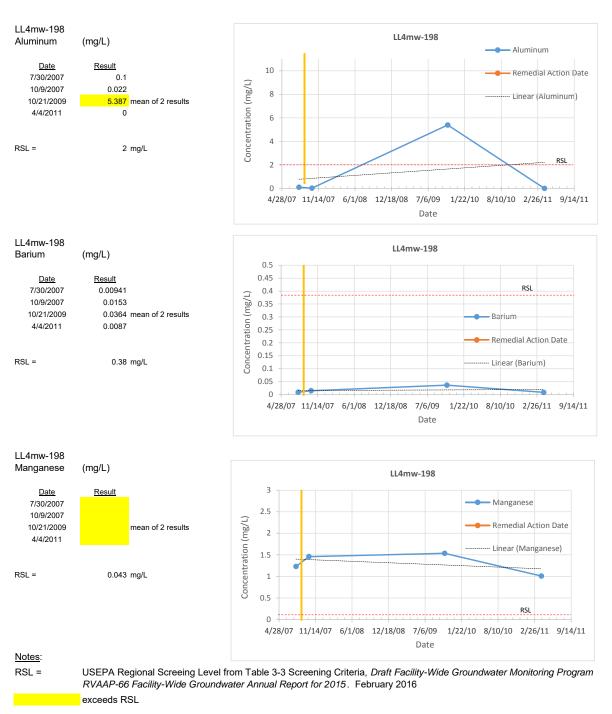
Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL4mw-197	FWGLL4mw-197C-1729-GF	4/4/2011	Antimony	0.002	mg/L	U
LL4mw-197	LL4MW197-073007	7/30/2007	Arsenic	0.000268	mg/L	
LL4mw-197	FWGLL4mw-197C-061-GF	10/16/2009	Arsenic	0.005	mg/L	U
LL4mw-197	FWGLL4mw-197C-061-GW	10/16/2009	Arsenic	0.005	mg/L	U
LL4mw-197	FWGLL4mw-197C-1545-GF	7/8/2010	Arsenic	0.005	mg/L	U
LL4mw-197	FWGLL4mw-197C-1600-GF	10/12/2010	Arsenic	0.005	mg/L	U
LL4mw-197	FWGLL4mw-197C-1654-GF	1/19/2011	Arsenic	0.005	mg/L	U
LL4mw-197	FWGLL4mw-197C-1729-GF	4/4/2011	Arsenic	0.005	mg/L	U
LL4mw-197	LL4MW197-073007	7/30/2007	Barium	0.00397	mg/L	
LL4mw-197	FWGLL4mw-197C-061-GF	10/16/2009	Barium	0.0085	mg/L	J
LL4mw-197	FWGLL4mw-197C-061-GW	10/16/2009	Barium	0.0182	mg/L	
LL4mw-197	FWGLL4mw-197C-1545-GF	7/8/2010	Barium	0.0151	mg/L	
LL4mw-197	FWGLL4mw-197C-1600-GF	10/12/2010	Barium	0.0298	mg/L	
LL4mw-197	FWGLL4mw-197C-1654-GF	1/19/2011	Barium	0.0208	mg/L	
LL4mw-197	FWGLL4mw-197C-1729-GF	4/4/2011	Barium	0.0131	mg/L	
LL4mw-197	LL4MW197-073007	7/30/2007	Benz(a)anthracene	0.0051	mg/L	
LL4mw-197	FWGLL4mw-197C-1545-GW	7/8/2010	Benz(a)anthracene	0.0002	mg/L	U
LL4mw-197	FWGLL4mw-197C-1600-GW	10/12/2010	Benz(a)anthracene	0.0002	mg/L	U
LL4mw-197	FWGLL4mw-197C-1654-GW	1/19/2011	Benz(a)anthracene	0.0002	mg/L	U
LL4mw-197	FWGLL4mw-197C-1729-GW	4/4/2011	Benz(a)anthracene	0.0002	mg/L	U
LL4mw-197	LL4MW197-073007	7/30/2007	Benzo(a)pyrene	0.0051	mg/L	
LL4mw-197	FWGLL4mw-197C-1545-GW	7/8/2010	Benzo(a)pyrene	0.0002	mg/L	U
LL4mw-197	FWGLL4mw-197C-1600-GW	10/12/2010	Benzo(a)pyrene	0.0002	mg/L	U
LL4mw-197	FWGLL4mw-197C-1654-GW	1/19/2011	Benzo(a)pyrene	0.0002	mg/L	U
LL4mw-197	FWGLL4mw-197C-1729-GW	4/4/2011	Benzo(a)pyrene	0.0002	mg/L	U
LL4mw-197	LL4MW197-073007	7/30/2007	Benzo(b)fluoranthene	0.0051	mg/L	
LL4mw-197	FWGLL4mw-197C-1545-GW	7/8/2010	Benzo(b)fluoranthene	0.0002	mg/L	U
LL4mw-197	FWGLL4mw-197C-1600-GW	10/12/2010	Benzo(b)fluoranthene	0.0002	mg/L	U
LL4mw-197	FWGLL4mw-197C-1654-GW	1/19/2011	Benzo(b)fluoranthene	0.0002	mg/L	U
LL4mw-197	FWGLL4mw-197C-1729-GW	4/4/2011	Benzo(b)fluoranthene	0.0002	mg/L	U
LL4mw-197	LL4MW197-073007	7/30/2007	Cadmium	0.01	mg/L	
LL4mw-197	FWGLL4mw-197C-061-GF	10/16/2009	Cadmium	0.0005	mg/L	U
LL4mw-197	FWGLL4mw-197C-061-GW	10/16/2009	Cadmium	0.0005	mg/L	U
LL4mw-197	FWGLL4mw-197C-1545-GF	7/8/2010	Cadmium	0.0005	mg/L	U
LL4mw-197	FWGLL4mw-197C-1600-GF	10/12/2010	Cadmium	0.0005	mg/L	U
LL4mw-197	FWGLL4mw-197C-1654-GF	1/19/2011	Cadmium	0.0005	mg/L	U
LL4mw-197	FWGLL4mw-197C-1729-GF	4/4/2011	Cadmium	0.0005	mg/L	U
LL4mw-197	LL4MW197-073007	7/30/2007	Dibenz(a,h)anthracene	0.0051	mg/L	
LL4mw-197	FWGLL4mw-197C-1545-GW	7/8/2010	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL4mw-197	FWGLL4mw-197C-1600-GW	10/12/2010	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL4mw-197	FWGLL4mw-197C-1654-GW	1/19/2011	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL4mw-197	FWGLL4mw-197C-1729-GW	4/4/2011	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL4mw-197	LL4MW197-073007	7/30/2007	Lead	0.000333	mg/L	
LL4mw-197	FWGLL4mw-197C-061-GF	10/16/2009	Lead	0.003	mg/L	U
LL4mw-197	FWGLL4mw-197C-061-GW	10/16/2009	Lead	0.0019	mg/L	J
LL4mw-197	FWGLL4mw-197C-1545-GF	7/8/2010	Lead	0.003	-	U
LL4mw-197	FWGLL4mw-197C-1600-GF	10/12/2010	Lead	0.003	mg/L	U
LL4mw-197	FWGLL4mw-197C-1654-GF	1/19/2011	Lead	0.003	mg/L	U
LL4mw-197	FWGLL4mw-197C-1729-GF	4/4/2011	Lead	0.003	mg/L	U
LL4mw-197	LL4MW197-073007	7/30/2007	Manganese	0.01	•	
LL4mw-197	FWGLL4mw-197C-061-GF	10/16/2009	Manganese	0.01	mg/L	U

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL4mw-197	FWGLL4mw-197C-061-GW	10/16/2009	Manganese	0.216 r	ng/L	
LL4mw-197	FWGLL4mw-197C-1545-GF	7/8/2010	Manganese	0.01 r	ng/L	U
LL4mw-197	FWGLL4mw-197C-1600-GF	10/12/2010	Manganese	0.01 r	ng/L	U
LL4mw-197	FWGLL4mw-197C-1654-GF	1/19/2011	Manganese	0.005 r	ng/L	J
LL4mw-197	FWGLL4mw-197C-1729-GF	4/4/2011	Manganese	0.01 r	ng/L	U
LL4mw-197	LL4MW197-073007	7/30/2007	PCB-1254	0.00051 r	ng/L	
LL4mw-197	FWGLL4mw-197C-1545-GW	7/8/2010	PCB-1254	0.0005 r	ng/L	U
LL4mw-197	FWGLL4mw-197C-1600-GW	10/12/2010	PCB-1254	0.0005 r	ng/L	UJ
LL4mw-197	FWGLL4mw-197C-1654-GW	1/19/2011	PCB-1254	0.0005 r	ng/L	UJ
LL4mw-197	FWGLL4mw-197C-1729-GW	4/4/2011	PCB-1254	0.0005 r	ng/L	U
LL4mw-197	LL4MW197-073007	7/30/2007	RDX	0.00102 r	ng/L	
LL4mw-197	FWGLL4mw-197C-1545-GW	7/8/2010	RDX	0.000097 r	ng/L	U
LL4mw-197	FWGLL4mw-197C-1600-GW	10/12/2010	RDX	0.000096 r	-	U
LL4mw-197	FWGLL4mw-197C-1654-GW	1/19/2011	RDX	0.000098 r	-	U
LL4mw-197	FWGLL4mw-197C-1729-GW	4/4/2011	RDX	0.000099 r	-	U
LL4mw-198	LL4MW198-073007	7/30/2007	2,4,6-Trinitrotoluene	0.00102 r	-	
LL4mw-198	FWGLL4mw-198C-0543-GW	10/9/2007	2,4,6-Trinitrotoluene	0.000099 r	0	U
LL4mw-198	FWGLL4mw-198C-1730-GW	4/4/2011	2,4,6-Trinitrotoluene	0.000098 r	0	U
LL4mw-198	LL4MW198-073007	7/30/2007	Aluminum	0.1 r		
LL4mw-198	FWGLL4mw-198C-0543-GF	10/9/2007	Aluminum	0.022 r	-	J
LL4mw-198	FWGLL4mw-198C-062-GF	10/21/2009	Aluminum	0.473 r	-	
LL4mw-198	FWGLL4mw-198C-062-GW	10/21/2009	Aluminum	10.3 r	0	
LL4mw-198	FWGLL4mw-198C-1730-GF	4/4/2011	Aluminum	0.05 r	-	U
LL4mw-198	LL4MW198-073007	7/30/2007	Antimony	0.001 r		
LL4mw-198	FWGLL4mw-198C-0543-GF	10/9/2007	Antimony	0.002 r	0	U
LL4mw-198	FWGLL4mw-198C-062-GF	10/21/2009	Antimony	0.002 r	-	U
LL4mw-198	FWGLL4mw-198C-062-GW	10/21/2009	Antimony	0.00046 r	0	UJB
LL4mw-198	FWGLL4mw-198C-1730-GF	4/4/2011	Antimony	0.002 r	0	U
LL4mw-198	LL4MW198-073007	7/30/2007	Arsenic	0.000421 r		
LL4mw-198	FWGLL4mw-198C-0543-GF	10/9/2007	Arsenic	0.0004211 0.005 r	0	U
LL4mw-198	FWGLL4mw-198C-062-GF	10/21/2009	Arsenic	0.0033 r	0	J
LL4mw-198	FWGLL4mw-198C-062-GW	10/21/2009	Arsenic	0.0000 r 0.0174 r	0	0
LL4mw-198	FWGLL4mw-198C-1730-GF	4/4/2011	Arsenic	0.005 r	0	U
LL4mw-198	LL4MW198-073007	7/30/2007	Barium	0.003 r 0.00941 r		0
LL4mw-198	FWGLL4mw-198C-0543-GF	10/9/2007	Barium	0.0153 r	0	
LL4mw-198	FWGLL4mw-198C-062-GF	10/21/2009	Barium	0.0205 r	-	
LL4mw-198	FWGLL4mw-198C-062-GW	10/21/2009	Barium	0.0203 r	-	
LL4mw-198	FWGLL4mw-198C-1730-GF	4/4/2011	Barium	0.0020 r	-	J
LL4mw-198	LL4MW198-073007	7/30/2007	Benz(a)anthracene	0.00556 r		0
LL4mw-198	FWGLL4mw-198C-0543-GW	10/9/2007	Benz(a)anthracene	0.0002 r	0	U
LL4mw-198	FWGLL4mw-198C-1730-GW	4/4/2011	Benz(a)anthracene	0.0002 r	-	U
LL4mw-198	LL4MW198-073007	7/30/2007	Benzo(a)pyrene	0.0002 r		0
LL4mw-198	FWGLL4mw-198C-0543-GW	10/9/2007	Benzo(a)pyrene	0.00000 r	-	U
LL4mw-198	FWGLL4mw-198C-0543-GW	4/4/2011	Benzo(a)pyrene	0.0002 r 0.0002 r	-	U
LL4mw-198	LL4MW198-073007	7/30/2007	Benzo(b)fluoranthene	0.0002 r 0.00556 r		0
LL4mw-198	FWGLL4mw-198C-0543-GW	10/9/2007	Benzo(b)fluoranthene	0.00000 r	-	U
LL4mw-198	FWGLL4mw-198C-0543-GW	4/4/2011	Benzo(b)fluoranthene	0.0002 r 0.0002 r	-	U
			Cadmium			0
LL4mw-198	LL4MW198-073007 EWGLL4mw-198C-0543-GE	7/30/2007		0.01 r 0.0005 r	-	U
LL4mw-198	FWGLL4mw-198C-0543-GF	10/9/2007	Cadmium	0.0005 r	-	
LL4mw-198	FWGLL4mw-198C-062-GF	10/21/2009	Cadmium	0.0005 r	-	U
LL4mw-198	FWGLL4mw-198C-062-GW	10/21/2009	Cadmium	0.0002 r	ng/∟	J

Station	Sample ID	Date Collected	Chemical	Results	Units	Data Qual
LL4mw-198	FWGLL4mw-198C-1730-GF	4/4/2011	Cadmium	0.0005	mg/L	U
LL4mw-198	LL4MW198-073007	7/30/2007	Dibenz(a,h)anthracene	0.00556	mg/L	
LL4mw-198	FWGLL4mw-198C-0543-GW	10/9/2007	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL4mw-198	FWGLL4mw-198C-1730-GW	4/4/2011	Dibenz(a,h)anthracene	0.0002	mg/L	U
LL4mw-198	LL4MW198-073007	7/30/2007	Lead	0.001	mg/L	
LL4mw-198	FWGLL4mw-198C-0543-GF	10/9/2007	Lead	0.003	mg/L	U
LL4mw-198	FWGLL4mw-198C-062-GF	10/21/2009	Lead	0.003	mg/L	U
LL4mw-198	FWGLL4mw-198C-062-GW	10/21/2009	Lead	0.0115	mg/L	
LL4mw-198	FWGLL4mw-198C-1730-GF	4/4/2011	Lead	0.003	mg/L	U
LL4mw-198	LL4MW198-073007	7/30/2007	Manganese	1.23	mg/L	
LL4mw-198	FWGLL4mw-198C-0543-GF	10/9/2007	Manganese	1.46	mg/L	
LL4mw-198	FWGLL4mw-198C-062-GF	10/21/2009	Manganese	1.42	mg/L	
LL4mw-198	FWGLL4mw-198C-062-GW	10/21/2009	Manganese	1.65	mg/L	
LL4mw-198	FWGLL4mw-198C-1730-GF	4/4/2011	Manganese	1.01	mg/L	
LL4mw-198	LL4MW198-073007	7/30/2007	PCB-1254	0.0005	mg/L	
LL4mw-198	FWGLL4mw-198C-0543-GW	10/9/2007	PCB-1254	0.0005	mg/L	UJ
LL4mw-198	FWGLL4mw-198C-1730-GW	4/4/2011	PCB-1254	0.0005	mg/L	UJ
LL4mw-198	LL4MW198-073007	7/30/2007	RDX	0.00102	mg/L	
LL4mw-198	FWGLL4mw-198C-0543-GW	10/9/2007	RDX	0.000099	mg/L	U
LL4mw-198	FWGLL4mw-198C-1730-GW	4/4/2011	RDX	0.000098	mg/L	U

Table A10-12 Load Line 4 Groundwater Trend Plots

0.38 mg/L


RSL =

Date

0.05

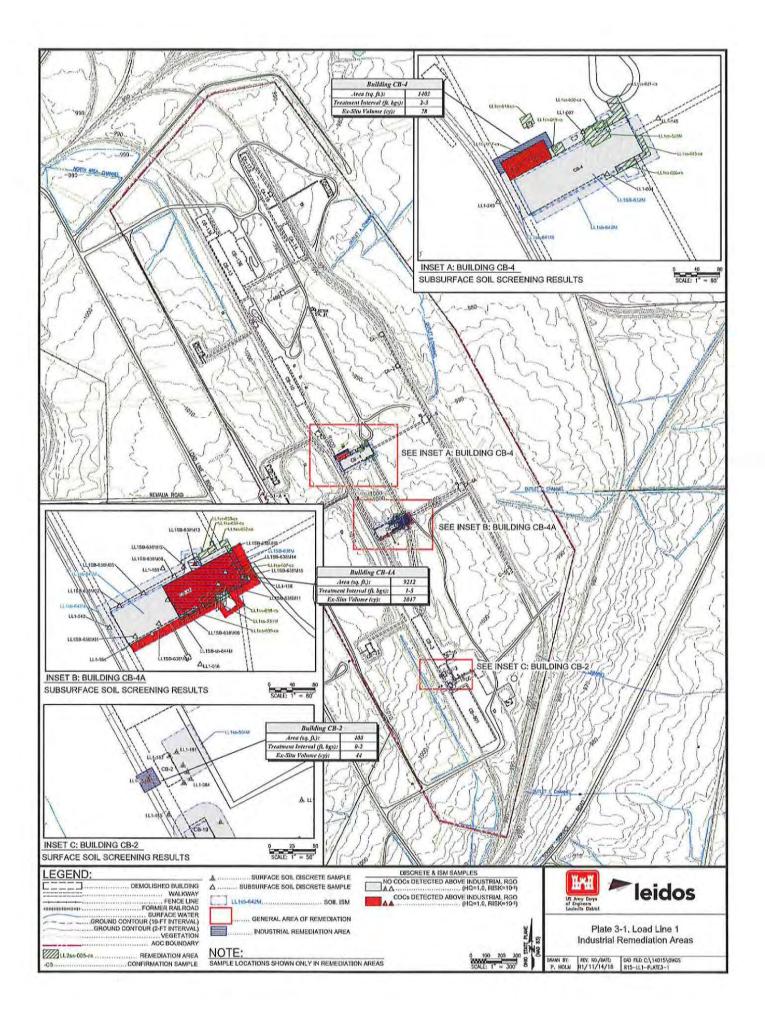

0

Table A10-12 Load Line 4 Groundwater Trend Plots

ATTACHMENT 11 Soil and Dry Sediment Data

Load Lines 1 – 4

									COC	and the					
				Met	al	Exp	losive	1.1		PAH			Pesticide	PCB	Conclusion
		Resident	tial RGO	31	400	36	61	1.6	0.16	1.6	0.16	1.6	0.34	1.2	for
Station	Sample Type	Date	Depth (ft)	Antimony	Lead	TNT	RDX	B(a)A	B(a)P	B(b)F	DA	IP	Dieldrin	PCB- 1254	Unrestricted Land Use
			1 1 1 1 1 2	1		Buil	ding CB-4	1		1 = (-)	1				1
LL1-005	D	09/13/00	0.0 - 1.0		1.110	-			-						NFA
LL1-341	D	10/02/00	0.0 - 1.0			83					-		-		Remediate
LL1-342	D	09/29/00	0.0 - 1.0			39		-						-	NFA
LL1-343	D	09/29/00	0.0 - 1.0			150							-		Remediate
LL1ss-609	ISM	12/01/09	0.0 - 0.5						0.24	0.38 ^{a,b}				4.9	Remediate
LL1sb-641M	ISM	07/06/11	1.0 - 3.0			-		0.23ª	0.19	0.22ª	0.03ª				NFA
LL1sb-642M	ISM	07/06/11	1.0 - 3.0			-	+	0.21ª	0.19	0.25ª		0.12ª	-	4	NFA
LL1ss-017-cs	ISM	10/29/07	2.0 - 3.0			-		-						10.9	Remediate
				S		Buil	ding CA-6	í			0.000				
LL1-136	D	09/15/00	0.0 - 1.0		-	180			1.12	-					Remediate
LL1SB-635M03	D	08/31/10	1.0 - 5.0			-		3.2	2	2.7	-				Remediate
LL1SB-635M04	D	08/31/10	1.0 - 5.0	1		-		5.5	3.5	5.5	-		-		Remediate
LL1SB-635M	ISM	08/31/10	1.0 - 3.0					1.8	1	1.5ª					Remediate
LL1SB-635M	ISM	08/31/10	5.0 - 7.0				1. 11	1.8	1.2	1.8					Remediate
						Outlet	B Chann	el							
LL1ss-024-cs	ISM	09/12/07	2.5 - 3.5			290			1.2	-				-	Remediate
						Build	ling CB-4	4		2					
LL1-156	D	09/13/00	0.0 - 1.0			-	67		-		- 4 C			-	Remediate
LL1-159	D	09/14/00	0.0 - 1.0			64				-					Remediate
LL1-160	D	09/14/00	0.0 - 1.0	+	454 ^b	250			-				- +	-	Remediate
LL1-161	D	09/14/00	0.0 - 1.0	-	411 ^b	200		++							Remediate
LL1-162	D	09/14/00	0.0 - 1.0	-	1,430		-						-	-	NFA
LL1-168	D	09/13/00	0.0 - 1.0		- · · · · ·	-		1.2ª	0.93	1.2ª	0.096 ^a		-		Remediate
LL1-356	D	09/30/00	0.0 - 1.0	·	636	-	10.40		-		77		-		NFA
LL1-407	D	10/01/00	0.0 - 1.0	-	-	180		-						-	Remediate
LL1SB-638M13	D	09/01/10	1.0 - 5.0	-			1,500	-	-	-					Remediate
LL1SB-638M14	D	09/01/10	1.0 - 5.0	-		100			1.000	-				-	Remediate
LL1ss-523M	ISM	10/26/09	0.0 - 1.0	-	*				-	**		- 99	-	1.22	NFA
LL1ss-524M	ISM	10/26/09	0.0 - 1.0		-	158	60.3ª				-	-	-	0.915 ^a	Remediate
LL1ss-525M	ISM	10/26/09	0.0 - 1.0			-	-	1.87	1.4	1.15ª	1 . .	-	-		Remediate
LL1ss-619	ISM	12/01/09	0.0 - 0.5	1	••		++	-	0.087 ^a	0.15 ^a		iù e	0.09 ^{ab}	2.2	Remediate
LL1SB-638M	ISM	09/01/10	1.0 - 3.0	-		150	490	-		-	-			-	Remediate

Table 2-4. Summary of Human Health COC Concentrations and Conclusions for Unrestricted (Residential) Land Use at Load Line 1

									COC						
				Meta	als	Expl	osives	1.0		PAHs			Pesticide	PCB	Conclusion
		Residen	tial RGO	31	400	36	61	1.6	0.16	1.6	0.16	1.6	0.34	1.2	for
Station	Sample Type	Date	Depth (ft)	Antimony	Lead	TNT	RDX	B(a)A	B(a)P	B(b)F	DA	IP	Dieldrin	PCB- 1254	Unrestricted Land Use
LLISB-638M	ISM	09/01/10	3.0 - 5.0		+	2,700		-	-				-		Remediate
LL1sb-644M	ISM	07/05/11	3.0 - 5.0	+		+			0.1"		-		-	14	Remediate
LL1sb-644M	ISM	07/05/11	5.0 - 7.0	-					-	-			1000	1.8	Remediate
						Buil	ding CA-	6A							
LL1-333	D	09/16/00	0.0 - 1.0		674				-					-	NFA
LL1SB-633M	ISM	08/25/10	3.0 - 5.0			47		-	-						Remediate
LL1ss-033-cs	ISM	09/11/07	2.3 - 3.3	+	÷.	160	÷	1.44					-	**	Remediate
						Bui	ilding CB	-3							
LL1-184	D	09/18/00	0.0 - 1.0	648	1,620	-		-						÷••	Remediate
LL1-185	D	09/18/00	0.0 - 1.0	429	736	-		0.22 ^{<i>a,b</i>}	0.21	0.41 4,6			-	1.7	Remediate
LL1-386	D	09/28/00	0.0 - 1.0	-	550		-		1.04				-	T	NFA
LL1-387	D	09/29/00	0.0 - 1.0	+	639						-				NFA
LL1-410	D	09/29/00	0.0 - 1.0		510	-	·	-	÷	-			- +2		NFA
FWCss-001	ISM	12/01/09	0.0 - 0.5	-			5.2	0.9ª	0.84	1.5ª					Remediate
LL1ss-040-cs	ISM	09/12/07	2.0 - 3.0		-	-	-	10.000	0.49						NFA
			2		Is	olated Dis	crete Soil	Locations							
CB12-02	D	11/04/99	0.0 - 1.0	-	532		-		+		-				NFA
CB23-01	D	11/04/99	0.0 - 1.0	-	426		-	-			-			**	NFA
LL1-049	D	09/16/00	0.0 - 0.5	1,180	1,210		-								Remediate
LL1-087	D	09/25/00	0.0 - 1.0		602			(e					-		NFA
LL1-091	D	09/25/00	0.0 - 1.0		-			-	0.84	1.1ª	0.18		1.199	4.7	NFA
LL1-103	D	09/19/00	0.0 - 1.0	÷		-		0.64 ^a	0.53	0.75 ^a	0.086 ^a	-	-	0.74 ^a	NFA
LL1-130	D	09/27/00	0.0 - 1.0			-		0.41 ^a	0.37	0.47 ^a				2.4	NFA
LL1-252	D	09/17/00	0.0 - 0.5		1,140		-				-				NFA
LL1-369	D	09/28/00	0.0 - 1.0		**	~		-					1	1.7	NFA
LL1-087	D	09/28/00	1.0 - 2.5		558	· · · · ·							-		NFA

Table 2-4. Summary of Human Health COC Concentrations and Conclusions for Unrestricted (Residential) Land Use at Load Line 1 (continued)

"Sample concentration is less than RGO; however, this chemical contributes to a sum of ratios greater than 1.

^bSample location is recommended for remediation for other chemicals of interest; however, this chemical is not recommended as a COC for remediation.

RDX = Hexahydro-1,3,5-Trinitro-1,3,5-Triazine.

PCB = Polychlorinated Biphenyl.

RGO = Remedial Goal Option.

NFA = No further action or evaluation required for this COC.

All units are mg/kg. ISM = Incremental Sampling Methodology. IP = Indeno(1,2,3-cd)pyrene.

B(a)A = Benz(a)anthracene.

B(a)P = Benzo(a)pyrene.

B(b)F = Benzo(b)fluoranthene.PAH = Polycyclic Aromatic Hydrocarbon.

COC = Chemical of Concern.

D = Discrete soil sample.

DA = Dibenz(a,h)anthracene.

ft = Feet.

TNT = Trinitrotoluene.

	1							-	COC			
		1.52		Meta	1	Expl	osive		PAH		PCB	Conclusion for
		Industri	al RGO	470	800	510	280	29	2.9	29	9.7	Commercial/
Station	Sample Type	Date	Depth (ft)	Antimony	Lead	TNT	RDX	B(a)A	B(a)P	B(b)F	PCB-1254	Industrial Land Use
					Buildi	ng CB-4		100				
LL1-005	D	09/13/00	0.0 - 1.0		1,110		-	-	-	-	-	NFA
LL1ss-017-cs	ISM	10/29/07	2.0 - 3.0	-			-	-	-	-	10.9	Remediate
			1	h	Buildin	g CB-4A						Triting
LL1-162	D	09/14/00	0.0 - 1.0		1,430		122		1.940	-		NFA
LL1SB-638M13	D	09/01/10	1.0 - 5.0		-		1,500		50 44 0 1	-		Remediate
LL1SB-638M	ISM	09/01/10	1.0 - 3.0		-	150 ^a	490					Remediate
LL1SB-638M	ISM	09/01/10	3.0-5.0	-	4	2,700					-	Remediate
LL1sb-644M	ISM	07/05/11	3.0 - 5.0	-	-				0.1 ^a		14	NFA
					Buildi	ng CA-6	C			1.00		
LL1SB-635M04	D	08/31/10	1.0 - 5.0				-	5.5°	3.5	5.5ª		NFA
					Buildi	ng CB-3						
LL1-184	D	09/18/00	0.0 - 1.0	648	1,620			-	-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Remediate
				Isolat	ed Discre	ete Soil L	ocation					C Manual Contract
LL1-049	D	09/16/00	0.0 - 0.5	1,180	1,210			-		-	-	NFA
LL1-252	D	09/17/00	0.0 - 0.5		1,140	ر الجد						NFA

Table 2-5. Summary of Human Health COC Concentrations and Conclusions for Commercial/Industrial Land Use at Load Line 1

^aSample concentration is less than RGO; however, this chemical contributes to a sum of ratios greater than 1.

All units are mg/kg.

B(a)A = Benz(a)anthracene.

B(a)P = Benzo(a)pyrene.

B(b)F = Benzo(b)fluoranthene.

COC = Chemical of Concern.

D = Discrete soil sample.

ft = Feet.

ISM = Incremental Sampling Methodology.

NFA = No further action or evaluation required for this COC.

PAH = Polycyclic Aromatic Hydrocarbon.

PCB = Polychlorinated Biphenyl. RDX = Hexahydro-1,3,5-Trinitro-1,3,5-Triazine.

RGO = Remedial Goal Option.

TNT = Trinitrotoluene.

					Metal		Expl	osive			PAH			P	CB	
	Sample	Residen	tial RGO ^b	31	400	0.78	36	17	1.6	0.16	1.6	0.16	1.6	1.2	2.4	
Station	Type	Date	Depth (ft)	Antimony	Lead	Thallium	TNT	2.4-DNT	B(a)A	B(a)P	B(b)F	DA	IP		PCB-1260	Conclusion for Unrestricted Land U
	1 2/6		1 septer (re)	- containenty -	2010				g DB-10		5(5)1	Dis		1100-1204	100-1200	Conclusion for Chilestricies Land C
L2ss-315M	ISM	06/22/10	1.3-2.3	- 1			46.4	-	1.014	1.13	0.957"	-	-	-	- 1	Remediate
L2ss-298M	ISM	06/24/08	0.0-1.0	-			-	-	0.445*	0.406	0.339"	-	-	2.24	0.785°	Remediate
L2-120	D	07/25/01	0.0-1.0	-	820	-	-	12	-	-	-	-	-	-	0.765	NFA
aba-tav		01122/01	1 0.0-1.0		040		-		ng DB-4			-	-	-	1 -	INCA
L2ss-285M	ISM	06/20/08	0.0-1.0		-		125	-	0.427	0.379	0.301"	-	-	0.437	-	Remediate
L2ss-407	ISM	12/02/09	0.0-0.5	-	-	-		-	3.9	3.8	5.1	-	2	1.3	-	Remediate
L2-130	D	07/27/01	0.0-1.0	-	-	-	-	1 -	-	-	-	-		2.5	-	All of these discrete samples are with
L2-130	D	07/28/01	1.0-3.0		747		46				-	-				LL2ss-407, which is recommended for
L2-133	D	07/28/01	0.0-1.0	-	-	-	-	-	0.39"	0.5	0.66*	-	-	0.77*	-	remediation; therefore, alone, these
1.2-133	D	07/29/01	1.0-3.0	-		-	53		-	-	-	-	-	9.71	-	results might not drive remediation, b
L2-133	D	07/26/01	0.0-1.0	-	-	-		-	-	-	-	-	-	5	-	they will be taken care of as part of th
L2-134	D	07/28/01	0.0-1.0	-	-	-	-	-	-	-		-	-	4.4	-	407 excavation
L2ss-519M	ISM	07/02/11	0.0-1.0	-	-	-	-		0.52"	0.59	0.634	0.097 ^e	0.4*			
1.2-127	D	07/26/01	0.0-1.0	-			-	-		0.39	0.03	0.097	0.4	1.2*	-	NFA
L2sb-513M	ISM					-	-	-		0.88		0,16*	_			NFA
L250-313-M	15M	07/01/11	1.0 - 3.0	-	(•)	-	-		ng DA-6	0.88	1.1	0,10	-		-	NFA
10.000	D	07/25/01	0.0-1.0	1 1		1	1100				1		1	1	1	NTT 4
L2-082 L2SB-508M	ISM			-	-	-	1100	-		-	-		-	-	-	NFA
		08/25/10	1.0-3.0	-	-	-	230	-		-	-	-		-	-	Remediate
L2ss-055-cs	ISM	10/08/07	2.0 - 3.0	-	(*)	-	77.6	-		-	-	-	+	-	-	Remediate
		Cardia Inc.	1			-			g DB-4A	-			-	-		
1.2-158	D	07/27/01	0.0-1.0	-	-	-	610	-	-	-	-	-	-	-	-	Remediate
L2ss-288M	ISM	06/18/08	0.0 - 1.0	-	-	-	66,6	-	-	-	-	-	-	-	-	NFA
L2ss-287M	ISM	06/24/08	0.0 - 1.0	-	-	-	-	-	-	0.167	-	-	-	-	-	NFA
.1.2-146	D	07/27/01	0.0-1.0	-	÷.	$= \Theta$. .	-	-	-	-	-	-	-	2.8	NFA
LL2-148	D	07/27/01	0.0-1.0	-			-	-	-	-	-			1.8		NFA
			1			1			g DA-6A				_			
L2-087	D	07/26/01	0.0-1.0	-			240	3.3°	-	-	-	-	-	2.6	-	Remédiate
L2-087	D	07/30/01	3.0-5.0	-	-	-	240	-	-	-	-	-	-	-	-	Remediate
L2SB-506M	ISM	08/24/10	3.0 - 5.0	-			130		.	-	-	-	-	-	-	Remediate
L2ss-406	ISM	12/01/09	0.0 - 0.5	-	-	-	38	-	-	-		+	-	-	-	Remediate
1.2-093	D	07/26/01	0.0-1.0	- 1	-	(+)	-	-	0,17*	0.21	0.22*	-	-	-	-	NFA
									ng DB-3	-						
1.2-165	D	07/28/01	0.0-1.0	-	1 H H H	1	-	-	-	1.9	2.4	0.22	-	9.4	-	Remediate
L2ss-516M	ISM	07/03/11	0.0-1.0	-	-	-	-		1.5"	1.6	1.9	0.24	-	-		Remediate
L2ss-280M	ISM	05/18/08	0.0-1.0	-	-	-	-	-	0.392"	0.402	0.285*	-	-	-	-	NFA
L2ss-279M	ISM	06/18/08	0.0-1.0			· · · · · · · · · · · · · · · · · · ·	-	-	0.371*	0.316	0.24 ^a	-		-		NFA
									ng DC-1							
L2-170	D	07/24/01	0.0 - 1.0	-	-	(m)	-	-	L1*	1.5	1.3"	-	-		-	NFA
1.2-171	D	07/24/01	0.0 - 1.0	-	-			-	0.44*	0.56	0.61"	0.11*		-		NFA
L2-169	D	07/24/01	0.0 - 1.0			1	-		1.7	1.8	2	0.28	+	-		Remediate
WCss-002	ISM	12/03/09	0.0-0.5	-	-	-	-	1	1.5'	1.4	2.5	-	-	-	-	Remediate
L2-172	D	07/24/01	0.0 - 1.0	-	2		-	-	0,22*	0.3	0,35°		0.19*	-	-	NFA
								Buildin	g DB-13							
L2-100	D	07/26/01	0.0-1.0	59.5	1220	0,99	-	-	-	-	-	14	-	3	-	NFA
L2-100	D	07/29/01	1.0-3.0		1530	- (-; - · · ·	-	-	-			1		-	-	NFA
1.2-108	D	07/27/01	0.0-1.0	- 1	-	-	-	1 - 1	0.16*	0.19	0.28	10 H	0,15"	+		NFA
					-			Isolated Dis	crete Samples	-						
L2-252	D	07/30/01	0.0-0.5	69.2	656	-	-		-	-	-	-	-	-	-	Remediate

Table 2-9. Summary of Human Health COC Concentrations in Soil and Sediment and Conclusions for Unrestricted (Residential) Land Use

-

2-51

Table 2-9. Summary of Human Health COC Concentrations in Soil and Sediment and Conclusions for Unrestricted (Re	esidential) Land Use (continued)

				2	Metals		Expla	osives	· · · · · · · · · · · · · · · · · · ·		PAHs			PO	CBs	
	Sample	Residen	tial RGO	31	400	0.78	36	17	1.6	0,16	1.6	0.16	1.6	1.2	2.4	
Station	Type	Date	Depth (ft)	Antimony	Lead	Thallium	TNT	2,4-DNT	BaA	BaP	BbF	DA	IP	PCB-1254	PCB-1260	Conclusion for Unrestricted Land Use
								Kelly's Pond an	d Exit Drain	uge						
LL2sd-053	D	07/30/01	0-0.5	- 1		-	-	-	0,15*	0,18	0.25"	-	0.11*	-	-	Remediate
LL2sd-182	D	07/31/01	0-0.5		-	-	(+)	-	0.6*	0.55	0.714	0.082*	-	-		NFA
Kelly's Pond	ISM	06/23/03	0-0.3	-	+	-		-	1.25*	1.4	2.3	0.135"	1.045*	+	-	Remediate
LL2SD-630	D	05/16/16	0-1		÷.		. +	-	0.228	0.216	0.311"	0.02964	-		-	NFA
LL2SD-632	D	05/16/16	0+1	-				-	0.4714	0.463	0.675*	0.0797		-		Remediate
LL2SD-633	D	05/16/16	0-1	-				-	0.806*	0.941	1.39*	0.154"	0.646		-	Remediate
LL2SD-631	D	05/17/16	0-1		-	-		-	16.4	23.6	41.2	4.55	19.1			Remediate

"Sample concentration is less than RGO; however, this chemical contributes to a sum of ratios greater than 1.

*Residential RGOs are the same for soil and sediment. This results in a very conservative assessment of sediment. All units are mg/kg. B(a)/A = Benz(a)anthracene. B(a)P = Benzo(a)pyrene. B(b)F = Benzo(a)pyrene. COC = Chemical of Concern.

D = Discrete soil sample. DA = Dibenz(a,h)anthracene.

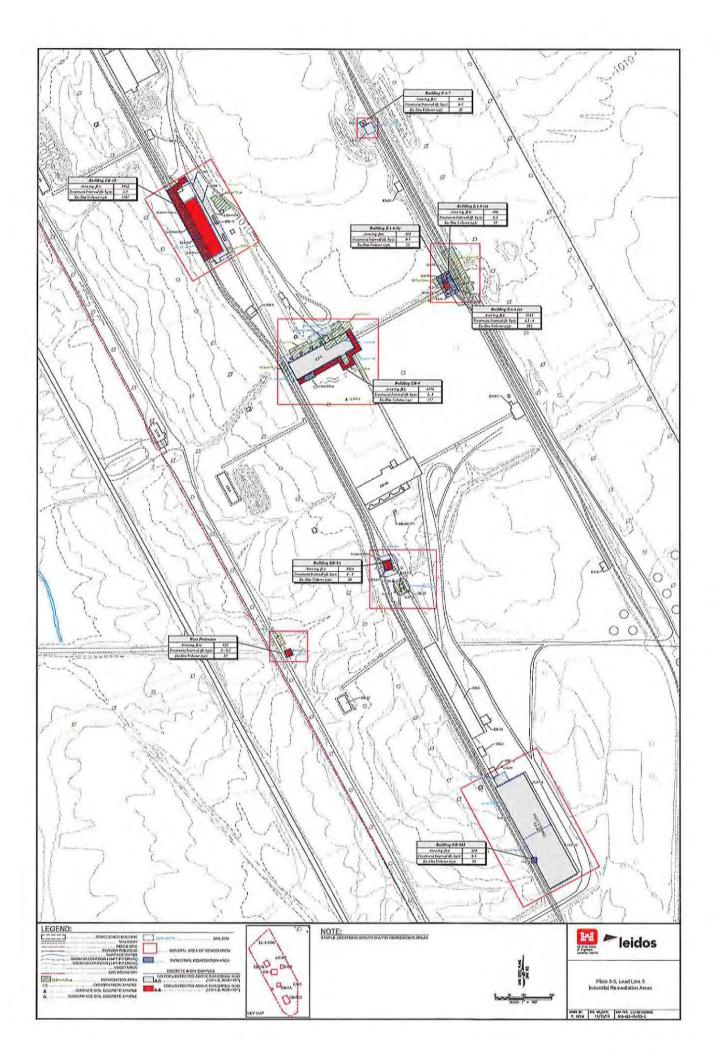
DNT - Disitrotolucne.

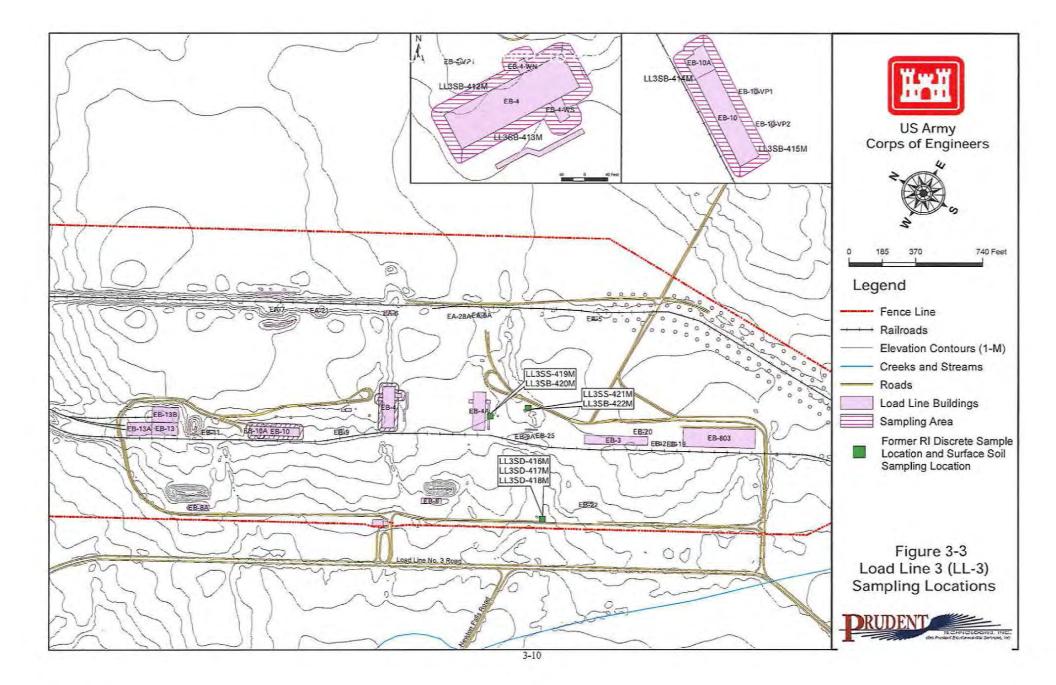
DNT - Dinitrotolucne. A = Foct. IP = Indeno(1.2,3-cd)pyrene. ISM = Incremental Sampling Methodology. NrA = No further action or evaluation required for this COC. PAH = Polycyclic Aromatic Hydrocarbon. PCB = Polychlorinated Biphenyl. RCO = Remedial Goal Option. TNT = Trinitrotolucne. = Chemical is not a COC in this comple.

- - Chemical is not a COC in this sample.

Lood Lines 1-4, 12

Feasibility Study Addendum


		1000		Metal		Explosive	the second second	PAH		Pesticide	PCB	Conclusion for
	Sample	Resider	tial RGO	470	800	510	29	2.9	29	1.4	9.7	Commercial/Industrial
Station	Type	Date	Depth (ft)	Antimony	Lead	TNT	B(a)A	B(a)P	B(b)F	Dieldrin	PCB-1254	Land Use
					B	uilding DB-10						
LL2-120	D	07/25/01	0.0-1.0	-	820	-		-	-	-	-	NFA
	Section Com				1	Building DB-4		1	Contraction of the second			
LL2ss-407	ISM	12/02/09	0.0-0.5	-	-	-	3.9"	3,8	5.1*		1.3*	NFA
A.S					1	Building DA-6						
LL2-082	D	07/25/01	0.0-1.0	-	-	1100	-		-		-	NFA
					B	uilding DB-4A						
LL2-158	D	07/27/01	0.0 - 1.0	-		610	Lie II	-	-	-	÷.	Remediate
					1	Building DB-3						
LL2-165	D	07/28/01	0.0 - 1.0	-	-	-	-	1.9"	-	0.29*	9.4ª	NFA
					B	uilding DB-13						
LL2-100	D	07/26/01	0.0 - 1.0		1220	-				-	-	NFA.
LL2-100	D	07/29/01	1.0-3.0	-	1530		-		-	-	-	NFA


Table 2-10. Summary of Human Health COC Concentrations in Soil and Conclusions for Industrial/Commercial Land Use

"Sample concentration is less than RGO; however, this chemical contributes to a sum of ratios greater than 1. All units are mg/kg. B(a)A = Benzo(a)anthracene. B(a)P = Benzo(b)fluoranthene. B(b)F = Benzo(b)fluoranthene. COC = Chemical of Concern.

COC = Chemical of Concern. D = Discrete soil sample. f = Feet. ISM = Incremental Sampling Methodology. NFA = No further action or evaluation required for this COC. PAH = Polycyclic Aromatic Hydrocarbon. PCB = Polycyclic Aromatic Hydrocarbon. PCB = Polycyclicanted Biphenyl. RGO = Remedial Goal Option. TNT = Trinitrotoluene. — = Chemical is not a human health COC in this sample.

Load Lines 1-4, 12

				1						CO	C						1.5
		1.		Met	al	Expl	osive			PAH			Pes	sticide	P	СВ	Conclusion
		Resident	tial RGO	6.8	400	36	61	1.6	0.16	1.6	0.16	1.6	0.34	1.3	1.2	2.4	for
Station	Sample Type	Date	Depth (ft)	Arsenic	Lead	TNT	RDX	B(a)A	B(a)P	B(b)F	DA	IP	Dieldrin	Heptachlor	PCB- 1254	PCB- 1260	Unrestricte Land Use
							Bu	ilding EB	-10								
LL3-083	D	08/06/01	0.0 - 1.0	-	-	-	-	0.26°	0.26	0.33"	-	-	-		1.14		Remediate
LL3-085	D	08/06/01	0.0-1.0	-	-	-	-	-	-	-	-	-	-	-	3.9	-	NFA
LL3-088	D	08/06/01	0.0 - 1.0	-	-	-	-		-	-	-	-	-		1.8	-	NFA
LL3-092	D	08/07/01	0.0 - 1.0		599	-	-	-				-	-		20		NFA
LL3SB-409M	ISM	08/30/10	1.0 - 3.0	-	-	-	-	-	0.17	-	-	-	1.400	-	-		NFA
LL3SB-409M02	D	08/30/10	1.0 - 7.0					0.43°	0.41	0.5	0.059*			-	-	-	Remediate
LL3SB-409M06	D	08/30/10	1.0 - 7.0	-		-	-	0.25"	0.27	0,3	0.039*	-	-	- H - 1	-		Remediate
LL3SB-409M08	D	08/30/10	1.0 - 7.0	1 - 1	-	-	-	0.17ª	0.17	0.24"		-		-		-	Remediate
LL3SB-409M09	D	08/30/10	1.0 - 7.0	-		-	-	0.44	0.38	0.47	0.045	-	-	-	-	-	Remediate
LL3SB-409M11	D	08/30/10	1.0 - 7.0	-		-	-	0.2°	0.21	0,28	-	-	-	-	-	-	Remediate
LL3sb-414M	ISM	06/29/11	1.0-3.0	-			-	0.714	0.58	0.76ª	0.12ª	-	-		1	-	Remediate
LL3sb-414M	ISM	06/29/11	3.0 - 5.0	-		-	-	63	47	54	7.2	21	-	-	~	-	Remediate
LL3sb-415M	ISM	06/29/11	3.0-5.0	-			-	0.36"	0.4	0.48	0.065"	-		-	-	-	Remediate
LL3ss-266M	ISM	06/25/08	0.0 - 1.0	114	-	-	-	0.286*	0.268	0.223*	-	-	-	-	-		Remediate
And the second sec						-	Ba	ilding EB	-11								
LL3ss-073-cs	ISM	10/22/07	2.5-3.5	-	-	-	-	-	-		2.1	-		-	13.8		Remediate
LL3-074	D	08/09/01	0.0 - 1.0	-		-	-	0.17°	0.21	0.32	-	-	-	-	-		NFA
		1	1					uilding EA		1							1.000
LL3-054	D	08/10/01	0.0 - 1.0	-	-	-	-		-	-	-	-		-	17		Remediate
No COCs were identif	ied in Building E	A-21.				1 4		ilding EA			-	-		-	- 47		Kemediate
			00.10				Bu	uilding EE	-21								
LL3-104	D	08/08/01	0.0 - 1.0	-	-	[-	Bu Bu	uilding EB	-21 1-4 -	-	-	-		-	2.3	-	Remediate
LL3-104 LL3-227	D D	08/08/01	0.0 - 1.0	· ·	-	- 37	Bu Bu	uilding EE 	-21 -4 -	-	-	1, 10			2.3	-	Remediate Remediate
LL3-104 LL3-227 LL3sb-413M	D D ISM	08/08/01 08/24/01 06/30/11	0.0 - 1.0	-	-		Bu 	uilding EE 	-21	-	-	1 1 1		-	2.3 - 100		Remediate Remediate Remediate
LL3-104 LL3-227 LL3sb-413M LL3ss-077-cs	D D ISM ISM	08/08/01 08/24/01 06/30/11 11/20/07	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5	-	-	 37 	Ba 	uilding EE 	-21	-	-	1.1.1			2.3 - 100 6.09	1 1 5 1	Remediate Remediate Remediate
LL3-104 LL3-227 LL3sb-413M LL3ss-077-cs LL3ss-085-cs	D D ISM ISM ISM	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 2.5 - 3.5	1 1	1 1 1 1		Bu	uilding EE 	-21		-	1111		1.1.1	2.3 - 100 6.09 3.38	1 1 5 1 1	Remediate Remediate Remediate Remediate
LL3-104 LL3-227 LL3sb-413M LL3ss-077-cs LL3ss-085-cs LL3ss-253M	D D ISM ISM ISM ISM	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 2.5 - 3.5 3.3 - 4.3		1 1 1 1	 37 37,5	Ba	uilding EE 	-21 	1		11111		1111	2.3 - 100 6.09 3.38 1.28	1 1 5 1 1 1	Remediate Remediate Remediate Remediate Remediate
LL3-104 LL3-227 LL3sb-413M LL3ss-077-cs LL3ss-085-cs LL3ss-253M LL3ss-253M LL3ss-297M	D D ISM ISM ISM ISM ISM	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10 06/16/10	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 2.5 - 3.5 3.3 - 4.3 3.9 - 4.9		1 1 1 1 1	 37 37,5 29,3°	Ba		-21 			1 1 1 1 1 1 1	1 1 1 1 1		2.3 - 100 6.09 3.38 1.28 2.9	11%1111	Remediate Remediate Remediate Remediate Remediate Remediate
LL3-104 LL3-227 LL3sb-413M LL3ss-077-cs LL3ss-055-cs LL3ss-253M LL3ss-253M	D D ISM ISM ISM ISM	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 2.5 - 3.5 3.3 - 4.3		1 1 1 1	 37 37,5	Ba	ailding EE 0.21°	-21 	1		11111		1111	2.3 - 100 6.09 3.38 1.28	1 1 5 1 1 1	Remediate Remediate Remediate Remediate Remediate
LL3-104 LL3-227 LL3sb-413M LL3sb-413M LL3ss-085-cs LL3ss-253M LL3ss-253M LL3ss-297M LL3ss-355	D D ISM ISM ISM ISM ISM ISM	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10 06/15/10 12/03/09	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 2.5 - 3.5 3.3 - 4.3 3.9 - 4.9 0.0 - 0.5		1 1 1 1 1 1	- 37 - - 37,5 29,3°	Bu 	uilding EB 0.21° uilding EA	-21 			1 1 1 1 1 1 1			2.3 - 100 6.09 3.38 1.28 2.9 0.86 ^e		Remediate Remediate Remediate Remediate Remediate Remediate NFA
L13-104 L13-227 L13sb-413M L13ss-085-cs L13ss-085-cs L13ss-253M L13ss-297M L13ss-355 L13-057	D D ISM ISM ISM ISM ISM ISM D	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10 06/16/10 12/03/09 07/31/01	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 2.5 - 3.5 3.3 - 4.3 3.9 - 4.9 0.0 - 0.5 0.0 - 1.0	11111	1 1 1 1 1 1 1		Bu 	<i>iilding EE</i> 0.21° <i>iilding EA</i> 4.8	-21 						2.3 - 100 6.09 3.38 1.28 2.9 0.86*	1 1 5 1	Remediate Remediate Remediate Remediate Remediate Remediate NFA Remediate
LL3-104 LL3-227 LL3sb-413M LL3ss-077-cs LL3ss-085-cs LL3ss-253M LL3ss-297M LL3ss-355 LL3-057 LL3-060	D D ISM ISM ISM ISM ISM D D	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10 06/15/10 12/03/09 07/31/01	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 2.5 - 3.5 3.3 - 4.3 3.9 - 4.9 0.0 - 0.5 0.0 - 1.0 0.0 - 1.0	11111	1 1 1 1 1 1 1		Bu Bu - - - - - - - - - - Bu - - - - - -	<i>iilding EE</i> 0.21° <i>iilding EA</i> 4.8 	-21 0.147 ^{ab} 0.093 ^{ab} 0.11° -6 5.8			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.3 - 100 6.09 3.38 1.28 2.9 0.86 ⁴ - 4	1 1 5 1 1 1 1 1	Remediate Remediate Remediate Remediate Remediate NFA Remediate Remediate
LL3-104 LL3-227 LL3sb-413M LL3ss-085-cs LL3ss-253M LL3ss-253M LL3ss-257M LL3ss-355 LL3-057 LL3-060 LL3-063	D D ISM ISM ISM ISM ISM D D D D	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10 06/15/10 12/03/09 07/31/01 07/31/01	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 2.5 - 3.5 3.3 - 4.3 3.9 - 4.9 0.0 - 0.5 0.0 - 1.0 0.0 - 1.0		1 1 1 1 1 1 1 1 1 1		Bu Bu - - - - - - - - - - Bu - - - - - -	uilding EE 	-21 				1 1 1 1		2.3 - 100 6.09 3.38 1.28 2.9 0.86 ⁴ - 4 14 ⁵		Remediate Remediate Remediate Remediate Remediate Remediate NFA Remediate Remediate Remediate
LL3-104 LL3-227 LL3sb-413M LL3ss-085-cs LL3ss-263M LL3ss-253M LL3ss-253M LL3ss-255 LL3-057 LL3-060 LL3-063 LL3-063 LL3-063	D D ISM ISM ISM ISM ISM ISM D D D D D D	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10 06/16/10 12/03/09 07/31/01 07/31/01 08/07/01	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 2.5 - 3.5 3.3 - 4.3 3.9 - 4.9 0.0 - 0.5 0.0 - 1.0 0.0 - 1.0 0.0 - 1.0 1.0 - 3.0	111111	1 1 1 1 1 1 1 1 1		Bu		-21 			1 1 1 1 1 1 24 1 3 1	1 1 1 1 1 1 1 1 1 1		2.3 - 100 6.09 3.38 1.28 2.9 0.86 st - 4 14 ^b -	1 1 5 ⁸ 1 1 1 1 1 1	Remediate Remediate Remediate Remediate Remediate NFA Remediate Remediate Remediate Remediate Remediate
LL3-104 LL3-227 LL3sb-413M LL3ss-077-cs LL3ss-085-cs LL3ss-253M LL3ss-253M LL3ss-355 LL3-057 LL3-060 LL3-063 LL3-063	D D ISM ISM ISM ISM ISM D D D D	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10 06/15/10 12/03/09 07/31/01 07/31/01	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 2.5 - 3.5 3.3 - 4.3 3.9 - 4.9 0.0 - 0.5 0.0 - 1.0 0.0 - 1.0		1 1 1 1 1 1 1 1 1 1		Bu Bu 	uilding EE 	-21 				1 1 1 1		2.3 - 100 6.09 3.38 1.28 2.9 0.86 ⁴ - 4 14 ⁵		Remediate Remediate Remediate Remediate Remediate Remediate NFA Remediate Remediate Remediate
LL3-104 LL3-227 LL3sb-413M LL3ss-085-cs LL3ss-253M LL3ss-253M LL3ss-355 LL3-057 LL3-060 LL3-063 LL3-063 LL3-063 LL3-053	D D ISM ISM ISM ISM ISM ISM D D D D D D	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10 06/16/10 12/03/09 07/31/01 07/31/01 08/07/01	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 2.5 - 3.5 3.3 - 4.3 3.9 - 4.9 0.0 - 0.5 0.0 - 1.0 0.0 - 1.0 0.0 - 1.0 1.0 - 3.0	111111	1 1 1 1 1 1 1 1 1		Bu Bu 	uilding EE 	-21 			1 1 1 1 1 1 24 1 3 1	1 1 1 1 1 1 1 1 1 1		2.3 - 100 6.09 3.38 1.28 2.9 0.86 st - 4 14 ^b -	1 1 5 ⁸ 1 1 1 1 1 1	Remediate Remediate Remediate Remediate Remediate NFA Remediate Remediate Remediate Remediate Remediate
LL3-104 LL3-227 LL3sb-413M LL3ss-077-cs LL3ss-085-cs LL3ss-253M LL3ss-257M LL3ss-257M LL3-057 LL3-060 LL3-063 LL3-063 LL3-063 LL3-050(p2)	D D ISM ISM ISM ISM ISM D D D D D D D D SM	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10 06/15/10 12/03/09 07/31/01 07/31/01 07/31/01 08/07/01 06/04/10	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 2.5 - 3.5 3.3 - 4.3 3.9 - 4.9 0.0 - 0.5 0.0 - 1.0 0.0 - 1.0 1.0 - 3.0 4.7 - 5.7		1 1 1 1 1 1 1 1 1 1 1		Bu Ba 		-21 			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2.3 - 100 6.09 3.38 1.28 2.9 0.86 ⁴ - 4 14 ^b - -		Remediate Remediate Remediate Remediate Remediate Remediate NFA Remediate Remediate Remediate Remediate Remediate
L13-104 L13-227 L13sb-413M L13ss-085-cs L13ss-297M L13ss-297M L13ss-297M L13-057 L13-060 L13-063 L13-063 L13-063 L13-057 L13-057 L13-063 L13-054 L13-	D D ISM ISM ISM ISM ISM D D D D D D D SM	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10 06/15/10 06/16/10 12/03/09 07/31/01 07/31/01 07/31/01 06/04/10 08/08/01 07/02/11	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 3.3 - 4.3 3.9 - 4.9 0.0 - 0.5 0.0 - 1.0 0.0 - 1.0 0.0 - 1.0 0.0 - 1.0 0.0 - 1.0 0.0 - 1.0 0.0 - 0.5 0.0 - 0.5 0.0 - 0.5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Bu Bu 		-21 			- - - - - - - - - - - - - - - - - - -			2.3 - 100 6.09 3.38 1.28 2.9 0.86 ⁴ - 4 14 ^b - - -		Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate
LL3-104 LL3-227 LL3sb-413M LL3ss-085-cs LL3ss-085-cs LL3ss-253M LL3ss-253M LL3-057 LL3-060 LL3-063 LL3-063 LL3-063 LL3-063 LL3-063 LL3-063 LL3-063 LL3-064 LL3-064 LL3-051(p2) LL3-050(p2) LL3-051(p2) LL3-117	D D ISM ISM ISM ISM ISM D D D D D D S M D D S M	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10 06/15/10 06/15/10 07/31/01 07/31/01 07/31/01 08/07/01 06/04/10 08/08/01 07/02/11 08/06/01	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 3.3 - 4.3 3.9 - 4.9 0.0 - 0.5 0.0 - 1.0 0.0 - 1.0 0.0 - 1.0 1.0 - 3.0 4.7 - 5.7 0.0 - 0.5 0.0 - 0.5 0.0 - 1.0				Bu Bu 		-21 			- - - - - - - - - - - - - - - - - - -			2.3 - 100 6.09 3.38 1.28 2.9 0.86 ⁴ - 4 14 ⁴ - - - - - - - - - - - - -		Remediate Remediate Remediate Remediate Remediate Remediate NFA Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate
LL3-104 LL3-227 LL3sb-413M LL3ss-077-cs LL3ss-085-cs LL3ss-253M LL3ss-253M LL3ss-277M LL3-057 LL3-057 LL3-063 LL3-063 LL3-063 LL3-063 LL3-063 LL3-050 LL3-050(p2) LL3-050(p2) LL3-050(p2) LL3-051 LL3-050(p2)	D D ISM ISM ISM ISM ISM D D D D D D SM ISM D ISM	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10 06/15/10 12/03/09 07/31/01 07/31/01 07/31/01 08/07/01 06/04/10 08/08/01 07/02/11 08/06/01 09/21/07	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 3.3 - 4.3 3.9 - 4.9 0.0 - 0.5 0.0 - 1.0 1.0 - 3.0 4.7 - 5.7 0.0 - 0.5 0.0 - 0.5 0.0 - 0.5 0.0 - 0.5 0.0 - 0.5 0.0 - 0.5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Bu Bu 		-21 			- - - - - - - - - - - - - - - - - - -			2.3 100 6.09 3.38 1.28 2.9 0.86 ⁴ 15 		Remediate Remediate Remediate Remediate Remediate Remediate NFA Remediate NFA Remediate Remediate NFA Remediate Remediate Remediate Remediate Remediate Remediate Remediate
LL3-104 LL3-227 LL3sb-413M LL3ss-085-cs LL3ss-253M LL3ss-253M LL3ss-253M LL3-057 LL3-063 LL3-063 LL3-063 LL3-063 LL3-063 LL3-063 LL3-063 LL3-063 LL3-063 LL3-063 LL3-050(p2) LL3-050(D D ISM ISM ISM ISM ISM D D D D D D ISM ISM ISM	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10 06/15/10 06/15/10 07/31/01 07/31/01 07/31/01 08/07/01 06/04/10 08/08/01 07/02/11 08/06/01	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 3.3 - 4.3 3.9 - 4.9 0.0 - 0.5 0.0 - 1.0 0.0 - 1.0 0.0 - 1.0 1.0 - 3.0 4.7 - 5.7 0.0 - 0.5 0.0 - 0.5 0.0 - 1.0				Bu Bu 		-21 			- - - - - - - - - - - - - - - - - - -			2.3 - 100 6.09 3.38 1.28 2.9 0.86 ⁴ - 4 14 ⁴ - - - - - - - - - - - - -		Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate Remediate
No COCs were identif LL3-104 LL3-227 LL3sb-413M LL3ss-077-cs LL3ss-085-cs LL3ss-253M LL3ss-253M LL3-057 LL3-057 LL3-063 LL3-063 LL3-063 LL3-063 LL3-063 LL3-063 LL3-057	D D ISM ISM ISM ISM ISM D D D D D D SM ISM D ISM	08/08/01 08/24/01 06/30/11 11/20/07 10/31/07 06/15/10 06/15/10 12/03/09 07/31/01 07/31/01 07/31/01 08/07/01 06/04/10 08/08/01 07/02/11 08/06/01 09/21/07	0.0 - 1.0 1.0 - 3.0 2.5 - 3.5 3.3 - 4.3 3.9 - 4.9 0.0 - 0.5 0.0 - 1.0 1.0 - 3.0 4.7 - 5.7 0.0 - 0.5 0.0 - 0.5 0.0 - 0.5 0.0 - 0.5 0.0 - 0.5 0.0 - 0.5				Bu Bu 		-21 			- - - - - - - - - - - - - - - - - - -			2.3 100 6.09 3.38 1.28 2.9 0.86 ⁴ 15 		Remediate Remediate Remediate Remediate Remediate Remediate NFA Remediate NFA Remediate NFA Remediate Remediate Remediate Remediate Remediate Remediate Remediate

Table 2-14. Summary of Human Health COC Concentrations and Conclusions for L	Unrestricted (Residential) Land Use at Load Line 3
--	--

Load Lines 1-4, 12

2-77

				1						CO	С						
		1		Met	als	Explo	osives			PAHs			Pes	sticide	P	CB	
	1.0.00	Reside	ential RGO	6.8	400	36	61	1.6	0.16	1.6	0.16	1.6	0.34	1.3	P	СВ	Conclusion for
Station	Sample Type	Date	Depth (ft)	Arsenic	Lead	TNT	RDX	B(a)A	B(a)P	B(a)F	DA	IP	Dieldrin	Heptachlor	PCB- 1254	PCB- 1260	Unrestricted Land Use
	1	1		Treaters			1.00000		g EB-9A	1-10-1		-					
LI.3ss-265M	ISM	06/24/08	0.0 - 1.0		-	700	-	-	-	-	4	-	-		- <u>-</u>		Remediate
LL3ss-421M	ISM	07/02/11	0.0 - 1.0	-	-	-	-	0.25°	0.26	0.44	0.06"	0.2	-	-	-	-	NFA
								Buildin	g EB-25								
No COCs were identifi	ed in Building	EB-25.												0.0			
				-				Buildin	2 EA-6A	-							
LL3-064	D	07/31/01	0.0-1.0	1.14	-	-	-	0.79*	0.6	0.67*	0.12"	-	-		-	-	NFA
LL3-065	D	08/07/01	0.0 - 1.0	-	-		-	-	-	-		-	-	-	1.3	-	NFA
LL3-066	D	08/08/01	0.0 - 1.0	-	-	-	-	0.19ª	0.14 ^a	0.21#		-	-	-		1.4"	NFA
LL3-067	D	07/31/01	0.0 - 1.0	-	758	-	-	-		-			-	-	5,6	-	Remediate
LL3-152	D	08/13/01	0.0 - 1.0	-		-	-	0.69*	0.7	0.98"	0.097°		-		-	-	NFA
LL3ss-261M	ISM	06/07/10	5.3 - 6.3	-	-	28.1*	-	0.323	0.249	0.24	-	-	-	-	-	-	NFA
					1	-	Isola	ted Discre	te Soil Sam	ples							
LL3-047(p2)	D	08/08/01	0.0 - 0.5	22.3	-	-	-		0.099 4.0				-		9	-	Remediate
LL3-056	D	08/10/01	0.0 - 1.0		-	1		-	÷ +		-	-		-	1.5		NFA
LL3-056	D	08/12/01	1.0-3.0		-	500	-	-	1		-		-	-	-		Remediate
LL3-136	D	08/10/01	0.0 - 1.0		- 44	-	31"	0.54"	0.53	0.76*	0.069"	1.1		-	-		NFA
LL3-138	D	08/10/01	0.0 - 1.0		-	-	-	-	0.12	0.16"	**	-			2.5	-	NFA
LL3-142	D	08/09/01	0.0 - 1.0	-	-	-		0.45°	0.61	0.96°	0.0834	-	-	-	-	-	NFA
LL3-144	D	08/09/01	0.0 - 1.0	1000	634 ⁵	-		-	1 H	2-21	-	-	-	-	14	-	Remediate
LL3-145	D	08/09/01	0.0 - 1.0		572	-		- -	1 Here 1	1	4	-	- ÷	-	÷		NFA
LL3sd/sw-048(d)	D	08/08/01	0.0 - 0.5	-	-	110		0.282.5	0.26"	0.3740			-				Remediate

Table 2-14. Summary of Human Health COC Concentrations and Conclusions for Unrestricted (Residential) Land Use at Load Line 3 (continued)

*Sample concentration is less than RGO; however, this chemical contributes to a sum of ratios greater than 1. *Sample location is recommended for remediation for other chemicals of interest; however, this chemical is not recommended as a COC for remediation.

All units are mg/kg. B(a)A = Benz(a)anthracene.

B(a)P = Benzo(a)pyrene. B(b)F = Benzo(b)fluoranthene. COC = Chemical of Concern.

D = Discrete soil sample.

DA = Dibenz(a,h)anthracene.

ft = Feet.

IP = Indemo(1,2,3-cd)pyrene. ISM = Incremental Sampling Methodology. NFA = No further action or evaluation required for this COC.

PAH = Polycyclic Aromatic Hydrocarbon.

PCB = Polychlorinated Biphenyl.

RDX = Hexabydro-1,3,5-Trinitro-1,3,5-Triazine.

RGO = Remedial Goal Option. TNT = Trinitrotoluene.

		1					CO	C				1.000
				Expl	osive		PA	H		P	СВ	Conclusion for
		Indust	rial RGO	510	280	29	2.9	29	2.9	9.7	9.9	Commercial
Station	Sample Type	Date	Depth (ft)	TNT	RDX	B(a)A	B(a)P	B(b)F	DA	PCB- 1254	PCB- 1260	Industrial Land Use
					Building E	B-10				C - Provid		
LL3-092	D	08/07/01	0.0 - 1.0	in the state		-				20		NFA
LL3sb-414M	ISM	06/29/11	3.0 - 5.0			63	47	54	7.2			Remediate
					Building E	B-11			200		1.1.1.1	
LL3ss-073-cs	ISM	10/22/07	2.5 - 3.5	- A					11	13.8	-	Remediate
					Building E	EA-7			A 18	1.1.1		
LL3-054	D	08/10/01	0.0 - 1.0	-			-			17		Remediate
			- 10 m		Building E	A-21						
No COCs for the	Industrial Re	ceptor were i	dentified in Bui									
					Building E	CB-4					_	
LL3sb-413M	ISM	06/30/11	1.0 - 3.0	. 20						100	5"	Remediate
		1. A.			Building E	ZA-6						
LL3-057	D	07/31/01	0.0 - 1.0		-	4.8ª	5.8	7 ^a	0.74ª		-	Remediate
LL3-063	D	07/31/01	0.0 - 1.0	650 ^b			5.4		0.93ª	14 ^b	-	Remediate
LL3ss-293M	ISM	06/04/10	4.7 - 5.7			7.57°	5.88	4.6°	0.847 ^a			Remediate
				We	st Perimet	er Area						
LL3-050(p2)	D	08/08/01	0.0 - 0.5				3		10.44	15. M 17.	÷	Remediate
LL3sd-416M	ISM	07/02/11	0.0 - 0.5	-	**	8.6ª	6.8	9.1ª	1.2ª			Remediate
				1	Building E.	B-4A			1			
LL3-117	D	08/06/01	0.0 - 1.0	1.00	34 ^a	-	1.4		-	15	-	NFA
				1	Building E.	B-9A						
LL3ss-265M	ISM	06/24/08	0.0 - 1.0	700		-		-		-		Remediate
	1960 - S. M. M.			1	Building E	B-25	1997					
No COCs for the	Industrial Re	ceptor were is	dentified in Bui									
					Building E.	A-6A						
No COCs for the	Industrial Re	ceptor were i	dentified in Bui	ilding EA-6	A							

Table 2-15. Summary of Human Health COC Concentrations and Conclusions for Commercial/Industrial Land Use at Load Line 3

1							CO	С				La
				Expl	osive		PA	Н		P	СВ	Conclusion for
		Indust	rial RGO	510	280	29	2.9	29	2.9	9.7	9.9	Commercial/
Station	Sample Type	Date	Depth (ft)	TNT	RDX	B(a)A	B(a)P	B(b)F	DA	PCB- 1254	PCB- 1260	Industrial Land Use
LL3-056	D	08/12/01	1.0 - 3.0			1						NFA
LL3-144	D	08/09/01	0.0 - 1.0				-			14		Remediate

Table 2-15. Summary of Human Health COC Concentrations and Conclusions for Commercial/Industrial Land Use at Load Line 3 (continued)

^aSample concentration is less than RGO; however, this chemical contributes to a sum of ratios greater than 1.

^bSample location is recommended for remediation for other chemicals of interest; however, this chemical is not recommended as a COC for remediation.

All units are mg/kg.

B(a)A = Benz(a)anthracene.

B(a)P = Benzo(a)pyrene.

B(b)F = Benzo(b)fluoranthene.

COC = Chemical of Concern.

D = Discrete soil sample.

DA = Dibenz(a,h)anthracene.

ft = Feet.

ISM = Incremental Sampling Methodology.

NFA = No further action or evaluation required for this COC.

PAH = Polycyclic Aromatic Hydrocarbon.

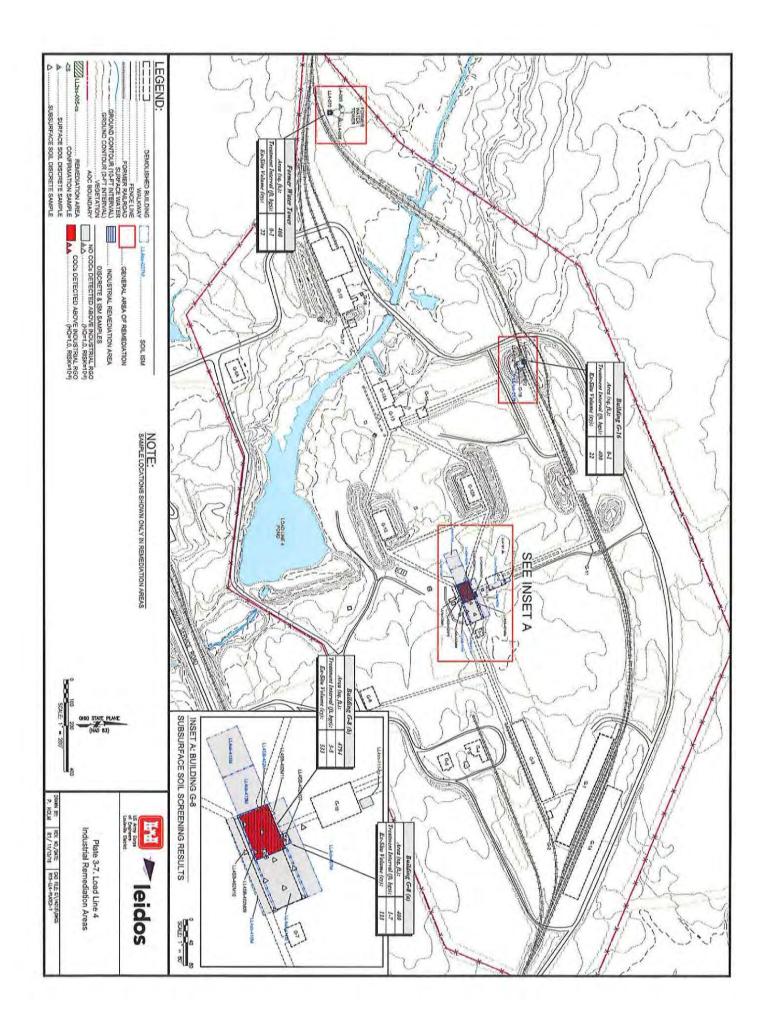
PCB = Polychlorinated Biphenyl.

RDX = Hexahydro-1,3,5-Trinitro-1,3,5-Triazine.

RGO = Remedial Goal Option.

TNT = Trinitrotoluene.

			Location	Southwe	st & no	orthwest s	ides of	Bldg. EB-:	10, 20	Northeast & southeast side of Bldg. EB-10, 20					0,20	RI Discrete Sample Locations				
			Sample ID	LL3SB-414M-0101-SO		LL3SB-414M-0102-SO		LL35B-414M-0103-SO		LL3SB-415M-0101-SO		LL358-415M-0102-SO		LL3SB-415M-0103-SO		LL3SD-416M-0001-SO		LL3SD-417M-0001-SO	LL3SD-418M-0001-50	% RSD
			Sample	Prima		Prima		Prima		Prima		Prima		Prima		Prima		QC	QA	-
			ple Date	6/29/2		6/29/2		6/29/2		6/29/20		6/29/2	011	6/29/2		7/6/20		7/6/2011	6/26/2011	
			le Depth	1-3	3	3-9	5	5-7		1-3		3-5		5-7		0-0.	5	0-0.5	0-0.5	
Analyte	Units	Value	REC or RSL	Value	0	Value	Q	Value	Q	Value	Q	Value	Q	Value	0	Value	0	Malua 0	Nobe C	
Aluminum	mg/kg	34,960	NG	value	Q	value	L.	value	u	value	ų	value	ų	value	u	10000	Q	Value O 9400 D	Value C 10600 E	_
Antimony	mg/kg	136	RFA		-								-			1.4		1.5 J-	5.9	87
Arsenic	mg/kg	19.8	BKG1	11	1.	7.5	1.	9.5	1.	11	-	13	-	19	-	1.4		13 J-	12.9	4
Barium	mg/kg	3,506	NG		1-	1.5	-	3.3	3-			15	-	15	-	150		130 J-	158	9
Beryllium	mg/kg	160	RSL	-			-	-	-	Contraction of the	1	1200			2	1.3		1.2 D	1.2	4
Cadmium	mg/kg	109	NG		-		-			1			-			1.0		1.1 J	0.71	21
Calcium	mg/kg	NA	NA	1000			-									15000		9800	10700 B	23
Chromium (as Cr-3)	mg/kg	196,942		1	1		1000	122.25			1	1000		(26		31 J-	298	131
Cobalt	mg/kg	70.3	NG		-	1			1.	1		1.1.1		1	1.0	21		19 J-	13.3	22
Copper	mg/kg	27,138	RFA					1	1		1					9.6	J-	10 J-	18.6	39
Iron	mg/kg	NA	NA			1			15	1000	-		200			24000		25000	43200	35
Lead	mg/kg	4,000	RSL				1	1	1		1 - 1	2		1		23	J-	22 J-	56.1	57
Magnesium	mg/kg	NA	NA					1		-		ian 1			Des. 1	3400		2400	2780	17
Manganese (1' - 5')	mg/kg	1,450	BKG1				1							1	-	3700	J-	3400 J-	4880	19
Nickel	mg/kg	13,463	RFA				1		1			1	1			28	J-	30 J-	25.4	8
Potassium	mg/kg	NA	NA								1	1.			(See 1)	730	1.	670	1040	24.
Selenium	mg/kg	390	RSL					5	1	- The	[Land	G	1.1	J-	1.1 J-	2.4	48
Silver	mg/kg	3,240	RFA											1		0.43	U	0.5 U	0.017 U	
Sodium	mg/kg	NA	NA			1					-			· · · · · ·		110		69 J	431	97.
Thallium	mg/kg	47.6	RFA				1						1			0.16	1	0.13 J	4	155.
Vanadium	mg/kg	1,558	RFA	1. 2			1	and a				1000		1		23		23	20.8	5.
Zinc	mg/kg	196,589		1	-			1 2 1					The second	1		160		170 J-	136 B	11.
Chromium, hexavalent	mg/kg	16.4	NG				0	1			1	1-	1			0.46	J	0.45 J	2.7 U	
Mercury	mg/kg	165	RFA									1.000		1		0.30		0.33	0.23	17.
																		% RSD	Average =	38.


Table 7-5-A Ravenna LL 3 Surface and Subsurface Soil Sampling Results: Metals

See page 7-49 for a list of acronyms and definitions.

CHARACTERIZATION SAMPLING LOAD LINES 1, 2, 3, 4, AND 12

CONTRACT NO. W912QR-10-P-0037

7-26

				Conclusion							
	1.2.2.		Metal			PAH			P	СВ	for
	Residen	tial RGO	400	1.6	0.16	1.6	0.16	1.6	1.2	2.4	Unrestricted
Station	Date	Depth (ft)	Lead	B(a)A	B(a)P	B(b)F	DA	IP	PCB- 1254	PCB- 1260	(Residential) Land Use
					Former Wa				1		1
LL4-070	08/21/01	0-1	1340	**	-	-		-	-	-	Remediate
LL4-068	08/21/01	0-1	599								Remediate
LL4-069	08/21/01	0-1	414			-	-				Remediate
				100	Building	G-16					
LL4-071	08/21/01	0-1	618	0.15 ^{a,b}	0.21	0.54 ^{<i>a,b</i>}		0.15 0.6		28	Remediate
					Buildin				-		
LL4-075	08/22/01	0-1			0.15 0.15	0.32 ^{a,b}		0.098 ^{a,b}		4.5	Remediate
LL4-076	08/22/01	0-1		241.	0.19	0.3"		0.19"		0.18"	NFA
LL4-078	08/22/01	0-1				-	-	-		2.6	Remediate
	I there is				Building	G-18					1
LL4ss-219M	06/27/08	0-1		0.382°	0.325	0.291"	÷	-	-	-	NFA
	1				Building			-			1
LL4-095	08/22/01	0-1	501	-							NFA
				B	uildings G-1.	2 and G-12A					1.0000
LL4-116	08/14/01	0-1	418							-	Remediate
LL4-113	08/21/01	0-1		-	0.77	1.3ª	0.38	1.4ª		-	Remediate
LL4-158	08/24/01	0 - 1		0.99 ^a		5.4				1000	NFA
LL4ss-420M	06/26/11	0-1		0.48 ^a	0.38	0.51ª	0.065"				Remediate
					Buildin	g G-8					
LL4SB-402M	08/16/10	1-3.0		0.13"	0.17	0.28 ^a	0.033 ^a	-		-	Remediate
LL4SB-402M	08/16/10	3.0 - 5.0	-	4.I	3.7	4.5	0.48	2.1		-	Remediate
LL4SB-402M	08/16/10	5.0 - 7.0		2.2	1.9	2.4	0.3				Remediate
LL4SB-402M07	08/16/10	1 - 7.0		54	51	61	6.2	29			Remediate
LL4SB-402M10	08/16/10	1 - 7.0	-		0.28	0.65°	0.062 ^a	0.2ª	-	-	Remediate
LL4SB-402M11	08/16/10	1 - 7.0		0.29 ^a	0.38	0.46	0.059°	0.3"			Remediate
LL4sb-407M	06/27/11	1-3.0		3.3	2.9	3.1	0.38	1.6		-	Remediate
LL4sb-407M	06/27/11	3.0 - 5.0		0.62"	0.53	0.63 ^a	0.069 ^a		-	-	Remediate
LL4sb-410M	06/27/11	5.0 - 7.0		0.56 ^a	0.57	1.1"	0.16			-	Remediate
LL4sb-411M	06/27/11	1-3.0	-	0.16"	0.16"	0.31°	0.036				Remediate
LL4ss-206M	07/01/08	0-1		2.02	2	1.94	0.327	-	-		Remediate

Table 2-19. Summary of Human Health COC Concentrations in Soil and Conclusions for Unrestricted (Residential) Land Use at Load Line 4

Table 2-19. Summary of Human Health COC Concentrations in Soil and Conclusions for Unrestricted (Residential) Land Use at Load Line 4 (continued)

			· · · · · · · · · · · · · · · · · · ·	1	Conclusion						
Residential RG			Metal PAH						P	СВ	for
	Residen	tial RGO	400	1.6	0.16	1.6	0.16	1.6	1.2	2.4	Unrestricted
	Depth (ft)	Lead	B(a)A	B(a)P	B(b)F	DA	IP	PCB- 1254	PCB- 1260	(Residential) Land Use	
					Building	G-10					
LL4-117	08/21/01	0 - 1		-		-			2.9	-	Remediate
		a			Building	G-6			-		
LL4-141	08/14/01	0-1		0.53 ^a	0.5	0.67 ^a	0.085				Remediate
				N	North of Buil	ding G-1A		-			and the second
LL4-185	08/11/01	0-0.5	563			11 1 1 4 1 1 1	-				Remediate
					Building	G-4					
LL4-131	08/14/01	0-1	987					i defe			NFA

^aSample concentration is less than RGO; however, this chemical contributes to a sum of ratios greater than 1.

^bSample location is recommended for remediation for other chemicals of interest; however, this chemical is not recommended as a COC for remediation.

All units are mg/kg.

B(a)A = Benz(a)anthracene.

B(a)P = Benzo(a)pyrene.

B(b)F = Benzo(b)fluoranthene.

COC = Chemical of Concern.

D = Discrete soil sample.

DA = Dibenz(a,h)anthracene.

ft = Feet.

IP = Indeno(1,2,3-cd)pyrene.

ISM = Incremental Sampling Methodology.

NFA = No further action or evaluation required for this COC.

PAH = Polycyclic Aromatic Hydrocarbon.

PCB = Polychlorinated Biphenyl.

RGO = Remedial Goal Option.

Station		9.23	Metals PAHs						1	
	Industri	al RGO	800	29	2.9	29	2.9	9.9	Conclusion for	
	Date	Depth (ft)	Lead	B(a)A	B(a)P	B(b)F	DA	PCB- 1260	Commercial/Industrial Land Use	
				For	ner Water To	wer				
LL4-070	08/21/01	0-1	1340		+-				Remediate	
And A Law Street				L	Building G-10	5				
LL4-071	08/21/01	0-1			-	-	-	28	Remediate	
					Building G-8					
LL4SB-402M	08/16/10	3-5		4.1ª	3.7	4.5 ^a	0.48 ^a		Remediate	
LL4SB-402M07	08/16/10	1-7		54	51	61	6.2	-	Remediate	
					Building G-4					
LL4-131	08/14/01	0-1	987					1.000	NFA	

Table 2-20. Summary of Human Health COC Concentrations in Soil and Conclusions for Industrial/Commercial Land Use at Load Line 4

^aSample concentration is less than RGO; however, this chemical contributes to a sum of ratios greater than 1.

All units are mg/kg.

B(a)A = Benz(a)anthracene.

B(a)P = Benzo(a)pyrene.

B(b)F = Benzo(b)fluoranthene.

COC = Chemical of Concern.

DA = Dibenz(a,h)anthracene.

ft = Feet.

NFA = No further action or evaluation required for this COC.

PAH = Polycyclic Aromatic Hydrocarbon.

PCB = Polychlorinated Biphenyl.

RGO = Remedial Goal Option.

ATTACHMENT 12

Responses to Regulator Comments