DISCLAIMER STATEMENT

This report is work prepared for the United States Government by PIKA International, Inc. In no event shall either the United States Government or PIKA have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance on the information contained herein, nor does either warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other espect of this collection

of information, inc (0704-0188), 1216 subject to any pena PLEASE DO NO	duding suggestions Jefferson Davis Highlity for falling to comp TRETURN YOU	for reducing hway, Suit ply with a UR FOR	ng the burn te 1204, Ar collection o tM TO TI	den, to Department of Defens lington, VA 22202-4302. Resi f information if it does not displa IE ABOVE ADDRESS.	e, Washington He pondents should be by a currently valid (adquarters S aware that i OMB control	Services, Directorate for Information Operations and Reports notwithstanding any other provision of law, no person shall be number.	
1. REPORT DA	ATE (DD-MM-Y)			ORT TYPE	1		3. DATES COVERED (From - To)	
4. TITLE AND)-09-2011 SUBTITUE			Technica	11	5a CO	July 14, 2011- September 20, 2011 NTRACT NUMBER	
		or the C	amalian	ce Restoration Site CC	'_RVAAP_80	oa. oo.	W912QR-10-P-0058	
				vironmental Services		Sh CP	ANT NUMBER	
		***				Sp. Giir	NA NA	
Ravenna Arm	y Ammunition	. Plant (1	RVAAP) Ravenna, Ohio		So DDO	OGRAM ELEMENT NUMBER	
						00. THO	NA	
6. AUTHOR(S	1					KA DDO	DJECT NUMBER	
	ı ell, PIKA Proje	ect Man	ager			50. THO	NA NA	
Ditail Stockwo	on, i nea i roje	,ot 141(11)	agoi			E. TAC	SK NUMBER	
						58. FAS	NA	
						E4 14/01	INA RK UNIT NUMBER	
						ot. WUI		
						L	NA	
		ION NAI	ME(S) A	ND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER	
PIKA Internat 12723 Caprice							NA	
Suite 500								
Stafford TX, 7								
				IE(S) AND ADDRESS(ES)	ł		10. SPONSOR/MONITOR'S ACRONYM(S)	
	rps of Enginee n Luther King,						USACE	
Louisville, KY		31, 1 IAC	C				11. SPONSOR/MONITOR'S REPORT	
							NUMBER(S)	
42 DIETDIDIA	ION/AVAILABIL	ITV CTA	ATCAJENI'	<u> </u>			NA	
Reference Dis		,11 t 31 P	41 CIVICIA	I				
KOICICIICC DIS	tiotition i ago							
40 011001 545	NEADY MOTEO							
	NTARY NOTES							
None								
14. ABSTRACT	r							
							of Work (SOW) for the Compliance	
Restoration (C Ravenna, Ohic		/AAP-8	10 and O	ther Environmental Se	rvices at the I	Kavenna .	Army Ammunition Plant (RVAAP) in	
Kavenna, Ome	,							
15. SUBJECT T	rerms			· · · · · · · · · · · · · · · · · · ·			ANY TRANSPORTED AND A STATE OF THE STATE OF	
Investigation F	Report includes	Geoph	ysical S	urvey				
16. SECURITY	CLASSIFICATIO	N OF:		17. LIMITATION OF	18. NUMBER	19a. NAN	ME OF RESPONSIBLE PERSON	
a. REPORT	b. ABSTRACT		S PAGE	ABSTRACT	or I	Brian Stockwell		
NA	NA	N	ΙA	NA	253	19b. TELI	EPHONE NUMBER (Include area code)	

DRAFT INVESTIGATION REPORT FOR THE COMPLIANCE RESTORATION SITE CC-RVAAP-80 GROUP 2 PROPELLANT CAN TOPS AND OTHER ENVIRONMENTAL SERVICES

Ravenna Army Ammunition Plant (RVAAP)

Ravenna, Ohio

Contract No. W912QR-10-P-0058

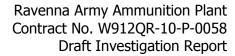
Submitted to

U.S. Army Corps of Engineers, Louisville 600 Dr. Martin Luther King, Jr. Place Louisville, KY 40202

Submitted by

PIKA International, Inc 12723 Capricorn Drive, Suite 500 Stafford, TX 77477

September 20, 2011


Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

DOCUMENT DISTRIBUTION

2

1

3	Name/Organization	Hard Copies	Electronic Copies	
4	NGB	0	1	
5	OHARNG - Camp Ravenna	1	1	
6	Ohio EPA-NE District - DERR	2	1	
7	PIKA Program Manager	1	1	
8	PIKA Project Manager	2	2	
9	REIMS	0	1	
10	RVAAP Facility Manager	2	2	
11	USACE Program Manager - Louisville	2	2	
12				
13	NGB – National Guard Bureau			
14	OHARNG – Ohio Army National Guard - Camp Ravenna			
15	Ohio EPA-NEDO-DERR – Ohio Environmental Protection Agency NE District-DERR			
16	PIKA – PIKA International Inc.			
17	REIMS – Ravenna Environmental Information Management System			
18	RVAAP – Ravenna Army Ammunition Plant			
19	USACE – United States Army Corps of Engineers – Louisville District			

1		TABLE OF CONTENTS	
2	TABLE	OF CONTENTS	Il
3	LIST C	F APPENDICIES	II
4	LIST C	F ACRONYMS	IV
5	1.0	INTRODUCTION	7
6 7 8 9 10	1.1 1.2 1.3 1.4 1.5	OBJECTIVE RVAAP LOCATION RVAAP HISTORY RVAAP – CC-RVAAP-80: GROUP 2 PROPELLANT CAN TOPS RVAAP- 09: LOAD LINE 2	8 9 10
11 12	2.0	COMPLIANCE RESTORATION SITE CC-RVAAP-80 SITE INVESTIGATION ACTIVITIES	12
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10		
30	3.0	CONCLUSIONS	24
31			

1		LIST OF APPENDICIES	
2	Appendix A	Scope of Work	
3	Appendix B	Figures	
4	Appendix C	Weekly Reports & Photo Documentation	
5	Appendix D	Geophysical Survey Report	
6	Appendix E	Summary Table, Field Sample Reports and Lab Results	
7	Appendix F	Water Removal Approval	
8	Appendix G	Data Validation	
9	Appendix H	Anomaly Clusters Photo Log	

1		LIST OF ACRONYMS
2	AOC	Area of Concern
3	APP	Accident Prevention Plan
4	BRACD	United State Base Realignment and Closure Division
5	CELRL	USACE - Louisville District, Louisville, Kentucky
6	CR	Compliance Restoration
7	DOD	Department of Defense
8	EZ	Exclusion Zone
9	FM	Facility Manager
10	FWCUGs	Facility Wide Cleanup Goals
11	GOCO	Government Owned, Contractor Operated
12	GPS	Global Positioning System
13	GPR	Ground Penetrating Radar
14	HAZWOPER	Hazardous Waste Operations and Emergency Response
15	HTRW	Hazardous Toxic and Radioactive Waste
16	IAW	In Accordance With
17	IDW	Investigation Derived Waste
18	IRP	Installation Restoration Program
19	LL	Load Line
20	m	meter
21	MC	Munitions Constituents
22	MEC	Munitions and Explosives of Concern
23	MI	Multi-Increment

		Litvi orinental Services
1	mm	millimeter
2	MSD	Minimum Separation Distance
3	NGB	National Guard Bureau
4	Ohio EPA	Ohio Environmental Protection Agency
5	OHARNG	Ohio Army National Guard
6	OSHA	Occupational Safety and Health Administration
7	PAM	Pamphlet
8	PIKA	PIKA International, Inc.
9	PjM	Project Manager
10	QC	Quality Control
11	RRD	Range Related Debris
12	RSL	Regional Screening Level
13	RVAAP	Ravenna Army Ammunition Plant
14	SOW	Scope of Work
15	SSHP	Site Safety and Health Plan
16	SUXOS	Senior Unexploded Ordnance Supervisor
17	USACE	United States Army Corps of Engineers
18	USEPA	United States Environmental Protection Agency
19	USP&FO	United States Property and Fiscal Officer
20	UXO	Unexploded Ordnance
21	UXOSO	Unexploded Ordnance Safety Officer
22	UXOT III	Unexploded Ordnance Technician III/Team Leader
23	VOC	volatile organic compound

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

1 WP Work Plan

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

1.0 INTRODUCTION

- 2 This report describes the activities performed to complete the Scope of Work (SOW)
- 3 for the Compliance Restoration (CR) Site CC-RVAAP-80 and Other Environmental
- 4 Services at the Ravenna Army Ammunition Plant (RVAAP) in Ravenna, Ohio.
- 5 Authorization for performance is contained in contract W912QR-10-P-0058 issued to
- 6 PIKA International, Inc. (PIKA) by U.S. Army Corps of Engineers Louisville District
- 7 (CELRL), Louisville, Kentucky. A copy of the SOW is presented in Appendix A.

8 9

1

The Report describes the procedures, operational sequence, and resources PIKA used for the following tasks:

10 11 12

13

14 15

16

17

18

19 20

21

22

23

- Perform a geophysical delineation of the buried or near surface materials (propellant can tops, etc.) in the designated Group 2 areas;
- Collect surface soil samples based on the results of the geophysical delineation;
- Analyze soil samples for the common propellants used by the Department of Defense (DoD) including Nitrocellulose, Nitroglycerine, Nitroguanidine, and Perchlorate, with one (1) of the samples also analyzed for the RVAAP full suite (i.e., Explosives, Propellants, TAL Metals, VOCs. SVOCs, Pesticides, PCBs and Mercury) and Cyanide;
- Dispose of all Investigation Derived Waste (IDW); and
- Pump and remove accumulated water from the excavation at RVAAP Load Line (LL) 2 Building DB-802 in accordance with Ohio Environmental Protection Agency (Ohio EPA) requirements for ground application.

242526

1.1 Objective

2728

29

The objective of this project was to conduct an initial investigation of the Group 2 Propellant Can Tops areas. The following objectives were achieved during the investigation:

303132

Delineate the boundaries of the propellant can top areas;

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

- Confirm the presence or absence of releases of propellants and/or other munitions constituents (MC) to the surface soils at this area of concern (AOC); and
- Remove accumulated water from the excavation at LL2 Building DB-802 to facilitate completion of scheduled site restoration operations by others under a separate United States Base Realignment and Closure Division (BRACD) contract.

1.2 RVAAP Location

When the RVAAP Installation Restoration Program (IRP) began in 1989, the RVAAP was identified as a 21,419 acre installation. The property boundary was resurveyed by the Ohio Army National Guard (OHARNG) over a two year period (2002 and 2003) and the actual total acreage of the property was found to be 21,683 acres. As of February 2006, a total of 20,403 acres has been transferred to the National Guard Bureau (NGB) and subsequently licensed to the OHARNG for use as a military training site known as Camp Ravenna. The current RVAAP consists of 1,280 acres scattered throughout Camp Ravenna.

Camp Ravenna is in northeastern Ohio within Portage and Trumbull Counties, approximately 4.8 kilometers (3 miles) east northeast of the city of Ravenna and approximately 1.6 kilometers (1 mile) northwest of the city of Newton Falls. The RVAAP portions of the property are solely located within Portage County. Camp Ravenna/RVAAP is a parcel of property approximately 17.7 kilometers (11 miles) long and 5.6 kilometers (3.5 miles) wide bounded by State Route 5, the Michael J. Kirwan Reservoir, and the CSX System Railroad on the south; Garret, McCormick, and Berry roads on the west; the Norfolk Southern Railroad on the north; and State Route 534 on the east. Camp Ravenna is surrounded by several communities: Windham on the north; Garrettsville 9.6 kilometers (6 miles) to the northwest; Newton Falls 1.6 kilometers (1 mile) to the southeast; Charlestown to the southwest; and Wayland 4.8 kilometers (3 miles) to the south.

When RVAAP was operational, Camp Ravenna did not exist and the entire 21,683-acre parcel was a government-owned contractor operated (GOCO) industrial facility.

September 2011 Page 8 Rev 0

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

The RVAAP IRP encompasses investigation and cleanup of past activities over the entire 21,683 acres of the former RVAAP, references to the RVAAP in this document are considered to be inclusive of the historical extent of RVAAP, unless otherwise specifically stated. A regional map indicating the General Location and Orientation of the RVAAP is presented in Appendix B as Figure 1. A facility map of the RVAAP is presented in Appendix B as Figure 2.

1.3 RVAAP History

Production at the facility began in December 1941 with the primary missions of depot storage and ammunition loading. The installation was divided into two separate units, the Portage Ordnance Depot and the Ravenna Ordnance Plant. The Portage Ordnance Depot's primary mission was depot storage of munitions and components, while the Ravenna Ordnance Plant's mission was to load and pack major caliber artillery ammunition and to assemble munitions initiating components that included fuzes, boosters, and percussion elements. In August 1943, the installation was redesignated the Ravenna Ordnance Center and again, in November 1945, as the Ravenna Arsenal.

The plant was placed in standby status in 1950 and operations were limited to renovation, demilitarization, and normal maintenance of equipment, along with storage of ammunition and components. The plant was reactivated during the Korean Conflict to load and pack major caliber shells and components. All production ended in August 1957, and in October 1957 the installation was again placed in a standby condition. In October 1960, the ammonium nitrate line was renovated for demilitarization operations which involved melting explosives out of bomb casings for subsequent recycling. These operations commenced in January 1961. In July 1961, the plant was again deactivated. In November 1961, the installation was divided into the Ravenna Ordnance Plant and an industrial section, with the entire installation designated as the RVAAP. In May 1968, RVAAP began loading, assembling, and packing munitions on three (3) LLs and two (2) component lines in support of the Southeast Asia Conflict. These facilities were deactivated in August 1972. The demilitarization of the M71A1 90 millimeter (MM) projectile

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

extended from June 1973 until March 1974. Demilitarization of various munitions was conducted from October 1982 through 1992.

Until 1993, RVAAP maintained the capability to load, assemble, and pack military ammunition. As part of the RVAAP mission, the inactive facilities were maintained in a standby status by keeping equipment in a condition to permit resumption of production within prescribed limitations. In September 1993, RVAAP was placed in inactive caretaker status and subsequently changed to modified caretaker status. The LLs and associated real estate were determined to be excess to the U.S. Army.

Until 1999, the RVAAP was a 21,683 acre installation. A total of 20,403 acres of the former 21,683 acre RVAAP was transferred to the United States Property and Fiscal Officer (USP&FO) for Ohio in 1996 and 1999 for use by OHARNG as a military training site. The current RVAAP consists of 1,280 acres in several distinct parcels scattered throughout Camp Ravenna. RVAAP and Camp Ravenna are co-located on contiguous parcels of property. Camp Ravenna perimeter fence encloses both installations.

1.4 RVAAP – CC-RVAAP-80: Group 2 Propellant Can Tops

CC-RVAAP-80 consists of the Group 2 Propellant Can Tops area. Propellant can lids or tops were identified on the ground surface/near surface at the southern end of the former Group 2 Ammunition Storage Area. These materials are typically classified as Range-Related Debris (RRD) (similar to munitions packaging materials). This site was never used or classified as an operational range. It is believed that the discarded propellant can tops might qualify as inert scrap metal.

The propellant can tops located at the south end of Group 2 were initially identified by OHARNG trainees in the winter of 2008. The propellant can tops were observed in the vegetated area located immediately south of the ammunition storage magazines in the vicinity of the southern railroad spur lines (see Appendix B, Figure 3). This area consists of approximately 539,572 square feet (12.4 acres).

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

The CELRL performed an emergency survey with a metal detector over a portion of the southern area ground surface. Results of the survey revealed multiple magnetic anomalies in the surface and near surface soils. On-site Unexploded Ordnance (UXO) personnel visually identified the surface anomalies as propellant can tops. During the emergency survey, it was also noted that the ground surface had been disturbed and contained hummocks (mounds) ranging in height from one (1) foot to two (2) feet throughout the survey area.

As such, the propellant can tops or RRD are of environmental concern for the subject area. A geophysical survey was necessary to identify the anomalies and anomalous areas within the subject area, and to characterize the subject area boundary(ies). The limited soil investigation within the identified anomalous areas was warranted to assess possible releases of propellants or MC to the surface soils in the vicinity of the can tops. The site is a low probability site in regard to encountering munitions and explosives of concern (MEC). Therefore, only UXO construction support was required for this project.

1.5 RVAAP- 09: Load Line 2

Former excavation activities conducted at LL2 (RVAAP-09) have resulted in the accumulation of water within the Building DB-802 footprint. To facilitate restoration activities at this location, the accumulated water needed to be removed from the excavation to assist in the restoration of the site. A site showing the location of Building DB-802 within LL2 is presented in Appendix B, Figure 4.

NOTE: As per the requirements of the SOW, the water removal services were to coincide with the BRACD contractor's schedule. To that end, the water removal services were conducted by PIKA from May 3, 2010, through May 18, 2010, to facilitate the June 2010 restoration activities at LL2 by the BRACD contractor. All water removal services were conducted in accordance with Ohio EPA requirements. A copy of the Ohio EPA e-mail correspondence relative to approval for discharging the surface water to ground surface is provided in Appendix F.

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other **Environmental Services**

COMPLIANCE RESTORATION SITE CC-RVAAP-80 SITE 2.0 **INVESTIGATION ACTIVITIES**

The following documents were prepared and approved prior to starting the Compliance Restoration Site CC-RVAAP-80 (Group 2 Propellant Can Tops) sit investigation operations:
 February 25, 2011, "Final Project Work Plan for the Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environment Services"
 December 17, 2010, "Final Project Management Plan for the Compliant Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Othe Environmental Services"
 February 2011, "Final Accident Prevention Plan for the Compliant Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Othe Environmental Services"
 February 2011, "Final Site Safety and Health Plan for the Compliand Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Othe Environmental Services"
 February 2011, "Final Sampling and Analysis Plan for the Compliand Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Othe Environmental Services"
 February 2011, "Final Quality Assurance Project Plan for the Compliand Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Othe Environmental Services"
The sequence of operations for the Group 2 Propellant Can Tops site investigation as approved in the work plan (WP) was:

September 2011 Page 12 Rev 0

Mobilization and site preparation – Conducted 4 through 6 April 2011;

12

17 18

19 20

21 22

2324

25

2627

Ravenna Army Ammunition Plant Contract No. W912QR-10-P-0058 Draft Investigation Report

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

- Surface sweep Conducted 7 14 April 2011;
- Mark wetland boundaries Conducted 21 April 2011
- Vegetation Removal Conducted 26 April through 5 May 2011;
- Geophysical Delineation of Group 2 Propellant Can Tops area Conducted 9
 through 11 May 2011;
- Multi-Increment (MI) surface soil sampling within areas identified as
 containing propellant can tops Conducted 26 May 2011;
- Disposal of IDW Conducted 26 May 2011;
- Survey boundaries of MI sample areas Conducted 31 May 2011;
- Demobilization Conducted 31 May 2011, and
- Data Validation Conducted 28 June through 5 July 2011

Details pertaining to each of the Group 2 Propellant Can Tops site investigation operations are provided in the subsections that follow. Photographic documentation of the Group 2 Propellant Can Tops site investigation operations are provided in the Weekly Reports that are contained in Appendix C.

2.1 Mobilization and Site Preparation

2.1.1 Mobilization of Manpower

PIKA scheduled the arrival of the work force in a manner designed to facilitate immediate productivity. All PIKA personnel mobilized to the site met requirements for Occupational Safety and Health Administration (OSHA) Hazardous Waste Operations and Emergency Response (HAZWOPER) training and medical surveillance requirements as specified in the Accident Prevention Plan (APP)/Site Safety and Health Plan (SSHP). Site personnel were trained to perform the specific tasks to

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

which they were assigned. At no time were site personnel tasked with performing an operation or duty for which they did not have appropriate training and experience.

2 3 4

1

2.1.2 Preliminary Activities

5 6

During the initial mobilization, PIKA site management personnel engaged in the following preliminary activities:

7 8 9

10

11

12

13

14

15

- Coordinated with the RVAAP Facility Manager (FM) and Camp Ravenna Range Control to finalize access and communications requirements for operations within the Group 2 area;
- Contacted and coordinated with local vendors for accommodations as well as vendors/suppliers for routine purchases to ensure smooth project start up; and
- Inspected the work area to identify possible environmental constraints, terrain limitations, and other interferences.

16 17 18

2.1.3 Equipment

19 20

21

22

2324

All equipment was inspected as it arrived to ensure proper working order. All instruments and equipment that required routine maintenance and/or calibration were checked initially upon arrival and then checked again prior to use each day. As part of the initial equipment set-up and testing, PIKA also installed and tested its communication equipment to include the following:

25 26

 Cellular Phone Service to maintain communication with RVAAP security personnel.

28 29

27

• Hand-held portable radios used to maintain communications between the Project Manager (PjM) and the UXO Technician III (UXOT III)/Team Leader.

30 31

32

 Cellular telephones equipped with Direct Connect Service (very high frequency band) to be used as back up communications between the PjM and the UXOT III/Team Leader.

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

 Prior to initiating site activities, PIKA coordinated communication with Camp Ravenna Range Control, including information relative to planned road blocks, as needed.

3 4 5

1

2

2.1.4 Site-Specific Training

6 7

8 9

10

11

12

13

As part of the mobilization process, PIKA performed site-specific training for all on-site personnel assigned to this project. The purpose of this training was to ensure that all on-site personnel fully understood the operational procedures and methods to be used by PIKA at RVAAP and the Camp Ravenna Group 2 site. Individual assigned responsibilities and safety and environmental concerns associated with site operations were also covered in the training. The Senior UXO Supervisor (SUXOS)/UXO Safety Officer (UXOSO) conducted the training sessions which included the topics identified below.

141516

17

2021

- Field equipment operation, including the safety and health precautions, field inspection, and maintenance procedures that were to be used.
- Interpretation of relevant sections of the Final WP and APP/SSHP as they related to the tasks that were being performed.
 - Personnel awareness of potential site and operational hazards associated with site-specific tasks and operations.
- Public relations to ensure that personnel did not make any public statements to the media without prior coordination with and approval from the RVAAP FM.
 - Environmental concerns and sensitivity including the location of wetlands.
 - Additional OSHA or CELRL required training per the approved APP.
 - Identification features, hazards, and disposal methods of MEC/UXO that may be encountered.

28 29

25

26

27

September 2011 Page 15 Rev 0

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

2.1.5 Permitting

No permits were identified to be required for the execution of work under this scope of work.

2.1.6 Tenant Relocation

PIKA worked with the RVAAP FM in conjunction with the Camp Ravenna Range Control in order to minimize any effects caused by the performance of any/all of the operational tasks conducted during the Group 2 Propellant Can Tops site investigation. However, upon arrival to the site for conducting the surface sweep operations, it was noted that OHARNG training operations were being conducted within the northwest area of the site adjacent to Building AA-150. As such, tenant relocation was required prior to initiating site operations.

2.1.7 Site Control

The site was a low probability site in regard to encountering MEC and only UXO "construction support" was required for the project. As such, in accordance with (IAW) Engineering Pamphlet 75-1-2, *Munitions and Explosives of Concern (MEC) Support During Hazards, Toxic, and Radioactive Waste (HTRW) and Construction Activities, a* Minimum Separation Distances (MSD) was not required; however, as a precaution, PIKA instituted a 200-foot diameter exclusion zone (EZ) during the investigation operations for site control and site security purposes. This consisted of establishing barriers including warning cones and yellow tape to control the points of site access along strategic points of the Group 2 access roads. All personnel non-essential to the field activities complied with the limits of EZ.

2.2 Surface Sweep

 Prior to initiating the brush clearing and geophysical delineation operations, the PIKA on site UXO technicians conducted an instrument-assisted surface sweep of the entire Group 2 Propellant Can Tops site. The surface sweep was conducted using Schonstedt GA-52Cx metal detectors and a XLT-E Series all whites metal detector to

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

locate and mark any MEC items that could have been present at the site. No MEC items were found. The surface sweep activities were conducted 7 through 14 April 2011. Photo documentation of the surface sweep activities are provided in the weekly reports contained in Appendix C.

2.3 Marking Wetlands

Prior to initiating the vegetation removal and site investigation operations, PIKA located and marked the existing wetlands at the site to ensure protection throughout the site investigation operations. The boundaries of the wetlands were located by a licensed surveyor on 21 April 2011 using survey data provided by Ms. Katie Tait, Camp Ravenna Environmental Specialist. A map showing the location of the wetlands within Group 2 Propellant Can Tops site is presented in Appendix B as Figure 5. Photo documentation of the surveying operations are provided in the weekly reports contained in Appendix C.

2.4 Vegetation Removal

PIKA conducted vegetation removal operations at the Group 2 Propellant Can Top Area to facilitate the site investigation operations. The vegetation removal operations were conducted from 26 April through 6 May 2011 and included the removal of ground level vegetation and small trees. Vegetation removal was conducted using a tractor mounted brush cutter with the deck locked in position at six (6)-inches above ground level. Prior to and during vegetation removal, UXO Technicians visually searched the area where the vegetation was removed to ensure the area was free of surface MEC/UXO items or other items that may have presented a physical hazard. No MEC/UXO items were encountered during the brush clearing operations. Photo documentation of the vegetation removal operations is provided in the weekly reports contained in Appendix C.

2.5 Geophysical Delineation of Group 2 Propellant Can Tops Site

PIKA subcontracted GeoSearches, Inc., located in Chagrin Falls, Ohio to conduct the geophysical survey of the Group 2 Propellant Can Top Area. The objective of the

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

survey was to delineate the boundaries of the propellant can top areas within the site. The geophysical survey of the Group 2 Propellant Can Top Area was conducted 9 through 13 May 2011.

The geophysical survey was conducted using Electromagnetics (EM61-MK2). Prior to initiating the geophysical activities, a surveyed grid consisting of 100-foot by 100-foot grids was installed across the site to facilitate the investigation. During the geophysical survey, detected anomalies were surveyed utilizing the Global Positioning System (GPS)-integrated EM61 for generating data maps and then marked in the field using colored pin flags to aid in selection of the surface soil samples. At the completion of the geophysical survey operations, a total of five (5) distinct high anomaly density areas (i.e., anomaly clusters) were delineated at the site. Each of these areas was located roughly within the center portion of the site, stretching south to north. Individual anomalies were also detected across the site, but primarily in the southeastern and northwestern regions of the site. Figure 6 in Appendix B shows the location and layout of the anomalies and anomaly clusters delineated within Group 2.

A number of propellant can tops and/or cans were visible on the surface within each of the delineated cluster areas, most notably within cluster areas 1, 3, and 5. A few of the individual anomalies detected outside the cluster areas were also visible on the surface but only within the southeast portion of the site and one near the center of the site along the rail bed. These visible individual detections were identified as propellant cans and/or tops. None of the individual anomalies detected within the northwest region of the site were visible. A photo log showing the propellant can tops and cans within each cluster area as well as the individual propellant cans and tops that were visible on the surface is presented in Appendix H.

Upon delineating the boundaries of the propellant can tops cluster areas, Ground Penetrating Radar (GPR) was used to determine the approximate depth of the anomalies within each cluster area in order to determine if there was any evidence of potential excavation and/or dumping operations. Results of the GPR data indicate that all of the anomalies within the five (5) cluster areas exist at the surface or within near surface soils at no more than nine (9)-inches in depth. Additionally,

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

there were no signs of disturbance within the subsurface lithology (i.e., signs of excavation and dumping).

Details pertaining to all of the geophysical survey operations are provided in the GeoSearches survey report provided in Appendix D. Photo documentation of the geophysical delineation activities are provided in the weekly reports contained in Appendix C.

2.6 Multi-Increment Surface Soil Sampling

 Based upon results of the geophysical survey, MI surface soil samples were collected within the boundaries of selected anomaly cluster areas in order to assess possible releases of propellant MC to the surface soils from the propellant can tops and cans. As per the SOW, a total of three (3) biased MI surface soil samples were collected and analyzed for the common propellants used by DoD, including Nitrocellulose, Nitroglycerine, Nitroguanidine and Perchlorate. Additionally, one of the samples was analyzed for the RVAAP full suite. A PIKA UXO team consisting of two UXO Technicians provided construction oversight services during all sampling operations IAW Engineering Pamphlet 75-1-2, *Munitions and Explosives of Concern (MEC) Support During Hazards, Toxic, and Radioactive Waste (HTRW) and Construction Activities*.

 Prior to collecting the samples, a site walk was conducted on 25 May 2011 with representatives from the Ohio EPA and PIKA to evaluate each of the anomaly cluster areas for selecting the three (3) MI sample areas. Based upon site observations including size of the area and amount of visible propellant cans and tops within each area, anomaly cluster areas 1, 3 and 5 were selected for sampling and are identified as MI sample Area 3, MI sample Area 2, and MI sample Area 1, respectively. The locations along with the corresponding MI sample identifications for each of the identified sample areas are provided in Appendix B, Figure 7. The surface soil sampling operations were conducted on 26 May 2011. Photo documentation of the MI surface soil sampling activities is provided in the weekly reports contained in Appendix C.

1 2

3 4

5

6 7

8

9

11 12

13

14 15

16

17

18

19

20

21

Ravenna Army Ammunition Plant Contract No. W912QR-10-P-0058 Draft Investigation Report

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

For each sampling location, a minimum of 30 random aliquots were collected from zero (0) to one (1) foot below ground surface (bgs) using a 34 inch diameter dedicated stainless steel step probe, placed in a plastic lined container, and mixed in the field. The aliquot locations were selected by the sample technician walking over the entire area and randomly selecting aliquot locations, which were marked with flagging. All the aliquots collected from each MI sample area were placed in a labeled container for transport to the laboratory. At the laboratory, the samples were dried, sieved, and finely ground for specific constituent analysis. All three (3) of the MI samples were analyzed for Nitrocellulose, Nitroglycerine, Nitroguanidine and Perchlorate. Additionally, one of the samples was also analyzed for the RVAAP full suite. Sample PCTss-002M-001-SO within MI sample Area 2 was selected for the RVAAP full suite due to the large amount of propellant can tops and propellant cans present relative to Areas 1 and 3. IAW the SAP, the MI sampling method was not utilized for the volatile organic compounds (VOC) component of this RVAAP full suite sample. Instead, one discrete sample was collected from within the MI sample Area 2. The location of the discrete sample was biased toward the area most likely to contain volatile compounds. No soil staining or other obvious signs of potential VOC contamination was observed within MI sample Area 2 so the discrete sample was biased toward the section of MI sample Area 2 which contained the heaviest concentration of propellant can top debris items. The soil portion for the discrete sample for the VOC analyte was placed directly in the sample container and was not composited or further processed in the field or laboratory.

222324

25

The boundaries of each of the MI sample areas were surveyed on 31 May 2011 to document the layout and location within Group 2 for future use as needed. The total area for each of the MI sample areas is as follows:

26 27

- 28 MI sample area 1 equals 198 square meters;
- 29 MI sample area 2 equals 553 square meters; and
- 30 MI sample area 3 equals 330 square meters.

31

A map showing the surveyed limits of the MI sample boundaries is provided in Appendix B, Figure 8. A copy of laboratory sample results for all the samples,

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

including QC samples (i.e., duplicate, equipment rinsate, and MS/MSD), is provided in Appendix E.

2.7 Summary of Surface Soil Sample Results

A tabulated summary of all the sample results are provided in Tables 1 and 2, Appendix E. All the sample results have been compared to the established Facility Wide Cleanup Goals (FWCUGs) for National Guard Trainee, Regional Screening Level (RSL), and the established Surface Soil Background Criteria. A narrative summary of the results is provided below:

1. None of the samples (including the RVAAP full suite sample) reported detectable concentrations of the chemicals of concern above the established FWCUGs.

2. The RVAAP full suite sample (MI sample Area 2, Sample PCTss-002M-0001) did show detectable concentrations for five (5) metal analytes (arsenic, lead, mercury, vanadium, zinc) that are slightly above the RSL and/or Surface Soil Background Criteria.

3. Both perchlorate and propellants were reported at MI Sample Area 1 (sample PCTss-001M-0001-SO); including the associated duplicate sample, and also at MI Sample Area 3 (sample PCTss-003M-0001-SO), however each result was flagged as estimated because the target analytes were detected at concentrations below the reporting limit.

2.8 Disposal of IDW

The MI surface soil samples were collected using pre-decontaminated, dedicated, 3/4-inch stainless steel step probes. Additionally, all the soils generated from the 30 aliquots at each of the MI sample areas were included with the samples that were sent to the laboratory and all the results indicate that none of the samples reported detectable concentrations of the chemicals of concern above the established FWCUGs. As such, no IDW was generated that required disposal.

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

2.9 Data Validation

The analytical methods employed during the implementation of the Group 2 site investigation operations are defined in the Facility-Wide Sampling and Analysis Plan and Facility-Wide Quality Assurance Project Plan for the RVAAP. A listing of all the analytical methods used for this project are provided in Appendix G. All of the Group 2 sample analysis was performed by Test America in Sacramento, CA. Laboratory results included documentation verifying compliance with sample log-in procedures, analytical holding times, and quality control procedures for analyses. The laboratory also provides information about the percent of recovery attained in laboratory spike samples, calibration curves (initial and continuing) dilutions, and detection limits. The laboratory flagged data if results warranted.

All sample results were systematically verified and validated by Purves Environmental in Hudson, OH in accordance with the United States Environmental Protection Agency (USEPA) Test Methods for evaluating Solid Waste SW-846, National Function Guidelines for Data Validation, and The US Army Corps Louisville Chemistry Guideline, Version 5.0. The validation process was conducted to ensure that the precision and accuracy of the analytical data were adequate for their intended use. The validation process minimized the potential of using false results in the decision-making process and ensured that detected and non-detected compounds were accurately identified.

Data validation determined that all samples were properly analyzed, diluted as needed, quantitated and that no problems were encountered with the system performance of any of the instruments. As such, data validation determined that all data are 100 percent complete and usable. A copy of the data validation reports is provided in Appendix G.

2.10 Demobilization

Upon completion of the tasks covered under this SOW, PIKA demobilized from the site on 31 May 2011. The demobilization activities consisted of the following steps:

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

•	1		
•	2	•	

3

4

- 1. Remove/demobilize all PIKA equipment.
- 2. Demobilize any other remaining equipment and supplies.
- 3. Demobilize personnel.

5

1

3

5

6 7

8 9

10

11 12

13 14

15

16

17

18 19

20

21

22

23

24

25

26

27

28

29

30

31

32

Ravenna Army Ammunition Plant Contract No. W912QR-10-P-0058 Draft Investigation Report

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

3.0 CONCLUSIONS

- 2 The objectives of this project were to:
 - Delineate the boundaries of the propellant can top areas;
 - Confirm the presence or absence of releases of propellants and/or other MC to the surface soils at the Group 2 Propellant can Tops site; and
 - Remove accumulated water from the excavation at Building DB-802 (LL2) to facilitate completion of scheduled site restoration operations by others.

The defined objectives were achieved through completion of the SOW as summarized below:

- The water removal services were conducted by PIKA from May 3, 2010, through May 18, 2010, to facilitate the June 2010 restoration activities at LL2 by the BRACD contractor. All water removal services were conducted in accordance with Ohio EPA requirements. A copy of the Ohio EPA e-mail correspondence relative to approval for discharging the surface water to ground surface is provided in Appendix F.
- 2. Based upon geophysical survey a total of five (5) distinct high anomaly cluster areas were delineated within the Group 2 Propellant Can Tops site. Individual anomalies were also detected across the site outside of the delineated cluster areas, primarily within the southeastern and northwestern regions of the site as shown on Figure 6, Appendix B. Based upon visual observations within the delineated cluster areas it is evident that the detected anomalies are comprised almost exclusively of propellant can tops and/or propellant cans. Additionally, of the individual anomalies detected that were visible on the surface, each was identified as a propellant can and/or top. It is unlikely that the remaining shallow subsurface anomalies detected within the northwestern and southeastern portions of the site are MEC or munitions debris (MD) given the fact that none of these type items were encountered either during the precautionary surface sweep operations conducted prior to the brush clearing operation, or during the course of any of the subsequent site investigation operations. However, further investigation (i.e., geophysical)

1

2

3 4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

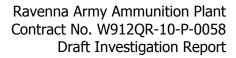
23

24

25

26

27


28

Ravenna Army Ammunition Plant Contract No. W912QR-10-P-0058 Draft Investigation Report

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

- and/or anomaly digs with UXO support) of at least a percentage of the subsurface individual anomalies may be warranted for verification.
- 3. Results of the GPR data within the five (5) cluster areas indicate that all of the anomalies exist at the surface or within near surface soils at no more than nine (9)-inches in depth and that there were no signs of disturbance within the subsurface lithology (i.e., no signs of excavation and burial).
- 4. Based upon visual observation of the five (5) delineated cluster areas, one MI surface soil sample was collected from each of the three cluster areas identified as having the most propellant cans and tops present in order to confirm the presence or absence of releases of propellants and/or other MC to the surface soils. The sample results indicate that none of the samples reported detectable concentrations of the chemicals of concern above the The RVAAP full suite sample (MI sample Area 2, established FWCUGs. Sample PCTss-002M-0001) did show detectable concentrations for five (5) metal analytes (arsenic, lead, mercury, vanadium, zinc) that are slightly above the RSL and/or Surface Soil Background Criteria. Both perchlorate and propellants were reported at MI Sample Area 1 (sample PCTss-001M-0001-SO); including the associated duplicate sample, and also at MI Sample Area 3 (sample PCTss-003M-0001-SO), however each result was flagged as estimated below the reporting limit and screening criteria. None of the samples reported detectable concentrations of the chemicals of concern above the established FWCUGs.
- 5. From the results and based upon site observations, it is it is likely that the two (2) cluster areas that were not sampled during this investigation (i.e., cluster areas 1 and 4 as depicted on Figure 6 in Appendix B) would show similar sample results. Collecting surface soil sampling within the individual anomaly areas located in the northwestern and southeastern portions of the site would likely be contingent upon results of any further investigation operations conducted in these areas.

29 30

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

1	Appendix A
2	
3	Scope of Work

September 2011 Rev 0

SCOPE OF WORK

SCOPE OF WORK
FOR
COMPLIANCE RESTORATION SITE CC-RVAAP-80
AND OTHER ENVIRONMENTAL SERVICES
RAVENNA ARMY AMMUNITION PLANT
RAVENNA, OHIO

22 MARCH 2010

The Louisville District, U.S. Army Corps of Engineers (USACE) is requesting environmental services as described in this Scope of Work (SOW) at the former Ravenna Army Ammunition Plant (RVAAP).

Compliance Restoration (CR) site CC-RVAAP-80 (Group 2 Propellant Can Lids) is potentially impacted by range-related debris (RRD) and/or chemical residues of munitions or munitions constituents (MC). Response actions are required under the Defense Environmental Restoration Program (DERP), Installation Restoration Program (IRP) to further identify these materials and investigate this AOC. The SOW identifies specific requirements that will be completed by the Contractor.

This SOW also identifies other services required of the Contractor. This portion of the SOW pertains to water removal services at Load Line 2.

1.0 GENERAL INFORMATION

1.1 Site Description and Location

Past Department of Defense (DoD) activities at the former RVAAP date back to 1940 and include the manufacturing, loading, handling, and storing of military explosives and ammunition. Until 1999, the RVAAP was identified as a 21,419-acre installation. The Ohio Army National Guard (OHARNG) resurveyed the property boundary, finishing in 2003, and the actual total acreage was found to be 21,683.289 acres. As of February 2006, a total of 20,403 acres of the former 21,683-acre RVAAP have been transferred to the National Guard Bureau (NGB) via the United States Property and Fiscal Officer (USP&FO) for Ohio and subsequently licensed to the OHARNG for use as a training site. Currently, RVAAP consists of 1,280 acres in several distinct parcels scattered throughout the confines of the OHARNG's Camp Ravenna Joint Military Training Center (Camp Ravenna). RVAAP's remaining parcels of land are located completely within the Camp Ravenna perimeter fence. The RVAAP facility is controlled by the U.S. Army Base Realignment and Closure Division (BRACD).

Camp Ravenna/RVAAP is located in northeastern Ohio within Portage and Trumbull Counties, approximately 4.8 kilometers (three miles) east/northeast of the City of Ravenna and approximately 1.6 kilometers (one mile) northwest of the Village of Newton Falls. The RVAAP portions of the property are located completely within Portage County. Camp Ravenna (inclusive of RVAAP) is a parcel of property approximately 17.7 kilometers (11 miles) long and 5.6 kilometers (3.5 miles) wide. The facility is bounded by State Route 5, the Michael J. Kirwan Reservoir, and the CSX System Railroad on the south; Garrett, McCormick, and Berry Roads on the west; the Norfolk Southern Railroad on the north; and State Route 534 on the east. Camp Ravenna is surrounded by several communities: Windham on the north, Garrettsville 9.6 kilometers (six miles) to the northwest; Newton Falls 1.6 kilometers (one mile) to the southeast; Charlestown to the southwest, and Wayland 4.8 kilometers (three miles) to the south. The property location is depicted in Figure 1.

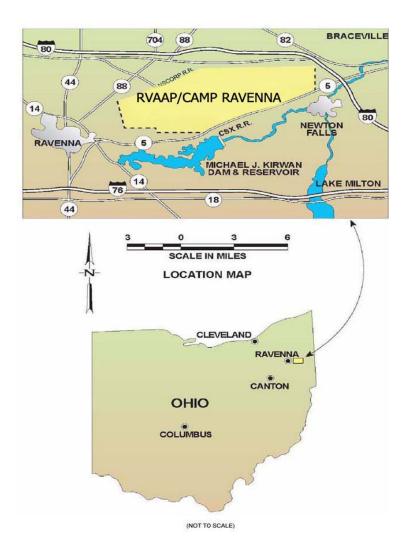


Figure 1. RVAAP/Camp Ravenna Location and General Vicinity Maps

Camp Ravenna did not exist when the RVAAP was operational, and the entire 21,683-acre parcel was a GOCO industrial facility. The RVAAP BRACD sites encompass investigation and clean up of past activities over the entire 21,683 acres of the former RVAAP. Therefore, references to the RVAAP in this document shall include the historical extent of the RVAAP, inclusive of the combined acreages of the current Camp Ravenna and RVAAP, unless otherwise specifically stated.

1.2 Areas of Concern

CC-RVAAP-80: Group 2 Propellant Can Lids

CC-RVAAP-80 consists of the Group 2 Propellant Can Lids area. Propellant can lids or tops were identified on the ground surface/near surface at the southern and northern ends of the former Group 2 Ammunition Storage Area. These materials are typically classified as RRD

(similar to munitions packaging materials); however, this site was never used or classified as an operational range. It is believed that the discarded propellant can lids might qualify as inert scrap metal.

The propellant can lids located at the south end of Group 2 were initially identified by Ohio Army National Guard trainees in the winter of 2008. The propellant can lids were observed in the vegetative area located immediately south of the ammunition storage magazines in the vicinity of the southern railroad spur lines. This area consists of approximately 539,572 square feet (12.4 acres). Reportedly, propellant can lids were also identified at the northern end of the Group 2 area by the Ohio Army National Guard. The reported northern area consists of approximately 43,418 square feet (1 acre).

The Louisville District USACE performed an emergency survey with a metal detector of a portion of the southern area ground surface. Results of the initial investigation revealed multiple magnetic anomalies in the surface and near surface soils. On-site UXO personnel visually identified the surface anomalies as propellant can lids or tops. During the emergency survey it was also noted that the ground surface had been disturbed and contained hummocks (mounds) ranging in height from 1' to 2' throughout the survey area.

As such, the propellant can lids (or RRD) are of environmental concern for the subject area. A geophysical survey is necessary to identify the anomalies and anomalous areas within the subject area, and to characterize the subject area boundary(s).

The anomalies and anomalous areas should be clearly marked during the field survey in order to facilitate a limited soil investigation, and possible future clean up activities. The limited soil investigation is warranted to assess possible releases of propellants (MC) to the surface soils in the vicinity of the can lids.

The site is a low probability site in regards to encountering munitions and explosives of concern (MEC). Therefore, only unexploded ordinance (UXO) construction support will be needed for this project. However, if prior to this project or during any phase of this project MEC are found at the site, the project may be stopped and the site will need to be reevaluated and potentially assigned a new probability rating.

RVAAP-09: Load Line 2

Former excavation activities conducted at Load Line 2 (RVAAP-09) have resulted in the accumulation of water within the building DB-802 footprint. Restoration activities are now planned at this location, and the accumulated water needs to be removed from the excavation to assist in the restoration of the site.

2.0 PROJECT OBJECTIVES

The objective of this project is to conduct an initial investigation of the above-described Group 2 Propellant Can Lids areas. The investigation shall achieve the following objectives:

- Delineate the boundaries of the propellant can lid areas
- Confirm the presence or absence of releases of propellants and/or other MC to the surface soils at this AOC

Project objectives and the SOW associated with the water removal services at Load Line 2 are described in Section 8.0. Other portions of this document pertain to the activities and requirements associated with the Group 2 Propellant Can Lids areas.

3.0 GENERAL REQUIREMENTS

The Contractor shall possess all the required expertise, knowledge, equipment and tools required to perform the work described in this SOW in accordance with established industry standards. The Contractor shall be responsible for and shall furnish all labor, materials, plant, equipment, and supplies necessary to fully execute the Firm Fixed-Price work described herein within the contract performance period (see Section 4.0).

The Contractor shall perform all environmental services pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the Superfund Amendments and Reauthorization Act (SARA), and National Oil and Hazardous Substances Contingency Plan (NCP) requirements, and coordinating with the Ohio Environmental Protection Agency (EPA) as appropriate. The installation is not on the National Priorities List (NPL).

The Contractor shall comply with all applicable federal, state, and local rules, laws, and regulations. The Contractor shall fulfill the work described in this SOW in a manner that is consistent with any applicable orders or permits, all cleanup agreements or guidance for the Facility, and relevant DoD and Army policy that exist or may become effective during the performance of this contract. This specifically includes the Director's Final Findings & Orders (DFFO), which the Army and Ohio EPA agreed to in 2004. The DFFO establishes certain criteria that apply to the relationship between the Army and Ohio EPA, including but not limited to approval authority, document review schedules, and various agency responsibilities. All work performed shall conform to the DFFO.

3.1 Government Property

All documents, maps, photographs, graphics, mailing lists, radio telemetry transmitters, computer files and the like developed by the Contractor while completing the requirements of this SOW are government property and will be delivered to the facility Point of Contact (POC) upon completion of this project.

3.2 Data Security

The Contractor shall not release any data, reports, or materials collected and/or developed during this project without the expressed written consent of the U.S. Army Corps of Engineers (USACE).

3.3 Deliverables and Document Format

The Contractor shall prepare and submit the following project management documents:

• Project Management Plan (PMP) including a Quality Control Plan (QCP)

In addition (but not limited to), the Contractor shall prepare the following project specific documents (as applicable) in support of the IRA:

- Work Plan (WP)
- Sampling and Analysis Plan (SAP)
- Site Safety and Health Plan (SSHP)
- Quality Assurance Project Plan (QAPP)
- Report of Findings and Conclusions

The Work Plan documents can be developed as Addenda to the approved Facility-Wide documents; however, references to the Facility-Wide documents should be held to a minimum with respect to describing actual field assessment activities. The Work Plan should be treated as the body of the report while the above associated plans are entered as tabbed sections (or incorporated by reference).

The above documents are subject to stakeholder review and approval. All documents shall be submitted by the Contractor in preliminary draft, draft, and final format. The number of documents and their distribution is described below:

Preliminary Draft Documents

Organization	Number of Paper Copies	Number of Electronic Copies
USACE	4	4
RVAAP	2	2
Ohio Army National Guard	1	1
REIMS	1	1

Draft Documents

Organization	Number of Paper Copies	Number of Electronic Copies
USACE	4	4

RVAAP	4	2
Ohio EPA	2	2
Ohio Army National Guard	1	1
REIMS	1	1

Final Documents

Organization	Number of Paper Copies	Number of Electronic Copies
USACE	4	4
RVAAP	4	2
Ohio EPA	2	2
Ohio Army National Guard	2	2
REIMS	1	1

The Army, through the Contracting Officer's Representative (COR), will receive preliminary draft documents from the Contractor and will provide review comments to the Contractor within thirty business days. Once preliminary draft comments are addressed, the Army will review draft and final documents concurrently with the other stakeholders. The Contractor shall ensure that review and response periods are consistent with the applicable regulatory drivers (see DFFO). All documents shall be identified as draft until completion of stakeholder coordination, when they will be signed and finalized. One copy of the final documents shall be placed in both the project repositories and Administrative Record (for CERCLA documents).

All documents shall be submitted in electronic and printed format in accordance with the latest version of the document entitled "Ravenna Army Ammunition Plant Deliverable Document Formatting Guidelines." The referenced document is available and can be downloaded from www.rvaap.org/docs/pub/Formatting_Guidelines.pdf.

All reports are to be typed. Field notes shall be reviewed for quality assurance (QA) and then be submitted in handwritten form. Other handwritten field originals shall also be included in the reports.

In addition, final electronic document files must be in text-searchable PDF format and be accompanied by defined metadata for upload into the Army Repository of Environmental Documents (READ).

The contractor shall secure a USACE approved laboratory that can provide analytical data in the USACE Automatic Data Review (ADR) electronic format. All samples collected and analyzed under this agreement shall be provided in the referenced electronic data deliverable (EDD) format. The project-specific library file must be maintained to accurately reflect all of the analytical quality and will be provided to both the USACE and the sub-contract laboratory for use in screening EDD submittals.

Data review must comply with the procedures outlined in the Louisville Quality System Manual (QSM) Supplement and provide compatibility with data management software, at minimum, Environmental Data Management System (EDMS) software. The Contractor shall set up

libraries in ADR/EDMS for deriving site constituents of potential concern (COPCs). The contractor is responsible for keeping ADR current.

All electronic data submitted by the contract laboratory is required to be error-free, and in complete agreement with the hardcopy data. Data files are to be delivered both by e-mail and/or high density CD accompanying the hardcopy data reports. The disk must be submitted with a transmittal letter from the laboratory that certifies the file is in agreement with hardcopy data reports and has been found to be free of errors using the latest version of the ADR evaluation software provided to the laboratory. The contract laboratory, at its cost, will correct any errors identified by the USACE, Louisville District.

All documents shall be provided in electronic format for posting to the Ravenna Environmental Information Management System (REIMS). All analytical data shall also be provided in EDD format for posting to REIMS. REIMS is currently administered by Mr. Patrick Ryan of SAIC. Mr. Ryan can be contacted at (865) 481-4664. The Contractor shall coordinate with Mr. Ryan to ensure proper sample numbering, EDD formatting, etc.

All project documents must meet the approval of the USACE. Project documents must also meet the approval of the Ohio Environmental Protection Agency (EPA) and all other stakeholders in compliance with the DFFO, and the most current version of the RVAAP Deliverable Document Format Guidelines.

3.4 Electronic Data Files

Currently the Louisville District standards for software are MicroStation Version 8 (.dgn) and MS Office Version 2003 Professional. These products are to be considered the default software of choice unless otherwise specified within individual task order scopes of work, as determined by individual customer requirements or as the District incorporates updated versions of its software.

CADD Files: When required and requested in a task order, all CADD files (survey and topographic data, remedial action design drawings, contaminant migration maps and models, etc.) shall be digitized into files compatible with Microstation vector format (or other format if directed in the individual task order). Specific design file features will be provided in the individual task orders. CADD files shall also meet any upgrade to all Corps of Engineers systems throughout the duration of the contract.

GIS Files: When required and requested in a task order, all GIS files (survey and topographic data, remedial action data collected, contaminant migration maps generated, etc.) shall be submitted compatible with Environmental Systems Research Institute (ESRI) 9.x (shape files or personal geodatabases) format (or other format if directed in the individual task order). All GIS data shall be made compliant to the Spatial Data Standards for Facilities, Infrastructure, and Environment (SDSFIE) version 2.6 (http://www.sdsfie.org/). Specific GIS file features will be provided in the individual task orders. GIS files shall also meet any upgrade to all Corps of Engineers systems throughout the duration of the contract. All GIS data shall be collected using the local State Plane coordinate system using the North American Datum of 1983 and the North

American Vertical Datum of 1988. All files shall be collected using linear units of US Survey feet for both the horizontal and vertical.

Electronic Files: All final reports and documents, including laboratory analysis data, shall be submitted on CD/DVD. Report documents shall be in Adobe (pdf) format, and shall be accompanied by the Contractor's associated work files.

3.5 Conducting Meetings

Unless otherwise specified, the Contractor shall arrange and conduct all meetings required by this SOW. Unless otherwise specified, the installation shall provide facilities for meetings.

3.6 Project Stake Holders

For the purposes of this SOW, project stakeholders include the Army, Ohio Army National Guard, National Guard Bureau, Ohio EPA, the Restoration Advisory Board (RAB), and the general public. The Contractor's required level of involvement may differ for each AOC/Site, and the Contractor shall be responsible for obtaining comments with appropriate approval or concurrence on project deliverables consistent with applicable regulatory drivers and agreements for each AOC/CR site.

4.0 STATEMENT OF WORK

CLIN No. 1 – The Contractor shall implement and complete an initial environmental investigation at Compliance Restoration site CC-RVAAP-80, the Group 2 Propellant Can Lids Areas.

CLIN No. 2 – The Contractor shall provide water removal services as described at Load Line 2.

The Contractor is encouraged to become thoroughly familiar with all programmatic and scheduling requirements contained in this SOW as well as the DFFO in order to prepare the cost proposal. The Contractor is also encouraged to attend a preliminary site visit at the RVAAP facility with the USACE, other Army representatives, and the Ohio EPA. The purpose of the site visit is to familiarize the Contractor with the AOC/CR sites, and to provide other relative information (as applicable) necessary for the Contractor to prepare the cost proposal.

The following additional details and assumptions should also be considered in the preparation of the cost proposal:

- All of the access routes on the subject property are managed by the Ohio Army National Guard (OHARNG). Additionally, the primary AOC listed in this SOW is located on OHARNG property. Military training and other OHARNG activities are priority on OHARNG property. Contractor activities must be coordinated with the OHARNG through Mr. Mark Patterson, the BRACD Facility Manager.
- Contractor is subject to OHARNG security and access procedures.
- Contractor may not disturb soil, water, vegetation, buildings, equipment or animals without prior coordination and approval of the OHARNG.
- Contractor is responsible for repairing damage to any roads, soil, vegetation, drainage, or otherwise caused by their activities on or adjacent to OHARNG property.

All work performed on this SOW shall follow the Contractor's approved Project Management Plan (PMP), and shall be performed in accordance with the following existing documents (if applicable) developed for the facility (or updates to the existing documents, if applicable):

- Ohio EPA's Director's Final Findings and Orders (DFFO) for RVAAP (Ohio EPA 2004)
- RVAAP's Facility-Wide Human Health Risk Assessor Manual (USACE 2004)
- Facility-Wide Ecological Risk Assessment Work Plan (USACE 2003a)

- Facility-Wide Sampling & Analysis Plan and Quality Assurance Project Plan (USACE 2001b)
- Facility-Wide Safety and Health Plan (USACE 2001a)
- Facility-Wide Groundwater Monitoring Program Plan (Portage 2004)
- RVAAP Community Relations Plan (USACE 2003b)
- RVAAP Final Position Paper for the Application and Use of Facility-Wide Human Health Cleanup Goals (USACE 2009)

The above documents are available for review online at http://www.rvaap.org. Following contract award, the Contractor may direct questions to the USACE by contacting Mr. Derek Kinder at 502-315-6393.

4.1 CLIN No. 1 – Environmental Investigation at Compliance Restoration Site CC-RVAAP-80.

The detailed Tasks for this SOW are discussed in the following sections.

Task 1.0: Project Management

The Contractor shall provide a Project Manager qualified to oversee all work described in the SOW. The Project Manager shall serve as the single point of contact (POC) and liaison for all work required. All work shall be accomplished with adequate internal controls and review procedures to eliminate conflicts, errors, and omissions and to ensure the accuracy of all work completed under this SOW. The Contractor shall accept direction only from the USACE Contracting Officer (KO) or the designated COR. Any changes to this SOW must be authorized in writing by the KO.

Task 1.1: Project Management Plan (PMP)

Contractor shall develop a Preliminary Draft PMP within 30 days of contract award. The PMP shall summarize Contractor's overall technical and management approach for this project. The PMP shall also include the summary of work to be performed and project schedule, project team roles and responsibilities, and a deliverable matrix in accordance with the project performance objectives.

The PMP shall also include a Quality Control Plan (QCP). The QCP will be developed to define how quality control will be executed for products and performance of work activities by all personnel, including subcontractors.

Upon receipt of USACE comment responses, Contractor shall submit a Draft PMP for stakeholder review and approval. The Contractor shall submit the Final PMP within 30 calendar

days of receipt of COR comments on the draft document or in compliance with the schedule specified by the Ohio EPA. Schedules specified by the Ohio EPA will take precedence over the USACE schedule. Army approval is achieved through the COR, and Ohio EPA approval is achieved through receipt of EPA documentation confirming PMP approval.

Task 1.2: Site Safety and Health Plan (SSHP)

Contractor shall develop a Preliminary Draft Site-Specific Safety and Health Plan (SSHP) addenda for each appropriate task of the project. The SSHP will be presented as an addendum to the Facility-Wide Health and Safety Plan (USACE 2001a). The SSHP Addendum will address task hazard analyses, emergency response, contingency plans, and emergency contacts. The SSHP will include UXO avoidance services. The SSHP will meet the requirements of federal, state, and local regulations and will identify safety and health regulations applicable to the work. The Preliminary Draft SSHP shall be submitted to the USACE within 30 calendar days of contract award.

Upon receipt of USACE comment responses, Contractor shall submit a Draft SSHP for stakeholder review and approval. The Contractor shall submit the Draft SSHP within 30 calendar days of receipt of COR comments on the draft document or in compliance with the schedule specified by the Ohio EPA. Schedules specified by the Ohio EPA will take precedence over the USACE schedule. Army approval is achieved through the COR. The Ohio EPA may provide review and comment on the SSHP; however, does not approve health and safety documents for USACE Contractors.

Task 1.3: Project Execution/Client Correspondence

The following activities and deliverables shall be performed in support of this project:

- Project Kick-Off Meeting
- Monthly Progress Reports
- Records of Conversations
- Teleconference Progress Updates
- Meeting Minutes Documentation
- Public Involvement / RAB Meetings

The above activities will be conducted by the Contractor to achieve project execution, and maintain client correspondence with the USACE. These activities are discussed in further detail below.

Task 1.3.1: Project Kick-Off Meeting - Upon Army and Ohio EPA approval of the PMP and SSHP, the Contractor shall implement and attend an initial Project Kick-Off Meeting at the RVAAP facility. The Contractor shall present the details of the PMP, the SSHP, and the anticipated approach to conducting the IRA Activities. The Kick-Off Meeting is intended to assist the Contractor with the submittal and stake holder approval of the related Work Plan documents.

- **Task 1.3.2: Monthly Progress Reports** The Contractor shall submit monthly written progress reports to the USACE for every month by the fifth (5th) day of the following month. The monthly reports will include an accurate and current account of all work completed and deliverables furnished to the government. Progress reports will be prepared following the described sections presented in Section XVI of the DFFO. Contractor's payment invoices may accompany the monthly progress reports.
- **Task 1.3.3:** Records of Conversations The Contractor shall prepare and maintain records of telephone conversations and significant verbal conversations conducted in support of this project. These records will be forwarded with monthly progress reports.
- **Task 1.3.4: Teleconference Progress Updates** The Contractor shall attend periodic teleconference progress meetings with the USACE to provide project status updates. The progress update meetings are currently held on a biweekly basis.
- **Task 1.3.5:** Meeting Minutes Documentation The Contractor shall document discussions at all meetings held in support of this project. Meeting minutes will be typed, and distributed to the USACE and installation POCs within 7 calendar days following the meeting.
- **Task 1.3.6: Public Involvement / RAB Meetings** The Contractor should note that the Installation has an active Restoration Advisory Board (RAB) and detailed information concerning the RAB's organization and activities will be provided to the Contractor. The Contractor shall attend a minimum of one (1) applicable RAB meeting during the specified period of performance at the direction of the COR.

All public participation coordination shall be approved by the Army through the Facility Manager and the COR. The Contractor shall provide the necessary support to initiate, schedule, and address all public participation aspects of the project (e.g., preparation of briefings, presentations, fact sheets, newsletters, articles/public notices to news media, and notifications to RAB members). The Contractor shall be responsible for requesting and addressing all public comments consistent with the applicable regulatory drivers. The USACE COR, or designee, will attend and represent the Army at all meetings with the public.

Task 2.0: Preparation of Work Plan and Supporting Documents

The Contractor shall prepare a work plan (WP) and the necessary supporting documents to implement and complete an initial environmental investigation at the designated Group 2 Propellant Can Lid Areas. The investigation shall consist of a geophysical delineation of the designated areas, and a limited soil investigation of the surface soils in these areas.

Consistent with the RVAAP Deliverable Document Format Guidelines, the deliverables shall consist of the WP, the Sampling and Analysis Plan (SAP), the Site Safety and Health Plan (SSHP as discussed in Task 1.2), and the Quality Assurance Project Plan (QAPP). The WP documents shall follow the most recent version of the outline specified in the RVAAP Deliverable Document Format Guidelines.

The following paragraphs describe the requirements associated with the Contractor's development of the WP documents:

Contractor shall develop a Preliminary Draft WP, SAP and QAPP within 60 days of approval of the final PMP. The SAP and QAPP will be developed as an Addendum, tiered under the existing RVAAP Facility-Wide SAP (USACE 2001b), to comply with USACE and Ohio EPA requirements.

All analytical work shall be performed in accordance with the most recent version of the DOD Quality System Manual (QSM). Sampling objectives will be established and the appropriate method will be identified to satisfy the performance objectives. The chemical analytical laboratory must be selected and included in all QAPP deliverables. No sampling activities shall commence until all plans are approved.

Upon receipt of USACE comment responses, Contractor shall submit a Draft SAP and QAPP for stakeholder review and approval. The Contractor shall submit the Final documents within 30 calendar days of receipt of Ohio EPA comments. Schedules specified by the Ohio EPA will take precedence over the USACE schedule. Army approval is achieved through the COR, and Ohio EPA approval is achieved through receipt of EPA correspondence confirming the Plan approvals.

Task 3.0: Implementation of Work Plan

Within 30 days of Final WP approval, Contractor shall begin implementation of the WP by performing the field assessment activities specified in the approved plan. A revised schedule for implementation of field activities may be warranted due to weather conditions or other unforeseen changes in the project schedule. The USACE reserves the right to modify the schedule for field activities due to inclement weather, and for safety and health purposes.

The Contractor shall be responsible for and bear all associated costs necessary to achieve the objectives of the WP. This includes, but is not limited to, possible vegetation clearing activities, the geophysical delineation, and the soil sampling and analysis activities. Right of Entry to the Ravenna facility shall be coordinated with the OHARNG and the Army. Coordination with both agencies must first go through the Ravenna Facility Manager.

Task 3.1: Geophysical Delineation

The Contractor shall implement and complete a geophysical delineation of the buried or near surface materials (propellant can lids, etc.) in the designated Group 2 areas. The geophysical equipment must be appropriate and capable of identifying horizontal and vertical anomalies cause by buried waste. The proposed equipment and anticipated limitations shall be detailed in your proposal. The geophysical survey personnel shall be capable of producing working maps in the field or be capable of transmitting data back to the office and receiving a map back from the office prior to beginning work the next day.

The Contractor shall provide a cost of mobilization and demobilization, and a unit cost per day for the total geophysical survey cost including equipment, personnel, and daily map production support.

Task 3.2: Collecting Surface Soil Samples

Contractor shall collect Multi Increment® (MI) surface soil samples based on the results of the geophysical delineation. Up to three (3) (3 maximum plus QA samples) MI surface soil samples will be collected within those areas that are identified to include near surface propellant can lids or other possible waste materials.

The MI surface soil samples shall be obtained by collecting a minimum of 30 increments per sample area from 0 to 1 foot below ground surface (bgs). MI Sample areas should be approximately one quarter of an acre or less in size. Multiple smaller areas where anomalies are found can be combined into one designated MI sample area. Anomaly avoidance should be used during sampling to ensure soils around the anomalies can be collected to the desired depth of 1 foot bgs. The Contractor shall provide a unit price and total price for this task.

Task 3.3: Sample Analysis

Contractor shall provide fixed unit costs and total cost for analyses as specified in Table 1 included in this SOW. Costs shall include all labor, materials, equipment, and supplies necessary to complete this task. All samples shall be analyzed for TAL Metals, and common propellants used by the DoD including Nitrocellulose, Nitroglycerine, Nitroguanidine, and Perchlorate. One (1) of the samples shall also be analyzed for the RVAAP full suite as prescribed in the Facility Wide SAP. Contractor shall provide for quality control testing as specified in the facility wide SAP. QA samples will be collected at a frequency of 10% and sent to a lab contracted by the USACE. All analytical data should be reported per Ravenna specific ADR specifications. Analytical methods shall be in accordance with the Facility-Wide SAP and the Contractor's approved Work Plan.

IDW samples shall be analyzed for the Full List TCLP for waste characterization purposes. Upon project completion, the Government will de-obligate any unused funds associated with this Task.

Table 1 Costs for Soil Sample Analysis

14010 1 00010 1	ioi son sun	ipie i iliaij	010		
	Fixed Unit	Number	Total		
Analyte		of Tests	Cost		
Surface Soil					

MI Sample Prep		
TAL Metals		
Mercury		
Hexavalent Chromium		
Propellants		
Explosives		
SVOCs		
VOCs		
Pesticides		
PCBs		
TCLP		

Task 3.4: Disposal of IDW

Within 90 days of the generation of IDW, Contractor shall characterize and properly dispose of all IDW at approved off-site waste disposal facilities in compliance with all applicable Federal, State, and local rules, laws and regulations. Land application of select wastes may apply (subject to approval). Contractor is responsible for maintaining all applicable waste characterization and disposal records, and for producing a waste disposal report for submittal to and approval by the Ohio EPA. IDW disposal activities shall be coordinated with the RVAAP Facility Manager and the OHARNG. (Note: All IDW is to be removed from the subject property no later than 90 days following waste generation.)

Task 3.5: Data Management / Data Validation

EPA CLP Level IV data validation will be required to meet the requirements of the DoD QSM. The Contractor shall perform data verification for all analytical results according to the process provided in the Louisville QSM Supplement and QC criteria in the DoD QSM. USACE Louisville District shall contract a third-party contractor for a minimum 10% or greater validation of analytical results. The Contractor shall include the completed validation report as presented by the validator as an appendix to the final document, and discuss results in the project report. The report shall also be sent directly from the validator to the USACE technical contact upon completion of validation.

Task 3.6: Surveying and Mapping

Survey maps shall be provided in the report, which delineate the boundaries of the survey site, the boundaries and locations of the metal anomalies, and the soil sample locations subject to this SOW. All data submitted shall be in the Universal Transverse Mercator (UTM) coordinate system. (Note: All coordinates shall be collected with applicable equipment capable of gauging field surveys within an accuracy of one meter or less of error.)

Task 4.0: Investigation Report

The Contractor shall prepare and submit a Preliminary Draft investigation report within 90 calendar days following the completion of the field investigation activities. The report shall document the process and procedures used in conducting the geophysical delineation, and describe all soil sampling activities conducted during this project. This report shall include details about pre-mobilization, mobilization, site preparation, the geophysical delineation, sample collection, decontamination, analytical results, waste management, event chronology, final site inspection, and mapping. The investigation report maps shall include the delineation of known and/or suspected buried waste materials, and the locations of MI sample area boundaries.

Upon receipt of USACE comment responses, Contractor shall submit a Draft investigation report for stakeholder review and approval. The Contractor shall submit the Draft investigation report within 30 calendar days of receipt of COR comments on the draft document or in compliance with the schedule specified by the Ohio EPA. Schedules specified by the Ohio EPA will take precedence over the USACE schedule. Army approval is achieved through the COR.

4.2 CLIN No. 2 – Water Removal Services at Load Line 2

Task 1.0: Water Removal Services

As described in Section 1.2, former excavation activities conducted at Load Line 2 (RVAAP-09) have resulted in the accumulation of water within the building DB-802 footprint. Restoration activities are now planned at this location, and the accumulated water must be removed from the excavation to assist in the restoration activities.

The planned action for restoring this area is to push back concrete and other demolition debris into the excavation to a depth 4 feet below the surrounding grade. Then, soil will be placed on top of the rubble to match the surrounding grade. To achieve this, it is anticipated the water will need to be pumped out of the excavation in two phases. First, the Contractor shall pump water out of the excavation down to a level suitable to fill the excavation with demolition debris without causing the remaining water in the excavation to rise out of the excavation and cause excessive runoff. Once this amount of water is removed, the rubble will be immediately pushed into the excavation. Pushing rubble into the excavation will be completed under a previously awarded BRAC-D contract. After this work is complete, the Contractor shall revisit the site and pump out any water that is above the level of the demolition debris in the excavation. Once this water level is achieved, soil will be immediately placed into the excavation under a previously awarded BRAC-D contract. The Contractor must complete their work in accordance with the BRAC-D contractor's schedule. Pumping water out of the excavation must be done immediately before backfilling the excavation. Allowing time to pass between pumping water out of the excavation and backfilling may allow the excavation to again fill with water. Water should be removed from the excavation in a manner that is approved by the Army and the Ohio EPA. A Letter Work Plan shall be prepared presenting the methodology to conduct the water removal for concurrent review by all RVAAP stakeholders.

5.0 PAY ESTIMATES

The Contractor shall submit Pay Estimates using ENG Form 93 as specified in the contract. ENG Form 93 may be found on the Internet under the library of USACE publications. The Contractor shall ensure that the Pay Estimates include a separate line item for each task. All ENG Form 93 shall be submitted to the USACE COR or the COR designated representative. Electronic submission of Pay Estimates to the USACE is acceptable; however, should be followed with the mailing of a hard copy.

Release of Claims shall accompany the final Pay Estimate. The Release of Claims shall be signed and shall include the total contract amount, amount of final payment due, and a statement similar to the following:

"The undersigned architect-engineer firm, under Contract No. ##, Delivery Order No. ##, between the United States of America and said Contractor for services at (property name) in (location) hereby release the U.S., its officers, agents, and employees from any and all claims arising under or by virtue of said contract or any modification or change thereof except with respect to those claims, if any, listed below:"

The Contractor's pay estimates must meet the CLIN structure presented in this SOW. For instance, all pay estimates for tasks performed under the environmental investigation for CC-RVAAP-80 shall appear under the CLIN No. 1 heading. All pay estimates associated with the water removal services at Load Line 2 shall appear under the CLIN No. 2 heading. Pay estimates submitted to the USACE without the proper CLIN designation shall be returned to the Contractor for clarification purposes.

6.0 PROPOSAL ESTIMATE

The Contractor shall submit a detailed estimate of the effort required to complete the described SOW. The proposal submittal shall also include the estimated costs associated with all planned sampling and analysis activities (other direct and indirect costs). The proposed sampling shall include 15% of the samples also having analyses for propellants, VOCs, SVOCs, pesticides/herbicides, and PCBs (full analyses), as prescribed in the Facility Wide SAP. The Contractor shall complete and submit Table 1 (as shown) as a summary of estimated costs.

Table 2: Contractor's Summary of Estimated Costs

Task #	Task Description	Unit	Fixed Unit Cost	Number of Units	Total Cost
CLIN No.	. 1 – Environmental Investigation at C	Complia	nce Resto	oration Site	CC-
RVAAP-8	30				
1.1	Project Management Plan				
1.2	Site Safety Health Plan				
1.3.1	Project Kickoff Meeting				

1.3.2	Monthly Progress Reports						
1.3.3	Records of Conversations						
1.3.4	Teleconference Progress Updates						
1.3.5	Meeting Minutes Documentation						
1.3.6	RAB Meetings						
2.0	Work Plan and Support Documents						
3.0	Implementation of Work Plan						
3.1	Geophysical Delineation						
3.2	Surface Soil Sampling						
3.3	Sample Analysis						
3.4	Disposal of IDW						
3.5	Data Management / Data Validation						
3.6	Surveying and Mapping						
4.0	Investigation Report						
	CLIN No. 1 – Total Cost Estimate						
CLIN No	CLIN No. 2 – Water Removal Services at Load Line 2						
1.0	Water Removal Services						
	CLIN No. 2 – Total Cost Estimate						

7.0 PERIOD OF PERFORMANCE / PROJECT SCHEDULE

The Period of Performance for this contract shall begin at the time of contract award, and ends 31 December 2011.

The Contractor shall submit a proposed project schedule for the described SOW. The schedule should be prepared in general conformance with the following schedule anticipated by the

USACE. (Note: The award of this SOW to the Contractor is subject to the availability of funding.)

Task No.	Identified Task	Duration / Due Date
CLIN No. 1	 Environmental Investigation at Cor 	mpliance Restoration Site CC-RVAAP-80
	Preliminary Site Visit	14 Days of USACE Submittal of Request
	(Prior to Award)	For Proposal (RFP)
	Notice to Proceed (NTP) /	31 March 2010
	Contract Award	
1.1	Pre-Draft Project Management	30 Calendar Days of NTP
	Plan	
1.2	Pre-Draft Site Safety Health Plan	30 Calendar Days of NTP
1.3.1	Project Kickoff Meeting	30 Calendar Days of Approval of PMP
		and SSHP
1.3.2	Monthly Progress Reports	By the 5 th Day of Each Month
1.3.3	Records of Conversations	By the 5 th Day of Each Month
1.3.4	Teleconference Progress	Bi-Weekly
	Updates	
1.3.5	Meeting Minutes Documentation	7 Calendar Days Following Meeting
1.3.6	RAB Meetings	Once per Army Direction
2.0	Pre-Draft Work Plan and	60 Calendar Days of NTP
	Support Documents	
3.0	Implementation of Work Plan	Begin 30 Calendar Days of Approval of
		Final Work Plan
4.0	Pre-Draft Investigation Report	Within 90 Calendar Days of Completing
		Field Investigation Activities
CLIN No. 2	– Water Removal Services at Load L	ine 2
1.0	Water Removal Services	Must adhere to BRAC-D Contractor's
		Schedule

Upon project award to the Contractor, the agreed upon project schedule will be updated with calendar dates and will be included in the Contractor's PMP. Adherence to the PMP project schedule will serve as a measurement of Contractor performance on this project.

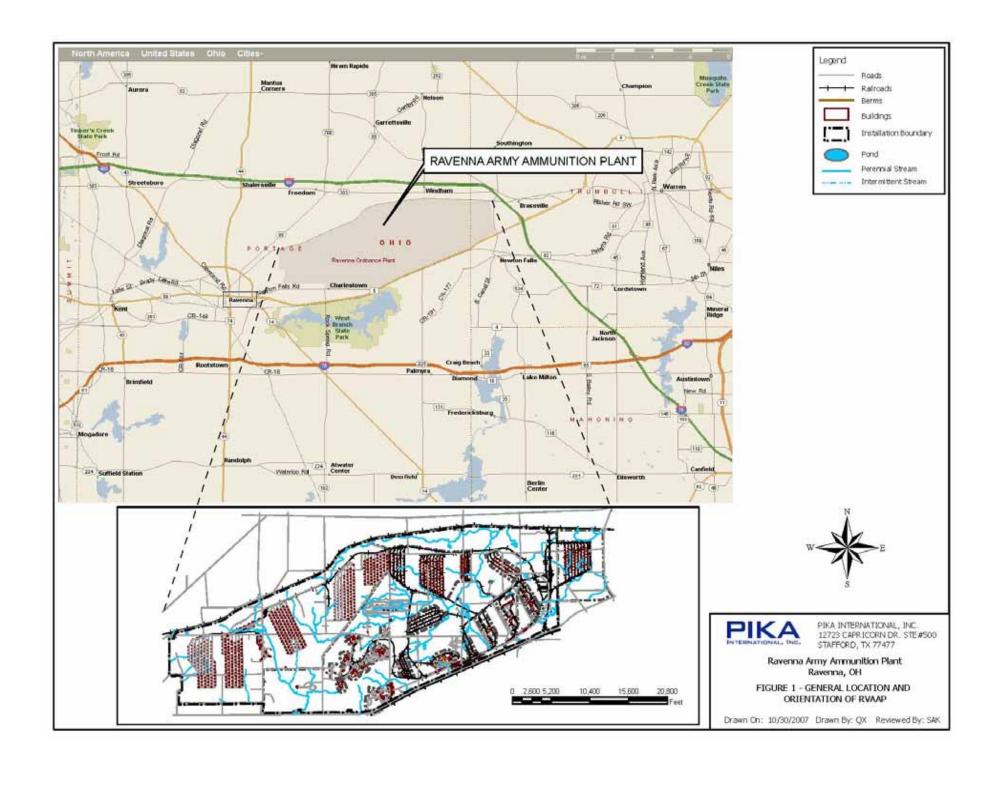
8.0 ADDITIONAL INFORMATION

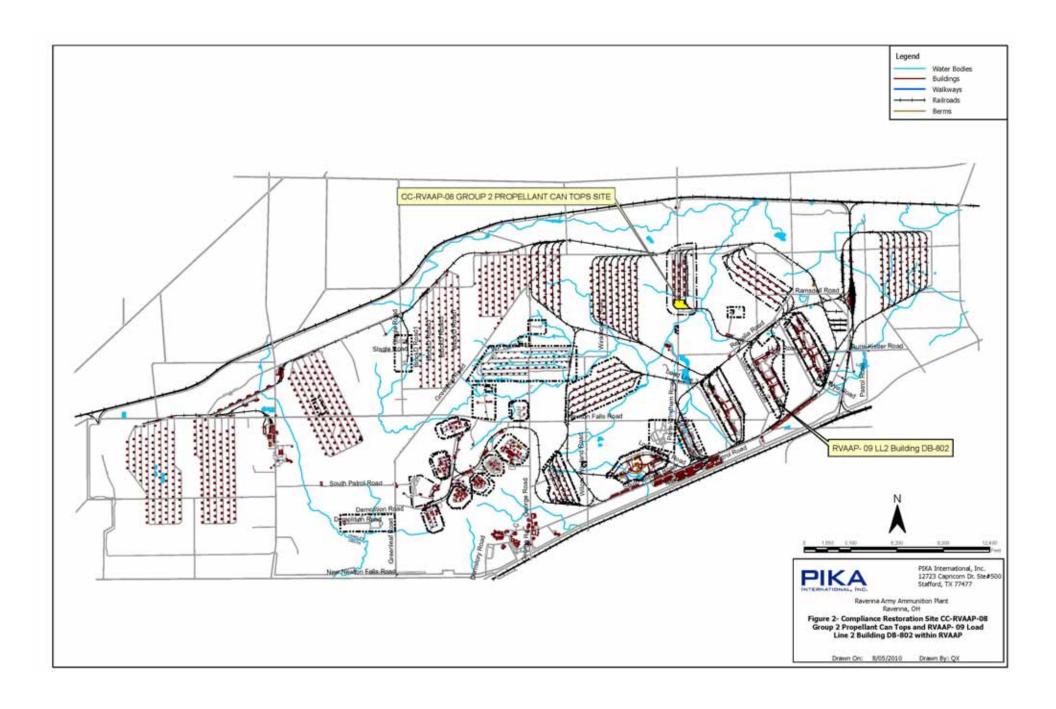
8.1 Additional Contractor Requirements

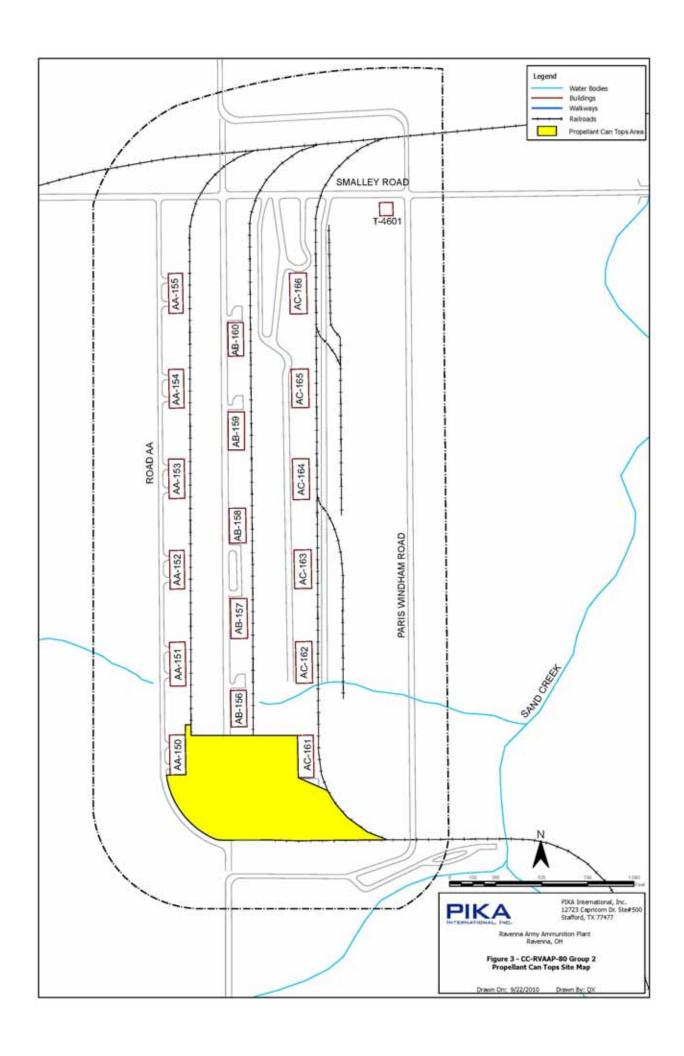
The Contractor shall be aware of the following requirements:

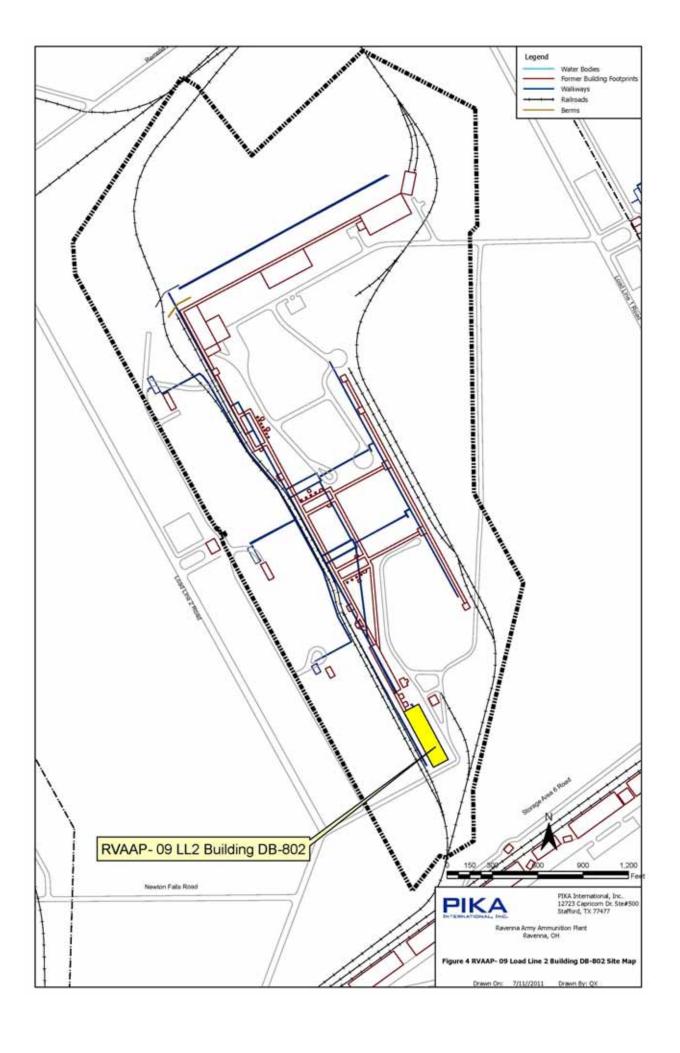
• HTRW, MEC, MC or MD may be found in munitions, containers, landfills, Open Burning/Open Detonation (OB/OD) areas, ground spills, surface water, or groundwater. If suspected HTRW, MEC, MC or MD of unknown origin and nature is encountered, the

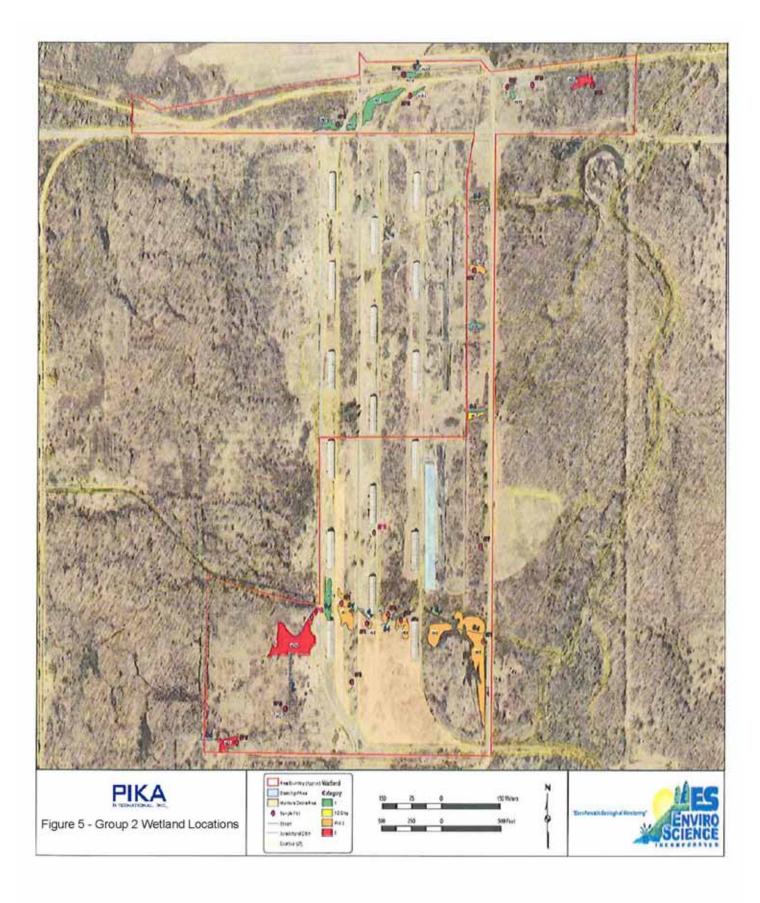
contractor shall immediately notify the Facility Manager, the Contracting Officer or the designated COR. The contractor shall take necessary actions to protect the safety of its workforce, the public, and the environment.


- Permits. The contractor shall obtain the permits and licenses necessary to conduct his/her operations including, but not necessarily limited to, installation required permits, building permits, drilling permits, and/or waste transportation and disposal permits.
- Safety and Health Program. The contractor shall ensure that its subcontractors, suppliers, and support personnel follow all safety and health provisions established in the approved Accident Prevention Plan (APP) for the site. A Site Safety and Health Plan (SSHP) shall be included in the APP as an Attachment. The Government reserves the right to stop work under this contract for any violations at no additional cost. The Government will verify that corrective action has been implemented prior to the contractor continuing performance under the contract. All personnel performing onsite activities shall participate in an ongoing medical surveillance program meeting the requirements of 29 CFR 1910.120. The medical examination protocols and results shall be overseen by a licensed physician who is certified in Occupational Medicine by the American Board of Preventive Medicine or who by necessary training and experience is board eligible.
- Quality Management. The contractor is responsible for the control of product quality and for offering to the Government for acceptance only those products/services that conform to the contractual requirements.




Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services


1	Appendix B
2	
3	Figures
4	
5	Figure 1 – General Location and Orientation of RVAAP
6	5' 2 C
7	Figure 2 – Compliance Restoration Site CC-RVAAP-08, Group 2 Propellant Can Tops
8	and RVAAP-09 Load Line 2 Building DB-802 within RVAAP
9	Figure 2 CC DVAAD 00 Croup 2 Dropollant Can Tong Cita Man
10 11	Figure 3 - CC-RVAAP-08, Group 2 Propellant Can Tops Site Map
12	Figure 4 - Load Line 2 Building DB-802 Site Map
13	rigure 4 Load Line 2 ballaling bb 602 Site Map
14	Figure 5 – Group 2 Sample Boundaries Area
15	rigure 5 Group E Sumple Boundaries / irea
16	Figure 6 – Group 2 Anomaly Cluster Areas
7	5
18	Figure 7 – Group 2 Sample Locations
19	
20	Figure 8 – Group 2 Sample Boundaries
21	


September 2011 Rev 0

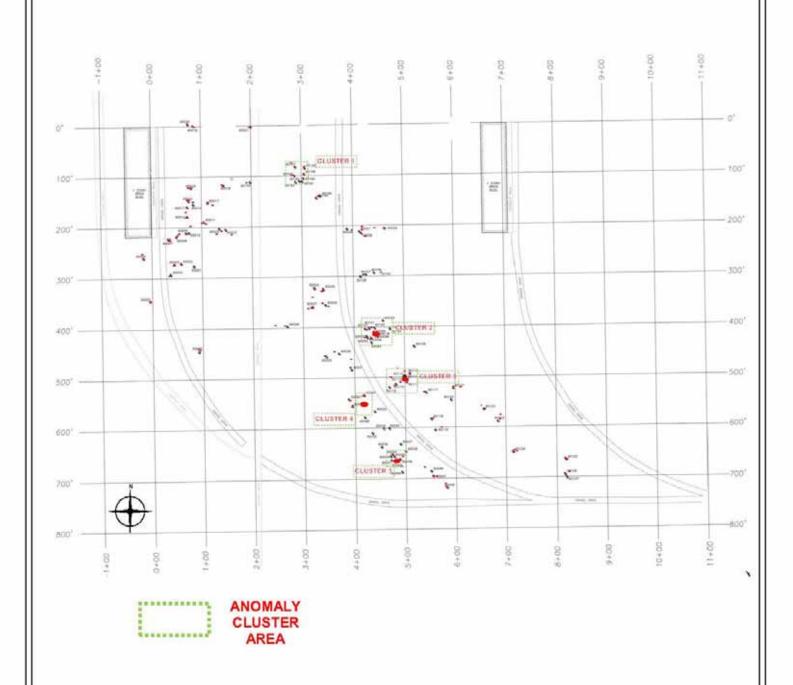
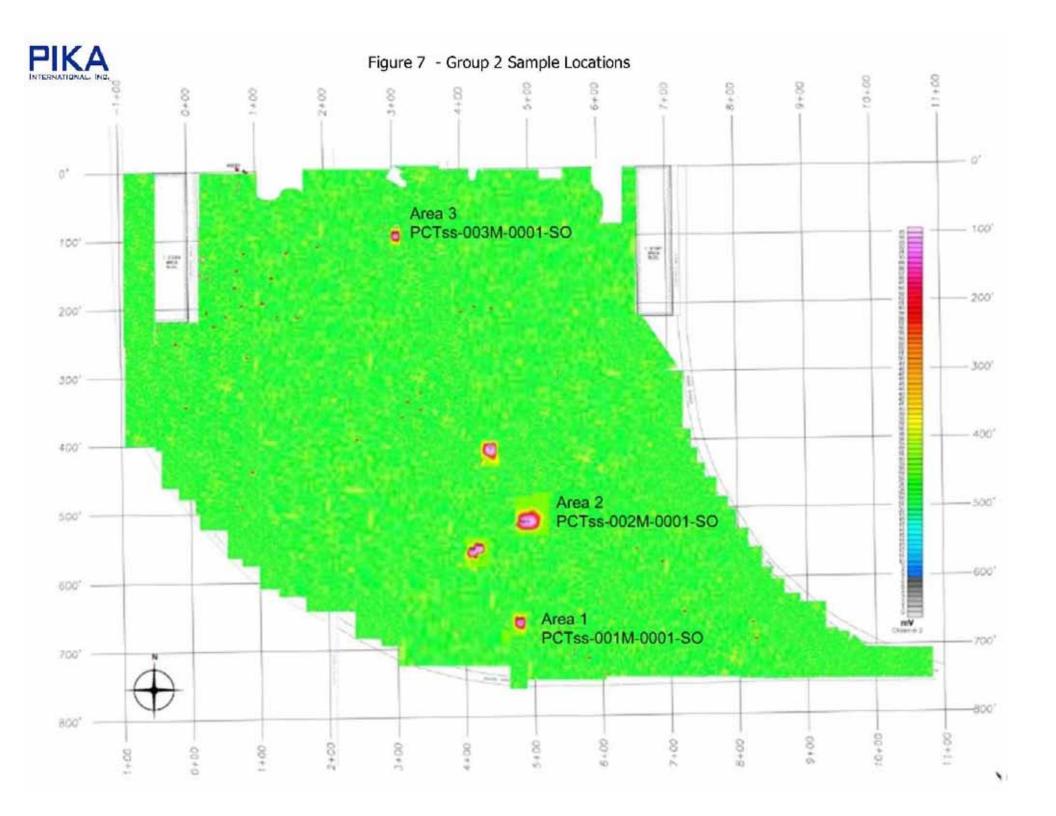
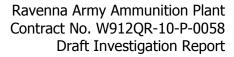


FIGURE 6 - GROUP 2 ANOMALY CLUSTER AREAS




GEOSEARCHES

TEL: 440 893-0642 FAX: 440 893-4023

Project I	Designer:
PIKA INTER	RNATIONAL
Project	Contact:
GeoSear	ches, Inc.
Project#	WO#
RVAAP	
Date:	Rev. Date:
05/20/11	

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

1 Appendix-C 2 Weekly Reports and Photo Documentation

September 2011 Rev 0

WEEKLY REPORT

Prime Contracts No:	W912QR-10-P-0058		Report No.	1	
PIKA Projects #:	10-08-130		Date:	4-04-11 to 4-08-11	
Project:	RVAAP Compliance Rest. Site-CC-RVAAP-80 & Other Environmental Services, Ravenna Army Ammunition Plant, Ravenna, Ohio				
	Services, Ravenna Army Ai	nmuni	tion Plant, Rav	enna, Onio	

Summary of Activities:

- Initiated surface sweep operation to ensure the site is free of surface MEC/UXO prior to initiating the brush clearing and geophysical survey operations. Approximately 1/3 of the site is complete.
- No MEC or MD items encountered during the surface sweep operations to date.

Others:

· Conducted daily safety briefings.

Remarks (include directions received from client's representative or regulators, visitors, compliance notices received, pertinent information)

Upon arrival to the site on Thursday, April 7, 2011 to initiate the surface sweep operations, it was noted that Ohio Army National Guard (OHARNG) training exercises were being conducted within the AOC along the western quarter of the site adjacent to building AA-150. Additionally, it was noted that seibert stakes had been installed along a portion of the perimeter of the AOC which did not match the extent of the AOC as depicted in the scope of work and approved work plan. PIKA visited the site the same day with Ohio EPA (Eileen Mohr) and VISTA Sciences representative Jim McGee for clarification/correction. In the afternoon of April 7, 2011 USACE – Louisville, Ohio EPA and RVAAP Facility Manager verified that the AOC boundaries were correct as depicted in the approved work plan.

Work Completed:					
	This Week	Cumulative to-date			
Surface clearance operations	35%	35%			
Brush Clearing	- -	0%			
Geophysical Investigation	-	0%			
Conducting MI Sampling	-	0%			

Final Report Preparation - 0%						
Health and Safety-						
Conducted health and s commencement of daily	-	ngs and task order r	meetings every mornii	ng, prior to		
Were there any	lost time ac	cidents this week?	No x Yes].		
If "yes", refer at	ttached sum	mary of incident or	OSHA report.			
Quality Control						
Inspections Perf	ormed	Non-Conformances	Corrective Action (CA) Follow-up on CA		
None		None	None	Not Applicable		
Major Problems and	Resolution:	Discrepancy with	the AOC boundary as	previously noted.		
Schedule for Next V	Veek					
Complete surfaceInitiate brush classes						
Refer attached Schedu	le for perce	entage of work comp	oleted and projected c	ompletion dates.		
SUXOS	Mel Lau	Site	Safety Officer I	Lew Kovarik		
Project Manager	Brian Stockv	vell				

Photo Log

UXO technicians conducting surface sweep operations with Group 2 Propellant Can site.

Schedule

WEEKLY REPORT

Prime Contracts No:	W912QR-10-P-0058		Report No.	2	
PIKA Projects #:	10-08-130		Date:	4-11-11 to 4-15-11	
Project:	RVAAP Compliance Rest. Site-CC-RVAAP-80 & Other Environmental Services, Ravenna Army Ammunition Plant, Ravenna, Ohio				
	i Services, Kavenna Anny Ar	mmumi	lion Piant, Rav	enna, Onio	

Summary of Activities:

- Completed surface sweep operation to ensure the site is free of surface MEC/UXO prior to initiating the brush clearing and geophysical survey operations.
- No MEC or MD items encountered during the surface sweep operations.

Others:

• Conducted daily safety briefings.

Remarks (include directions received from client's representative or regulators, visitors, compliance notices received, pertinent information)

Due to extensive training by OHARNG within Group 2 through 22 April 2011, the brush clearing operations will be delayed until the week of 25 April 2011.

Work Completed:					
	This Week	Cumulative to-date			
Surface clearance operations	65%	100%			
Brush Clearing	-	0%			
Geophysical Investigation	-	0%			
Conducting MI Sampling	-	0%			
Final Report Preparation	-	0%			

Health and Safety-

Conducted health and safety meetings and task order meetings every morning, prior to commencement of daily activities.

Were there any lost time accidents this week?	No	X	Yes				
If "yes", refer attached summary of incident or OSHA report.							

Quality Control									
Inspections Performed	Non-Conformances	Corrective Action (CA)	Follow-up on CA						
None	None	None	Not Applicable						
Major Problems and Resolution: The delay to the brush clearing operation pushes the final completion date for the project right up to the end date for project period of performance. PIKA									

completion date for the project right up to the end date for project period of performance. PIKA notified CELRL for a contract extension at no cost to the government to ensure no issues.

Schedule for Next Week

Survey and mark wetland locations within AOC to facilitate brush clearing operations during week of 25 April 2011.

Refer attached **Schedule** for percentage of work completed and projected completion dates.

SUXOS Mel Lau Site Safety Officer Lew Kovarik

Brian Stockwell Project Manager

Photo Log

UXO technicians conducting surface sweep operations with Group 2 Propellant Can site.

Schedule

Prime Contracts No:	W912QR-10-P-0058		Report No.	3
PIKA Projects #:	10-08-130		Date:	4-18-11 to 4-22-11
Project:	RVAAP Compliance Rest. S			
	Services, Ravenna Army Ar	nmuni	tion Plant, Rav	enna, Onio

Summary of Activities:

• Located and marked existing wetlands within AOC using data from Ohio Army National Guard wetland surveys. Wetlands marked to ensure no disturbance during site operations.

Others:

• Conducted daily safety briefings.

Remarks (include directions received from client's representative or regulators, visitors, compliance notices received, pertinent information)

None

Work Completed:		
	This Week	Cumulative to-date
Surface clearance operations	- -	100%
Brush Clearing	-	0%
Geophysical Investigation	-	0%
Conducting MI Sampling	-	0%
Final Report Preparation	- -	0%

Health and Safety-

Conducted health and safety meetings and task order meetings every morning, prior to commencement of daily activities.

Were there any lost time ac	cidents this week?	No x Yes].
If "yes", refer attached sum	mary of incident or (OSHA report.	
•	•	·	
Quality Control			
Inspections Performed	Non-Conformances	Corrective Action (CA)	Follow-up on CA
None	None	None	Not Applicable
Major Problems and Resolution:	None.		
Schedule for Next Week			
 Initiate brush clearing operation 	ations.		
Refer attached Schedule for perce	entage of work comp	leted and projected co	ompletion dates.
SUXOS Mel Lau	Site S	Safety Officer L	ew Kovarik
Project Manager Brian Stocky	vell		

Pictures showing Surveyor (with UXO support) locating and marking the wetland locations within ${\sf AOC}.$

Prime Contracts No:	W912QR-10-P-0058	Report No.	4
PIKA Projects #:	10-08-130	Date:	4-25-11 to 4-29-11
Project:	RVAAP Compliance Rest. S Services, Ravenna Army Ar		

Summary of Activities:

• Initiated brush clearing operations.

Others:

Conducted daily safety briefings.

Remarks (include directions received from client's representative or regulators, visitors, compliance notices received, pertinent information)

Visitors: Eric Cheng – CELRL

Received no cost contract extension to April 2012.

Work Completed:		
	This Week	Cumulative to-date
Surface clearance operations	-	100%
Brush Clearing	50	50%
Geophysical Investigation	-	0%
Conducting MI Sampling	-	0%
Final Report Preparation	= =	0%

Health and Safety-

Conducted health and safety meetings and task order meetings every morning, prior to commencement of daily activities.

Were there any lost time ac	cidents this week?	No x Yes	
If "yes", refer attached sum	mary of incident or (OSHA report.	
Quality Control			
Inspections Performed	Non-Conformances	Corrective Action (CA)	Follow-up on CA
None	None	None	Not Applicable
Major Problems and Resolution:	None		
Cabadula for Nort Wool			
Schedule for Next Week			
 Complete brush clearing op 	erations.		
Defendable de Calacadada for a cons			undation dates
Refer attached Schedule for perce	entage of work comp	leted and projected co	mpletion dates.
SUXOS Mel Lau	Site S	Safety Officer Le	ew Kovarik
Project Manager Brian Stocky	vell		

Brush clearing operation at Group 2 propellant can site.

Prime Contracts No:	W912QR-10-P-0058	Report No.	5
PIKA Projects #:	10-08-130	Date:	5-2-11 to 5-6-11
Project:	RVAAP Compliance Rest. S Services, Ravenna Army Ar		

Summary of Activities:

• Completed brush clearing operations.

Others:

Conducted daily safety briefings.

Remarks (include directions received from client's representative or regulators, visitors, compliance notices received, pertinent information)

Site Visitor – Terence Hamill – GeoSearches Project Geophysicist. Conducted site visit to view site conditions during brush clearing operations. No issues or problems.

Work Completed:		
	This Week	Cumulative to-date
Surface clearance operations	-	100%
Brush Clearing	50	100%
Geophysical Investigation	-	0%
Conducting MI Sampling	-	0%
Final Report Preparation	-	0%

Health and Safety-

Conducted health and safety meetings and task order meetings every morning, prior to commencement of daily activities.

Were there any lost time ac	cidents this week?	No x Yes	•
If "yes", refer attached sum	mary of incident or (OSHA report.	
Quality Control			
Inspections Performed	Non-Conformances	Corrective Action (CA)	Follow-up on CA
None	None	None	Not Applicable
Major Problems and Resolution:	None.		
Schedule for Next Week			
Initiate geophysical investig	ation.		
Refer attached Schedule for perce	entage of work comp	leted and projected con	mpletion dates.
SUXOS Mel Lau	Site S	Safety Officer Le	ew Kovarik
Project Manager Brian Stocky	vell		

Brush clearing operation at Group 2 site.

Views of Group 2 site following brush clearing operation.

Prime Contracts No:	W912QR-10-P-0058	Report No.	6
PIKA Projects #:	10-08-130	Date:	5-9-11 to 5-13-11
Project:	RVAAP Compliance Rest. S Services, Ravenna Army Ar		

Summary of Activities:

- Completed geophysical investigation of the Group 2 propellant can tops area.
- Marked and surveyed all the identified anomaly areas.
- Initiated geophysical data report.

Others:

Conducted daily safety briefings.

Remarks (include directions received from client's representative or regulators, visitors, compliance notices received, pertinent information)

Visitors: Eileen Mohr and Todd Fisher – Ohio EPA. Visited the site to look at the grouping of anomalies flagged by the geophysicist. A total of 5 separate areas containing anomalies were detected across the site and marked with pin flags. Based on geographic spacing of the areas, discussions will be needed between all stakeholders to decide on path forward relative to the surface soil samples that will be collected at the site. A meeting will be scheduled upon receipt of the completed geophysical maps to help aid in the decision making.

Work Completed:		
	This Week	Cumulative to-date
Surface clearance operations	- -	100%
Brush Clearing	-	100%
Geophysical Investigation	90%	90%
Conducting MI Sampling	-	0%
Final Report Preparation	-	0%

Health and Safet

Conducted health and safety meetings and task order meetings every morning, prior to commencement of daily activities.

Yes x Were there any lost time accidents this week? No

Quality Control			
Inspections Performed	Non-Conformances	Corrective Action (CA)	Follow-up on CA
None	None	None	Not Applicable
Schodula for Novt Wook			
 Schedule for Next Week Continue preparation of g Discuss path forward for obtained at the site. 	· · ·		ohysical data
Continue preparation of gDiscuss path forward for	the MI sampling opera	tions based on the geop	•

Project Manager Brian Stockwell

Surveying and installing site grids at Group 2 area to facilitate the geophysical survey.

Pictures showing geophysical survey operations at RVAAP Group 2 propellant can tops site.

Prime Contracts No:	W912QR-10-P-0058 Repo		Report No.	7
PIKA Projects #:	10-08-130		Date:	5-16-11 to 5-20-11
Project:	RVAAP Compliance Rest. Site-CC-RVAAP-80 & Other Environmental Services, Ravenna Army Ammunition Plant, Ravenna, Ohio			

Summary of Activities:

 Received EM-61 data maps from Geophysicist to further aid in discussion relative to selecting the surface sample locations.

Others:

• Conducted daily safety briefings.

Remarks (include directions received from client's representative or regulators, visitors, compliance notices received, pertinent information) None

Work Completed:				
	This Week	Cumulative to-date		
Surface clearance operations	- -	100%		
Brush Clearing	-	100%		
Geophysical Investigation	-	95%		
Conducting MI Sampling	- -	0%		
Final Report Preparation	-	0%		

Health and Safety-	leal [•]	h an	d Sa	fetv-
--------------------	-------------------	------	------	-------

Conducted health and safety meetings and task order meetings every morning, prior to commencement of daily activities.

Were there any lost time accidents this week? No x Yes

If "yes", refer attached summary of incident or OSHA report.

Inspections I	Performed	Non-Conformances	Corrective Action (CA)	Follow-up on CA
None		None	None	Not Applicable
Major Problems a	and Resolution:	None.	1	<u>l</u>
Schedule for Ne	xt Week			
Conduct surf	ace soil sampli	ng operations.		
Refer attached Sch o	e dule for perc	entage of work com	pleted and projected co	mpletion dates.
SUXOS	Mel Lau	Site	Safety Officer Le	ew Kovarik
Project Manager	Brian Stock	well		

Prime Contracts No:	W912QR-10-P-0058 Report No.		8	
PIKA Projects #:	10-08-130		Date:	5-23-11 to 5-27-11
Project:	RVAAP Compliance Rest. Site-CC-RVAAP-80 & Other Environmental Services, Ravenna Army Ammunition Plant, Ravenna, Ohio			

Summary of Activities:

- Based upon results of the geophysical delineation, a site visit was conducted with Ohio EPA representative Eileen Mohr and PIKA representatives Brian Stockwell and Jim King on May 25, 2011 to select the locations and boundaries of the Multi Increment (MI) surface soil sample areas. See attached figure for the locations of the areas that were selected for each sample (i.e., areas 1, 2, and 3).
- Collected 3 Multi Increment (MI) surface soil samples on May 26, 2011. All samples were collected in accordance with the approved work plan.

Others:

Conducted daily safety briefings.

Remarks (include directions received from client's representative or regulators, visitors, compliance notices received, pertinent information) Visitors: Eileen Mohr – Ohio EPA. Conducted site visit to select location and boundaries of the MI surface soil samples.

Work Completed:				
	This Week	Cumulative to-date		
Surface clearance operations	-	100%		
Brush Clearing	-	100%		
Geophysical Investigation	5%	100%		
Conducting MI Sampling	95%	95%		
Final Report Preparation	-	0%		

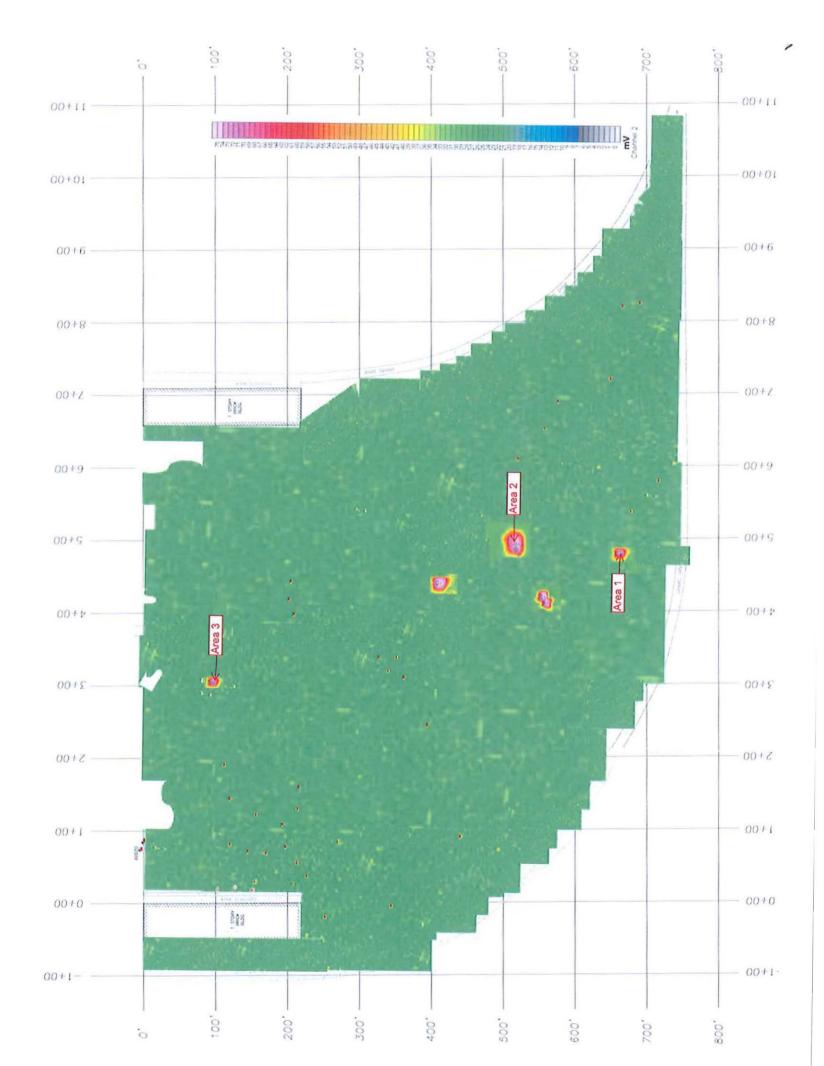
Н	lea	lth	and	Safe	ety-

Conducted health and safety meetings and task order meetings every morning, prior to commencement of daily activities.

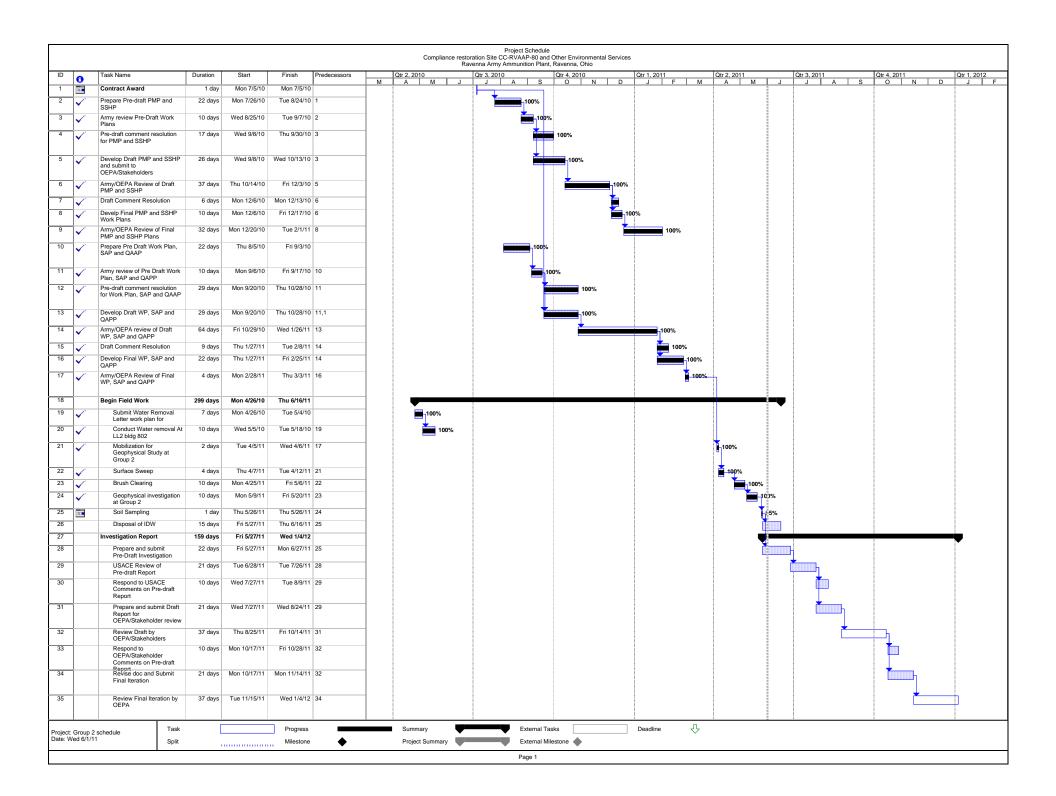
Were there any lost time accidents this week? No x Yes If "yes", refer attached summary of incident or OSHA report.

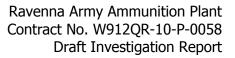
Inspections I	Performed	Non-Conformances	Corrective Action (CA)	Follow-up on CA
None		None	None	Not Applicable
Major Problems a	and Resolution:	None.		<u> </u>
Schedule for Ne.	xt Week			
Initiate preparat	ion of investiga	ation report.		
Refer attached Sch	e dule for perc	entage of work com	pleted and projected co	mpletion dates.
SUXOS	Mel Lau	Site	Safety Officer Lo	ew Kovarik
Project Manager	Brian Stock	well		

PHOTO LOG



Pictures showing MI surface soil sampling operations with UXO support.




MAP SHOWING MI SURFACE SOIL SAMPLE LOCATIONS

SCHEDULE

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

1	Appendix D
2	
3	Geophysical Report

September 2011 Rev 0

Group 2 Propellant Can Top Geophysical Survey Ravenna Army Ammunition Plant

Prepared For Mr. Brian Stockwell PIKA International Ravenna, Ohio

By

TERENCE M. HAMILL
May 20, 2011
GeoSearches, Inc.
200 Industrial Parkway, Suite 6B
Chagrin Falls, Ohio44022
(440) 893-0642

May 20, 2011

Mr. Brian Stockwell PIKA International

SUBJECT: Group 2 Propellant Can Top

Geophysical Survey

Dear Mr. Stockwell:

GeoSearches, Inc has completed the Geophysical survey dated May12, 2011 at Group 2 site at the RVAAP.

This Full Report presents the results regarding the targeted survey, delineating the boundaries of the Propellant Can Top areas.

If you have further questions please contact GeoSearches, Inc it has been a pleasure working with you on this project.

Best regard's,

Terence M. Hamill

President / Principal Geophysicist

Tours of their

GeoSearches, Inc.

Table of Contents

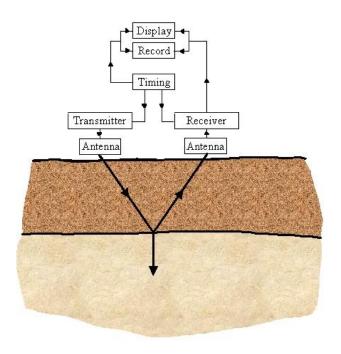
Introduction	Page 5
Part One: Method	Page 6
Part Two: Processing	Page 7
Part Three: Interpretation and Data Quality	Page 8
Section Two: Discussion, Interpretation	
Part One: Discussion	Page 10
Part Two: Interpretation	Page 10
Section Three: Results	
Data Samples	Page 12
Results	Page 18
Conclusion	Page 19

Section One: Site and Project Description

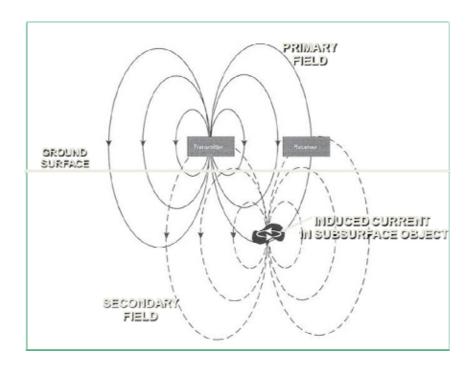
Section One
SITE PROJECT AND DESCRIPTION

Introduction:

GeoSearches, Inc. was retained by PIKA International to conduct a Geophysical survey at the Ravenna Army Ammunition Plant. The object of the survey was to delineate the areas within the designated site Group 2 containing Propellant Can Tops.


The Geophysical survey was conducted over an area approximately 12 acres in size.

The non-intrusive, subsurface investigation was conducted using Electromagnetics.


The EM61-MK2 consists of two 1-meter (m) by 0.5m rectangular coils arranged such that the source/receiver coil is located 40 centimeters (cm) below a second receiver coil. An electromagnetic pulse induces subsurface eddy currents with associated secondary magnetic fields. The decay of the secondary magnetic fields induced in subsurface materials is measured by the receiver coil(s) and digitally recorded.

The EM61-MK2 is capable of detecting all metals and is generally not affected by magnetic geology or soils. The EM61-MK2 may detect buried metal beyond four (4) feet below ground surface (ft bgs) depending on the size of the item and the contrast between the native soils/geology and the item. Additionally, the EM61-MK2 response is focused directly beneath the coils so the response from nearby metal structures (e.g., monitoring wells, fences, etc.) is minimal compared to other sensors such as a total field magnetometer.

Ground Penetrating Radar (GPR) GPR detects subsurface structures by transmitting radio frequency waves into the ground and monitoring the strength and time delay of the reflection. The returning signal can then be evaluated to locate subsurface anomalies. Anomalies can be caused by void spaces, differences in soil/bedrock texture, differences in soil/bedrock moisture content, differences in the sediment compaction, and the presence of subsurface structures such as pipelines.

GROUND PENETRATING RADAR THEORY DIAGRAM

EM61 MK2 ELECTROMAGNETIC THEORY DIAGRAM

Part One: Method

Before fieldwork was started, historical data and detailed diagrams were reviewed to provide background information on the site.

An instrument verification strip (IVS) was conducted over a known area with surface targets. This was conducted over the area that is known as Cluster 1 so that was well representative of the expected targets. The objective of the IVS is to verify that the geophysical detection system is operating properly. The IVS targets should be observed in the data with signals that are consistent with both historical measurements and physics-based model predictions. Adjacent measurements of the site noise determine whether targets of interest can be detected reliably to their depth of interest under the site conditions.

System daily tests were also conducted which consisted of a Static Noise test, Spike Test and cable shake test. These tests were conducted before and after the geophysical survey.

A preliminary straight-line GPR survey was conducted at the beginning of the investigation, establishing the typical response based on the site geology and subsurface structures. The survey was conducted by moving the GPR equipment along the grid lines in two, perpendicular directions. The GPR data were reviewed in the field before processing. This review consisted of data quality and also specifically in this case if excavated areas could be interpreted through the raw data collection.

The Trimble RTK GPS was used to augment geophysical data and improve geophysical mapping through visual observations made during site walk-over. During this process, the GPS was used to record the positions of cultural features (e.g., signposts, monitor wells, etc.) so that these features can be accounted for during the interpretation of the geophysical data.

The survey was conducted using Geonics EM-61 MK 2 and a Noggin GPR from Sensors and Software, Inc., with a 250MHz antenna. The data were acquired using the common-offset reflection profiling method. The depth of penetration ranged from 0 to 15 feet below the surface.

A surveyed grid was laid out over the survey area to facilitate GPR data collection and ensure complete coverage with both the GPS-integrated EM61 and the GPR. Numbered points were spaced 100 feet apart, and data acquisition intervals were 5 feet apart. The survey equipment used was:

TDS Ranger Data Collector Topcon Total Station Topcon Hiper Lite GPS ODOT VRS Network

Part Two: Processing

This the data processing procedures and interpretation of results based on the geophysical information collected during the geophysical survey. Geosoft Oasis Montaj (Oasis) was the primary software used to complete data processing tasks. All data grids and anomalies were uploaded.

At the end of the field day the field geophysicist uploaded the data to the office computer, where the data was archived, backed-up, and processed and analyzed. The data processing sequence included verifying the validity of the data using the performance metrics, assessment of the track path and spatial sample density, latency correction, data leveling, and color-coded image generation utilizing software from the equipment manufacturers and Geosoft Oasis Montaj. Subsequent to the processing and review of the data, color-coded images of the geophysical sensor data were created for review and planning of the next day's field activities.

GeoSearches utilized the following software to process the data:

Oasis for latency correction; data leveling; interpolation and generation of color-coded images; and statistical analysis of the data in terms of the performance metrics such as spatial sample density, static background, and repeat tests.

The Ground Penetrating Radar data was processed by applying filters and gains to better define the anomalies of interest. Tools used to process the data and improve image quality included SPIVIEW TOOLS and WIN EKKO software from Sensors and Software, Inc.

Once each data survey is loaded and the grid properly oriented spatially, a short (3-sample) temporal median trim filter is applied to each GPR trace (one gridline) to attenuate noise spikes that degrades the data quality. A residual median filter is then applied to attenuate the wow (Short range GPR signals often possess a low-frequency component, commonly referred to as a "wow" that causes amplitude distortion along an individual trace), this filtering attenuates both the low and high frequency components of the wow, without adding precursors or other artifacts to the wavelet.

Time zero determination and datuming is also performed.

The data is then processed by applying amplitude compensation. For each GPR survey line, the rectified-amplitude versus time fall-off is determined. The inverse of this curve is scaled by a multiplier (0.3) to form the gain function. The multiplier is used to slightly reduce the gain function so that anomalously high amplitude values are not clipped after amplitude compensation.

Part Three: Interpretation and data quality

After completion of the data processing, each GPR and EM reflection image was evaluated to:

- (1) Evaluate the GPR and EM penetration depth and resolution of the data collected at 250MHz and compare reflection character of the two, perpendicular line orientations; and
- (2) Interpret GPR and EM reflections and image patterns as bounding surfaces and architectural elements in profile.

(3) EM61 anomalies that correlated with known surface features such as an electric junction box or utilities are not reported. All other anomalies that were not caused by known surface features or utilities were further analyzed with corresponding GPR data.

Section Two

CONDITIONS and OBJECTIVE

Part One: Conditions

The Geophysical survey included:

- The survey area was 95% accessible and covered all areas of interest. The larger wetter areas in the North were difficult to acquire data in.
- Project area consisted of grass, gravel tracks and brush.

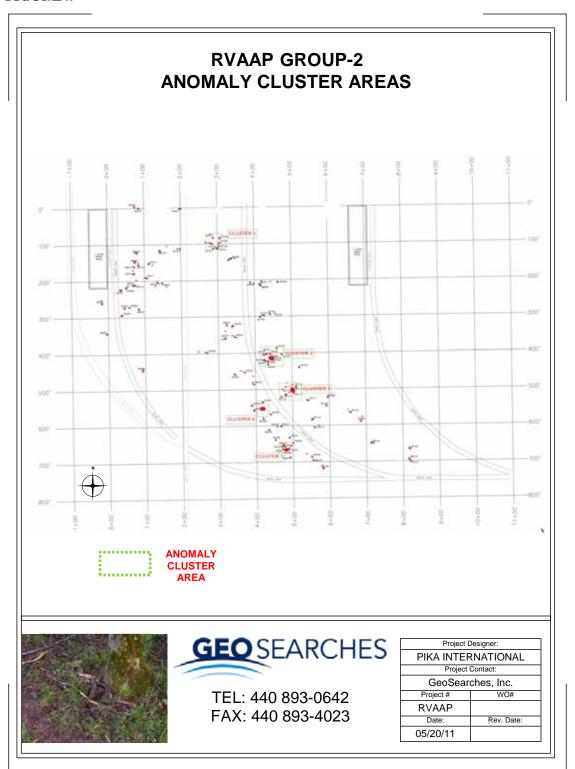
Part Two: Objective

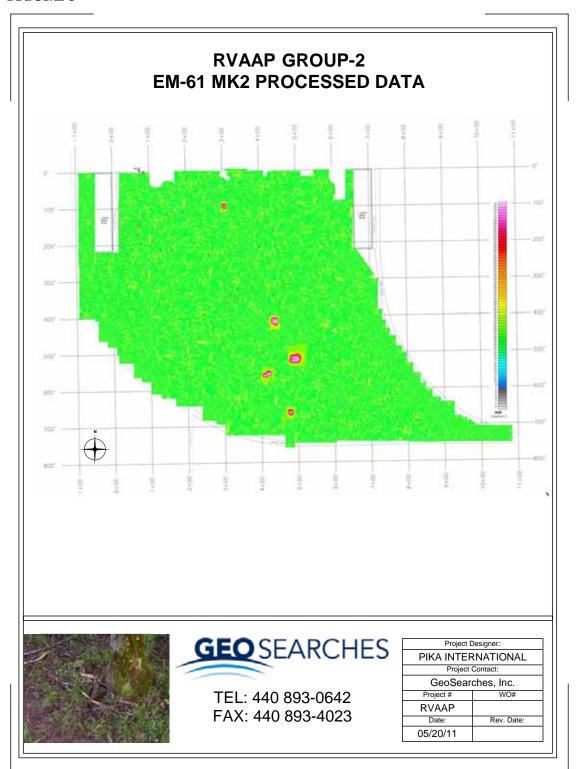
The primary objectives of the Geophysical survey were to determine the boundaries of the Propellant Can Tops.

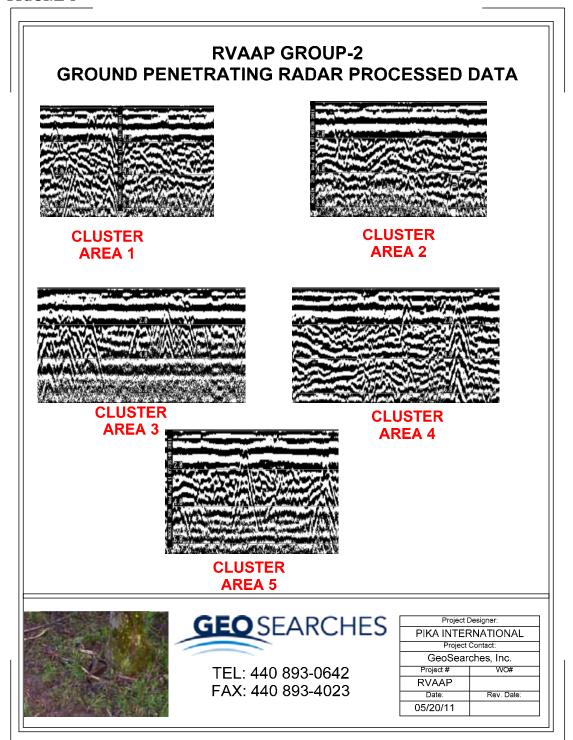
Section Three

RESULTS

RVAAP GROUP-2 GEOPHYSICAL PROJECT AREA






GEOSEARCHES

TEL: 440 893-0642 FAX: 440 893-4023

Project Designer:							
PIKA INTERNATIONAL							
Project Contact:							
GeoSear	ches, Inc.						
Project #	WO#						
RVAAP							
Date:	Rev. Date:						
05/20/11							

RVAAP GROUP-2 ANOMALY EXTENT

TEL: 440 893-0642 FAX: 440 893-4023

Project Designer:							
PIKA INTERNATIONAL							
Project Contact:							
GeoSear	GeoSearches, Inc.						
Project #	WO#						
RVAAP							
Date:	Rev. Date:						
05/20/11							

Results

The object of the Geophysical survey and the use of Ground Penetrating Radar and Electromagnetics were to delineate the areas that Propellant Can Tops exist and also to determine if areas had been excavated to bury the cans.

During the survey it was physically possible to see on the surface, Propellant Can Tops and also a few shot gun shells.

The EM61-MK2 survey data did display distinct areas of high anomaly density that can be seen in **Figures 2 and 3**. The signal data established that 5 areas exist within the survey area with anomalies close or on the surface and the processed data [**Figures 3 and 4**] suggests that all of these areas have anomalies that are on the surface or just below the surface and < 9 inches in depth.

Due to the anomaly density of the 5 areas it is difficult to characterize individual anomalies.

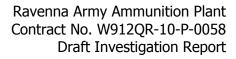
The "white areas" [Figure 3] in the north portion of the defined survey boundary represent locations with limited coverage (buildings) and due to wet conditions that could not be accessed.

The EM data did not detect any other Propellant Can Top areas apart from the 5 distinct anomaly areas.

Smaller events near the surface did register on the raw data when collecting, and these have been noted, however these events were not the project size anomalies. At this stage the anomalies cannot be identified.

Ground Penetrating Radar was utilized after all determined clustered areas were established to ascertain if the cluster areas had been excavated [Figure 4.] The GPR did establish that metallic anomalies did exist at near surface depths and also clarified that the objects had been dumped there as the subsurface lithology was consistent throughout with no evidence of excavation.

All anomalies have been surveyed and coordinates can be found with attached on spreadsheet.


Conclusion

The Geophysical investigations performed at the Group2 Site have identified areas of dense anomalies at the 5 locations. The data collection achieved the goal as to identifying the areas of Propellant Can Tops.

Further Geophysical investigations in the future, with tighter parameters may be needed to identify the smaller anomalies found within the survey area.

General Qualifications

The data presented herein are interpreted. No warranty, certification, or statement of fact, either expressed or implied, regarding actual subsurface conditions within the surveyed area is contained herein. No interpretation of subsurface conditions can be made for areas not surveyed.

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

1	Appendix E
2	
3	Summary Table, Field Sample Reports and Lab Results

September 2011 Rev 0

TABLE 1 - SUMMARY OF MULTI-INCREMENT SOIL SAMPLES INORGANIC RESULTS

ANALYTE**, UNITS, METHOD NO.	FWCUGs for National Guard Trainee HI=1 mg/kg	FWCUGs for National Guard Trainee Risk = 10 ⁻⁵ mg/kg	Regional Screening Level (RSL) mg/kg	Surface Soil Background Criteria mg/kg	PCTss-001M-0001-SO	PCTss-001M-0001-DUP	PCTss-002D-0001-SO	PCTss-002M-0001-SO	PCTss-002M-0001-ER	PCTss-003M-0001-SO	TRIP BLANK
Sample Date					5/26/2011	5/26/2011	5/26/2011	5/26/2011	5/26/2011	5/26/2011	5/27/2011
									UG/L		UG/L
METALS 6010B mg/kg	_					1			1		T
Arsenic	1140	27.8	0.39	15.4				8.4	< RL		
Lead	351		400	26.1				34.1	< RL		
Selenium			390	1.4				< RL	0.0206 B		
Thallium	477			0				< RL	< RL		
Silver	31049		390	0				< RL	< RL		
Aluminum	34960		77000	17700				10600	< RL		
Barium	3506		15000	88.4				81.7	< RL		
Beryllium			160	0.88				0.45	< RL		
Calcium (essential nutrient)			(n)	15800				954	< RL		
Cadmium	3292	109	70	0.0			-	0.13 B	< RL		
Cobalt	140	70.3	23	10.4				7.7	< RL		
Chromium, hexavalent	56.1	16.4					1	2.42	< RL		
Copper	253680		3100	17.7				12.1	< RL		
Iron	1000000		55000	23100				17600	< RL		
Potassium (essential nutrient)			(n)	927				654	< RL		
Magnesium (essential nutrient)			(n)	3030				1770	< RL		
Manganese			1800	1450				833	< RL		
Sodium (essential nutrient)			(n)	123				35.6 B	< RL		
Nickel	126391			21.1				18.5	< RL		
Antimony	1753		31	0.96				< RL	< RL		
Vanadium	23045		5.5	31.1				24.4	< RL		
Zinc	1000000		23000	61.8				62.4	< RL		
Mercury 7471A mg/kg											
Mercury	1722			0.036				0.049	< RL		
Perchlorate 6860 ug/kg											
Perchlorate				0.00	0.000093 J	0.00011 J		< RL	< RL	0.000093 J	
Cyanide 9012 mg/kg											
Cyanide				0.00				0.19 B	< RL		

^{-- =} data not available

ug/L = micrograms per liter (parts per billion)

ug/kg = micrograms per kilogram (parts per billion)

mg/kg = milligrams per kilogram (parts per million)

Inorganics:

RL = Reporting Limit

< RL = Indicates that the compound was analyzed for but not detected

J = Method blank contamination. The associated method blank contains the target analyte at a reportable level.

B = Estimated result. Result is less than Reporting Limit

E = Matrix Interference
Highlighted = > Regional Screening Level
Bold = > Background

Italics = > Cleanup goals

TABLE 2 - SUMMARY OF MULTI-INCREMENT SOIL SAMPLES ORGANIC RESULTS

10	tional HI=1	for National rainee Risk ⁵ mg/kg	<u> 6</u>	eria	Q	-DUP	0	Q	œ.	Q	
UNITS,	표현	ior Ris g	jional Screening Level (RSL) mg/kg	te _	PCTss-001M-0001-SO	<u> </u>	1-50	PCTss-002M-0001-SO	PCTss-002M-0001-ER	-0001-SO	
4	. 0	Vat	SL)	Soil Crite g	000	001	8	00	000	000	Ä
* o	<u>' </u>	or Natio ainee Ri mg/kg	Scr (R:	rface So round C mg/kg	√	PCTss-001M-0001	ss-002D-0001	\ \frac{>}{\gamma}	Σ	 	TRIP BLANK
× Z	s for raine ng/k		al 9 el	Surface : kground mg/kç	011]1∨	021	021	021	-003M	<u> </u>
		JGs -d T 10	ong .ev	ur. gro	0-s	00-	0-s	0-s	9-0	0-ss	<u> </u>
Į Ę	CC arc	:WCUGs Guard =	Regional Level mg	8 3	Ts	Lss	PCTs	Ts	Z Z		·
ANALYTE**,	FWCUC	₹ ō	~ ~	Bacl	Ъ	<u> </u>	_ ≥	2	9	PCT	
Sample Date					5/26/2011	5/26/2011	5/26/2011	5/26/2011	5/26/2011	5/26/2011	5/27/2011
	<u></u>		<u> </u>						UG/L		UG/L
EXPLOSIVES mg/kg											
1,3,5-Trinitrobenzene	165422		2200					< RL	< RL		
1,3-Dinitrobenzene	596		6.1					< RL	< RL		
2,4,6-Trinitrotoluene	2488	4643	19					< RL	< RL		
2,4-Dinitrotoluene	6519	134	1.6					< RL	< RL		
2,6-Dinitrotoluene	3309	136	61					< RL	< RL		
2-Amino-4,6-Dinitrotoluene	1237		150					< RL	< RL		
2-Nitrotoluene	59611	726	2.9					< RL	< RL		
3-Nitrotoluene			6.1					< RL	< RL		
4-Amino-2,6-Dinitrotoluene	1237		150					< RL	< RL		
4-Nitrotoluene	59611	9818	30					< RL	< RL		
HMX	234645		3800					< RL	< RL		
Nitrobenzene			4.8					< RL	< RL		
PETN								< RL	< RL		
RDX	17113	1452	5.5					< RL	< RL		
Tetryl			240					< RL	< RL		
Propellants mg/kg	T		10000000		11 D	l 0.02 B	I	. DI	. DI	. DI	
Nitrocellulose			180000000		1.1 B	0.82 B		< RL	< RL	< RL	
Nitroglycerine Nitroguanidine		9818	6.1 6100	 	< RL 0.063 J	< RL 0.12 J		< RL < RL	< RL < RL	< RL 0.17 J	
VOCS 8260B ug/kg			0100		0.003	U.12 J		NL	NL NL	0.17	
Chloromethane			120				< RL				< RL
Bromomethane			7.3				< RL				< RL
Vinyl chloride			0.06				< RL				< RL
Chloroethane			15000				< RL				< RL
Methylene Chloride			11				< RL				< RL
Acetone			61000					I,B			< RL
Carbon disulfide			820				< RL				< RL
1,1-Dichloroethene			3.3				< RL				< RL
1,1-Dichloroethane			240				< RL				< RL
1,2-Dichloroethene (total)			150				< RL				< RL
Chloroform			0.29				< RL				< RL
1,2-Dichloroethane			0.43				< RL				< RL
2-Butanone			28000				< RL				< RL
1,1,1-Trichloroethane			8700				< RL				< RL
Carbon tetrachloride			0.61				< RL				< RL
Bromodichloromethane			0.27				< RL				< RL
1,2-Dichloropropane			0.89				< RL				< RL

TABLE 2 - SUMMARY OF MULTI-INCREMENT SOIL SAMPLES ORGANIC RESULTS

ANALYTE**, UNITS, METHOD NO.	FWCUGs for National Guard Trainee HI=1 mg/kg	FWCUGs for National Guard Trainee Risk = 10 ⁻⁵ mg/kg	Regional Screening Level (RSL) mg/kg	Surface Soil Background Criteria mg/kg	PCTss-001M-0001-SO	PCTss-001M-0001-DUP	PCTss-002D-0001-SO	PCTss-002M-0001-SO	PCTss-002M-0001-ER	PCTss-003M-0001-SO	TRIP BLANK
cis-1,3-Dichloropropene			1.7				< RL				< RL
Trichloroethene			2.8				< RL				< RL
Dibromochloromethane			0.68				< RL				< RL
1,1,2-Trichloroethane			1.1				< RL				< RL
Benzene			1.1				< RL				< RL
trans-1,3-Dichloropropene			1.7				< RL				< RL
Bromoform			61				< RL				< RL
4-Methyl-2-pentanone			5300				< RL				< RL
2-Hexanone			210				< RL				< RL
Tetrachloroethene			0.55				< RL				< RL
1,1,2,2-Tetrachloroethane			0.56				< RL				< RL
Toluene			5000				< RL				< RL
Chlorobenzene			290				< RL				< RL
Ethylbenzene			5.4				< RL				< RL
Styrene			6300				< RL				< RL
Xylenes (Total)			630				< RL				< RL
SVOC 8270 mg/kg											
Phenol			18000					< RL	< RL		
Bis(2-chloroethyl) ether			0.21					< RL	< RL		
2-Chlorophenol			390					< RL	< RL		
1,3-Dichlorobenzene								< RL	< RL		
1,4-Dichlorobenzene			2.4					< RL	< RL		
1,2-Dichlorobenzene			1900					< RL	< RL		
2-Methylphenol			3100					< RL	< RL		
2,2-oxybis (1-chloropropane)								< RL	< RL		
4-Methylphenol			310					< RL	< RL		
N-Nitroso-di-n-propylamine		18.8	0.069					< RL	< RL		
Hexachloroethane			35					< RL	< RL		
Nitrobenzene			4.8					< RL	< RL		
Isophorone			510					< RL	< RL		
2-Nitrophenol								< RL	< RL		
2,4-Dimethylphenol			1200					< RL	< RL		
Bis(2-chloroethoxy)methane	17883		180					< RL	< RL		
2,4-Dichlorophenol			180					< RL	< RL		
1,2,4-Trichlorobenzene			22					< RL	< RL		
Naphthalene	15407		3.6					< RL	< RL		
4-Chloroaniline			2.4					< RL	< RL		
Hexachlorobutadiene			6.2					< RL	< RL		
								< RL	< RL		
4-Chloro-3-methylphenol											
2-Methylnaphthalene			310					< RL	< RL		

TABLE 2 - SUMMARY OF MULTI-INCREMENT SOIL SAMPLES ORGANIC RESULTS

ANALYTE**, UNITS, METHOD NO.	FWCUGs for National Guard Trainee HI=1 mg/kg	FWCUGs for National Guard Trainee Risk = 10 ⁻⁵ mg/kg	Regional Screening Level (RSL) mg/kg	Surface Soil Background Criteria mg/kg	PCTss-001M-0001-SO	PCTss-001M-0001-DUP	PCTss-002D-0001-SO	PCTss-002M-0001-SO	PCTss-002M-0001-ER	PCTss-003M-0001-SO	TRIP BLANK
2,4,6-Trichlorophenol			44					< RL	< RL		
2,4,5-Trichlorophenol			6100					< RL	< RL		
2-Chloronaphthalene			6300					< RL	< RL		
2-Nitroaniline			610					< RL	< RL		
Dimethyl phthalate								< RL	< RL		
Acenaphthylene								< RL	< RL		
2,6-Dinitrotoluene			61					< RL	< RL		
3-Nitroaniline					-		-	< RL	< RL	-	
Acenaphthene			3400					< RL	< RL		
2,4-Dinitrophenol			120					< RL	< RL		
2-Nitrophenol								< RL	< RL		
Dibenzofuran	11922		78					< RL	< RL		
2,4-Dinitrotoluene			1.6					< RL	< RL	-	
Diethyl phthalate			49000					< RL	< RL	-	
4-Chlorophenyl phenyl ether								< RL	< RL		
Fluorene	114583		2300					< RL	< RL		
4-Nitroaniline			24					< RL	< RL		
4,6-Dinitro-2-methylphenol								0.14 J	< RL		
n-Nitrosodiphenylamine			99					< RL	< RL		
4-Bromophenyl phenyl ether								< RL	< RL		
Hexachlorobenzene			0.3					< RL	< RL		
Pentachlorophenol	56558	440	0.89					< RL	< RL		
Phenanthrene								< RL	< RL		
Anthracene			17000					< RL	< RL		
Carbazole		8346						< RL	< RL		
Di-n-butyl phthalate			6100					< RL	< RL		
Fluoranthene	50868		2300					< RL	< RL		
Pyrene	38151		1700					< RL	< RL		
Butyl benzyl phthalate			260					< RL	< RL		
3,3'-Dichlorobenzidine			1.1					< RL	< RL		
Benzo(a)anthracene		47.7	0.15					< RL	< RL		
Chrysene		4774	15					< RL	< RL		
Bis(2-ethylhexyl) phthalate			35					< RL	1.1 J		
Di-n-octyl phthalate		 47.7	 0.1F					< RL	< RL		
Benzo(b)fluoranthene		47.7	0.15					< RL	< RL		
Benzo(k)fluoranthene		477	1.5					< RL	< RL		
Benzo(a)pyrene		4.77	0.015					< RL	< RL		
I < RLeno(1,2,3-cd)pyrene		47.7	0.15					< RL	< RL		
Dibenz(a,h)anthracene		4.77	0.015					< RL	< RL		
Benzo(g,h,i)perylene								< RL	< RL	<u></u>	

TABLE 2 - SUMMARY OF MULTI-INCREMENT SOIL SAMPLES ORGANIC RESULTS

ANALYTE**, UNITS, METHOD NO.	FWCUGs for National Guard Trainee HI=1 mg/kg	FWCUGs for National Guard Trainee Risk = 10 ⁻⁵ mg/kg	Regional Screening Level (RSL) mg/kg	Surface Soil Background Criteria mg/kg	PCTss-001M-0001-SO	PCTss-001M-0001-DUP	PCTss-002D-0001-SO	PCTss-002M-0001-SO	PCTss-002M-0001-ER	PCTss-003М-0001-SO	TRIP BLANK
PESTICIDES 8081A ug/kg											
alpha-BHC			0.077					< RL	< RL		
beta-BHC		74.2	0.27					< RL	< RL		
delta-BHC								< RL	< RL		
gamma-BHC			0.52					< RL	< RL		
Heptachlor	2981	29.8	0.11					< RL	< RL		
Aldrin	179	7.88	0.029					< RL	< RL		
Heptachlor epoxide	77.5	14.8	0.053					< RL	< RL		
Endosulfan I			370					< RL	< RL		
Dieldrin	298	8.39	0.030					< RL	< RL		
4,4'-DDE			1.4					0.00073 J,PG	< RL		
Endrin	330		18					< RL	< RL		
Endosulfan II								< RL	< RL		
4,4'-DDD			2.0					< RL	< RL		
Endosulfan sulfate								< RL	< RL		
4,4'-DDT			1.7					< RL	< RL		
Methoxychlor			310					< RL	< RL		
Endrin ketone								< RL	< RL		
Endrin aldehyde								< RL	< RL		
alpha-Chlordane								< RL	< RL		
gamma-Chlordane			1.6					< RL	< RL		
Toxaphene			0.44					< RL	< RL		
PCBs 8082 ug/kg											
Aroclor-1016	192	34.6	3.9					< RL	< RL		
Aroclor-1221			0.14					< RL	< RL		
Aroclor-1232			0.14					< RL	< RL		
Aroclor-1242			0.22					< RL	< RL		
Aroclor-1248		34.6	0.22					< RL	< RL		
Aroclor-1254	54.9	34.6	0.22					< RL	< RL		
Aroclor-1260		34.6	0.22					< RL	< RL		

^{-- =} data not available

ug/L = micrograms per liter (parts per billion)

ug/kg = micrograms per kilogram (parts per billion)

mg/kg = milligrams per kilogram (parts per million)

Organics:

RL - Reporting Limit

< RL = Indicates that the compound was analyzed for but not detected

J = Estimated result. Result is less than Reporting Limit

B = Method blank contamination. The associated method blank contains the target analyte at a reportable level.

PG - The percent difference between the original and confirmation analyses is greater than 40% Highlighted = > Regional Screening Level

Bold = > Background

Italics = > Cleanup goals

Field Sampling Report Project Name: RVAAP Location ID: PCTss-001M-0001-SO Ravenna Army Ammunition Plant Ravenna Ohio و 2011 ما2/2011 67 Date: Weather Temperature Sampling Information Source Groundwater / Product Surface Water Soils / Sediments / Sludge Method Bailer Sample Bottle Scoop Trowel Pump Bacon Bomb Bowl Hand Auger Push Probe Х Micro-purge Plastic Liner Type/Construction Mattocks Well Furging Form Yes - No Miscellaneous Sample Collection: 1025 hrs Sample Collection: 1025 hrs Sample Type: Composite - MI Grab If MI, # of increments taken: Sample Depth: _0-1' __ FT (below surface)Decon: Dedicated (Each Day - Each Location Location: Plotted on Map - Staked in Field Estimated - Measured - Sarveyed **Analytical Parameters** Field Parameters Other Parameters (at time of sample) PID/FID Readings: VOC **TPH GRO** Corrosivity ppm Background: Nitrocellulose Х TPH DRO Reactivity Sulfide/Cyanide Nitroguanidine Х Chromium +6 Ignitability X Sample: Nitroglycerine Nitrate Х Water Level Perchlorate Sulfate **OA Samples** °C Temperature Pesticides/PCBs Yes / No MS/MSD Asbestos NA Yes) No aMHOs Sp. Conductance: **RVAAP Full Suite** Arsenic Duplicate ID NA units TOC pΗ Equipment Rinse ID Yes / No Chromium NA Turkidity N.T.U. Grain Size Trip Blank ID Yes / No NA Sample Description Split Sample Split Sample ID: ODOR: Keonn Non STAI NING: TEXTURE: Mary wywww Name: SORTIN PLACTICITY: None Agency/Company: _ MOISTURE: Address: X2.014 Soil sample description should include: Munsell Color Odor Staining Texture Sorting Plasticity Moisture QA/QC Provided: MS/MSD - Duplicate - Trip Blanks - Field Blanks Parameters: Same as Above - As Listed Water sample description should include: Color Odor Sheen Turbidity Stilluring (Please Print)

(Please Print)

Reviewed by:

Signature:

Logged By

Signature:

Field Sampling Report Project Name: RVAAP Location ID: PCTss-002M-0001-SO Ravenna Army Ammunition Plant Ravenna Ohio 68 2011/05/2012 Weather_ Temperature Date: ___ Sampling Information Soils / Sediments / Sludge Source Groundwater / Product Surface Water Bailer Sample Bottle Trowel Method Scoop Pump Bacon Bomb Bowl Hand Auger Micro-purge Push Probe Х Plastic Liner Type/Construction Mattocks Well Purging Form Yes - No Miscellaneous Sample Collection: 1120 hrs Sample Type: Composite - MI Location: Plotted on Map - Staked in Field If MI, # of increments taken Estimated - Measured - Sarveyed Sample Depth: _0-1'___ FT (below surface)Decon: Dedicated (Each Da) - Each Location Other Parameters Field Parameters **Analytical Parameters** (at time of sample) PID/FID Readings: VOC Х **SVOCs** Х Corrosivity Background: X TAL Metal X Reactivity Sulfide/Cyanide Nitrocellulose X X Nitroguanidine Mercury Ignitability X Х Sample: ppm Nitroglycerine Cyanide X FT Water Level Perchlorate Solids Х QA Samples °C Temperature Pesticides/PCBs Reactivity Х MS/MSD Yes No Х NA Sp. Conductance: uMHOs Full TCLP Х X Flash Point Duplicate ID Yes / No NA units **PCB** \mathbf{x} PH X Equipment Rinse ID Yes / No NA Turkidity Explosives Х Trip Blank ID Yes / No NA Sample Description Split Sample _C Split Sample ID: ___ OLOR: ODOR: B.com COLONE. STAI TEXTURE: NING: - Marie williant SORTIN V00V PLACTICITY: Mana Agency/Company: _____ MOISTURE: Address: NV015/ Soil sample description should include: Munsell Color Odor Staining Texture Sorting Plasticity Moisture QA/QC Provided: MS/MSD - Duplicate - Trip Blanks - Field Blanks Parameters: Same as Above - As Listed Water sample description should include: Color Odor Sheen Turbidity Reviewed by: S. - Wexing (Please Print) Logged By: Date: 6/14/11 Signature: Signature:

Note: VOC's WERE TAKEN AS A discrete sample.

Field Sampling Report Project Name: RVAAP Location ID: PCTss-003M-0001-SO Ravenna Army Ammunition Plant Ravenna Ohio 05/26/2011_ Date: Weather Temperature_ Sampling Information Source Groundwater/Product Surface Water Soils / Sediments / Sludge Bailer Method Sample Bottle Scoop Trowel Pump Bacon Bomb Bowl Hand Auger Push Probe Micro-purge Plastic Liner Type/Construction Mattocks Well Furging Form Yes - No Miscellaneous Sample Collection: 1305hrs Location: Plotted on Map - Staked in Field Sample Type: Composite - MI If MI, # of incernents taken: FT (below surface)Decon: Dedicated (Each Da) - Each Location Estimated - Measured - Surveyed Sample Depth: 0-1' Analytical Parameters Other Parameters **Field Parameters** (at time of sample) PID/FID Readings: VOC TPH GRO Corrosivity ppm Background: Nitrocellulose Х TPH DRO Reactivity Sulfide/Cyanide Nitroguanidine Х Chromium +6 Ignitability X Sample: ppm Nitroglycerine Nitrate X FT Water Level Perchlorate Sulfate **QA Samples** °C Yes / No Temperature Pesticides/PCBs Asbestos MS/MSD NA uMHOs Yes 1 No Sp. Conductance: Duplicate ID **RVAAP Full Suite** Arsenic NA Chromium pH TOC Equipment Ringe HD Yes / No NA N.T.U. Trip Blank ID Turkidity Grain Size Yes / No NA Sample Description Split Sample Split Sample ID: ___ ODOR: STONIN None STAI NING: TEXTURE: Massine Name: SORTIN 1000 C PLACTICITY: Agency/Company: _ None MOISTURE: Address: TRIODY Soil sample description should include: Munsell Color Odor Staining Texture Sorting Plasticity Moisture QA/QC Provided: MS/MSD - Duplicate - Trip Blanks - Field Blanks Parameters: Same as Above - As Listed Water sample description should include: Color Odor Sheen Turbidity Logged By: (Please Print) Reviewed by: Stoly by the same Signature:

Client Sample ID: PCTss-001M-0001-SO

General Chemistry

Lot-Sample #...: G1F030473-001 Work Order #...: MJ07E

1.1 B

Matrix....: SOLID

Date Sampled...: 05/26/11

Date Received..: 06/03/11

% Moisture....:

PREP PREPARATION-RESULT

PARAMETER Nitrocellulose

UNITS 5.0 mg/kg METHOD ANALYSIS DATE BATCH # TAL-SOP WS-WC-005 06/15-06/16/11 1166054

Dilution Factor: 1

NOTE(S):

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: PCTss-001M-0001-SO

HPLC

Lot-Sample #: G	G1F030473-001	Work Order #:	MJ07E1AE	Matrix	:	SOLID
Date Sampled: 0)5/26/11	Date Received:	06/03/11			
Prep Date 0	06/08/11	Analysis Date:	06/13/11			
Prep Batch #: 1	159146					
Dilution Factor: 0	1.97					
% Moisture:		Method:	SW846 8330	(Modif		
			REPORTING			-
PARAMETER		RESULT	LIMIT	UNITS	MDL	
Nitroguanidine		0.063 J	0.24	mg/kg	0.019	
NOTE(S):						

J Estimated result. Result is less than RL

Client Sample ID: PCTss-001M-0001-SO

HPLC

Lot-Sample #: G1F030473-001	Work Order #:	MJ07E1AF	Matri:	solio
Date Sampled: 05/26/11	Date Received:	06/03/11		
Prep Date: 06/08/11	Analysis Date:	06/13/11		
Prep Batch #: 1159133				
Dilution Factor: 0.96				
% Moisture:	Method:	SW846 8330		
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Nitroglycerin	ND	0.48	mg/kg	0.12
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
3,4-Dinitrotoluene	92	(78 - 108)		

Analytical Data

Client: TestAmerica Laboratories, Inc.

Job Number: 280-16702-1

Sdg Number: G1F030473

Client Sample ID:

PCTSS-001M-0001-SO

Lab Sample ID:

280-16702-1

Client Matrix:

Solid

Date Sampled: 05/26/2011 1025

Date Received: 06/08/2011 0930

6860 Perchlorate by IC/MS or IC/MS/MS

Analysis Method:

6860

Analysis Batch:

280-72023

Instrument ID:

LC_LCMS1

Prep Method:

6860

Prep Batch:

Lab File ID:

IC11F15024.d

Dilution:

1.0

280-71229

Initial Weight/Volume:

10.58 g

Analysis Date:

06/15/2011 1857

Final Weight/Volume: Injection Volume:

100 mL 250 uL

Prep Date:

06/09/2011 1658

Result (ug/Kg)

Qualifier

MDL

Analyte Perchlorate DryWt Corrected: N

0.093

0.038

RL 0.47

Client Sample ID: PCTss-001M-0001-DUP

General Chemistry

Lot-Sample #...: G1F030473-002

Work Order #...: MJ07K

Matrix..... SOLID

Date Sampled...: 05/26/11

Date Received..: 06/03/11

% Moisture....:

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Nitrocellulose
 0.82 B
 5.0
 mg/kg
 TAL-SOP WS-WC-005
 06/15-06/16/11
 1166054

Dilution Factor: 1 MDL...... 0.78

NOTE (S):

RL Reporting Limit

B Estimated result. Result is less than RL.

Client Sample ID: PCTss-001M-0001-DUP

HPLC

Lot-Sample #: G1F030473-002 Date Sampled: 05/26/11 Prep Date: 06/08/11 Prep Batch #: 1159133 Dilution Factor: 0.98	Work Order #: Date Received: Analysis Date:	06/03/11	Matri	X	SOLID
% Moisture:	Method:	\$W846 8330	ı	. •	
PARAMETER Nitroglycerin	RESULT ND	REPORTING LIMIT 0.49	UNITS mg/kg	MDL 0.13	·
WifiodiAceliu	ND	0.49	mg/ kg	0,13	
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS			
3,4-Dinitrotoluene	92	(78 - 108)			

Client Sample ID: PCTss-001M-0001-DUP

HPLC

Lot-Sample #: Date Sampled: Prep Date:	05/26/11 06/08/11	Work Order #: Date Received: Analysis Date:	06/03/11	Matrix	: SOLID
Prep Batch #:					
Dilution Factor:	0.97	_		•	
% Moisture:		Method:	SW846 8330	(Modif	
•			REPORTING		
PARAMETER		DROUTE		INTEG	MOT
		RESULT	LIMIT	UNITS	MDL
Nitroguanidine		0.12 J	0.24	mg/kg	0.019
NOTE(S):					

J Estimated result. Result is less than RL.

Analytical Data

Client: TestAmerica Laboratories, Inc.

Job Number: 280-16702-1

Sdg Number: G1F030473

Client Sample ID:

PCTSS-001M-0001-DUP

Lab Sample ID:

280-16702-2FD

Client Matrix:

Solid

Date Sampled: 05/26/2011 1025

Date Received: 06/08/2011 0930

6860 Perchlorate by IC/MS or IC/MS/MS

Analysis Method:

6860 6860 Analysis Batch:

280-72023

Instrument ID:

LC_LCMS1

Prep Method:

Prep Batch:

Lab File ID:

IC11F15025.d

Dilution:

1.0

280-71229

Initial Weight/Volume:

10.29 g

06/15/2011 1925

Final Weight/Volume: Injection Volume:

100 mL 250 uL

Analysis Date: Prep Date:

06/09/2011 1658

· Result (ug/Kg)

Qualifier

MDL.

Analyte Perchlorate DryWt Corrected: N

0.11

0.039

RL 0.49

Client Sample ID: PCTss-002M-0001-S0

HELC

Lot-Sample #: G1F030473-004 Date Sampled: 05/26/11 Prep Date: 06/08/11 Prep Batch #: 1159133 Dilution Factor: 0.95	Work Order #: Date Received: Analysis Date:	06/03/11	Matrix	SOLID
% Moisture: 5.1	Method:	SW846 8330		
	DECOVE	REPORTING	rmo	VDT
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,3,5-Trinitrobenzene	ND	0.24	mg/kg	0.019
1,3-Dinitrobenzene	ND	0.24	mg/kg	0.048
2,4,6-Trinitrotoluene	ND	0.24	mg/kg	0.019
2,4-Dinitrotoluene	ND	0.24	mg/kg	0.019
2,6-Dinitrotoluene	ND	0.24	mg/kg	0.028
2-Amino-4,6-	ND	0.24	mg/kg	0.095
dinitrotoluene				
2-Nitrotoluene	ND	0.24	mg/kg	0.076
3-Nitrotoluene	ND	0.24	mg/kg	0.066
4-Amino-2,6-	ND	0.24	mg/kg	0.019
dinitrotoluene				
4-Nitrotoluene	ND	0.24	mg/kg	0.076
HMX	ND	0.24	mg/kg	0.028
Nitrohenzene	ND	0.24	mg/kg	0.048
Nitroglycerin	ND	0.48	mg/kg	0.12
PETN	ND	0.48	mg/kg	0.15
RDX	ND	0.24	mg/kg	0.038
		0.24		0.048
Tetryl	ND	V.24	mg/kg	U. V90

RECOVERY LIMITS (78 - 108)

PERCENT

RECOVERY 90

SURROGATE
3,4-Dinitrotoluene

Client Sample ID: PCTss-002M-0001-SO

HPLC

Lot-Sample #: Date Sampled:		Work Order #: Date Received:		Matrix		SOLID
Prep Date:	06/08/11	Analysis Date:	06/13/11			
Prep Batch #:	1159146					
Dilution Factor:	1					
% Moisture:	5.1	Method:	SW846 8330	(Modif		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
Nitroquanidine		ND	0.25	ma/ka	0.020	

Client Sample ID: PCTss-002M-0001-SO

General Chemistry

Lot-Sample #...: G1F030473-004

Work Order #...: MJ07R

Matrix..... SOLID

Date Sampled...: 05/26/11

/11 Date Received..: 06/03/11

% Moisture....: 5.1

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Cyanide, Total	0.19 B	0.53	mg/kg or: 1	SW846 9012A	06/08-06/09/11	1160026
Nitrocellulose	ND 03	5.0 Alution Fact	mg/kg or: 1	TAL-SOP WS-WC-005	06/15-06/16/11	1166054
Percent Moisture	5.1 Di	0.10	% or: 1	ASTM D 2216-90 MDL 0.10	06/15-06/16/11	1166183

NOTE (S):

Results and reporting limits have been adjusted for dry weight.

RL Reporting Limit

B Estimated result. Result is less than RL.

Analytical Data

Client: TestAmerica Laboratories, Inc.

Job Number: 280-16702-1

Sdg Number: G1F030473

Client Sample ID:

PCTSS-002M-0001-SO

Lab Sample ID:

280-16702-3

Client Matrix:

Solid

Date Sampled: 05/26/2011 1120 Date Received: 06/08/2011 0930

6860 Perchlorate by IC/MS or IC/MS/MS

Analysis Method: Prep Method:

6860

6860

Dilution:

1.0

Analysis Date:

06/15/2011 1954

Prep Date:

06/09/2011 1658

Analysis Batch: Prep Batch:

280-72023

280-71229

Instrument ID:

Lab File ID:

LC_LCMS1 IC11F15026.d

Initial Weight/Volume:

10.02 g

Final Weight/Volume: Injection Volume:

100 mL 250 uL

Result (ug/Kg)

Qualifier

MDL

Analyte Perchlorate DryWt Corrected: N

0.040

RL 0.50

ND

Client Sample ID: PCTss-002M-0001-SO

TOTAL Metals

Lot-Sample #...: G1F030473-004

Date Sampled...: 05/26/11

Date Received..: 06/03/11

욯	Moisture:	5.1
---	-----------	-----

PARAMETER	RESULT	REPOR'	TING UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
		· · · · · · · · · · · · · · · · · · ·				
Prep Batch #	: 1161109					*
Silver	ИВ	0.53	mg/kg	SW846 6010B	06/10-06/14/11	MJ07R1AC
		Dilution	Factor: 1	MDL 0.095		
***	10000	20 1	D	0830 4 C CO 2 OD	06/10 06/11/11	W707D13D
Aluminum	10600	22.1	mg/kg	SW846 6010B	06/10-06/14/11	MJU/KIAD
		Dilution	ractor: 1	MDL 5.9		
Arsenic	8.4	2.2	mq/kq	SW846 6010B	06/10-06/14/11	MJ07R1AE
		Dilution		MDL 1.4	, , ,	
Barium	81.7	2.1	mg/kg	SW846 6010B	06/10-06/14/11	MJ07R1AF
		Dilution	Factor: 1	MDL 0.13		
Da11 dans	0.45	۸ ۵۵	D	0510 4 C C02 0D	06/10 06/14/11	MINISTER
Beryllium	0.45	0.32	mg/kg	SW846 6010B	06/10-06/14/11	MJU/RIAG
		DITUCION	ractor: I	MDL U.032		
Calcium	954	105	mq/kq	SW846 6010B	06/10-06/14/11	MJ07R1AH
		Dilution	3. 2	MOL 4.7		
Cadmium	0.13 B	0.32	mg/kg	SW846 6010B	06/10-06/14/11	MJ07R1AJ
		Dilution	Factor: 1	MDL 0.032		
0.1.34		0.60	15	077046 607.00	06/10 06/14/11	M TATE 1 2 12
Cobalt	7.7	0.63	mg/kg	SW846 6010B	06/10-06/14/11	MOUTRIAK
		Directon	ractor: I	MDL 0.26		
Chromium	14.5	1.3	mg/kg	SW846 6010B	06/10-06/14/11	MJ07R1AL
		Dilution I		MDL 0.15		
Copper	12.1	2.6	mg/kg	SW846 6010B	06/10-06/14/11	MAINTOEM
		Dilution !	Factor: 1	MOL 0.23		
Iron	17600	10.5	mg/kg	SW846 6010B	06/10-06/14/11	M.TO7121 XXI
1100	17000	Dilution H		MDL 1.2	00/10-00/14/11	HOUTKIAN
		041041011		115411111111111111111111111111111111111		
Potassium	654	105	mg/kg	SW846 6010B	06/10-06/14/11	MJ07R1AP
		Dilution H	Factor: 1	MDL 10.5		
Magnesium	1770	52.7	mg/kg	SW846 6010B	06/10-06/14/11	MJ07Rlaq
		Dilution E	Factor: 1	MDL 4.7		
Manganese	833	1.3	mg/kg	SW846 6010B	06/10-06/14/11	M.T0.7121 X 20
manyanese		Dilution E		MDL 0.26	ANATA ANATALTI	MATALOUS
		222002011	~~~~			

(Continued on next page)

Matrix....: SQLID

Client Sample ID: PCTss-002M-0001-SO

TOTAL Metals

		REPORTI	NG		PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Sodium	35.6 В	527	mg/kg	SW846 6010B	06/10-06/14/11	MJ07R1AT
		Dilution Fac	ctor: 1	MDL 11.6		
Nickel	18.5	1.1	mg/kg	SW846 6010B	06/10-06/14/11	MJ07R1AU
		Dilution Fac	etor: 1	MDL 0.25		
Lead	34.1	2.1	mg/kg	SW846 6010B	06/10-06/14/11	MJ07R1AV
		Dilution Fac	ctor: 1	MDL 0.27		
Antimony	ND	1.6	mg/kg	SW846 6010B	06/10-06/14/11	MJ07R1AW
		Dilution Fac	etor: 1	MDL 0.99		
Selenium	ND	2.1	mg/kg	SW846 6010B	06/10-06/14/11	MJ07R1AX
		Dilution Fac	etor: 1	MDL 1.5	÷	
Thallium	ND	2.1	mg/kg	SW846 6010B	06/10-06/14/11	MJ07R1A0
		Dilution Fac	tor: 1	MDL 0.89		
Vanadium	24.4	1.1	mg/kg	SW846 6010B	06/10-06/14/11	MJ07R1A1
		Dilution Fac	tor: 1	MDL 0.20		
Zinc	62.4	3.2	mg/kg	SW846 6010B	06/10-06/14/11	MJ07R1A2
	,	Dilution Fac	tor: 1	MDL.,, 0.20		
Prep Batch #	. 1165205					
Mercury	0.049	0.040	mg/kg	SW846 7471A	06/14/11	MJ07R1CC
		Dilution Fac	tor: 1	MDL 0.0086		

NOTE(S):

Results and reporting limits have been adjusted for dry weight.

B Estimated result. Result is less than RL

Client Sample ID: PCTss-002M-0001-SO

GC/MS Semivolatiles

Lot-Sample #...: G1F030473-004 Work Order #...: MJ07R1A4 Matrix.....: SOLID Date Sampled...: 05/26/11 Date Received..: 06/03/11 Prep Date....: 06/09/11 Analysis Date..: 06/20/11

Prep Batch #...: 1160142

Dilution Factor: 0.99

% Moisture....: 5.1 Method.....: SW846 8270C

		REPORTIN	iG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acenaphthene	ND	0.99	mg/kg	0.082
Acenaphthylene	ND	0.99	mg/kg	0.084
Anthracene	ND	0.99	mg/kg	0.085
Benzo(a) anthracene	ND	0.99	mg/kg	0.091
Benzo(b) fluoranthene	ND	0.99	mg/kg	0.094
Benzo(k) fluoranthene	ND	0.99	mg/kg	0.11
Benzo(ghi)perylene	ND	0.99	mg/kg	0.11
Benzo (a) pyrene	ND	0.99	mg/kg	0.093
bis(2-Chloroethoxy) methane	ND	0.99	mg/kg	0.087
bis(2-Chloroethyl)- ether	ND	0.99	mg/kg	0.080
bis(2-Ethylhexyl) phthalate	ND	5.0	mg/kg	0.097
4-Bromophenyl phenyl ether	ND	0.99	mg/kg	0.084
Butyl benzyl phthalate	ND	0.99	mg/kg	0.094
Carbazole	ND	0.99	mg/kg	0.094
4-Chloroaniline	ND	3.3	mg/kg	0.057
4-Chloro-3-methylphenol	ND	0.99	mg/kg	0.091
2-Chloronaphthalene	ND	0.99	mg/kg	0.080
2-Chlorophenol	ND	0.99	mg/kg	0.087
4-Chlorophenyl phenyl ether	ND	0.99	mg/kg	0.092
Chrysene	ND	0.99	mg/kg	0.083
Dibenzo (a, h) anthracene	ИD	0.99	mg/kg	0.10
Dibenzofuran	ND	0.99	mg/kg	0.085
Di-n-butyl phthalate	ND	5.0	mg/kg	0.096
1,2-Dichlorobenzene	ND	3.3	mg/kg	0.074
1,3-Dichlorobenzene	ND	3.3	mg/kg	0.077
1,4-Dichlorobenzene	ND	3.3	mg/kg	0.076
3,3'-Dichlorobenzidine	ND	5.0	mg/kg	0,093
2,4-Dichlorophenol	ND	3.3	mg/kg	0.088
Diethyl phthalate	ND	0.99	mg/kg	0.089
2,4-Dimethylphenol	ИD	0.99	mg/kg	0.17
Dimethyl phthalate	ND	0.99	mg/kg	0.086
4,6-Dinitro-	0.14 J	2.0	mg/kg	0.080
2-methylphenol		•		

(Continued on next page)

Client Sample ID: PCTss-002M-0001-SO

GC/MS Semivolatiles

Lot-Sample #...: G1F030473-004 Work Order #...: MJ07R1A4 Matrix.....: SOLID

REPORTING PARAMETER RESULT LIMIT UNITS MDL 2,4-Dinitrophenol ND 16 mg/kg 0.21 2,4-Dinitrotoluene ND 0.99 mg/kg 0.088 2,6-Dinitrotoluene ND 3.3 mg/kg 0.098 Di-n-octyl phthalate ND 0.99 mg/kg 0.096 Fluoranthene ND 0.99 mg/kg 0.094 Fluorene ND 0.99 mg/kg 0.091 Hexachlorobenzene ND 0.99 mg/kg 0.088
2,4-Dinitrophenol ND 16 mg/kg 0.21 2,4-Dinitrotoluene ND 0.99 mg/kg 0.088 2,6-Dinitrotoluene ND 3.3 mg/kg 0.098 Di-n-octyl phthalate ND 0.99 mg/kg 0.096 Fluoranthene ND 0.99 mg/kg 0.094 Fluorene ND 0.99 mg/kg 0.091
2,4-Dinitrotoluene ND 0.99 mg/kg 0.088 2,6-Dinitrotoluene ND 3.3 mg/kg 0.098 Di-n-octyl phthalate ND 0.99 mg/kg 0.096 Fluoranthene ND 0.99 mg/kg 0.094 Fluorene ND 0.99 mg/kg 0.091
2,6-Dinitrotoluene ND 3.3 mg/kg 0.098 Di-n-octyl phthalate ND 0.99 mg/kg 0.096 Fluoranthene ND 0.99 mg/kg 0.094 Fluorene ND 0.99 mg/kg 0.091
Di-n-octyl phthalate ND 0.99 mg/kg 0.096 Fluoranthene ND 0.99 mg/kg 0.094 Fluorene ND 0.99 mg/kg 0.091
Fluoranthene ND 0.99 mg/kg 0.094 Fluorene ND 0.99 mg/kg 0.091
Fluorene ND 0.99 mg/kg 0.091
Hexachlorobenzene ND 0.99 mg/kg 0.088
HOUROUTOT OF THE WAY
Hexachlorobutadiene ND 5.0 mg/kg 0.081
Hexachlorocyclopenta- ND 16 mg/kg 0.061
diene
Hexachloroethane ND 3.3 mg/kg 0.080
Indeno(1,2,3-cd)pyrene ND 0.99 mg/kg 0.095
Isophorone ND 5.0 mg/kg 0.092
2-Methylnaphthalene ND 2.0 mg/kg 0.084
2-Methylphenol ND 2.0 mg/kg 0.057
4-Methylphenol ND 0.99 mg/kg 0.15
Naphthalene ND 0.99 mg/kg 0.081
2-Nitroaniline ND 16 mg/kg 0.083
3-Nitroaniline ND 16 mg/kg 0.17
4-Nitroaniline ND 16 mg/kg 0.087
Nitrobenzene ND 0.99 mg/kg 0.075
2-Nitrophenol ND 0.99 mg/kg 0.081
4-Nitrophenol ND 16 mg/kg 0.28
N-Nitrosodiphenylamine ND 3.3 mg/kg 0.085
N-Nitrosodi-n-propyl- ND 0.99 mg/kg 0.083
amine
2,2'-oxybis ND 2.0 mg/kg 0.078
(1-Chloropropane)
Pentachlorophenol ND 16 mg/kg 0.050
Phenanthrene ND 0.99 mg/kg 0.093
Phenol ND 0.99 mg/kg 0.082
Pyrene ND 0.99 mg/kg 0.093
1,2,4-Trichloro- ND 2.0 mg/kg 0.082
benzene
2,4,5-Trichloro- ND 2.0 mg/kg 0.082
phenol
2,4,6-Trichloro- ND 0.99 mg/kg 0.083
phenol

(Continued on next page)

Client Sample ID: PCTss-002M-0001-SO

GC/MS Semivolatiles

Lot-Sample #:	G1F030473~004	Work Order	# • MJ07R1A4	Matrix	: SOLID

SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS
2-Fluorobiphenyl	72	(65 - 135)
2-Fluorophenol	68	(65 - 135)
Nitrobenzene-d5	62 *	(65 - 135)
Phenol-d5	74	(65 - 135)
Terphenyl-d14	81	(65 - 135)
2,4,6-Tribromophenol	77	(65 - 135)

NOTE (S):

^{*} Surrogate recovery is outside stated control limits.

J Estimated result. Result is less than RL.

Client Sample ID: PCTss-002M-0001-SO

GC Semivolatiles

Lot-Sample #: G1F030473-004 Date Sampled: 05/26/11 Prep Date: 06/09/11 Prep Batch #: 1160137 Dilution Factor: 0.99	Work Order #: Date Received: Analysis Date:	06/03/11	Matri	x SOLID
% Moisture: 5.1	Method:	SW846 8081	.A	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
alpha-BHC	ND	1.7	ug/kg	0.22
gamma-BHC (Lindane)	ИD	1.7	ug/kg	0.17
Heptachlor	ND	1.7	ug/kg	0.19
Aldrin	ND	1.7	ug/kg	0.21
beta-BHC	ND	1.7	ug/kg	0.33
delta-BHC	ND	1.7	ug/kg	0.16
Heptachlor epoxide	ND	1.7	ug/kg	0.12
Endosulfan I	ND	1.7	ug/kg	0.051
gamma-Chlordane	ND	1.7	ug/kg	0.052
alpha-Chlordane	ND	1.7	ug/kg	0.20
4,4*-DDE	0.73 J,PG	3.4	ug/kg	0.22
Dieldrin	ND	3.4	ug/kg	0.090
Endrin	ND	3.4	ug/kg	0.11
4,4'-DDD	ND	3.4	ug/kg	0.26
Endosulfan II	ND	3.4	ug/kg	0.099
4,4'-DDT	ND	3,4	ug/kg	0.40
Endrin aldehyde	ИD	3.4	ug/kg	0.11
Methoxychlor	ND	17	ug/kg	1.3
Endosulfan sulfate	ND	3.4	ug/kg	0.091
Endrin ketone	ND	3.4	ug/kg	0.34
Toxaphene	ND	66	ug/kg	20
CHRROCIME	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Decachlorobiphenyl	85 05	(50 - 150)		
Tetrachloro-m-xylene	85	(50 - 150)		

NOTE (S):

J Estimated result. Result is less than RL.

PG. The percent difference between the original and confirmation analyses is greater than 40%

Client Sample ID: PCTss-002M-0001-SO

GC Semivolatiles

Lot-Sample #: G1F030473-004 Date Sampled: 05/26/11 Prep Date: 06/09/11 Prep Batch #: 1160138 Dilution Factor: 0.99	Work Order #: Date Received: Analysis Date:	06/03/11	Matr	ix: SOLID
% Moisture: 5.1	Method:	SW846 8082		
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Aroclor 1016	ND	33	ug/kg	8.2
Aroclor 1221	ИD	66	ug/kg	11
Aroclor 1232	ND	33	ug/kg	8.2
Aroclor 1242	ND	33	ug/kg	8,2
Aroclor 1248	ND	33	ug/kg	8.2
Aroclor 1254	ND	33	ug/kg	8.2
Aroclor 1260	ND	33	ug/kg	8.2
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Decachlorobiphenyl	95	(65 - 135)		
Tetrachloro-m-xylene	88	(65 - 135)		

Client Sample ID: PCTss-002D-0001-SO

GC/MS Volatiles

Lot-Sample #: G1F030473-00 Date Sampled: 05/26/11 Prep Date: 06/07/11 Prep Batch #: 1159051	Date Received:	Work Order #: MJ07L1AC Ma Date Received: 06/03/11 Analysis Date: 06/07/11		
Dilution Factor: 1 % Moisture: 24	Method:	SW846 8260	ЭВ	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Methylene chloride	ND	5.0	ug/kg	0.84
4-Methyl-2-pentanone	ND	10	ug/kg	0.92
(MIBK)				
Styrene	ND	5.0	ug/kg	0.31
1,1,2,2-Tetrachloroethane	ND	5.0	ug/kg	0.68
Tetrachloroethene	ND	5.0	ug/kg	0.61
Toluene	ИD	5.0	ug/kg	0.61
1,1,1-Trichloroethane	ND	5.0	ug/kg	0.36
1,1,2-Trichloroethane	ND	5.0	ug/kg	0.44
Trichloroethene	ND	5.0	ug/kg	0.60
Vinyl chloride	ND	5.0	ug/kg	0.36
Xylenes (total)	ND	5.0	ug/kg	0.81
Acetone	5.3 J,B	10	ug/kg	1.4
Benzene	ND	5.0	ug/kg	0.26
Bromodichloromethane	ND	5.0	ug/kg	0.53
Bromoform	ND	5.0	ug/kg	0.40
Bromomethane	ND	5.0	ug/kg	0.86
2-Butanone (MEK)	ND	10	ug/kg	1.4
Carbon disulfide	ND	5.0	ug/kg	0.49
Carbon tetrachloride	ND	5.0	ug/kg	0.53
Chlorobenzene	ND	5.0	ug/kg	0.29
Dibromochloromethane	ИD	5.0	ug/kg	0.21
Chloroethane	ND	5.0	ug/kg	0.45
Chloroform	ND	5.0	ug/kg	0.26
Chloromethane	ИД	10	ug/kg	0.50
1,1-Dichloroethane	ND	5.0	ug/kg	0.29
1,2-Dichloroethane	ND	5.0	ug/kg	0.73
1,1-Dichloroethene	ИĎ	5.0	ug/kg	0.26
1,2-Dichloroethene	ND	5.0	ug/kg	0.64
(total)			2.	
1,2-Dichloropropane	ND	5.0	ug/kg	0.60
cis-1,3-Dichloropropene	ND	5.0	ug/kg	0.64
trans-1,3-Dichloropropene	ND	5.0	ug/kg	0.75
Ethylbenzene	ND	5.0	ug/kg	0.34
2-Hexanone	ND	10	ug/kg	0.74
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS		
4-Bromofluorobenzene	92	(65 - 135)		
1,2-Dichloroethane-d4	98	(65 - 135)		
Maluara 20	104	/65 _ 1351		

(Continued on next page)

(65 - 135)

104

Toluene-d8

Client Sample ID: PCTss-002D-0001-SO

GC/MS Volatiles

Lot-Sample #...: G1F030473-003 Work Order #...: MJ07L1AC Matrix.....: SOLID

NOTE (S):

J Estimated result Result is less than RL.

B Method blank contamination. The associated method blank contains the target analyte at a reportable level.

Client Sample ID: PCTss-002M-0001-ER

HPLC

Lot-Sample #: G1F030473-005 Date Sampled: 05/26/11 Prep Date: 06/06/11 Prep Batch #: 1157073	Work Order #: Date Received: Analysis Date:	06/03/11	Matri	×·····: WATER
Dilution Factor: 1.04	Method:	SW846 8330)	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Nitroglycerin	ND	0.68	ug/L	0.34
PETN	ND	0.68	ug/L	0.31
2-Amino-4,6-	- ND	0.10	ug/L	0.10
dinitrotoluene			•	
4-Amino-2,6-	ND	0.10	ug/L	0.052
dinitrotoluene			-	
1,3-Dinitrobenzene	ND	0.10	ug/L	0.052
2,4-Dinitrotoluene	ND	0.10	ug/L	0.052
2,6-Dinitrotoluene	ND	0.10	ug/L	0.052
HMX	ND	0.10	ug/L	0.037
Nitrobenzene	ND	0.10	ug/L	0.052
2-Nitrotoluene	ND	0.52	ug/L	0.092
3-Nitrotoluene	ND	0.52	ug/L	0.059
4-Nitrotoluene	ND	0.52	ug/L	0.092
RDX	ND	0.10	ug/L	0.037
Tetryl	ND	0.10	ug/L	0.052
1,3,5-Trinitrobenzene	ND	0.10	ug/L	0.031
2,4,6-Trinitrotoluene	ND	0.10	ug/L	0.052
	PERCENT	RECOVERY		

RECOVERY 82 LIMITS (79 - 111)

SURROGATE
3,4-Dinitrotoluene

Client Sample ID: PCTss-002M-0001-ER

Dissolved HPLC

Lot-Sample #:	G1F030473-005	Work Order #:	MJ0701AE	Matrix		WATER
Date Sampled:	05/26/11	Date Received:	06/03/11			
Prep Date:	06/09/11	Analysis Date:	06/13/11			
Prep Batch #:	1160065					
Dilution Factor:	1	Method:	SW846 8330	(Modif		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
Nitroguanidine		ND	20	ug/L	2.4	

Client Sample ID: PCTss-002M-0001-ER

General Chemistry

Matrix....: WATER

Lot-Sample #...: G1F030473-005 Work Order #...: MJ070

Date Sampled...: 05/26/11 Date Received..: 06/03/11

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Cyanide, Total	ND Dal	0.010 Lution Fac	mg/L tor: 1	SW846 9012A	06/08-06/09/11	1160025
Nitrocellulose	ND Dil	2.0 Lution Fac	mg/L tor: 1	TAL-SOP WS-WC-005	06/09-06/10/11	1160040

Analytical Data

Client: TestAmerica Laboratories, Inc.

Job Number: 280-16702-1

Sdg Number: G1F030473

Client Sample ID:

PCTSS-002M-0001-ER

Lab Sample ID:

280-16702-4

Client Matrix:

Water

Date Sampled: 05/26/2011 0840 Date Received: 06/08/2011 0930

6860 Perchlorate by IC/MS or IC/MS/MS

Analysis Method:

6860

Analysis Batch:

280-72016

Instrument ID:

LC_LCMS1

Dilution:

N/A

Prep Batch:

N/A

Lab File ID:

IC11F15017.d

1.0

06/15/2011 1538

Initial Weight/Volume:

5 mL

Final Weight/Volume: Injection Volume:

1.0 mL 250 uL

Prep Date:

Analysis Date:

NΑ

Result (ug/L)

Qualifier

MDL.

RL

Analyte Perchlorate

0.0088

0.050

Client Sample ID: PCTss-002M-0001-ER

TOTAL Metals

Lot-Sample #...: G1F030473-005 Matrix....: WATER

Date Sampled...: 05/26/11 Date Received..: 06/03/11

REPORTING PREPARATION- PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DAY	H
PARAMETER RESULT LIMIT UNITS METHOD ANALYSIS DAT	<u> </u>
Prep Batch #: 1160035	
Silver ND 5.0 ug/L SW846 6010B 06/09/11	мJ0701АН
Dilution Factor: 1 MDJ, 0.84	
Aluminum ND 200 ug/L SW846 6010B 06/09/11	MJ0701AJ
Dilution Factor: 1 MDL 48.0	
Arsenic ND 21.0 ug/L SW846 6010B 06/09/11	мј0701АК
Dilution Factor: 1 MDL: 12.0	
01.0// 0004C C010D 06/00/11	M TA 7 A 1 A 1
Barium ND 21.0 ug/L SW846 6010B 06/09/11 Dilution Factor: 1 MOL	MJ0701AL
Difficion Factor: 1 Politicion 2.5	
Beryllium ND 3.0 ug/L SW846 6010B 06/09/11	MJ0701AM
Dilution Factor: 1 MDL 0.30	
Cadmium ND 1000 ug/L SW846 6010B 06/09/11	MJ0701AN
Dilution Factor: 1 MDL 0.50	
	W TO TO 1 N.D.
Cobalt ND 6.0 ug/L SW846 6010B 06/09/11 Dilution Factor: 1 MDL	MJ0701AP ·
Diddion factor: 1 Mol	
Chromium ND 12.0 ug/L SW846 6010B 06/09/11	MJ0701AQ
Dilution Factor: 1 MOL; 1.2	
Copper ND 20.0 ug/L SW846 6010B 06/09/11	MJ0701AR
Dilution Factor: 1 MDL 2.1	•••
400 400 400 400 400 400 400 400 400 400	W*07013m
Iron ND 100 ug/L SW846 6010B 06/09/11 Dilution Factor: 1 MDL 20.0	MJ0701AT
Dilution Factor: 1 MDL 20.0	
Potassium ND 1000 ug/L SW846 6010B 06/09/11	MJ0701AU
Dilution Factor: 1 MDL 93.0	
Magnesium ND 500 ug/L SW846 6010B 06/09/11	MJ0701AV
Dilution Factor: 1 MDL 40.0	
Manganese ND 12.0 ug/L SW846 6010B 06/09/11	MJ0701AW
Dilution Factor: 1 MDL 2.5	
Sodium ND 1000 ug/L SW846 6010B 06/09/11	MJ0701AX
Dilution Factor: 1 MDL; 250	

(Continued on next page)

Client Sample ID: PCTss-002M-0001-ER

TOTAL Metals

Lot-Sample #...: G1F030473-005

				•		
Danamen	DPAHI M	REPORTI		METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
PARAMETER	RESULT	LIMIT	<u>UNITS</u>			
Nickel	ND	50.0	ug/L	SW846 6010B	06/09/11	MJ0701A0
		Dilution Fac	tor: 1	MDL 2.4		
Lead	ND	10.0	ug/L	SW846 6010B	06/09/11	MJ0701A1
		Dilution Fac	tor: 1	MDL 2.5		
Antimony	ND	60.0	ug/L	SW846 6010B	06/09/11	MJ0701A2
•		Dilution Fac	tor: 1	MOL 9.8		
Selenium	20.6 в	25.0	ug/L	SW846 6010B	06/09/11	MJ0701A3
		Dilution Fac	tor: 1	MDL 13.0		
Thallium	ND	15.0	ug/L	SW846 6010B	06/09/11	MJ0701A4
		Dilution Fac	tor; l	MDL 9.0		
Vanadium	ND	5.0	ug/L	SW846 6010B	06/09/11	MJ0701A5
		Dilution Fac	tor: 1	MDL 1.9		
Zinc	ND	20.0	ug/L	SW846 6010B	06/09/11	MJ0701A6
		Dilution Fac	•	MDL 3.0	, <u>-</u>	

0.00020 mg/L

Dilution Factor: 1

NOTE (S):

Mercury ND

Prep Batch #...: 1167094

Matrix....: WATER

SW846 7470A 06/15-06/16/11 MJ0701A7

MDL..... 0.00010

B Estimated result, Result is less than RL.

Client Sample ID: PCTss-002M-0001-ER

GC/MS Semivolatiles

Lot-Sample #...: G1F030473-005 Work Order #...: MJ0701AF Matrix.....: WATER

Date Sampled...: 05/26/11 Date Received..: 06/03/11
Prep Date....: 06/07/11 Analysis Date..: 06/20/11
Prep Batch #...: 1158062

Dilution Factor: 0.95 Method.....: SW846 8270C

		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Acenaphthene	ND	9.5	ug/L	1.0
Acenaphthylene	ND	9.5	ug/L	1.0
Anthracene	ND	9.5	ug/L	0.95
Benzo (a) anthracene	ND	9.5	ug/L	0.95
Benzo(b) fluoranthene	ND	9.5	ug/L	1.1
Benzo(k)fluoranthene	ND	9.5	ug/L	0.91
Benzo(ghi)perylene	ND	9.5	ug/L	1.3
Benzo (a) pyrene	ND	9.5	ug/L	0.65
bis(2-Chloroethoxy)	ИD	9.5	ug/L	0,95
methane				
bis(2-Chloroethyl)-	ND	19	ug/L	1.4
ether				
bis(2-Ethylhexyl)	1.1 J	24	ug/L	0.95
phthalate				
4-Bromophenyl phenyl	ND	9.5	ug/L	1.0
ether				
Butyl benzyl phthalate	ND	9.5	ug/L	1.3
4-Chloroaniline	ND	9.5	ug/L	1.9
4-Chloro-3-methylphenol	ND	9.5	ug/L	1.9
2-Chloronaphthalene	ND	9.5	ug/L	1.2
2-Chlorophenol	ND	9.5	ug/L	1,5
4-Chlorophenyl phenyl	ND	9.5	ug/L	1.0
ether				
Chrysene	ND	9.5	ug/L	0,58
Dibenzofuran	ИD	9.5	ug/L	1.0
Di-n-butyl phthalate	ND	24	ug/L	1.0
1,2-Dichlorobenzene	ND	9.5	ug/L	1.4
1,3-Dichlorobenzene	ND	9.5	ug/L	1,4
1,4-Dichlorobenzene	ND	9.5	ug/L	1.3
3,3'-Dichlorobenzidine	ND	48	ug/L	0.91
2,4-Dichlorophenol	ND	9.5	ug/L	2.5
Diethyl phthalate	ND	9.5	ug/L	0.88
2,4-Dimethylphenol	ND	9.5	ug/L	2.1
Dimethyl phthalate	ND	9.5	ug/L	0.84
Di-n-octyl phthalate	ND	9.5	ug/L	1.4
4,6-Dinitro-	ND	48	ug/L	2.1
2-methylphenol	4			
2,4-Dinitrophenol	ND	48	ug/L	19
2,4-Dinitrotoluene	ND	9.5	ug/L	1.9

(Continued on next page)

Client Sample ID: PCTss-002M-0001-ER

GC/MS Semivolatiles

Lot-Sample #:	G1F030473-005	Work Order	#: MJ0701AF	Matrix:	WATER
---------------	---------------	------------	-------------	---------	-------

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	WDL	
2,6-Dinitrotoluene	ND	9.5	ug/L	1.9	
Fluoranthene	ND	9.5	ug/L	0.62	
Fluorene	ND	9.5	ug/L	0.88	
Hexachlorobenzene	ND	9.5	ug/L	1.3	
Hexachlorobutadiene	ND	24	ug/L	1.2	
Hexachlorocyclopenta- diene	ND	48	ug/L	4.8	
Hexachloroethane	ND	9.5	ug/L	1,3	
Indeno(1,2,3-cd)pyrene	ND	9.5	ug/L	3,2	
Isophorone	ND	24	ug/L	0.95	
2-Methylnaphthalene	ND	9.5	ug/L	1.4	
2-Methylphenol	ND	9.5	ug/L	0.88	
4-Methylphenol	ND	9.5	ug/L	3.3	
Naphthalene	ND	9.5	ug/L	1.2	
2-Nitroaniline	ND	48	ug/L	1.9	
3-Nitroaniline	ND	48	ug/L	1.3	
4-Nitroaniline	ND	48	ug/L	1.4	
Nitrobenzene	ND	9.5	ug/L	1.5	
2-Nitrophenol	ND	9.5	ug/L	1.8	
4-Nitrophenol	ND	48	ug/L	5.8	
N-Nitrosodi-n-propyl-	ND	9.5	ug/L ug/L	1.3	
amine			-		
N-Nitrosodiphenylamine	ND	9.5	ug/L	0.51	
Pentachlorophenol	ND	9.5	ug/L	1.9	
Phenanthrene	ИD	48	ug/L	0.95	
Phenol	ND	9.5	ug/L	1.0	
Pyrene	ND	9.5	ug/L	1.3	
1,2,4-Trichloro- benzene	ND	9.5	ug/L	1.3	
2,4,5-Trichloro- phenol	ND	48	ug/L	1.9	
2,4,6-Trichloro-	ND	9.5	ug/L	1.9	
phenol	_,_	• • •	- 5, -		
Dibenzo (a, h) anthracene	ИD	9.5	ug/L	1,9	
Carbazole	ND	9.5	ug/L	1.1	
2,2'-oxybis	ND	19	ug/L	1,2	
(1-Chloropropane)	110	•	wg/ #2	1,2	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
2-Fluorobiphenyl	70	(50 - 15	•		
2-Fluorophenol	48 *	(50 - 15			
Nitrobenzene-d5	78	(50 - 15	0)	,	
Phenol-d5	30 *	(50 - 15			
Terphenyl-d14	98	(50 - 15)			
2,4,6-Tribromophenol	80	(50 - 15	0)		

(Continued on next page)

Client Sample ID: PCTss-002M-0001-ER

GC/MS Semivolatiles

Lot-Sample #...: G1F030473-005 Work Order #...: MJ0701AF Matrix..... WATER

NOTE (S):

^{*} Surrogate recovery is outside stated control limits.

J Estimated result. Result is less than RL.

Client Sample ID: PCTss-002M-0001-ER

GC Semivolatiles

Lot-Sample #: G1F030473-005 Date Sampled: 05/26/11 Prep Date: 06/07/11 Prep Batch #: 1158058	Work Order #: Date Received: Analysis Date:	06/03/11	Matri	x WATER
Dilution Factor: 0.97	Method:	SW846 808	A	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
alpha-BHC	ND	0.048	ug/L	0.0057
gamma-BHC (Lindane)	ND	0.048	ug/L	0.0048
Heptachlor	ND	0.048	ug/L	0.0055
Aldrin	ND	0.048	ug/L	0.0048
beta-BHC	ND	0.048	ug/L	0.0046
delta-BHC	ND	0.048	ug/L	0.0028
Heptachlor epoxide	ND	0.048	ug/L	0.0020
Endosulfan I	ND	0.048	ug/L	0.0042
gamma-Chlordane	ND	0.048	ug/L	0.0027
alpha-Chlordane	ND	0.048	ug/L	0.0026
4,4'-DDE	ND	0.097	ug/L	0.0059
Dieldrin	ND	0.097	ug/L	0.0049
Endrin	ND	0.097	ug/L	0.0052
4,4'-DDD	ND	0.097	ug/L	0.0039
Endosulfan II	ND	0.097	ug/L	0.0030
4,4'-DDT	ND	0.097	ug/L	0.0049
Endrin aldehyde	ND	0.097	ug/L	0.0041
Methoxychlor	ND	1.9	ug/L	0.026
Endosulfan sulfate	ND	0.097	ug/L	0.0041
Endrin ketone	ND	0.097	ug/L	0.0031
Toxaphene	ND	1.9	ug/L	0.49
SURROGATE Decachlorobiphenyl	PERCENT RECOVERY 66	RECOVERY LIMITS (50 - 150)		
Tetrachloro-m-xylene	77	(50 - 150)		

Client Sample ID: PCTss-002M-0001-ER

GC Semivolatiles

Lot-Sample #: G1F030473-005 Date Sampled: 05/26/11 Prep Date: 06/07/11 Prep Batch #: 1158061	Work Order #: Date Received: Analysis Date:	06/03/11	Matri	x:	WATER
Dilution Factor: 0.97	Method:	SW846 8082			
		REPORTING		-	
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Aroclor 1016	ND	0.97	ug/L	0.26	
Aroclor 1221	ND	1.9	ug/L	0.34	
Aroclor 1232	ND	0.97	ug/L	0.13	
Aroclor 1242	ND	0.97	ug/L	0.19	
Aroclor 1248	ND	0.97	ug/L	0.11	
Aroclor 1254	ND	0.97	ug/L	0.31	
Aroclor 1260	ND	0.97	ug/L	0.24	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Decachlorobiphenyl	66	(65 - 135)			
Tetrachloro-m-xylene	87	(65 - 135)			

Client Sample ID: PCTss-003M-0001-SO

HPLC

Lot-Sample #: G1F030473-006	Work Order #:	MJ0711AF	Matri	x	SOLID
Date Sampled: 05/26/11	Date Received:	06/03/11			
Prep Date: 06/08/11	Analysis Date:	06/13/11			
Prep Batch #: 1159133					
Dilution Factor: 0.99					
% Moisture:	Method:	SW846 8330			
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Nitroglycerin	ND	0.50	mg/kg	0.13	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
3,4-Dinitrotoluene	92	(78 - 108)			

Client Sample ID: PCTss-003M-0001-SO

HPLC

Lot-Sample #: G1F030473-00 Date Sampled: 05/26/11 Prep Date: 06/08/11 Prep Batch #: 1159146	Work Order # Date Received Analysis Date	: 06/03/11	Mat	rix:	SOLID
Dilution Factor: 1.02 % Moisture:	Method		(Modif	,	
		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Nitroguanidine	0.17 J	0.26	mg/kg	0.020	
NOTE (S):				·	

J Estimated result. Result is less than RL.

Client Sample ID: PCTss-003M-0001-SO

General Chemistry

Lot-Sample #...: G1F030473-006 Work Order #...: MJ071

Matrix....: SOLID

Date Sampled...: 05/26/11

Date Received..: 06/03/11

% Moisture....:

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrocellulose	ND Dila	5.0 stion Facto	mg/kg r: 1	TAL-SOP WS	06/15-06/16/11	1166054

Analytical Data

Client: TestAmerica Laboratories, Inc.

Job Number: 280-16702-1

Sdg Number: G1F030473

Client Sample ID:

PCTSS-003M-0001-SO

Lab Sample ID:

280-16702-5

Client Matrix:

Solid

Date Sampled: 05/26/2011 1305

Date Received: 06/08/2011 0930

6860 Perchlorate by IC/MS or IC/MS/MS

Analysis Method:

6860

Analysis Batch:

280-72023

Instrument ID:

LC_LCMS1

Prep Method: Dilution:

6860

Prep Batch:

280-71229

Lab File ID:

IC11F15029.d

Analysis Date:

1.0

Initial Weight/Volume:

10.70 g

Prep Date:

06/15/2011 2119 06/09/2011 1658

Final Weight/Volume: Injection Volume:

100 mL 250 uL.

Analyte

DryWt Corrected: N

Result (ug/Kg)

Qualifier

MDL

RL

Perchlorate

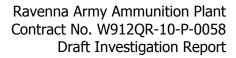
0.093

0.037

0.47

Client Sample ID: TRIP BLANK

GC/MS Volatiles


Lot-Sample #...: G1F030473-007 Work Order #...: MJ0731AA Matrix...... WATER

Date Sampled...: 05/26/11 Date Received..: 06/03/11 Prep Date.....: 06/08/11 Analysis Date..: 06/08/11

Prep Batch #...: 1160070

Dilution Factor: 1 Method.....: SW846 8260B

Dilution Factor: 1	method	Swodo ozot	0.65	
		REPORTING		WDZ
PARAMETER	RESULT	LIMIT	UNITS	MDL
Toluene	ND	1.0	ug/L	0,25
1,1,1-Trichloroethane	ND	1.0	ug/L	0.19
1,1,2-Trichloroethane	ND	1.0	ug/L	0.31
Trichloroethene	ND	1.0	ug/L	0.13
Vinyl chloride	ИD	1.0	ug/L	0.22
Xylenes (total)	ND	1.0	ug/L	0.18
Acetone	ND	10	ug/L	2.1
Benzene	ND	1.0	ug/L	0.13
Bromodichloromethane	ND	1.0	ug/L	0.14
Bromoform	ND	1.0	ng/F	0.10
Bromomethane	ND	1.0	ug/L	0.29
2-Butanone (MEK)	ND	10	ug/L	0.35
Carbon disulfide	ND	2.0	ug/L	0.16
Carbon tetrachloride	ND	1.0	ug/L	0.15
Chlorobenzene	ND	1.0	ug/L	0.12
Dibromochloromethane	ND	1.0	ug/L	0.13
Chloroethane	ND	2.0	ug/L	0.34
Chloroform	ND	1.0	ug/L	0.12
Chloromethane	ND	2.0	ug/L	0.25
1;1-Dichloroethane	ND	3.0	ug/L	0.10
1,2-Dichloroethane	ND	1.0	ug/L	0.22
1,1-Dichloroethene	ND	1.0	ug/L	0.14
1,2-Dichloroethene (total)	ND	1.0	ug/L	0.20
1,2-Dichloropropane	ND	1.0	ug/L	0.15
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.22
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.080
Ethylbenzene	ND	1.0	ug/L	0.10
2-Hexanone	ND	10	ug/L	0.17
Methylene chloride	ND	2.0	ug/L	0.35
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	0.18
Styrene	ND	1.0	ug/L	0.15
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.090
Tetrachloroethene	ND	1.0	ug/L	0.10
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS 1969	<u>.</u>	
4-Bromofluorobenzene	95	(65 - 13 5)		
1,2-Dichloroethane-d4	98	(65 - 135)		
Toluene-d8	107	(65 - 135)		

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

1	Appendix F
2	
3	Water Removal Approval

September 2011 Rev 0

You forwarded this message on 5/18/2010 7:48 AM.

Brian Stockwell

From:

Elleen Mohr [elleen.mohr@epa.state.oh.us]

Sent: Thu 4/15/2010 3:40 PM

To:

Brian Stockwell

Cc:

Eileen Mohr; Todd Fisher; mark.c.patterson@us.army.mil; Derek.S.Kinder@usace.army.mil;

Glen.Beckham@usace.army.mil; Nathaniel.Peters.II@usace.army.mil

Subject:

DB-802/Load Line 2

Attachments:

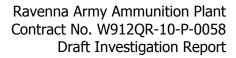
Brian

I have reviewed the data obtained from the URS sampling at the above area and the write-up prepared by USACE/URS. I also compared the sediment data that was obtained with the clean-up numbers presented in the approved Load Lines 1-4 ROD. In addition, I looked at the chromium data with respect to the 1:6 ratio that we have been using. With respect to arsenic in the surface water I looked at it from the perspective of the arsenic levels that at times are observed in the installation wells and local residential wells; coupled with the fact that the surface water samples were probably not filtered in the field. THe addition of acid as a presevative to a turbid sample could have increased metals concentrations.

All of that being said, approval is granted to discharge the surface water to the ground surface in the vicinity of DB-802 subject to the discharge conditions that have been established for RVAAP. As we discussed in the field today, I do not have an obection to a "sock fillter" device over the end of the hose to ensure that solid particulates are not discharged. This device was used by another contractor on a different project at RVAAP.

Previously approvals have been granted with respect to the areas at Load Lines 2 and 3 that can be re-graded and the materials that can be used. All that is left is for the final selection of the water discharge location. As we discussed in the field, the area to the west of DB-802 may work out fine. Let me know when you want me to have a look at the area that is ultimately selected by PIKA.

That's it. Looks like you are good to go.


Thanks and have a good weekend.

Eileen

Eileen T. Mohr Project Manager Division of Emergency and Remedial Response 2110 East Aurora Road Twinsburg, OH 44087 330-963-1221 330-487-0769 (FAX)

email: Eileen.Mohr@epa.state.oh.us

Ohio Environmental Protection Agency This communication and any response to it may constitute a public record and thus may be publicly available to anyone who requests it.

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

1	Appendix-G
2	
3	Data Validation

September 2011 Rev 0

Data Validation Report For PIKA International, Inc.

Date: 9/16/11

Project: CC-RVAAP-80 Group 2 Propellant Can Tops

Project #: 10-08-130

Laboratory: Test America (Various)

Prepared By:

William W. Purves

Signed: 9/2/2007

Purves Environmental Data Validation Specialists

Table of Contents

Introduction	3
Quality Control	4
Method Summaries	5
QC Summary	26
References	27
Glossary of Terms	28
Tables Appendix A	29
Check Sheets Appendix B	43
Calibration Check Tables & OC Checks	

1.0 Introduction

This Data Validation Report (DVR) details the assessment and validation for samples collected by PIKA International and analytical data generated during field activities at the Ravenna Army Ammunition Plant, Ravenna Ohio, PIKA Project # 10-08-130. The laboratories subcontracted for the chemical analysis of the soil and water samples were Test America Sacramento, CA, North Canton, OH and Denver CO. The laboratories are United States Corps of engineers (USACE) approved to perform hazardous waste analysis.

This report is the accumulation of all of the laboratory reports/project numbers into one document. The samples evaluated in this report were sampled on May 26, 2011. The samples were taken by PIKA International personnel and picked up by Test America North Canton personnel on May 26, 2011. The samples were then distributed to Sacramento and Denver laboratories for analysis by North Canton. The Test America facilities that performed the tests are ELAP accredited facilities. The data validation is for methods listed below. Percent Solids was evaluated for completeness only. Analytical results of the samples are provided in tabular format in Appendix A that includes all qualifiers used and changed by the data validator. Appendix B contains all of the check lists that were used in the validation effort. The analysis performed included the following:

Volatile Organic Compounds via USEPA Method 8260B
Semi-Volatile Organic Compounds via USEPA Method 8270C
Pesticides via USEPA Method 8081A
Poly Chlorinated Biphenols via USEPA Method 8082
Explosives via USEPA Method 8330
Nitroglycerine via USEPA Method 8330
Nitroglycerine via USEPA Method 8330
Nitroguanidine (propellant) via USEPA Method 8330 Modified
Perchlorate via USEPA Method 6860
Metals excluding Mercury via USEPA Methods 6010B and 6010B (trace)
Mercury by USEPA Methods 7470A (water) and 7471A (soil)
Nitrocellulose (propellant) via USEPA Methods 353.2
Cyanide via USEPA Method 9012A
Percent Solids via USEPA Method 160.3

Data validation of all sample results was performed by Purves Environmental. A review of 100% of the data was conducted. Ten percent (10%) of all QA/QC, 10% of the compounds in any particular list were evaluated and 10% of the sample data was reconstructed to verify data quality. The soils were checked separately from the equipment rinse.

Sample Distribution and Analysis Table

	Project #		Lab IDs	Analysis
Laboratory		Sample Field IDs	Lau IDS	·
Sacramento, Ca	G1F030473	PCTss-001M-0001-SO	MJ07E	Nitroglycerine Method 8330, Nitroquanidine Method 8330 Modified
Sacramento, Ca	G1F030473	PCTss-001M-0001- DUP	МЈО7К	Nitroglycerine Method 8330, Nitroquanidine Method 8330 Modified
Sacramento, Ca	G1F030473	PCTss-002D-0001-SO	MJ07L	VOC Method 8260
Sacramento, Ca	G1F030473	PCTss-002M-0001-SO	MJ07R	Nitroglycerine Method 8330, Nitroquanidine Method 8330 Modified, Method 8270 SVOC, Method 8330 Explosives, Method 8081A Pesticides, Method 8082 PCBs, Method 6010B TAL Metals, Method 7471A Mercury
Sacramento, Ca	G1F030473	PCTss-002M-0001-ER	MJ070	Nitroglycerine Method 8330, Nitroquanidine Method 8330 Modified, Method 8270 SVOC, Method 8330 Explosives, Method 8081A Pesticides, Method 8082 PCBs, Method 6010B TAL Metals, Method 7470A Mercury
Sacramento, Ca	G1F030473	PCTss-003M-0001-SO	MJ071	Nitroglycerine Method 8330, Nitroquanidine Method 8330 Modified Nitrocellulose 353.2
Sacramento, Ca	G1F030473	Trip Blank	MJ073	VOC Method 8260
Denver, Co	G1F030473	PCTss-001M-0001-SO	280-16702-1	Method 6860 Perchlorate
Denver	G1F030473	PCTss-001M-0001- DUP	280-16702-2FD	Method 6860 Perchlorate
Denver	G1F030473	PCTss-003M-0001-SO	280-16702-5	Method 6860 Perchlorate
Denver	G1F030473	PCTss-002M-0001-SO	280-16702-3	Method 6860 Perchlorate
Denver	G1F030473	PCTss-002M-0001-ER	280-16702-4	Method 6860 Perchlorate
North Canton, Oh	G1F030473	PCTss-001M-0001-SO	G1F030473-001 Work Order MJ07E	Nitrocellulose 353.2
North Canton, Oh	G1F030473	PCTss-001M-0001- DUP	G1F030473-002 Work Order MJ07K	Nitrocellulose 353.2
North Canton, Oh	G1F030473	PCTss-003M-0001-SO	G1F030473-006 Work Order MJ07K	Nitrocellulose 353.2
North Canton, Oh	G1F030473	PCTss-002M-0001-SO	G1F030473-004 Work Order MJ07R	Nitrocellulose 353.2 Method 9012A Cyanide Method 160.3 % Solids
North Canton, Oh	G1F030473	PCTss-002M-0001-ER	G1F030473-005 Work Order MJ070	Nitrocellulose 353.2 Method 9012A Cyanide

1.1 Sample Data Selection Criteria

All of the QA/QC data was reviewed for the samples in all project numbers based upon the following criteria.

Flagging Criteria: All samples that had R, J, E, and B flags were checked.

Data Validation Specialists

All Samples were 100% verified. As the QA/QC data was reviewed, all samples that were affected by any QA/QC outlier was isolated and further reviewed. Ten Percent (10%) of the samples were then fully reviewed including 10% of the data was recalculated and checked.

The data was validated in accordance with the analytical methods and the documents entitled:

- The DoD Quality System Manual (QSM) is the primary reference for QC acceptance criteria. Where not addressed by the DoD QSM the other guidelines will be used.
- USEPA Test Methods for evaluating Solid Waste SW-846
- National Functional Guidelines for Data Validation
- The US Army Corp Louisville Chemistry Guideline, Version 5.0

All data is computer generated and has been consistent. The data package used by Test America is an industry standard and re-calculation consistently demonstrates that there were no issues with the data in terms of accuracy of the calculations. Calculations that may be generated by hand were checked. However, the computer data generation systems used by Test America are 100% accurate based upon the input. The only time that data validation issues arise is when the calibration, QA or QC does not meet established criteria and sample data is generated and reported within the outlying criteria.

The results of the data validation are presented in the following subsections.

Section 2.0 Quality Control Results Section 3.0 QC Summary Section 4.0 References Appendix A, B

2.0 Quality Control Results

This section provides a summary of the laboratory QC results, which were used to meet the project data quality objectives (DQOs) for the investigation. The section below outlines what parts of each method were checked and a brief statement is provided where issues may occur. However a tabular summary is provided in the Appendix A.

- All organic data utilizes the same validation flagging letters.

 B= Blank Contamination in the method blank

 J= Estimated Value (used primarily when the result is below the reporting limit (RL) but above the detection limit (DL)), otherwise, when QA/QCs are out of range but the sample result is above the reporting limit.

 R= Rejected (used when calibrations and QA/QCs fail) often used per analyte when multiple compounds or elements are analyzed by the same method.
- 2.1.1 Metals Data Soils ICP Method 6010B and 6010B (trace) Soil, and Water.

Test America uses a B Flag as and estimated value for blank results that are greater than the Method Detection Limit (MDL) and below the Reporting Limit (RL) or Method Reporting Limit (MRL). This flag is not recognized by the National Functional Guidelines but is useful when determining the validity of data. In accordance with the DoD QSM document, data reported between the MDL and the RL was reported and flagged with a J as estimated.

The J flag is also used for data that is considered estimated for other quality control reasons as well. All data that was J flagged was reviewed by the data validator and an evaluation provided in the summary as well as a table with the data. All changes in flags by the data validator are fully explained.

No B Flags were changed in this set of data as no issues as stated above existed.

2.2 Method 8260B Volatile Organic Compounds (Water) The validation reviewed only those compounds of concern. All other compounds in the total 8260B list were not validated.

- 2.2.1 Initial Calibration
 All method requirements were met for all data generated.
- 2.2.2 Laboratory Control Sample (LCS) (Second Source Compounds)
 All method requirements were met. All LCS compounds
 recovered with in the guideline limits. The LCS Dup was also
 within guideline limits. The LCS/LCS Dup also substituted for the
 sample dup and all Relative Percent Differences passed.
- 2.2.3 Continuing Calibration Checks. (CCCs)
 All method requirements were met. All CCCs recovered within the guideline limits.
- 2.2.4 Matrix Spike and Matrix Spike Duplicate Analysis
 Not enough sample was provided for a MS/MSD analysis.
- 2.2.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis
 All method requirements were met.
- 2.2.6 Method Blank

All of the blanks were below the reporting limit for water. Acetone was detected in the method blank but well below the reporting limit. Acetone is a common contaminant in the organic laboratory.

2.2.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.

2.2.8 Surrogates

All surrogates met method and USACE Louisville Guidelines

2.2.9 Internal Standards

All Internal Standards met method guidelines.

2.2.10 Tuning

Tuning requirements for the method were met.

2.2.11 SPCC Check

The SPCC Check met all method requirements.

2.2.12 Manual Integration

The laboratory followed all proper protocols for manual integration. Other multi peak compounds such as total Xylenes also followed proper protocol.

2.2.13 Holding Time

The holding time for this sample was met.

2.2.14 Relative Retention Times

All relative retention times and retention time windows met method requirements.

2.3 Method 8260B Volatile Organic Compounds (Soil)

2.3.1 Initial Calibration

All method requirements were met for all data generated.

2.3.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the guideline limits. The LCS Dup was also within guideline limits. The LCS/LCS Dup also substituted for the sample dup and all Relative Percent Differences passed.

2.3.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the guideline limits.

2.3.4 Matrix Spike and Matrix Spike Duplicate Analysis Not enough sample was provided for a MS/MSD analysis.

2.3.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis

All method requirements were met.

2.3.6 Method Blank

All of the blanks were below the reporting limit for water. Acetone was detected in the method blank but well below the reporting limit. Acetone is a common contaminant in the organic laboratory.

2.3.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.

2.3.8 Surrogates

All surrogates met method and USACE Louisville Guidelines

2.3.9 Internal Standards

All Internal Standards met method guidelines.

2.3.10 Tuning

Tuning requirements for the method were met.

2.3.11 SPCC Check

The SPCC Check met all method requirements.

2.3.12 Manual Integration

The laboratory followed all proper protocols for manual integration. Other multi peak compounds such as total Xylenes also followed proper protocol.

2.3.13 Holding Time

The holding time for this sample was met.

2.3.14 Relative Retention Times

All relative retention times and retention time windows met method requirements.

2.4 Method 8270C Semi-Volatile Organic Compounds (Water)

The validation reviewed only those compounds of concern. All other compounds in the total 8270C list were not validated.

2.4.1 Initial Calibration

All method requirements were met for all data generated.

2.4.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the guideline limits. The LCS Dup was also within guideline limits. The LCS/LCS Dup also substituted for the sample dup and all Relative Percent Differences passed.

2.4.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the guideline limits.

2.4.4 Matrix Spike and Matrix Spike Duplicate Analysis Not enough sample was provided for a MS/MSD analysis.

2.4.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis

All method requirements were met.

2.4.6 Method Blank

All of the blanks were below the reporting limit for water.

2.4.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.

2.4.8 Surrogates

All surrogates met method and USACE Louisville Guidelines except for Phenol-d5 and 2-Fluorophenol in the method blank. However the internal standard met method guidelines. Due to the holding time and lack of sample, no further action can be taken. It is the professional judgment of data validator that the surrogate recoveries did not affect the data. The same issue was true with the LCS.

2.4.9 Internal Standards

All Internal Standards met method guidelines.

2.4.10 Tuning

Tuning requirements for the method were met.

2.4.11 SPCC Check

The SPCC Check met all method requirements.

2.4.12 Manual Integration

The laboratory followed all proper protocols for manual integration.

2.4.13 Holding Time

The associated soil sample had no detectable compounds and was analyzed within holding times.

2.4.14 Relative Retention Times

All relative retention times and retention time windows met method requirements.

2.5 Method 8270C Semi-Volatile Organic Compounds (Soil)

The validation reviewed only those compounds of concern. All other compounds in the total 8270C list were not validated.

2.5.1 Initial Calibration

All method requirements were met for all data generated.

2.5.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered within the guideline limits. The LCS Dup was also within guideline limits. The LCS/LCS Dup also substituted for the sample dup and all Relative Percent Differences passed.

2.5.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the guideline limits.

2.5.4 Matrix Spike and Matrix Spike Duplicate Analysis

All compounds met method recovery requirements except of 3,3-Dichlorobenzidene which recovered biased low. No additional measures were taken to verify the reason for the low recovery thus the MS/MSD recovery issue for the single compound is not significant and does not affect the overall data, thus all sample data is valid.

2.5.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis

All method requirements were met.

2.5.6 Method Blank

All of the blanks were below the reporting limit for water.

Field Duplicate (Sample Duplicate) Analysis

No field duplicate was available.

2.5.8 Surrogates

All surrogates met method and USACE Louisville Guidelines.

2.5.9 **Internal Standards**

All Internal Standards met method guidelines.

2.5.10 Tuning

Tuning requirements for the method were met.

2.5.11 SPCC Check

The SPCC Check met all method requirements.

2.5.12 Manual Integration

The laboratory followed all proper protocols for manual integration.

2.5.13 Holding Time

The holding time for this sample was met.

2.5.14 Relative Retention Times

All relative retention times and retention time windows met method requirements.

2.6 Method 8081A Pesticides (Water)

The validation reviewed only those compounds of concern.

2.6.1 Initial Calibration

All method requirements were met for all data generated.

- 2.6.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the guideline limits. The LCS Dup was also within guideline limits and all Relative Percent Differences passed.
- 2.6.3 Continuing Calibration Checks. (CCCs) All method requirements were met. All CCCs recovered within the guideline limits.
- 2.6.4 Matrix Spike and Matrix Spike Duplicate Analysis Not enough sample was provided for a MS/MSD analysis.
- Contract Required Detection Limit Standard and Reporting Limit 2.6.5 Standard Analysis

All method requirements were met for most compounds. Beta-BHC and Heptachlor had slightly high recoveries. Since those same compounds were not detected in the sample the positive bias has no affect on the sample data.

2.6.6 Method Blank

All of the blanks were below the reporting limit for water.

2.6.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.

2.6.8 Surrogates

All surrogates met method and QSM guidelines except the LCS and LCS Dup Surrogate Decachlorobiphenyl recovered low. However all of the compounds recovered within their respective limits. Since two surrogates were present, and the second surrogate was within guideline criteria, all LCS data is valid.

2.6.9 Manual Integration

The laboratory followed all proper protocols for manual integration.

2.6.10 Holding Time

The associated soil sample had no detectable compounds and was analyzed within holding times.

2.6.11 Endrin and 4,4'-DDT Breakdown

All breakdown analysis passed method requirements.

2.6.12 Retention Times

All retention times and retention time windows met method requirements.

2.6.13 Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.7 Method 8081A Pesticides (Soil)

The validation reviewed only those compounds of concern.

2.7.1 Initial Calibration

All method requirements were met for all data generated.

2.7.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the guideline limits. The LCS Dup was also within guideline limits and all Relative Percent Differences passed.

2.7.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the guideline limits.

Matrix Spike and Matrix Spike Duplicate Analysis

All method requirements were met. All Matrix Spike compounds recovered with in the guideline limits. The Matrix Spike Duplicate was also within guideline limits and all Relative Percent Differences passed.

2.7.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis

All method requirements were met for most compounds. Beta-BHC and Heptachlor had slightly high recoveries. Since those same compounds were not detected in the sample the positive bias has no affect on the sample data.

2.7.6 Method Blank

All of the blanks were below the reporting limit for water.

2.7.7 Field Duplicate (Sample Duplicate) Analysis

No field duplicate was available.

2.7.8 Surrogates

All surrogates met method and USACE Louisville Guidelines.

2.7.9 Manual Integration

The laboratory followed all proper protocols for manual integration.

2.7.10 Holding Time

There was no holding time issue with the sample.

2.7.11 Endrin and 4,4'-DDT Breakdown

All breakdown analysis passed method requirements.

2.7.12 Retention Times

All retention times and retention time windows met method requirements.

2.7.13 Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.8 Method 8082 Polychlorinated Biphenyl (PCBs) (Water)

The validation reviewed only those compounds of concern.

2.8.1 **Initial Calibration**

All method requirements were met for all data generated.

Laboratory Control Sample (LCS) (Second Source Compounds) 2.8.2 All method requirements were met. All LCS compounds recovered with in the guideline limits. The LCS Dup was also within guideline limits and all Relative Percent Differences passed.

2.8.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the guideline limits.

2.8.3 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) There was not sufficient sample provided to perform a MS/MSD.

2.8.4 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis

All method requirements were met.

2.8.5 Method Blank

All of the blanks were below the reporting limit for water.

Field Duplicate (Sample Duplicate) Analysis 2.8.6 No field duplicate was available.

2.8.7 Surrogates

All surrogates met method and USACE Louisville Guidelines.

2.8.8 Manual Integration

The laboratory followed all proper protocols for manual integration.

2.8.9 **Holding Time**

There was no holding time issue with the sample.

2.8.10 Retention Times

All retention times and retention time windows met method requirements.

2.8.11 Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.9 Method 8082 Polychlorinated Biphenyl (PCBs) (Soil)

The validation reviewed only those compounds of concern.

2.9.1 Initial Calibration

All method requirements were met for all data generated.

Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the guideline limits. The LCS Dup was also within guideline limits and all Relative Percent Differences passed.

2.9.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the guideline limits.

2.9.4 Matrix Spike and Matrix Spike Duplicate Analysis

All method requirements were met. All Matrix Spike compounds recovered with in the guideline limits. The Matrix Spike Duplicate was also within guideline limits and all Relative Percent Differences passed.

Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.

2.9.6 Method Blank

All of the blanks were below the reporting limit for water.

2.9.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.

2.9.8 Surrogates

All surrogates met method and USACE Louisville Guidelines.

2.9.9 **Manual Integration**

The laboratory followed all proper protocols for manual integration.

2.9.10 Holding Time

There was no holding time issue with the sample.

2.9.11 Retention Times

All retention times and retention time windows met method requirements.

2.9.12 Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.10 Method 8330 Explosives (Water)

The validation reviewed only those compounds of concern.

2.10.1 Initial Calibration

All method requirements were met for all data generated.

- 2.10.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the guideline limits. The LCS Dup was also within guideline limits and all Relative Percent Differences passed.
- 2.10.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the guideline limits.

2.10.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) All method requirements were met. All Matrix Spike compounds recovered with in the guideline limits. The Matrix Spike Duplicate was also within guideline limits and all Relative Percent Differences passed.

2.10.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis

All method requirements were met.

2.10.5 Method Blank

All of the blanks were below the reporting limit for water.

2.10.6 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.

2.10.7 Surrogates

All surrogates met method and USACE Louisville Guidelines.

2.10.8 Manual Integration

The laboratory followed all proper protocols for manual integration.

2.10.9 Holding Time

There was no holding time issue with the sample.

2.10.10Retention Times

All retention times and retention time windows met method requirements.

2.10.11Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.11 Method 8330 Explosives (Soil)

The validation reviewed only those compounds of concern.

2.11.1 Initial Calibration

All method requirements were met for all data generated.

2.11.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. All LCS compounds recovered with in the guideline limits. The LCS Dup was also within guideline limits and all Relative Percent Differences passed.

2.11.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the guideline limits.

2.11.4 Matrix Spike and Matrix Spike Duplicate Analysis

All method requirements were met. All Matrix Spike compounds recovered with in the guideline limits. The Matrix Spike Duplicate was also within guideline limits and all Relative Percent Differences passed.

2.11.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis

All method requirements were met.

2.11.6 Method Blank

All of the blanks were below the reporting limit for water.

2.11.7 Field Duplicate (Sample Duplicate) Analysis

The field duplicate was non-detect as well as the original sample. No percent difference can be calculated. (Nitroglycerine only).

2.11.8 Surrogates

All surrogates met method and USACE Louisville Guidelines.

2.11.9 Manual Integration

The laboratory followed all proper protocols for manual integration.

2.11.10Holding Time

There was no holding time issue with the sample.

2.11.11Retention Times

All retention times and retention time windows met method requirements.

2.11.12Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.12 Method 8330 Modified Nitorguanidine (Water)

The validation reviewed only the compound of concern.

2.12.1 Initial Calibration

All method requirements were met for all data generated.

2.12.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. The LCS ands LCS Dup compound recovered with in the guideline limits and the Relative Percent Difference passed.

2.12.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. The CCCs recovered within the guideline limits.

2.12.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) All method requirements were met. The Matrix Spike and Matrix Spike Duplicate compound recovered within the guideline limits and the Relative Percent Difference passed.

2.12.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis

All method requirements were met.

2.12.6 Method Blank

All of the blanks were below the reporting limit for water.

2.12.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.

2.12.8 Surrogates

No surrogate is used in this method.

2.12.9 Manual Integration

The laboratory followed all proper protocols for manual integration.

2.12.10Holding Time

There was no holding time issue with the sample.

2.12.11Retention Times

All retention times and retention time windows met method requirements.

2.12.12Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.13 Method 8330 Modified Nitroguanidine (Soil)

The validation reviewed only the compound of concern.

2.13.1 Initial Calibration

All method requirements were met for all data generated.

2.13.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. The LCS and LCS Dup compound recovered within the guideline limits and the Relative Percent Difference passed.

2.13.3 Continuing Calibration Checks. (CCCs)

All method requirements were met. All CCCs recovered within the guideline limits.

2.13.4 Matrix Spike and Matrix Spike Duplicate Analysis

All method requirements were met. The Matrix Spike and Matrix Spike Duplicate compound recovered within the guideline limits and the Relative Percent Difference passed.

2.13.5 Contract Required Detection Limit Standard and Reporting Limit **Standard Analysis**

All method requirements were met.

2.13.6 Method Blank

All of the blanks were below the reporting limit for water.

2.13.7 Field Duplicate (Sample Duplicate) Analysis

The field duplicate was non-detect as well as the original sample. No percent difference can be calculated.

2.13.8 Surrogates

No surrogate is used in this method.

2.13.9 Manual Integration

The laboratory followed all proper protocols for manual integration.

2.13.10Holding Time

There was no holding time issue with the sample.

2.13.11Retention Times

All retention times and retention time windows met method requirements.

2.13.12Second Column Confirmation

Second column confirmation was not required as no compounds were detected.

2.14 Method 6860 Perchlorate by ICMS (Water)

The validation reviewed only the compound of concern.

2.14.1 Initial Calibration

All method requirements were met.

2.14.2 Laboratory Control Sample (LCS) (Second Source Compounds)

All method requirements were met. The LCS and LCS Dup compound recovered with in the guideline limits and the Relative Percent Difference passed.

2.14.3 LC Interference Check Standard

The LC Interference Check Standard recovered within the guideline limits.

- 2.14.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The Matrix Spike and Matrix Spike Duplicate was run on another sample that was not part of the client's sample batch and has no affect on the sample in this report.
- 2.14.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.14.6 Method Blank, Initial Calibration Blank All of the blanks were below the reporting limit for water.
- 2.14.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.14.8 Holding Time

There was no holding time issue with the sample.

2.14.9 Retention Times

All retention times and retention time windows met method requirements.

2.15 Method 6860 Perchlorate by ICMS (Soil)

The validation reviewed only the compound of concern.

- 2.15.1 Initial Calibration
 - All method requirements were met for all data generated.
- 2.15.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met. The LCS and LCS Dup compound recovered within the guideline limits and the Relative Percent Difference passed.
- 2.15.3 LC Interference Check Standard

The LC Interference Check Standard recovered within the guideline limits

2.15.4 Matrix Spike and Matrix Spike Duplicate Analysis

The Matrix Spike and Matrix Spike Duplicate compound recovered biased high and the Relative Percent Difference passed. The high bias has no affect on the non-detected value in the sample. The reported data is valid.

2.15.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis
All method requirements were met.

2.15.6 Method Blank

All of the blanks were below the reporting limit for water.

- 2.15.7 Field Duplicate (Sample Duplicate) Analysis

 The field duplicate was non-detect as well as the original sample.

 No percent difference can be calculated.
- 2.15.8 Holding Time

 There was no holding time issue with the sample.
- 2.15.9 Retention Times, Relative Retention Time
 All retention times and retention time windows met method requirements.
- 2.16 Method 353.2 Nitrocellulose General Chemistry (Water) The validation reviewed only the compound of concern.
 - 2.16.1 Initial Calibration
 All method requirements were met.
 - 2.16.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
 - 2.16.3 Continuing Calibration Verification
 All Continuing Calibration Verifications passed method requirements.
 - 2.16.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD)

 The Matrix Spike and Matrix Spike Duplicate was run on another sample that was not part of the client's sample batch and has no affect on the sample in this report.
 - 2.16.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.

2.16.6 Method Blank, Initial Calibration Blank, Continuing Calibration Blank

All of the blanks were below the reporting limit for water.

- 2.16.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.16.8 Holding Time There was no holding time issue with the sample.
- 2.17 Method 353.2 Nitrocellulose General Chemistry (Soil) The validation reviewed only the compound of concern.
 - 2.17.1 Initial Calibration All method requirements were met.
 - 2.17.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
 - 2.17.3 Continuing Calibration Verification All Continuing Calibration Verifications passed method requirements.
 - 2.17.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The Matrix Spike and Matrix Spike Duplicate passed as well as the RPD.
 - 2.17.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
 - 2.17.6 Method Blank, Initial Calibration Blank, Continuing Calibration All of the blanks were below the reporting limit for water.
 - 2.17.7 Field Duplicate (Sample Duplicate) Analysis The field duplicate was non-detect as well as the original sample. No percent difference can be calculated.
 - 2.17.8 Holding Time There was no holding time issue with the sample.
- 2.18 Method 9012A Cyanide General Chemistry (Water) The validation reviewed only the compound of concern.
 - 2.18.1 Initial Calibration All method requirements were met.

- 2.18.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
- 2.18.3 Continuing Calibration Verification
 All Continuing Calibration Verifications passed method requirements.
- 2.18.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD)

 The Matrix Spike passed and the Matrix Spike Duplicate failed low. The RPD failed as well. The sample was non-detect for the compound. It is the professional judgment of the data validator that the MS/MSD does not affect the sample data.
- 2.18.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis
 All method requirements were met.
- 2.18.5 Method Blank, Initial Calibration Blank, Continuing Calibration BlankAll of the blanks were below the reporting limit for water.
- 2.18.6 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.18.7 Holding Time

 There was no holding time issue with the sample.
- 2.19 Method 9012A Cyanide General Chemistry (Soil)

 The validation reviewed only the compound of concern.
 - 2.19.1 Initial Calibration
 All method requirements were met.
 - 2.19.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
 - 2.19.3 Continuing Calibration Verification
 All Continuing Calibration Verifications passed method requirements.
 - 2.19.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD)

 The Matrix Spike and Matrix Spike Duplicate passed as well as the RPD.
 - 2.19.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis

All method requirements were met.

2.19.6 Method Blank, Initial Calibration Blank, Continuing Calibration Blank

All of the blanks were below the reporting limit.

2.19.7 Field Duplicate (Sample Duplicate) Analysis The field duplicate was non-detect as well as the original sample. No percent difference can be calculated.

2.19.8 Holding Time

There was no holding time issue with the sample.

2.20 Method 7470A Mercury (Water)

The validation reviewed only the element of concern.

2.20.1 Initial Calibration

All method requirements were met.

- 2.20.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
- 2.20.3 Continuing Calibration Verification All Continuing Calibration Verifications passed method requirements.
- 2.20.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The Matrix Spike and the Matrix Spike Duplicate passed and the RPD was within method limits.
- 2.20.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.20.6 Method Blank, Initial Calibration Blank, Continuing Calibration

All of the blanks were below the reporting limit for water.

- 2.20.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was available.
- 2.20.8 Holding Time

There was no holding time issue with the sample.

2.21 Method 7471A Mercury (Soil)

The validation reviewed only the element of concern.

- 2.21.1 Initial Calibration
 All method requirements were met.
- 2.21.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
- 2.21.3 Continuing Calibration Verification
 All Continuing Calibration Verifications passed method requirements.
- 2.21.4 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD)

 The Matrix Spike and Matrix Spike Duplicate passed as well as the RPD.
- 2.21.5 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis
 All method requirements were met.
- 2.21.6 Method Blank, Initial Calibration Blank, Continuing Calibration BlankAll of the blanks were below the reporting limit.
- 2.21.7 Field Duplicate (Sample Duplicate) Analysis No field duplicate was provided.
- 2.21.8 Holding Time

 There was no holding time issue with the sample.
- 2.22 Method 6010B and 6010B trace Metals (Water) The validation reviewed only the elements of concern.
 - 2.22.1 Initial Calibration
 All method requirements were met.
 - 2.22.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
 - 2.22.3 Continuing Calibration Verification
 All Continuing Calibration Verifications passed method requirements.
 - 2.22.4 Method Blank, Preparation Blank, Initial Calibration Blank (ICB), and the Continuing Calibration Blank (CCB) Analysis All of the blanks were below the reporting limit.
 - 2.22.5 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD)

The Matrix Spike and Matrix Spike Duplicate passed as well as the RPD for many elements.

- 2.22.6 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis All method requirements were met.
- 2.22.7 The Inter-element Correction Standard A & B (ICSAB) The ICSAB recoveries all were within the 80-120% recovery range required by the method for all project numbers.
- 2.22.8 ICP Serial Dilution No serial dilution as no elements were detected 4 time higher than the reporting limit.
- 2.22.9 Field Duplicate (Sample Duplicate) Analysis No field duplicate provided.
- 2.23 Method 6010B and 6010B trace Metals (Soil) The validation reviewed only the elements of concern.
 - 2.23.1 Initial Calibration All method requirements were met.
 - 2.23.2 Laboratory Control Sample (LCS) (Second Source Compounds) All method requirements were met.
 - 2.23.3 Continuing Calibration Verification All Continuing Calibration Verifications passed method requirements.
 - 2.23.4 Method Blank, Preparation Blank, Initial Calibration Blank (ICB), and the Continuing Calibration Blank (CCB) Analysis All of the blanks were below the reporting limit.
 - 2.23.5 Matrix Spike and Matrix Spike Duplicate Analysis (MS/MSD) The Matrix Spike and Matrix Spike Duplicate passed as well as the RPD for many elements. The elements that had concentration that were more than 4 times greater than the spike concentration are not valid and do not have any affect on data (Aluminum, Iron, Manganese). The MS for lead met method requirements while the MSD for lead was slightly low (68% recovery vs a lower limit of 75%). This indicates that the sample matrix (homogeneity) may be the issue. Unless Methods of Standard Additions or sample duplicate is performed, interference is assumed and not verified, thus it is the professional judgment of the data validator that the data is valid.

Antimony in soil very rarely recovers well. The antimony recovery for both the Matrix Spike and Matrix Spike Duplicate were less than 10%. This recovery level is very common. There is a strong indication that the digestion procedure is the problem and not the sample. Antimony is not a common element in soil, thus it is the professional judgment of the data validator that the data for Antimony is valid.

2.23.6 Contract Required Detection Limit Standard and Reporting Limit Standard Analysis

All method requirements were met.

2.23.7 The Inter-element Correction Standard A & B (ICSAB) The ICSAB recoveries all were within the 80-120% recovery range required by the method for all project numbers.

2.23.8 ICP Serial Dilution

The serial dilution passed for all elements that qualified. Elements that were not at least 10 time the reporting limit would not qualify.

2.23.9 Field Duplicate (Sample Duplicate) Analysis No field duplicate provided.

3.0 QC Summary

3.1 Executive Summary

3.3.1 All Methods

All of the system quality controls were met. There is no indication that any instrument quality control did not meet method or National Functional Guideline criteria. In all cases if the data validator removes or changes a flag, a full explanation is provided. There were no reasons to change any flags in this report.

3.3.2 Data Validator Narrative

For each issue the data validator provided an explanation for each issue that would have affected data. There were no issues in any sample or method that would have adversely affected any data. All data is valid and useful.

3.3.3 **Holding Times**

The issue regarding the holding time for the Equipment Rinse water was minor and it is the professional judgment of the data validator that the Equipment Rinse data is valid and useful.

3.4 Usability and Comparability

Usability of data was evaluate by assuring that all of the analytical requests were met, samples were received in the proper condition, and all analysis were performed within the appropriate holding times. Additionally, all quality control and quality assurance measures were taken to assure accurate and useable data. All samples that are J flagged are flagged because the reported value is below the Reporting Limit. No sample in any batch is J flagged for any other reason. The use of the data that is below the Reporting Limit should be considered estimated. All sample data above the Report Limit is valid and usable.

An overview of the validation findings are presented in tabular form in Appendix A. Appendix B contains the check sheets and any additional comments are found in those sheets. The suggested data validation flags are listed below and are defined as follows:

- R Quality Control (QC) indicated the data is not usable.
- J Indicates an estimated value.
- E The Serial Dilution exceeded the maximum 10% limit.
- U Indicates the compound or analyte was analyzed for, but not detected at or above the stated limit.
- В The compound was also detected in the method blank.

The above flags are incorporated in the data table where they apply based upon the National Functional guidelines. Any flags generated by the laboratory utilizing the laboratory's internal OC program are not presented in the data tables.

All Data for all of the project number in this report are usable and valid.

4.0 References National Functional Guidelines USACE Guidelines Version 5 June 2002. DoD Quality System Manual (QSM)

Glossary of Terms

°C degrees Celsius

CCB Continuing Calibration Blank (used in Metals analysis)

CCV Continuing Calibration Verification (used in all methods to verify system calibration)

CLP Contract Laboratory Program (used in Superfund program)

COC Chain of Custody %D Percent Difference DQO Data Quality Objectives

DS Down Stream
FB Field Blank
FD Field Duplicate

ICB Initial Calibration Blank (used primarily in metals analysis)

ICP Inductively Coupled Plasma

ICPMS Inductively Coupled Plasma Mass Spectrometer

ICV Initial Calibration Verification (second source standard used to initially verify the

calibration curve.

ICS Interference Check Solution (used in ICP and ICPMS only)

ICSA Interference Check Solution A

ICSAB Interference Check Solution A&B combined

IS Internal Standard

LCG Louisville Chemistry Guideline Version 5

LCS Laboratory Control Sample
MRL Method Reporting Limit (MRL)
MDL Method Detection Limit (MDL)

MD Matrix Duplicate (often referred to as the sample duplicate)

MSA Method of Standard Additions

MS/MSD Matrix Spike (MS)/Matrix Spike Duplicate (MSD)

PARCC Precision, Accuracy, Representaiveness, Completeness, Comparability

PD Post Digested Spike (also PDS)

OA Ouality Assurance

QAPP Quality Assurance Project Plan

QC Quality Control

RPD Relative Percent Difference RSD Relative Standard Deviation SAP Sampling and Analysis Plan

SD Standard Deviation SDG Sample Delivery Group

SOP Standard Operating Procedure (SOPs is plural)

TB Trip Blank

TCLP Toxic Compound Leaching Procedure
TERC Total Environmental Restoration Contract
USACE or United States Army Corps of Engineers

ACE Army Corps of Engneers

USEPA United States Environmental Protection Agency

%R Percent Recovery

Appendix A All Sample Data and Flagging

Phone:330-687-3360

e-mail: Bpurves330@aol.com

Table MA-1 Summary of Analytical Results

Soil and Water Matrix

TAL Including Mercury

Field Sample ID:		PCTss-002M-0001-SO			s-002M-000		
Laboratory ID:	G1F	G1F030473 MJ07R			030473 MJ	070	
Date Sampled:		5/26/11		5/26/11			
Date Received:		6/3/11		6/3/11			
Date Prepared:		6/10/11		6/9/11			
Date Analyzed:		6/14/11	7-11-12-12-12-12-12-12-12-12-12-12-12-12-		6/9/11		
Holding Time		15 days	***************************************	,	14 days		
Required Hold Time		180 days			180 days		
Metals		Lab	VF		Lab	VF	
Method 6010B	Result	Flag	Flag	Result	Flag	Flag	
Aluminum	10600			U			
Arsenic	8.4			U			
Barium	81.7			U			
Beryllium	0.45			U			
Calcium	954			U			
Cadmium	0.13	В	J	U			
Cobalt	7.7			U			
Chromium	14.5			U			
Copper	12.1			U		-	
Iron	17600			U	11555		
Potassium	654			U			
Magnesium	1770			U			
Manganese	833			U			
Sodium	35.6	В	J	U			
Nickel	18.5			U			
Lead	34.1			U			
Antimony	U			U			
Selenium	U			20.6	В	J	
Thallium	U			U			
Vandium	24.4			U			
Zinc	62.4			U			
Silver	U			U	MEANNIN I		
	mg/Kg			mg/L			
Method 7471A				1	AND ADDRESS DATE.		
Date Sampled:		5/26/11			5/26/11		
Date Received:		6/3/11		T	6/3/11		
Date Prepared:		6/14/11			6/15/11		
Date Analyzed:		6/14/11			/11 6/16/11		
Holding Time		19 days		1	20 days		
Required Hold Time		180 days			28 days		
Mercury	0.049		July and the July 1	U			
	mg/Kg			mg/L			

B = Result is above the Method Detection Limit (MDL) but below the Reporting Limit (RL)

The RESULT IS ESTIMATED

J = RESULT IS ESTIMATED

U = Result is below the MDL or ND = Not Detected

VF= Validator Flag

Data Validation Specialists

Table SS-1 Sample Summary and Analysis Table Soils

PIKA Field Sample ID:	PCTss-001M-0001-SO	PCTss-001M-0001-DUP	PCTss-002D-0001-SO	PCTss-002M-0001-SO	PCTss-003M-0001-SO
Date Sampled:	5/26/11 10:25AM	5/26/11 10:25AM	5/26/11 11:15AM	5/26/11 11:20AM	5/26/11 1:05PM
Scacramento Laboratory ID:	G1F030473 MJ07E	G1F030473 MJ07K	G1F030473 MJ07L	G1F030473 MJ07R	G1F030473 MJ071
Date Received:	6/3/11 09:10AM	6/3/11 09:10AM	6/3/11 09:10AM	6/3/11 09:10AM	6/3/11 09:10AM
Analysis Performed			· ·		
8260B VOCs			X		
8270C SVOCs		,		X	
8081A Pesticides				X	
8082 PCBs				X	
8330 Explosives	X	X		Х	X
8330 Mod Nitroguanidine				X	
6010B TAL Metals				X	
Denver Laboratory ID:	280-16702-1	280-16702-2FD		280-16702-3	280-16702-5
Date Received:	6/8/11 0930	6/8/11 0930		6/8/11 0930	6/8/11 0930
Analysis Performed					
6860 Perchlorate	X	Х		X	Х
Samples Picked up by North C	anton Facility and distributed from	that facility			
North Canton Laboratory ID:	G1F030473-001 MJ07E	G1F030473-001 MJ07E	11/7/08	G1F030473-001 MJ07E	G1F030473-001 MJ07E
Date Received:	5/26/11 1530	5/26/11 1530	5/26/11 1530	5/26/11 1530	5/26/11 1530
Analysis Performed					
9012A Cyanide				X	
353.2 Nitrocellulose	X	X		X	X
% Solids 160.3				X	

Data Validation Specialists

Table SS-1 Sample Summary and Analysis Table (Waters)

PIKA Field Sample ID:	PCTss-002M-0001-ER	Trip Blank
Date Sampled:	5/26/11 08:40AM	
Scacramento Laboratory ID:	G1F030473 MJ070	G1F030473 MJ073
Date Received:	6/3/11 09:10AM	6/3/11 09:10AM
Analysis Performed		
8260B VOCs		X
8270C SVOCs	X	•
8081A Pesticides	X	
8082 PCBs	Х	
8330 Explosives	Х	
8330 Mod Nitroguanidine	X	
6010B TAL Metals	X	
Denver Laboratory ID:	280-16702-1	280-16702-2FD
Date Received:	6/8/11 0930	6/8/11 0930
Analysis Performed		
6860 Perchlorate	X	
Samples Picked up by North C	anton Facility and distributed fror	n that facility
North Canton Laboratory ID:	G1F030473-001 MJ07E	G1F030473-001 MJ07E
Date Received:	5/26/11 1530	5/26/11 1530
Analysis Performed		
9012A Cyanide	X	
353.2 Nitrocellulose	X	
% Solids 160.3		

Data Validation Specialists

Table VOC-1 Summary of Analytical Results Volatile Organic Compounds (VOCs)

Field Sample ID:	PCTss-002D-0001-SO				Trip Blank	
Laboratory ID:	G1F030473 MJ07L			G1	F030473 MJ	073
Date Sampled:	5/26/11 11:15AM					
Date Received:	6/3/11 09:10AM			6/3/11 09:10AM		M
Date Analyzed:		6/7/11		6/8/11		
Holding Time	1	12 days		13 days		
Required Hold Time	1	14 Days			14 days	
VOCs		Lab	VF		Lab	VF
Method 8260B	Result	Flag	Flag	Result	Flag	Flag
Methylene Chloride	U			U		
4-Methyl-2-pentanone	U			U		
Styrene	U			U	= 1	
1,1,2,2-Tetrachloroethane	U			U		
Tetrachloroethene	U			U	1.11	
Toluene	U			U		
1,1,1-Trichloroethane	U			U		
1,1,2-Trichloroethane	U			U		
Trichloroethene	U			U		
Vinyl Chloride	U			U		
Xylenes (Total)	U			U	11.71	
Acetone	5.3	J,B	J,B	U		
Benzene	U			U	everenting to	
Bromodichloromethane	U			U		
Bromoform	U			U		
Bromomethane	U			U		
2-Butanone	U			U		
Carbon Disulfide	U			U		
Carbon Tetrachloride	U			U		
Chlorobenzene	U			U	The security	
Dibromochloromethane	U			U		
Chloroethane	U			U		
1,1-Dichloroethane	U			U		
1,2-Dichloroethane	U			U		
1,1-Dichloroethene	U			U		
1,2-Dichloroethene (Total)	U			U	Leader L	
1,2-Dichloropropane	U			U	45	
cis-1,3-Dichloropropene	U			U		
trans-1,3-Dichloropropene	U			U		
Ethylbenzene	U			U		
2-Hexanone	U			U		
	ug/Kg			ug/L		

B = Result is above the Method Detection Limit (MDL) but below the Reporting Limit (RL)

Soil & Water

Phone: 330-687-3360 e-mail Bpurves330@aol.com

J = RESULT IS ESTIMATED

U = Result is below the MDL or ND = Not Detected

VF= Validator Flag

⁷⁴⁸⁴ Woospring Ln, Hudson, OH 44236

Data Validation Specialists

Table SVOC-1 Summary of Analytical Results Semi-Volatile Organic Compounds (SVOCs) (cont)

Field Sample ID:	PCTss-002D-0001-SO			PCTss	s-002M-000	1-ER
Laboratory ID:	G1F030473 MJ07L			G1F	030473 MJ	070
Date Sampled:	5/26/11 11:15AM			5/26/11 08:40AM		AM
Date Received:	6/3	3/11 09:10A	M	6/3/11 09:10AM		M
Date Prepared:		6/7/2011		6/9/2011		
Date Analyzed:		6/20/11			6/20/11	
Holding Time		14 days			12 days	
Required Hold Time (prep)		14 Days			14 days	
SVOCs		Lab	VF	,	Lab	VF
Method 8270C	Result	Flag	Flag	Result	Flag	Flag
Acenaphthene	U			U		
Acenaphthylene	U			U		
Benzo(a)anthracene	U			U		
Benzo(b)fluoranthene	U			U		
Benzo(k)fluoranthene	U			U		
Benzo(ghi)perylene	U			U		
Benzo(a)pyrene	U			U		
bis(2-chloroethoxy) methane	U			U		
bis(2-Ethylhexyl)phthalate	U			U		
4-Bromophenyl phenyl ether	U			U		
Butyl benzyl phthalate	U			U		
Carbazole	U			U		
4-Chloroaniline	U			U		
4-Chloro-3-methylphenol	U			U		
2-Chloronaphthalene	U			U		
4-Chlorophenyl phenyl ether	U			U		
Chrysens	U			U		
Dibenzo(a,h)anthracene	U			U		
Dibenzofuran	U			U		
Di-n-butyl phthalate	U			U		
1,2-Dichlorobenzene	U			U		
1,3-Dichlorobenzene	U			U		
1,4-Dichlorobenzene	U			U		
3,3'-Dichlorobenzidine	U			U		
2,4-Dichlorophenol	U			U		
Diethyl phthalate	U			U		
2,4-Dimethylphenol	U			U		
Dimethyl phthalate	U			U		
4,6-Dinitro-2-methylphenol	0.14	J	J	U		
2,4-Dinitrophenol	U			U		
	ug/Kg		NAME OF TAXABLE PARTY.	ug/L		

B = Result is above the Method Detection Limit (MDL) but below the Reporting Limit (RL)

Soil & Water

Phone: 330-687-3360 e-mail Bpurves330@aol.com

J = RESULT IS ESTIMATED

U = Result is below the MDL or ND = Not Detected

VF= Validator Flag

⁷⁴⁸⁴ Woospring Ln, Hudson, OH 44236

Table PEST-1 Summary of Analytical Results Pesticides Compounds (8081A)

Field Sample ID:	PCTs	PCTss-002D-0001-SO			s-002M-000	01-ER
Laboratory ID:	G1F030473 MJ07L			G1F	030473 MJ	070
Date Sampled:	5/2	6/11 11:15	AM	5/26	3/11 08:40	AM
Date Received:	6/3	3/11 09:10A	M	6/3	3/11 09:10	M
Date Prepared:		6/9/2011			6/7/2011	
Date Analyzed:		6/22/11			6/22/11	
Holding Time		14 days			12 days	
Required Hold Time (prep)		14 Days			14 days	
Pesticides		Lab	VF	•	Lab	VF
Method 8081A	Result	Flag	Flag	Result	Flag	Flag
alpha-BHC	U			U	1.7	
gamma-BHC	U			U		
Heptachlor	U			U		
Aldrin	U			U		
beta-BHC	U			U		
delta-BHC	U			U		
Heptachlor epoxide	U			U		
Endosulfan I	U			U		
gamma-Chlordane	U			U		
alpha-Chiordane	U			U		
4,4'-DDE	0.73*	J	J	U		
Dieldrin	U			U		
endrin	U			U		
4,4'-DDT	U			U		
Endrin aldehyde	U			U		
Methoxychlor	U			U		
Endosulfan Sulfate	U	U				
Endrin Ketone	U			U		
Toxaphene	U			U	Teallel	
	ug/Kg			ug/L		

B = Result is above the Method Detection Limit (MDL) but below the Reporting Limit (RL)

A confirmation analysis was performed, however to concentration is below the reporting limit and is estimated at best. No further evaluation is required.

Soil & Water

J = RESULT IS ESTIMATED

U = Result is below the MDL or ND = Not Detected

VF= Validator Flag

Data Validation Specialists

Table PCB-1 Summary of Analytical Results 8082 Polychlorinated Biphenols (PCBs)

Field Sample ID:	PCTs	s-002D-000	01-SO	PCTs	s-002M-000	1-ER
Laboratory ID:	G1F	030473 MJ	107L	G1F	030473 MJ	070
Date Sampled:	5/2	6/11 11:15	AM	5/26	6/11 08:40	AM
Date Received:	6/3	3/11 09:10A	M	6/3	3/11 09:10A	M
Date Prepared:		6/9/2011			6/7/2011	
Date Analyzed:		6/15/11			6/12/11	
Holding Time		14 days		*	12 days	
Required Hold Time (prep)		14 Days			14 days	
PCBs		Lab	VF		Lab	VF
Method 8082	Result	Flag	Flag	Result	Flag	Flag
Arochlor 1016	U			U		
Arochlor 1221	U			U		
Arochlor 1232	U			U		
Arochlor 1242	U			U	E-president	
Arochlor 1248	U			U		
Arochlor 1254	U			U		
Arochlor 1260	U			U		
	ug/Kg			ug/L		

Soil & Water

B = Result is above the Method Detection Limit (MDL) but below the Reporting Limit (RL)- RESULT IS ESTIMATED

J = RESULT IS ESTIMATED

U = Result is below the MDL or ND = Not Detected

VF=Validator flag

Data Validation Specialists

Table EA-1 Summary of Analytical Results Explosives 8330

Soils & Water

Field Sample ID:		s-002D-000		PCT	ss-002M-	-0001-ER	PCT	ss-001M	-0001-SO	PCT	ss-001M-0	001-DUP	PCT	ss-003M-	0001-SO
Laboratory ID:	G11	030473 MJ	107L	G1	F030473	MJ070	G1	F030473	MJ07E	G1	F030473 I	MJ07K	G1	F030473	MJ071
Date Sampled:	5/2	26/11 11:15	AM	5/	26/11 08	:40AM	5/	26/11 1	1:15AM	5/	26/11 11:	15AM	5/	26/11 11	:15AM
Date Received:	6/	3/11 09:10A	M	6	/3/11 09:	10AM	6	/3/11 09	:10AM	6	3/3/11 09:1	0AM	€	3/3/11 09:	10AM
Date Prepared:		6/8/2011			6/6/20	11		6/8/20	11		6/8/201	1		6/8/20	1
Date Analyzed:		6/13/11			6/9/1	1		6/13/	11		6/13/11			6/13/1	1
Holding Time		13 days		,	11 day	/S		13 da	ys		13 days	3		13 day	s
Required Hold Time		14 Days			14 day			14 da			14 days	3		14 day	S
8330 Compound	Result	LF	VF	Results	LF	VF	Results	LF	VF	Results	LF	VF	Results	LF	VF
PETN	U			U											
Nitroglycerin	U			U											
2-Amino-4,6-Dintrotoluene	U			U											
4-Amino-2,6-Dinitrotoluene	U			U											
1,3-Dinitrobenzene	U			U											
2,4-Dinitrotoluene	U			U											
2,6-Dinitrotoluene	U			U											
HMX	U			U					- 6						
Nitrobenzene	U			U											
2-Nitrotoluene	U			U											
4-Nitrotoluene	U			U											
3-Nitrotoluene	U			U											
RDX	U			U											
Tetryl	U			U			T								
1,3,5-Trinitrobenzene	U			U											
2,4,6-Trinitrotoluene	U			U						T					
Nitroglycerin	U			U			U			U			U		
	mg/Kg			ug/L			mg/Kg	- mempi ee ni z	Waster and the state of the sta	mg/Kg			mg/Kg		

B = Result is above the Method Detection Limit (MDL) but below the Reporting Limit (RL)- RESULT IS ESTIMATED

J = RESULT IS ESTIMATED

U = Result is below the MDL or ND = Not Detected

VF=Validator flag

Table PROP-1 Summary of Analytical Results Propellants

Soils & Water

Field Sample ID:	PCTss-002D-0001-SO	PCTss-002M-0001-ER	PCTss-001M-0001-SO	PCTss-001M-0001-DUP	PCTss-003M-0001-SO
Laboratory ID:	G1F030473 MJ07L	G1F030473 MJ070	G1F030473 MJ07E	G1F030473 MJ07K	G1F030473 MJ071
Date Sampled:	5/26/11 11:15AM	5/26/11 08:40AM	5/26/11 11:15AM	5/26/11 11:15AM	5/26/11 11:15AM
Date Received:	6/3/11 09:10AM	6/3/11 09:10AM	6/3/11 09:10AM	6/3/11 09:10AM	6/3/11 09:10AM
Date Prepared:	6/8/2011	6/6/2011	6/8/2011	6/8/2011	6/8/2011
Date Analyzed:	6/13/11	6/9/11	6/13/11	6/13/11	6/13/11
Holding Time	13 days	11 days	13 days	13 days	13 days
Required Hold Time	14 Days	14 days	14 days	14 days	14 days
8330 Modified	Result LF VF	Results LF VF	Results LF VF	Results LF VF	Results LF VF
Nitroguanidine	U	U	0.063 J J	0.12 J J	0.17 J J
	mg/Kg	ug/L	mg/Kg	mg/Kg	mg/Kg

	mg/Kg	ug/L	mg/Kg	mg/Kg	mg/Kg
Nitrocellulose	U	U	1.1 B J	0.82 B J	
353.2 Nitrocellulose	Result LF VF	Results LF VF	Results LF VF	Results LF VF	Results LF VF
Required Hold Time	28 Days	28 days	28 days	28 days	28 days
Holding Time	20 days	20 days	20 days	20 days	20 days
Date Analyzed:	6/16/11	6/10/11	6/16/11	6/16/11	6/16/11
Date Prepared:	6/15/11	6/9/11	6/15/11	6/15/11	6/15/11
Date Received:	6/3/11 09:10AM	6/3/11 09:10AM	6/3/11 09:10AM	6/3/11 09:10AM	6/3/11 09:10AM
Date Sampled:	5/26/11 11:15AM	5/26/11 08:40AM	5/26/11 11:15AM	5/26/11 11:15AM	5/26/11 11:15AM
Laboratory ID:	G1F030473 MJ07L	G1F030473 MJ070	G1F030473 MJ07E	G1F030473 MJ07K	G1F030473 MJ071
Field Sample ID:	PCTss-002D-0001-SO	PCTss-002M-0001-ER	PCTss-001M-0001-SO	PCTss-001M-0001-DUP	PCTss-003M-0001-SO

	mg/Kg	ug/L	mg/Kg	mg/Kg	mg/Kg
Perchlorate	U	U	0.093* J J J	0.11* J J	0.093* J J J
6860 Perchlorate	Result LF VF	Results LF VF	Results LF VF	Results LF VF	Results LF VF
Required Hold Time	28 Days	28 days	28 days	28 days	28 days
Holding Time	20 days	20 days	20 days	20 days	20 days
Date Analyzed:	6/15/11	6/15/11	6/15/11	6/15/11	6/15/11
Date Prepared:	6/9/11		6/9/11	6/9/11	6/9/11
Date Received:	6/3/11 09:10AM	6/3/11 09:10AM	6/3/11 09:10AM	6/3/11 09:10AM	6/3/11 09:10AM
Date Sampled:	5/26/11 11:15AM	5/26/11 08:40AM	5/26/11 11:15AM	5/26/11 11:15AM	5/26/11 11:15AM
_aboratory ID:	280-16702-3	280-16702-3	280-16702-3	280-16702-3	280-16702-3
ield Sample ID:	PCTss-002D-0001-SO	PCTss-002M-0001-ER	PCTss-001M-0001-SO	PCTss-001M-0001-DUP	PCTss-003M-0001-SO

^{*}Value is less than the reporting limit but greater than the detection limit.

B = Result is above the Method Detection Limit (MDL) but below the Reporting Limit (RL)- RESULT IS ESTIMATED

J = RESULT IS ESTIMATED

U = Result is below the MDL or ND = Not Detected

VF=Validator flag

Data Validation Specialists

Table CN-1 Summary of Analytical Results Cyanide

Field Sample ID:	PCTss-002D-0001-SO PCTss-002M-0001-			I-0001-ER			
Laboratory ID:	G1F	030473 M	J07L	G	1F03047	3 MJ070	
Date Sampled:	5/20	6/11 11:15	AM	5	/26/11 0	8:40AM	
Date Received:	6/3/11 09:10AM 6/3/11 09:10			09:10AM			
Date Prepared:	6/8/2011			6/6/2011			
Date Analyzed:		6/13/11		6/9/11			
Holding Time		13 days		11 days			
Required Hold Time		14 Days		1	14 days		
Method 9012A	Result	LF	VF	Results	LF	VF	
Cyanide	0.19	В	J	U			
	mg/Kg			ug/L			

Soil & Water

B = Result is above the Method Detection Limit (MDL) but below the Reporting Limit (RL)- RESULT IS ESTIMATED

J = RESULT IS ESTIMATED

U = Result is below the MDL or ND = Not Detected

VF=Validator flag /484 Woospring Ln, Hudson, OH 44236 Phone: 330-687-3360 e-mail Bpurves330@aol.com

Appendix B Check Lists

Phone:330-687-3360

e-mail: Bpurves330@aol.com

ICP Metals Analysis (601	U) Check List	Soil & VV	ater	
Project Name:	CC-RVAAP-80			
Project #:	10-08-130			
Laboratory:	Test America Sacremento			
Sample Delivery Group:	G1F030473			
		Yes	No	
Holding Time:	Samples were analyzed within holding time (6-Months)	Yes		
nitial Calibration	One calibration standard and blank		No	
	Two calibration standard and blank		No	
	Three calibration standard and blank	Yes		
	R > 0.995	Yes		
Comment				
QC Method Detection Lir	nit (MDL)			
	MDL Check	Yes		
QC Method Reporting Li		1		
are meaner noperang a	MRL Check at the beginning	Yes		
	MRL Check every 12 hours	Yes	1	
	minte emodit every 12 modite	1.00		-
ntital Calibration Verific	ation (ICV)			
initial SanStation Vermo	%Recovery 90-110%	Yes		
nitial Calibration Blank		1103		
inda Canbiadon Blank	Blank Analytes <1/2 MRL	Yes		
nterelement Check Stan		1103		-
interesement Oneck Stan	ICS-A run at the beginning	Yes		
	ICS-A run at the beginning	Yes		
Continuing Calibration E		res		
Continuing Cambration E	CCB every ten samples	Yes		
	CCB at end or run	Yes		
		Yes		
0 4' ' 0 - 1'1 4' V	CCB analytes < 1/2 MRL	res		
Continuing Calibration V		lv.		
	CCV every ten samples	Yes		
	CCV at end of run	Yes		
Second Second	CCV 90-110% Recovery	Yes		
Sample Analysis				
	Samples greater than linear range diluted	Yes		
Sample QC				
	Method Blank <1/2 MRL	Yes		
	LCS recoveries within required limits	Yes		

Comments

Method, Initial Calibration and Continuing Calibration Blanks

MS/MSD recoveries within required limits

MD RPD within control limits

All were not detected.

Matrix Spike/Matrix Spike Dilution

Lead had a low recovery for the MSD (66% vs 75%) No real issue Data valid May be homogenety that in the case of matrix spike and matrix spike duplicates, each analyte should be evaluated carefully. Additionally, the martix that is being spiked represents only the sample being spiked and not the entire sampling batch. Though soils in the same sampling group are being evaluated, each soil is unique. The data in this MS/MSD evaluation should be used as a guidance regarding possible matrix interference but should not have a direct affect on data. The Method of Standard Additions should be used as a possible verification of a matrix affect.

Serial Dilution

Serial Dilution (1:4) conducted as required.	Yes	
Was there agreement between diluted and undiluted results?	Yes	
<10% recovery?		

No

Yes

ICP Metals Analysis (6010) Check List (continued pg 2) Project Name:

CC-RVAAP-80

Project #:

10-08-130

Laboratory:

Test America Sacremento

Sample Delivery Group:

G1F030473

Method of Standard Additions (MSA)

Was it performed as needed on samples of suspected matrix affects?

No

Soil & Water

Was R > 0.995

Comments:

Mercury Analysis (7471	A/7470A) Check List	Soil & Wate	r
Project Name:	CC-RVAAP-80		
Project #:	10-08-130		
Laboratory:	Test America Sacremento		
Sample Delivery Group:	G1F030473		
		Yes	No
Holding Time:	Samples were analyzed within holding time (6-Months)	Yes	
Initial Calibration	Five calibration standard and blank	Yes	I
	R > 0.995	Yes	I
QC Method Detection L	imit (MDL)		
20 1110111011 2010011011 2	MDL Check	Yes	
Intital Calibration Verific	cation (ICV)		
	%Recovery 90-110%	Yes	T
Initial Calibration Blank		The state of the s	
	Blank Analytes <1/2 MRL	Yes .	
Continuing Calibration	Verification (CCV)		
	CCV every ten samples	Yes	
	CCV at end of run	Yes	
	CCV 90-110% Recovery	Yes	
Continuing Calibration	Blank (CCB)		
	CCB every ten samples	Yes	
	CCB at end or run	Yes	
	CCB analytes < 1/2 MRL	Yes	
Sample Analysis			
	Samples greater than linear range diluted	n/a	
Sample QC	8		
	Method Blank <1/2 MRL	Yes	
	LCS recoveries within required limits	Yes	
	MS recoveries within required limits	Yes	
	MD RPD within control limits	Yes	
Method of Standard Add			
	Was it performed as needed on samples of suspected matrix affects	?	No
	Was R > 0.995		

Comments

No issues found in this analysis.

Nitroaromatic & Nitramine	Data Analysis (Explosive Residues) Checklist	Soil & Water	
Project Name:	CC-RVAAP-80		
Project #:	10-08-130		
Laboratory:	Test America Sacremento		
Sample Delivery Group:	G1F030473		
		Yes	No
Holding Time:	Were Samples extracted within holding times?	Yes	
	Were Samples analyzed within holding times?	Yes	
Initial Calibration	Five calibration standard minimum	Yes	
Manual Integration			
	Was manual integration "M" performed?	1	No
		*******************************	yal-market
QCMDL	Was MDL check performed?	Yes	
QCMRL			
	Was QCMRL run at the beginning and end of every daily	Yes	
	sequence or every 12 hours?	•	
	Was the % "D" <30%	Yes	
Intital Calibration Verificat	ion (ICV)		
	le the mid level (2nd source) receiver, within 95 1150/	Yes	
	Is the mid level (2nd source) recovery within 85-115%	res	L
Continuing Calibration Va	distriction (COV)		
Continuing Calibration Ve	inication (CCV)		
	Man COV man at the hearinging of the day or min ayen, 12 hours?	Yes	
	Was CCV run at the beginning of the day or run every 12 hours?	res	L
	TM - the wide interest (COM) conducted assessment	Tv	
	Was the midpoint sample (CCV) conducted every ten samples	Yes	
	or every 12 hours?		
	Was the mide sist assemble (CCV) conducted at the and of the	Tvaa	
	Was the midpoint sample (CCV) conducted at the end of the	Yes	L
	day/run.		
	Did the CCV meet the minimum requirements (D<15% with a	Yes	
		Tes	L
	maximum D < 20% for a specific compound.		
Cample Analysis			
Sample Analysis	Was the DT of an identified company within the required	Tvaa	
	Was the RT of an identified componet within the required	Yes	L
	retention time window.		
	More all identified hits, shows the initial collibration survey diluted	Yes	г
	Were all identified hits, above the initial calibration curve diluted	ites	
	and reanalyzed		
	Were all identified compounds confirmed on a second column	Yes	
	were all identified compounds committee on a second column	1163	
	Was all RPD of target analyte confirmation <40%	Yes	
	Was all RFD of target analyte committation 14076	1165	
	Was there a shoulder on the 2,4,6-TNT peak?	T	No
	vedo there a shoulder on the 2,7,0-1141 peak!		1110
Sample Quality Control			
Cample Quality Collinor			
Method Blank	Were Target analytes < 1/2 the MRL for the Method Blank	Yes	
motilou bialik	VVOID Target analytes > 1/2 tile with for the Wethou Dialik	1103	
LCS	Were the % recoveries for the LCS within the limits?	T	No
200	AACIO THE 10 LECOACHES IOL THE FOO MITHIN THE IIIIIITS !		1.40
MS/MSD	Were percent recovries within control limits?	Yes	
mo/mou	Arous betoeur reconnes autilit countrie illuits;	1103	
	Were RPD within control limits?	Yes	
	Trois it S main control mino.	1.00	1

Nitroaromatic & Nitramine Data Analysis (Explosive Residues) Checklist (cont pg 2)

Soil & Water

Project Name:

CC-RVAAP-80

Project #:

10-08-130

Laboratory:

Test America Sacremento

Sample Delivery Group:

G1F030473

Comments

Surrogates

Are surrogate recoveries within QC limits Yes

Signed:

Propellants Nitrocelluic	se .	Soil & Wate	oil & Water		
Project Name:	CC-RVAAP-80				
Project #:	10-08-130				
Laboratory:	Test America North Canton				
Sample Delivery Group:	G1F030473				
		Yes	No		
Holding Time:	Were Samples analyzed within holding times?	Yes			
	particular and the second				
Initial Calibration	Was the calibration a minimum of 1 standard and blank?	Yes			
			_		
	Was the R^2 >0.995 ?	Yes			
Intital Calibration Verific	eation (ICV)				
		T			
	Is the mid level (2nd source) recovery within 90-110%	Yes			
Continuing Calibration \		T.			
	CCV every ten samples	Yes			
	CCV at end of run	Yes			
	CCV 90-110% Recovery	Yes			
	Was the midpoint sample (CCV) conducted at the end of the run?	Yes			
Continuing Calibration I					
	CCB every ten samples	Yes			
	CCB at end or run	Yes			
	CCB analytes < 1/2 MRL	Yes			
	*				
Sample Analysis	<u></u>	T			
	Were samples greater than linear range diluted	N/A			
Sample QC	Proceedings of the control of the co				
	Method Blank <1/2 MRL	Yes			
	LCS recoveries within required limits	Yes			
MS/MSD Analysis					
	MS recoveries within required limits	Yes			
	MD RPD within control limits	Yes			

Comments

Signed: Like of

General Chemistry Cyanid	le	Soil & Water	
Project Name:	CC-RVAAP-80		
Project #:	10-08-130		
Laboratory:	Test America North Canton		
Sample Delivery Group:	G1F030473		
		Yes	No
Holding Time:	Were Samples analyzed within holding times?	Yes	
Initial Calibration	Was the calibration a minimum of 1 standard and blank?	Yes	
	Was the R^2 >0.995?	Yes	
Intital Calibration Verificati	ion (ICV)		
	Is the mid level (2nd source) recovery within 90-110%	Yes	
Continuing Calibration Ver	rification (CCV)		,
3	CCV every ten samples	Yes	T
	CCV at end of run	Yes	
	CCV 90-110% Recovery	Yes	
	F	7	
	Was the midpoint sample (CCV) conducted at the end of the run?	Yes	
Continuing Calibration Bla	nk (CCB)		
	CCB every ten samples	Yes	
	CCB at end or run	Yes	
	CCB analytes < 1/2 MRL	Yes	
	8		
Sample Analysis		-	
	Were samples greater than linear range diluted	N/A	L
Sample QC			
	Method Blank <1/2 MRL	Yes	
	LCS recoveries within required limits	Yes	
MS/MSD Analysis			
	MS recoveries within required limits	Yes	
	MD RPD within control limits	Yes	
0			

Comments

Signed: William W. Purves

8330 Modified Propellant	ts Nitroguanidine	Soil & Wat	er
Project Name:	CC-RVAAP-80		
Project #:	10-08-130		
Laboratory:	Test America Sacremento		
Sample Delivery Group:	G1F030473		
		Yes	No
Holding Time:	Were Samples extracted within holding times?	Yes	
	Were Samples analyzed within holding times?	Yes	
Initial Calibration	Five calibration standard minimum	Yes	
Manual Integration			
	Was manual integration "M" performed?		No
QCMDL	Was MDL check performed?	Yes	
OCMBI			•
QCMRL	Was QCMRL run at the beginning and end of every daily	Yes	T
	sequence or every 12 hours?		
	Was the % "D" <30%	Yes	
Intital Calibration Verifica	ation (ICV)		
	Is the mid level (2nd source) recovery within 85-115%	Yes	
Continuing Calibration V	erification (CCV)		
	Was CCV run at the beginning of the day or run every 12 hours?	Yes	
	Was the midpoint sample (CCV) conducted every ten samples	Yes	T
	or every 12 hours?		
	Was the midpoint sample (CCV) conducted at the end of the	Yes	T
	day/run.		
	Did the CCV meet the minimum requirements (D<15% with a	Yes	
	maximum D < 20% for a specific compound.		
Sample Analysis			
	Was the RT of an identified componet within the required	Yes	
	retention time window.		
	Were all identified hits, above the initial calibration curve diluted	Yes	
	and reanalyzed		
	Were all identified compounds confirmed on a second column	Yes	
	Was all RPD of target analyte confirmation <40%	Yes	
Sample Quality Control	,	•	
•			
Method Blank	Were Target analytes < 1/2 the MRL for the Method Blank	Yes	

0220	Madified	Propellants	Alitanamina	midina
ossu	Modified	Propellants	NILLOGUA	mame

Soil & Water

Project Name:

CC-RVAAP-80

Project #:

10-08-130

Laboratory:

Test America Sacremento

Sample Delivery Group:

G1F030473

LCS

Were the % recoveries for the LCS within the limits?

MS/MSD

Were percent recovries within control limits?

Were RPD within control limits?

Comments

Water sample was not extracted witin holding time, however the water was an equipment rinse and not a natural water.

There was not enough water to run a MS/MSD sample run.

Signed:

8081A PESTICIEDS		Soil & Wate	r
Project Name:	CC-RVAAP-80		
Project #:	10-08-130		
Laboratory:	Test America Sacremento		
Sample Delivery Group:	G1F030473		
		Yes	No
Holding Time:	Were Samples extracted within holding times?	Yes	1
riolang rine.	Were Samples extracted within holding times?	Yes	+
	vvere Samples analyzed within holding times?	Ties	
Initial Calibration	Five calibration standard minimum	Yes	T
initial Calibration	Five campration standard minimum	res	
Managed Intermedian			
Manual Integration	11.1.1.1.1.1.10	lveo	T
	Was manual integration "M" performed?	YES	
COMPI	W. MDL by London 10	Tv	T
QCMDL	Was MDL check performed?	Yes	
0045		,	•
QCMRL	Wes COMPI and the hearing in and of some daily	Tv	1
	Was QCMRL run at the beginning and end of every daily	Yes	
	sequence or every 12 hours?		
	111 11 0/ IIDII 000/	Tv.	7
	Was the % "D" <30%	Yes	
Intital Calibration Verifica	ation (ICV)		
		T	
	Is the mid level (2nd source) recovery within 85-115%	Yes	
	¥		
Continuing Calibration V	erification (CCV)		
		1.	
	Was CCV run at the beginning of the day or run every 12 hours?	Yes	
		T	
	Was the midpoint sample (CCV) conducted every ten samples	Yes	
	or every 12 hours?		
	Was the midpoint sample (CCV) conducted at the end of the	Yes	1
	day/run.		
	processor and the second secon		
	Did the CCV meet the minimum requirements (D<15% with a	Yes	
	maximum D < 20% for a specific compound.		
Degradation			
	Did the Degradation check pass	Yes	
Sample Analysis			
	Was the RT of an identified componet within the required	Yes	
	retention time window.		
	Were all identified hits, above the initial calibration curve diluted	n/a	
	and reanalyzed	•	
	Name of the state		
	Were all identified compounds confirmed on a second column	Yes	
	Land of the second of the seco		
	Was all RPD of target analyte confirmation <40%	Yes	

Sample Quality Control

8081A PESTICIEDS (cont)

Sample Delivery Group:

Project Name:

Project #:

Laboratory:

Method Blank Were Target analytes < 1/2 the MRL for the Method Blank</td> Yes LCS Were the % recoveries for the LCS within the limits? YES MS/MSD Were percent recovries within control limits? Yes Were RPD within control limits? Yes Surrogates Are surrogate recoveries within QC limits Yes

Soil & Water

Water sample was not extracted witin holding time, however the water was an equipment rinse and not a natural water. There was not enough water to run a MS/MSD sample run.

Signed: With The

William W. Purves

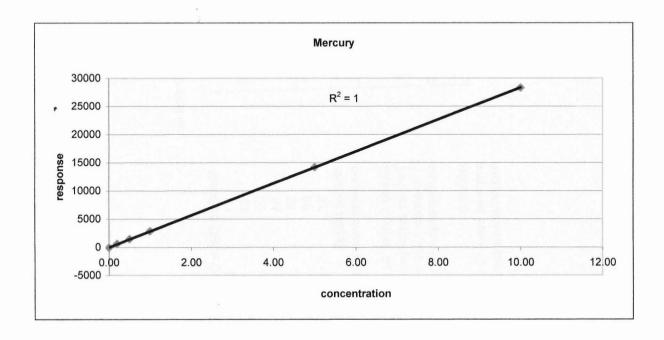
CC-RVAAP-80

Test America Sacremento

10-08-130

G1F030473

Standard Calibration Check Tables


Phone:330-687-3360

e-mail: Bpurves330@aol.com

Data Validation Specialists

Table HG-1 Mercury Calibration Check

Metals Method 7471A	Concentrat	ion
Standard	Known	Measured
S1	0.00	-48
S2	0.20	652
S3	0.50	1477
S4	1.00	2854
S5	5.00	14217
S6	10.00	28306

Mercury Sample Calculation Check

Laboratory Sample ID:

MJ07R

Sample Counts

1451

0.049 Recalculated sample Concentration

0.049 Reported value

Table QCHg-1 7174A Mercury Quality Control Check Table 10% of Compounds Reported

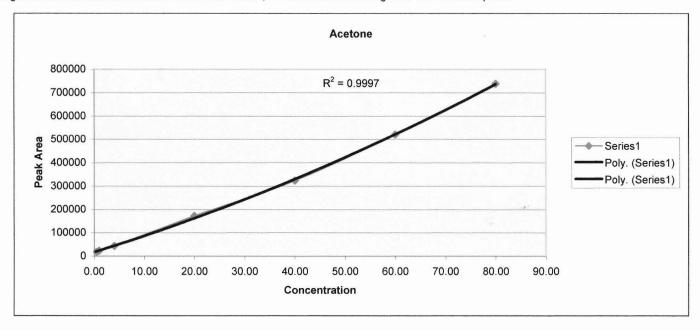
This table recalculates 10% of the reported compounds. 100% recalculation is not necessary as the computer generated data and these calculation do not vary.

This has been proven in the past by the data validator.

Cyanide Method 9012A	*				
	Known	Measured	%	Recovery	RPD
	Conc	Conc	Recovered	Range	<25%
Method Blank	ND	ND	<1/2RL		
ICV	0.100	0.952	95.2	90-110%	
CCV	1.00	0.09038	90.38	90-110%	
LCS	19.600	22	112.00%	86-114	
MS	0.275	0.244	89	86-114	5.00
MSD	0.262	0.219	84	86-114	

Data Validation Specialists

Table CALVER-8260 8260 Calibration Check Table 10% of Compounds Reported


Soil

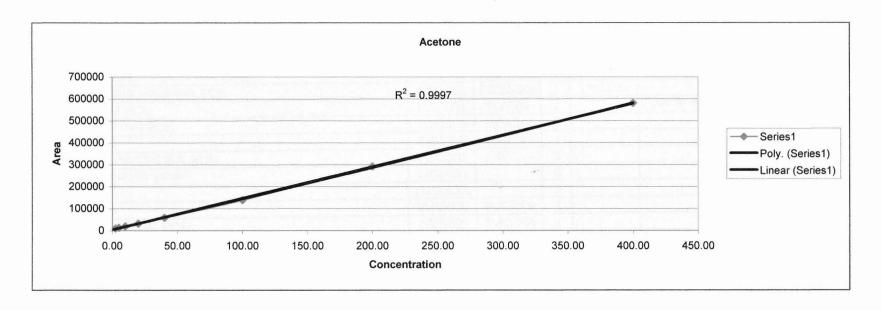
This table recalculates 10% of the reported compounds. 100% recalculation is not necessary as the computer generated data and these calculation do not vary. This has been proven in the past by the data validator.

April 6, 2011 cal date Water

VOCs Method 8260	Acetone		VOCs Method 8260	Carbon Dis	ulfide	Benzene	
Standard	Known	Measured	Standard	Known	Measured	Known	Measured
	Conc	Area		Conc	CF	Conc	CF
S1	0.25		S1 ,	0.25	0.65807	0.25	1.11158
S2	0.50	18264	S2	0.50	0.67573	0.50	1.15239
S3	1.00	23509	S3	1.00	0.62175	1.00	1.0167
S4	4.00	44033	S4	4.00	0.68303	4.00	1.04588
S5	20.00	172319	S5	20.00	0.69784	20.00	1.00052
S6	40.00	323872	S6	40.00	0.70002	40.00	0.95515
S7	60.00	521242	S7	60.00	0.7178	60.00	0.99846
S8	80.00	738217	S8	80.00	0.71099	80.00	0.98669
Recal Correl Coef Linear	0.99501		Average RE-CF		0.6831538		1.0334213
Recal Correl Coef Quad	0.99970		Average LAB-CF		0.68315		1.03342
Lab Correl Coef Quad*	0.99828		%RSD	4.606	4.606%	6.472	6.472%

Though the recalculation did not match the Lab correlation, the correlation must be greater than 0.995 to pass.

Project: CC-RVAAP-80 ProJect #:10-08-130


Table CALVER-8260 8260 Calibration Check Table 10% of Compounds Reported

Soil

This table recalculates 10% of the reported compounds. 100% recalculation is not necessary as the computer generated data and these calculation do not vary. This has been proven in the past by the data validator.

June 6, 2011 cal date

VOCs Method 8260	Acetone		VOCs Method 8260	Carbon Dis	ulfide	Benzene			
Standard	Known	Measured	Standard	Known	Measured	Known	Measured	Peak	Calculated
	Conc	Area		Conc	CF	Conc	CF	Area	CF
S1	1.00		S1	1.00	1.24565	1.00	1.61536	22388	1.6153634
S2	2.50	9875	S2	2.50	1.05854	2.50	1.45978	50705	1.45978
S3	5.00	13317	S3	5.00	1.13901	5.00	1.58679	106063	1.58679
S4	10.00	19503	S4	10.00	1.1902	10.00	1.57557	222626	1.57557
S5	20.00	31986	S5	20.00	1.30901	20.00	1.6331	460930	1.6331
S6	40.00	59041	S6	40.00	1.34588	40.00	1.73046	1000759	1.73046
S7	100.00	138807	S7	100.00	1.32838	100.00	1.6764	2550069	1.6764
Sb	200.00	292604		200.00	1.22563	200.00	1.69036	5762841	1.69036
S9	400.00	580415		400.00	1.22877	400.00	1.75863	12668105	1.75863
Recal Correl Coef Linear	0.99965		Average RE-CF		1.2301189		1.6362722		
Recal Correl Coef Quad	0.99970		Average LAB-CF		1.23012		1.63627		
Lab Correl Coef Quad*	0.99970		%RSD	7.543	7.543%	5.556	5.556%		

Laboratory: Test America Sacramento, CA G1F030473

Data Validation Specialists

Project: CC-RVAAP-80 ProJect #:10-08-130

Table QC-8260 8260 Quality Control Check Table 10% of Compounds Reported

Soil

VOCs Method 8260	Acetone				Carbon Disi	ulfide			Benzene			
Standard	Known	Measured	Recovery	% Diff	Known	Measured	Recovery	%Diff	Known	Measured	Recovery	%Diff
	Conc	Conc	Range	Max	RRF	RRF	Range	Max	RRF	RRF	Range	Max
ICV	40.00	38.60856	24-56	* 40	1.2688	1.23012	0.76-1.776	40	1.7625	1.63627	1.06-2.47	40
CCC	40.00	38.73623	24-56	40	1.2688	1.21916	0.76-1.776	40	1.7625	1.66664	1.06-2.47	40
ICB	ND	ND	<10		ND	ND	<1/2RL		ND	ND	<1/2RL	
CCB	ND	ND	<1/2RL		ND	ND	<1/2RL		ND	ND	<1/2RL	
	Known	Measured	Recovery	RPD	Known	Measured	Recovery	RPD	Known	Measured	Recovery	RPD
	Conc	Conc	Range	<20	Conc	Conc	Range	<20	Conc	Conc	Range	<20
LCS	40.00	40.2	20-60		40	41.9	25.6-49.2		40	40.3	30-50.4	
Method Blank	ND	3.8	<10		ND	ND	<1/2RL		ND	ND	<1/2RL	
MS	40.00	35	20-60	32.00	40.00	39.6	25.6-49.2	7.70	40.00	38.2	30-50.4	9.80
MSD	40.00	80*	20-60	**************************************	40.00	42.7	25.6-49.2		40.00	42.1	30-50.4	

^{*} Biased High no affect on non-detect data or data below the Reporting Limit

Data Validation Specialists

Laboratory: Test America Sacramento, CA G1F030473

Project: CC-RVAAP-80 ProJect #:10-08-130

Table CALVER-8270 8270 Calibration Check Table 10% of Compounds Reported

Soil

This table recalculates 10% of the reported compounds. 100% recalculation is not necessary as the computer generated data and these calculation do not vary. This has been proven in the past by the data validator.

June 6, 2011 cal date

SVOCs Method 8270	Acenaphthe	ene	bis(2-Ethylh phthalate	exyl)	2,4-Dimethy	/lphenol	Hexachloro	benzene	Nitrobenze	ne	Phenol	
Standard	Known	Measured	Known	Measured	Known	Measured	Known	Measured	Peak	Calculated	Peak	Calculated
	Conc	CF	Conc	CF	Conc	CF	Conc	CF	Area	CF	Area	CF
S1	1.00	1.32488	1.00	1.03632	1.00	0.34193	1.00	0.80877	22388	0.40175	22388	2.28874
S2	5.00	1.26564	5.00	0.83547	2.50	0.35128	2.50	0.6716	50705	0.37137	50705	1.9726
S3	10.00	1.23613	10.00	0.83524	5.00	0.34059	5.00	0.66053	106063	0.37655	106063	2.06083
S4	20.00	1.2864	20.00	0.82335	10.00	0.36556	10.00	0.68721	222626	0.37264	222626	2.07634
S5	50.00	1.25044	50.00	0.8771	20.00	0.35574	20.00	0.69681	460930	0.37701	460930	2.0775
S6	80.00	1.24496	80.00	0.908	40.00	0.35566	40.00	0.69662	1000759	0.37099	1000759	2.08455
S7	120.00	1.25873	120.00	0.90942	100.00	0.36413	100.00	0.70336	2550069	0.38297	2550069	2.11519
Sb	160.00	1.20367	160.00	0.92409	200.00	0.35729	200.00	0.69763	5762841	0.37067	5762841	2.07903
Average RE-CF		1.2588563		0.8936238		0.3540225		0.7028163		0.3779938		2.0943475
Average LAB-CF		1.25886		0.89362		0.35402		0.70282		0.37799		2.09435
%RSD	2.847	2.847%	7.77	7.770%	2.584	2.584%	6.439	6.439%	2.77	2.770%	4.237	4.237%

Data Validation Specialists

Laboratory: Test America Sacramento, CA G1F030473

Project: CC-RVAAP-80 ProJect #:10-08-130

Table QC-8270 8270 Quality Control Check Table 10% of Compounds Reported

Soil

SVOCs Method 8270	Acenaphthe	ene			bis(2-Ethylh phthalate	exyl)			2,4-Dimeth	ylphenol		
Standard	Known	Measured	Recovery	% Diff	Known	Measured	Recovery	%Diff	Known	Measured	Recovery	%Diff
	Conc	Conc	Range	Max	RRF	RRF	Range	Max	RRF	RRF	Range	Max
ICV	1.23688	1.25886	0.64-1.91	50	0.88979	0.89362	0.46-1.37	50	0.37755	0.35402	0.18-0.54	50
CCC	1.27142	1.25886	0.64-1.91	50	0.91265	0.89362	0.46-1.37	50	0.36229	0.35402	0.18-0.54	50
ICB	ND	ND	<1/2RL		ND	ND	<1/2RL		ND	ND	<1/2RL	
CCB	ND	ND	<1/2RL		ND	ND	<1/2RL		ND	ND	<1/2RL	
	Known	Measured	Recovery	RPD	Known	Measured	Recovery	RPD	Known	Measured	Recovery	RPD
	Conc	Conc	Range	<20	Conc	Conc	Range	<20	Conc	Conc	Range	<20
Method Blank	ND	ND	<1/2RL		ND	ND	<1/2RL		ND	ND	<1/2RL	
LCS	3.33	2.79	1-4.5		3.33	2.93	1.13-4.96		3.33	2.54	1.1-3.96	
MS	3.34	2.37	1-4.5	6.60	3.34	2.48	1.13-4.96	8.10	3.34	2.14	1.1-3.96	2.40
MSD	3.37	2.53	1-4.5		3.37	2.7	1.13-4.96		3.37	2.19	1.1-3.96	

^{*} Biased High no affect on non-detect data or data below the Reporting Limit

SVOCs Method 8270	Hexachlorob	oenzene			Nitrobenzer	ie			Phenol			
									L			
Standard	Known	Measured	Recovery	% Diff	Known	Measured	Recovery	%Diff	Known	Measured	Recovery	%Diff
	Conc	Conc	Range	Max	RRF	RRF	Range	Max	RRF	RRF	Range	Max
ICV	0.26988	0.2552	0.13-0.39	50	0.38925	0.37799	0.19-0.57	50	2.04921	2.09977	1.64-2.46	20
CCC	0.26149	0.2552	0.13-0.39	50	0.38274	0.37799	0.19-0.57	50	2.04921	2.09435	1.64-2.46	20
ICB	ND	ND	<1/2RL		ND	ND	<1/2RL		ND	ND	<1/2RL	
CCB	ND	ND	<1/2RL		ND	ND	<1/2RL		ND	ND	<1/2RL	
	Known	Measured	Recovery	RPD	Known	Measured	Recovery	RPD	Known	Measured	Recovery	RPD
	Conc	Conc	Range	<20	Conc	Conc	Range	<20	Conc	Conc	Range	<20
Method Blank	ND	ND	<1/2RL		ND	ND	<1/2RL		ND	ND	<1/2RL	
LCS	3.33	2.94	1.07-4.23		3.33	2.5	1-3.83		3.33	2.3	1-4	
MS	3.34	2.45	1.07-4.23	5.30	3.34	2.02	1-3.83	5.70	3.34	2.44	1-4	5.90
MSD	3.37	2.58	1.07-4.23		3.37	2.14	1-3.83		3.37	42.1	1-4	

Data Validation Specialists

Laboratory: Test America Sacramento, CA G1F030473

Project: CC-RVAAP-80 ProJect #:10-08-130

Table CALVER-8081A 8081A Calibration Check Table 10% of Compounds Reported

Soil

This table recalculates 10% of the reported compounds. 100% recalculation is not necessary as the computer generated data and these calculation do not vary. This has been proven in the past by the data validator.

April 6, 2011 cal date Water

Pesticieds Method 8081A	Heptachlor		4,4'-DDT	
Standard	Known	Measured	Known	Measured
	Conc	CF	Conc	CF
S1	1.25		1.25	865565
S2	2.50	1214804	2.50	771508
S3	5.00	1196509	5.00	820535
S4	10.00	1195439	10.00	784719
S5	20.00	1084669	20.00	791838
S6	50.00	1105740	50.00	755519
S7	100.00	1139231	100.00	754613
S8	250.00	1062684	250.00	754303
Average RE-CF		1142725.1		787325
Average LAB-CF		1142725		787325
%RSD	5.302	5.302%	4.960	4.960%

Table QC-8081A 8081A Quality Control Check Table 10% of Compounds Reported

Soil

Pesticieds Method 8081A	Heptchlor				4,4'-DDT			
	Known	Measured	Recovery	RPD	Known	Measured	Recovery	RPD
	Conc	Conc	Range	<20	Conc	Conc	Range	<20
Method Blank	ND	ND	<1/2RL		ND	ND	<1/2RL	
LCS	8.33	8.22	6.66-10		16.7	14	13.34-20	
MS	8.39	8.54	6.66-10	5.60	16.80	13.5	13.34-20	7.10
MSD	8.48	9.03	6.66-10		17.00	14.5	13.34-20	

Data Validation Specialists

Laboratory: Test America Sacramento, CA G1F030473

Project: CC-RVAAP-80 ProJect #:10-08-130

Table CALVER-8082 8082 Calibration Check Table 10% of Compounds Reported

Soil

This table recalculates 10% of the reported compounds. 100% recalculation is not necessary as the computer generated data and these calculation do not vary. This has been proven in the past by the data validator.

April 6, 2011 cal date Water

PCBs	Arochlor 10	16				
Method 8082		Peak 1	Peak 2	Peak 3	Peak 4	Peak 5
Standard	Known	Measured	Measured	Measured	Measured	Measured
	Conc	CF	CF	CF	CF	CF
S1	50.00	1160050	560108	847634	618119	884475
S2	100.00	1141187	561399	846733	645262	861814
S3	200.00	1007040	493808	754941	566157	768861
S4	300.00	1013958	497593	763484	582891	771201
S5	500.00	958438	467781	732203	605993	737817
S6	1000.00	946501	468290	741932	581969	742805
S7	2000.00	888210	444014	707006	532752	704229
S8	20.00	1161900	564514	831558	635583	860307
Average RE-CF		1034660.5	507188.38	778186.38	596090.75	791438.63
Average LAB-CF		1034661	787325	778186	596091	791439
%RSD		10.299%	9.530%	7.142%	6.291%	8.559%
Lab %RSD		10.299	9.530	7.142	6.291	8.559

Table QC-8081A 8081A Quality Control Check Table 10% of Compounds Reported

Soil

PCBs Method 8082	Arochlor 1016						
	Known	Measured	%	RPD			
	Conc	Conc	Recovered	<20			
Method Blank	ND	ND	<1/2RL				
LCS	66.70	65	98				
MS	68.30	63.3	93	8.40			
MSD	66.60	68.9	103				

Laboratory: Test America Sacramento, CA G1F030473

Project: CC-RVAAP-80 ProJect #:10-08-130

Data Validation Specialists

Table CALVER-8330 8330 Calibration Check Table 10% of Compounds Reported

Soil

This table recalculates 10% of the reported compounds. 100% recalculation is not necessary as the computer generated data and these calculation do not vary. This has been proven in the past by the data validator.

April 6, 2011 cal date Water

Explosives	2-Nitrotolue	ne	Nitroglycerin	1
Method 8330				Peak 1
Standard	Known	Measured	Known	Measured
	Conc	CF	Conc	CF
S1	5.00	66	5.00	*
S2	10.00	57.5	10.00	
S3	20.00	50.65	20.00	86.400
S4	50.00	50.72	50.00	77.580
S5	100.00	49.81	100.00	78.760
S6	200.00	48.835	200.00	75.490
S7	500.00	46.446	500.00	72.724
S8	1000.00	42.85	1000.00	68.336
Average RE-CF		51.601375		76.548333
Average LAB-CF		51.60138		76.5483
%RSD		13.856%		7.972%
Lab %RSD		13.856		7.972

Table QC-8330 8330 Quality Control Check Table 10% of Compounds Reported

Soil

Explosives Method 8330	2-Nitrotolue	2-Nitrotoluene				Nitroglycerin			
	Known	Measured	%	RPD	Known	Measured	%	RPD	
	Conc	Conc	Recovered	<25	Conc	Conc	Recovered	<25	
Method Blank	ND	ND	<1/2RL		ND	ND	<1/2RL		
LCS	1.00	0.939	94		5.00	4.84	97		
MS	0.952	0.916	96	0.00	4.76	4.59	96	2.00	
MSD	0.990	0.955	96		4.95	4.83	98		

Laboratory: Test America Sacramento, CA G1F030473 Project: CC-RVAAP-80 ProJect #:10-08-130

Data Validation Specialists

Table CALVER-6860 6860 Calibration Check Table 10% of Compounds Reported

Soil

This table recalculates 10% of the reported compounds. 100% recalculation is not necessary as the computer generated data and these calculation do not vary. This has been proven in the past by the data validator.

April 6, 2011 cal date Water

Prechlorate	Perchlorate		Nitroglycering	1
Method 6860				Peak 1
Standard	Known	Measured	Known	Measured
	Conc	CF	Conc	CF
S1	5.00	66	5.00	*
S2	10.00	57.5	10.00	
S3	20.00	50.65	20.00	86.400
S4	50.00	50.72	50.00	77.580
S5	100.00	49.81	100.00	78.760
S6	200.00	48.835	200.00	75.490
S7	500.00	46.446	500.00	72.724
S8	1000.00	42.85	1000.00	68.336
Average RE-CF		51.601375		76.548333
Average LAB-CF		51.60138		76.5483
%RSD		13.856%		7.972%
Lab %RSD		13.856		7.972

Table QC-6860 6860 Quality Control Check Table 10% of Compounds Reported

Soil

Prechlorate Method 6860	Perchlorate						
	Known	Measured	%	Recovery	RPD		
	Conc	Conc	Recovered	Range	<25		
Method Blank	ND	ND	<1/2RL	70-130			
LCS	0.481	0.536	111				
Interference Check	0.498	0.59	119				
MS	0.486	0.598	123	80-120	5.00		
MSD	0.499	0.63	126				

Data Validation Specialists

Laboratory: Test America Sacramento, CA G1F030473

Project: CC-RVAAP-80 ProJect #:10-08-130

Table Gen Chem-1 Nitrocellulose Calibration Check

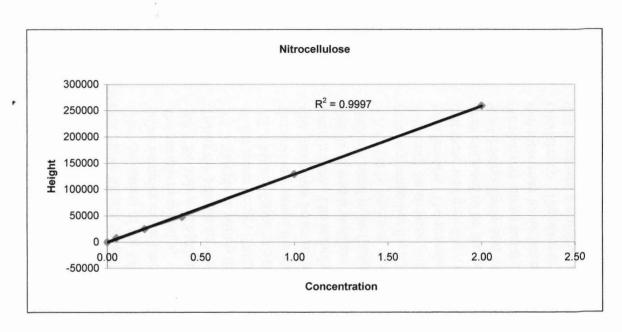
Soil

Nitrocellulose Method 353.2	Concentration		
Standard	Known	Measured	
S1	0.00	-41	
S2	0.05	7909	
S3	0.20	25128	
S4	0.40	47878	
S5	1.00	129162	
S6	2.00	259069	

1839

Mercury Sample Calculation Check

Laboratory Sample ID:


G1F030473-4

Sample Counts

1839

0.64 Recalculated sample Concentration

0.64 Reported value

Table QC-353.2 353.2 Quality Control Check Table 10% of Compounds Reported

Nitrocellulose Method 353.2					
	Known	Measured	%	Recovery	RPD
	Conc	Conc	Recovered	Range	<25
Method Blank	ND	ND	<1/2RL	50-150	
ICV	1.000	0.952	95.2		
CCV	1.00	1.028	102.80		
LCS	50.700	22.9	45.20%		
MS	50.700	17.9	35.3	50-150	29.59
MSD	50.000	13.1	26.2		

Laboratory: Test America Sacramento, CA G1F030473 Project: CC-RVAAP-80 ProJect #:10-08-130

Data Validation Specialists

Table Gen Chem-2 Cyanide 9012A Calibration Check

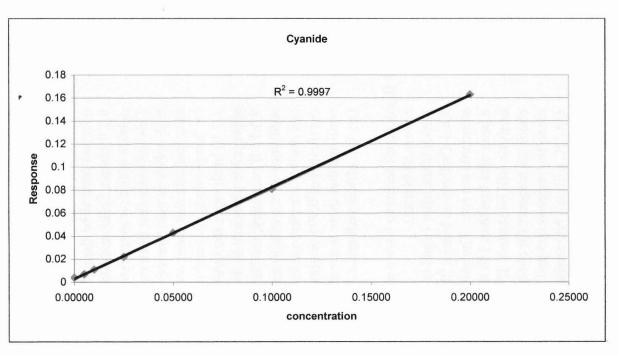
Soil

Cyanide Method 9012A	Concentrati	Concentration		
Standard	Known	Measured		
S1	0.00000	0.004		
S2	0.005	0.007		
S3	0.010	0.011		
S4	0.025	0.022		
S5	0.050	0.043		
S6	0.100	0.081		
S 7	0.200	0.163		

Mercury Sample Calculation Check

Laboratory Sample ID:

G1F030473-4


Sample Counts

1839

1839

0.64 Recalculated sample Concentration

0.64 Reported value

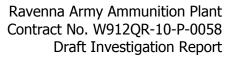
Table QC-1 Cyanide 9012A Quality Control Check Table 10% of Compounds Reported

This table recalculates 10% of the reported compounds. 100% recalculation is not necessary as the computer generated data and these calculation do not vary. This has been proven in the past by the data validator.

Cyanide Method 9012A					
	Known	Measured	%	Recovery	RPD
	Conc	Conc	Recovered	Range	<25
Method Blank	ND	ND	<1/2RL	50-150	
ICV	0.100	0.952	95.2		
CCV	1.00	0.09038	90.38		
LCS	19.600	22	112.00%		
MS	2.110	2.26	98*	50-150	13.00
MSD	2.110	1.98	84*		

*The result is minus the sample concentration

Data Validation Specialists


Table 6010B Metals-1 6010B Metals Check Table 10% of Elements Reported

Metals Method 6010B	Calcium Concentrat	Processor and the		2.7.0.70.0		Lead Concentration	
Standard	Known	Measured	Known	Measured	Known	Measured	
S0	0	0.0020953	0	0	0	0	
S1	4	3.96	3.622	3.622	0.12454	0.12454	
S2	20	19.191					
Recal Correl Coef		0.9999	1.00000		1.00000	1	
Lab Correl Coef	1	1.000	1		1		

Calcium Method 6010B					
	Known	Measured	%	Recovery	RPD
	Conc	Conc	Recovered	Range	<25
Method Blank	ND	ND	<1/2RL	90-110%	
ICB	0	0			
ICV	10000	10354	104%	90-110%	
CCB	0	0			
CCV	25000	25991	104%	90-110%	
ICSA&B				80-120%	
LCS	1000	940	94.00%	80-120%	
MS	5120	6396	125%	75-125%	
MSD	5070	4426	87%	75-125%	>25

Lead Method 6010B					
	Known	Measured	%	Recovery	RPD
	Conc	Conc	Recovered	Range	<25
Method Blank	ND	ND	<1/2RL	90-110%	
ICB	0	0			
ICV	250	262.92	105%	90-110%	
CCB	0	0			
CCV	500	495.13	99%	90-110%	
ICSA&B	50	55.51	111%	80-120%	
LCS	50	50.4	101%	80-120%	
MS	51.2	34.7	68%	75-125%	
MSD	50.7	50.5	100%	75-125%	>25

Cobalt Method 6010B					
	Known	Measured	%	Recovery	RPD
	Conc	Conc	Recovered	Range	<25
Method Bla	ND	ND	<1/2RL	90-110%	
ICB	0	0			
ICV	1000	1046.7	104.70%	90-110%	
CCB	0	0			
CCV	2500	2499.8	100%	90-110%	
ICSA&B	500	485.18	97%	80-120%	
LCS	50	46.6	93%	80-120%	
MS	51.2	45.5	89%	75-125%	2%
MSD	50.7	43.9	87%	75-125%	

Compliance Restoration Site CC-RVAAP-80 Group 2 Propellant Can Tops and Other Environmental Services

1	Appendix H		
2			
3	Anomaly Cluster Photo Log		

September 2011 Rev 0

Picture showing propellant can and top in cluster area 1 (MI Sample Area 3).

Picture showing propellant can and tops present in cluster area 2.

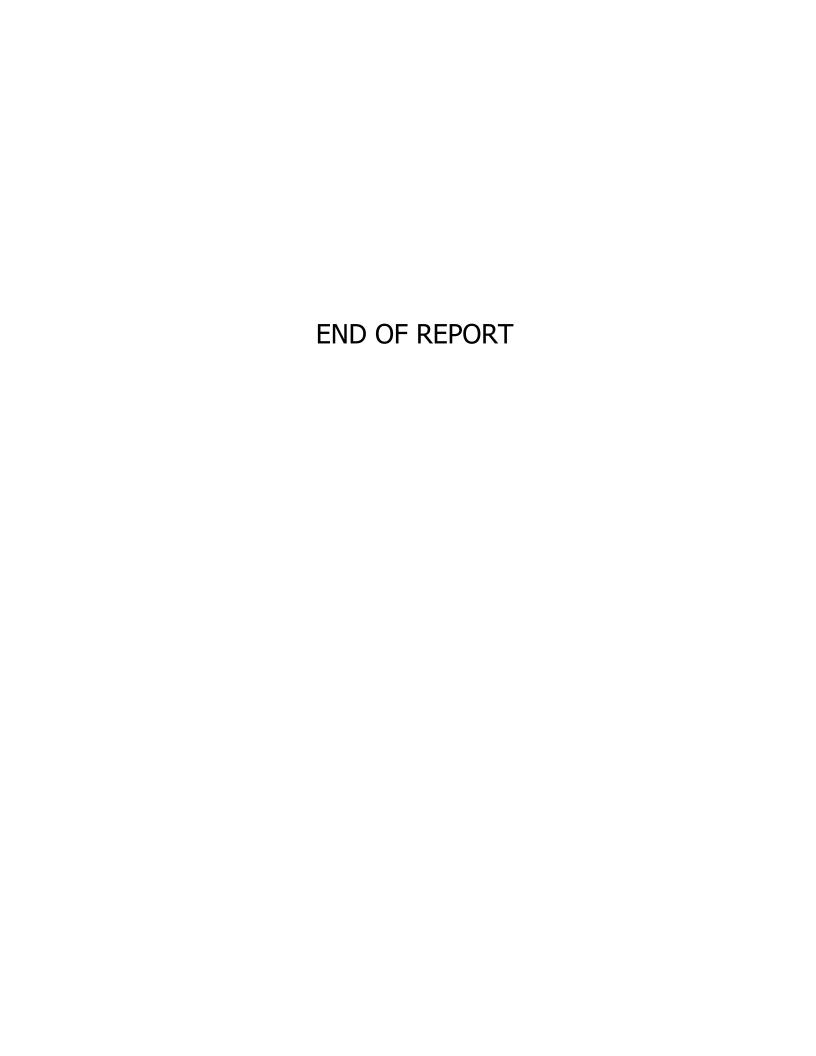
September 2011 Page 2 Rev 0

Picture showing propellant cans and tops present in cluster area 3 (MI Sample Area 2).

Visible propellant can and tops in cluster area 4.

September 2011 Page 4 Rev 0

Picture showing propellant can tops present in cluster area 5 (MI Sample Area 1).


Individual propellant can located outside the cluster areas along rail bed near the center of the site.

Individual propellant can debris items visible on surface within the southeastern portion of the site.

September 2011 Page 6 Rev 0

