DISCLAIMER STATEMENT

This report is a work prepared for the United States Government by Environmental Quality Management, Inc. In no event shall either the United States Government or Environmental Quality Management, Inc. have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance on the information contained herein, nor does either warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof.

		ENTATION PAGE			Form Approved OMB No. 0704-0188
The public reporting burden for this collection or gathering and maintaining the data needed, and of information, including suggestions for redu (0704-0188), 1215 Jefferson Davis Highway, S subject to any penalty for failing to comply with PLEASE DO NOT RETURN YOUR FO	of information completing an cing the bur uite 1204, Ar a collection o DRM TO TH	is estimated to average 1 hour d reviewing the collection of inf den, to Department of Defens lington, VA 22202-4302. Res f information if it does not displa HE ABOVE ADDRESS.	per response, incl ormation. Send cor e, Washington He pondents should be y a currently valid (uding the tim mments rega adquarters S aware that OMB control	me for reviewing instructions, searching existing data sources, rding this burden estimate or any other aspect of this collection Services, Directorate for Information Operations and Reports notwithstanding any other provision of law, no person shall be number.
1. REPORT DATE (DD-MM-YYYY)	2. REPC	ORT TYPE			3. DATES COVERED (From - To)
4. TITLE AND SUBTITLE				5a. COI	NTRACT NUMBER
					ANT NUMBER
					OGRAM ELEMENT NUMBER
6. AUTHOR(S)					DJECT NUMBER
				5e. TAS	SK NUMBER
				5f. WO	RK UNIT NUMBER
7. PERFORMING ORGANIZATION N	Ame(s) Ai	ND ADDRESS(ES)		I	8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGE	NCY NAN	IE(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION/AVAILABILITY S	TATEMEN	T			·
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF		17. LIMITATION OF ABSTRACT	18. NUMBER OF	19a. NA	ME OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. TI	HIS PAGE	ABSTRACT	PAGES	19b. TEL	EPHONE NUMBER (Include area code)

DRAFT

FACILITY-WIDE GROUNDWATER MONITORING PROGRAM PLAN RVAAP-66 FACILITY-WIDE GROUNDWATER ADDENDUM

RAVENNA ARMY AMMUNITION PLANT RAVENNA, OHIO

GSA Contract Number GS-10F-0293K Delivery Order W912QR-11-F-0266

Prepared for

U.S. Army Corps of Engineers 600 Martin Luther King Jr. Place Louisville, Kentucky 40202

Prepared by

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati, Ohio 45240

October 24, 2011

Draft

RVAAP-66 Facility-Wide Groundwater FWGWMPP Addendum Distribution List

<u>Organization</u>	Number of <u>Printed Copies</u>	Number of <u>Electronic Copies</u>
RVAAP Facility Manager	2	2
USACE Project Manager	2	3
USAEC Program Manager	0	1
EQM	1	1
OHARNG – Camp Ravenna/ENV	1	1
NGB Cleanup Program Manager	0	1
Ohio EPA	3	3

RVAAP – Ravenna Army Ammunition Plant USACE – U.S. Army Corps of Engineers USAEC – U.S. Army Environmental Center OHARNG – Camp Ravenna/ENV – Ohio Army National Guard Site/Environmental NGB – National Guard Bureau Ohio EPA – Ohio Environmental Protection Agency EQM – Environmental Quality Management, Inc.

CONTRACTOR'S STATEMENT OF INDEPENDENT TECHNICAL REVIEW

Environmental Quality Management, Inc. (EQM) has completed the *Draft Facility-Wide Groundwater Monitoring Program Plan RVAAP 66 Facility-Wide Groundwater Addendum*. Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in this project. During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions was verified. This included review of data quality objectives; technical assumptions, methods, procedures, and materials used; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing United States Corps of Engineers policy.

John M. Miller, CHMM Senior Project Manager

Scott A. Spesshardt, CPG Senior Geologist

Date:

<u>10|2||1|</u>

Date:

10/21/2011

Document Introduction

This document is intended as a follow-up to the *Draft 2010 Addendum to the Facility-Wide Groundwater Monitoring Program Plan (FWGWMPP) RVAAP-66 Facility-Wide Groundwater* (USACE, November 15, 2010). As such it provides updates and proposed modifications to the current *Facility-Wide Groundwater Monitoring Program Plan* (USACE, 2004).

The U.S. Army Corps of Engineers (USACE), Louisville District, is performing Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) closure at the former Ravenna Army Ammunition Plant (RVAAP) located near Ravenna, Ohio. CERCLA closure is occurring under the Installation Restoration Program (IRP). Activities include monitoring of an extensive network of groundwater monitoring wells. During the time period of 2005 through 2007, the USACE developed a database of groundwater quality information based on the sampling of approximately 36 monitoring wells. Beginning in fiscal year 2008, the USACE expanded the Facility-Wide Groundwater Monitoring Program (FWGWMP) to include the characterization of groundwater from 243 existing monitoring wells at the facility, which includes those wells monitored prior to 2005.

The USACE, under a Government Services Administration (GSA) Performance Based Acquisition (PBA) contract, retained Environmental Quality Management, Inc. (EQM) (Contract No. GS-10F-0293K – Delivery Order W912QR-11-F-0266) to obtain a signed Record of Decision (ROD) for the Facility-Wide groundwater (RVAAP-66) at the former RVAAP. In support of completion of a Remedial Investigation/Feasibility Study (RI/FS) necessary to supplement the ROD, EQM has reviewed the currently available groundwater data, including the *Draft 2010 Addendum to the Facility-Wide Groundwater Monitoring Program Plan* (*FWGWMPP*) *RVAAP-66 Facility-Wide Groundwater* (USACE, November 15, 2010). Based on this review, EQM has determined that additional monitoring wells are needed at the facility to complete the RI/FS and eventual ROD. EQM believes that additional wells are necessary to complete hydrogeologic system modeling and to conduct contaminant fate-and-transport modeling for a Facility-Wide groundwater approach. The additional wells include, but are not limited to, those recommended by the USACE in the *Draft 2010 Addendum* for characterizing the nature and extent of Facility-Wide groundwater impacts in shallow and deep groundwater aquifers beneath the site.

This document includes three different sections intended to initiate activities in support of the facility-wide groundwater ROD. These sections are as follows:

- Part I an amendment to the *Final Facility-Wide Sampling and Analysis Plan for Environmental Investigations, Ravenna Army Ammunition Plant, Ravenna, Ohio, Field Sampling Plan* (SAIC, 2011), which describes the activities and procedures to be conducted for the installation and sampling of the proposed new wells at the facility.
- Part II an amendment to the *Final Facility-Wide Sampling and Analysis Plan for Environmental Investigations, Ravenna Army Ammunition Plant, Ravenna, Ohio, Quality Assurance Project Plan* (SAIC, 2011).
- Part III an amendment to the *Facility-Wide Safety and Health Plan for Environmental Investigations* (SAIC, 2011) detailing the health and safety procedures for the field activities to be conducted in support of the Remedial Investigation.

PART I

DRAFT

FACILITY-WIDE GROUNDWATER MONITORING PROGRAM RVAAP-66 FACILITY-WIDE GROUNDWATER SAMPLING AND ANALYSIS PLAN FOR ENVIRONMENTAL INVESTIGATION SERVICES ADDENDUM

RAVENNA ARMY AMMUNITION PLANT, RAVENNA, OHIO

GSA Contract Number GS-10F-0293K Delivery Order W912QR-11-F-0266

Prepared for

U.S. Army Corps of Engineers 600 Martin Luther King Jr. Place Louisville, Kentucky 40202

Prepared by

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati Ohio 45240

October 24, 2011

TABLE OF CONTENTS 1 2 3 Section Page 4 5 6 Table of Contents i 7 List of General Acronyms......iii 8 List of Area of Concern Acronyms.....v 9 Introduction1 1 10 1.1 Background1 1.2 Site Description/History1 11 12 1.3 13 1.3.1 14 1.3.2 15 1.4 16 1.4.1 17 1.4.2 18 1.5 Project Organization and Responsibilities9 19 1.5.1 20 1.5.2 21 22 2 23 2.124 2.2 Sample Network and Rationale......10 25 2.3 Utility Clearance......11 26 2.4 27 2.5 28 2.5.1 29 2.5.2 30 2.6 31 2.6.1 32 2.6.2 33 2.6.3 34 2.6.4Delivery, Storage, and Handling of Materials......23 35 2.6.5 36 2.7 2.837 38 2.9 39 2.9.140 pH, Conductivity, Dissolved Oxygen, and Temperature24 2.9.2 41 2.10 42 2.11 43 2.12 44 45 46 2.13 47 2.14

TABLE OF CONTENTS (continued) 1 2 3 Section Page 4 5 2.15 6 3 7 3.1 8 3.2 9 3.2.1 10 3.2.2 3.3 11 12 3.4 13 3.5 14 3.6 15 3.7 16 3.8 17 3.9 18 3.10 19 4 20 5 21 5.1 22 5.2 23 6 24 25 26

LIST OF TABLES

28	2-1	Justification for New Wells	12
29	2-2	Proposed Wells and Rationale	13
		Current Analytical Suite of Chemicals	
31		·	

LIST OF FIGURES

35	1-1	General Location Map	3
		RVAAP Facility Map	
	1-3	Potentiometric Surface in Unconsolidated Aquifer (Oct. 2010)	
38	1-4	Potentiometric Surface of Bedrock – Homestead and Sharon (Oct. 2010)	
39	2-1	Proposed Well Locations in Eastern Portion of RVAAP	
40	2-2	Proposed Well Locations in Central Portion of RVAAP	
41	2-3	Proposed Well Locations in Western Portion of RVAAP	
42	3-1	Sample Identification System	
43		1	

44

27

32

1
2
3
4

LIST OF GENERAL ACRONYMS

2		
3	AOC	Area of Concern
4	ASTM	American Society for Testing and Materials
5	CERCLA	Comprehensive Environmental Response Compensation and Liability Act
6	CHMM	Certified Hazardous Materials Manager
7	CLP	Contract Laboratory Program
8	cm	Centimeter
9	CPG	Certified Professional Geologist
10	CR	Compliance Restoration
11	CUGs	Cleanup Goals
12	°C	Degrees Celsius
13	DLA	Defense Logistics Agency
13	DO	Dissolved Oxygen
15	DOD	Department of Defense
16	DOT	Department of Transportation
10	EQM	Environmental Quality Management, Inc.
17	EPA	Environmental Quarty Management, Inc. Environmental Protection Agency
18 19	FS	
		Feasibility Study
20	ft	Feet Facility Wide Crown dweter Manitoring Plan
21	FWGWMP	Facility-Wide Groundwater Monitoring Plan
22	FWGWMPP	Facility-Wide Groundwater Monitoring Program Plan
23	gal	Gallon
24	GC	Gas Chromatograph
25	GOCO	Government Owned, Contractor Operated
26	gpm	Gallons per Minute
27	GSA	Government Services Administration
28	HPLC	High-Performance Liquid Chromatography
29	I.D.	Inner Diameter
30	IDW	Investigative Derived Waste
31	in.	Inch
32	IRP	Installation Restoration Program
33	lb	Pound
34	LG	Licensed Geologist
35	ml/min	Milliliter per Minute
36	mm	Millimeter
37	MS	Mass Spectrometer
38	No.	Number
39	O&M	Operations and Maintenance
40	OHARNG	Ohio Army National Guard
41	ORP	Oxidation Reduction Potential
42	OVA	Organic Vapor Analyzer
43	PBA	Performance Based Acquisition
44	PCB	Polychlorinated biphenyl
45	%	Percent
46	PID	Photoionization Detector
47	PPE	Personal Protective Equipment
48	PVC	Polyvinyl Chloride
-		

1		LIST OF GENERAL ACRONYMS
2 3		(continued)
4	QA	Quality Assurance
5	QAPP	Quality Assurance Project Plan
6	QC	Quality Control
7	RI	Remedial Investigation
8	ROD	Record of Decision
9	RVAAP	Ravenna Army Ammunition Plant
10	SAIC	Science Applications International Corporation
11	SAP	Sampling and Analysis Plan
12	sec	Second
13	SSHP	Site Safety and Health Plan
14	SVOC	Semi-volatile Organic Compound
15	TCLP	Toxicity Characteristic Leaching Procedure
16	U.S.	United States
17	USACE	U.S. Army Corps of Engineers
18	USATHAMA	United States Army Toxic and Hazardous Materials Agency
19	USP&FO	United States Property and Fiscal Officer
20	UV	Ultraviolet
21	UXO	Unexploded Ordnance
22	VOC	Volatile Organic Compound
23		

1		LIST OF AREA OF CONCERN ACRONYMS
2		
3	ASY	Atlas Scrap Yard
4	B12	Building 1200
5	BKG	Background
6	CBL	C-Block
7	CBP	Central Burn Pits
8	СР	Cobbs Pond
9	DA2	Demolition Area #2
10	EBG	Erie Burning Grounds
11	FBQ	Fuze and Booster Quarry
12	LNW	Landfill North of Winklepeck
13	LL	Load Line
14	MBS	Mustard Burial Site
15	NACA	National Advisory Committee for Aeronautics
16	NTA	NACA Test Area
17	RQL	Ramsdell Quarry Landfill
18	SCF	Sharon Conglomerate Formation
19	WBG	Winklepeck Burning Grounds
20		

SECTION 1. INTRODUCTION

1.1 Background

4 5

1 2 3

6 The U.S. Army Corps of Engineers (USACE), Louisville District, is performing Comprehensive 7 Environmental Response, Compensation, and Liability Act (CERCLA) closure at the former 8 Ravenna Army Ammunition Plant (RVAAP) located near Ravenna, Ohio. CERCLA closure is 9 occurring under the Installation Restoration Program (IRP). Activities include monitoring of an 10 extensive network of groundwater monitoring wells. During the time period of 2005 through 11 2007, the USACE developed a database of groundwater quality information based on the 12 sampling of approximately 36 monitoring wells. Beginning in fiscal year 2008, the USACE 13 expanded the Facility-Wide Groundwater Monitoring Program (FWGWMP) to include the 14 characterization of groundwater from 243 existing monitoring wells at the facility, which 15 includes those wells monitored prior to 2005. 16 17 The USACE, under a Government Services Administration (GSA) Performance Based 18 Acquisition (PBA) contract, retained Environmental Quality Management, Inc. (EQM) (Contract 19 No. GS-10F-0293K – Delivery Order W912QR-11-F-0266) to obtain a signed Record of 20 Decision (ROD) for the Facility-Wide groundwater (RVAAP-66) at the former RVAAP. In 21 support of completion of a Remedial Investigation/Feasibility Study (RI/FS) necessary to 22 supplement the ROD, EQM reviewed the currently available groundwater data, including the 23 Draft 2010 Addendum to the Facility-Wide Groundwater Monitoring Program Plan 24 (FWGWMPP) RVAAP-66 Facility-Wide Groundwater (USACE, November 15, 2010). Based on

- this review, EQM has determined that additional monitoring wells are needed at the facility to
- 26 complete the RI/FS and eventual ROD. EQM believes that additional wells are necessary to
- 27 complete hydrogeologic system modeling and to conduct contaminant fate-and-transport
- 28 modeling for a Facility-Wide groundwater approach. The additional wells include, but are not
- 29 limited to, those recommended by the USACE in the *Draft 2010 Addendum* for characterizing
- the nature and extent of Facility-Wide groundwater impacts in shallow and deep groundwateraquifers beneath the site.
- 32 33

34 **1.2 Site Description/History**

35

36 Past Department of Defense (DOD) activities at the RVAAP date to 1940 and include the 37 manufacturing, loading, handling, and storage of military explosives and ammunition. Until 38 1999, the RVAAP was identified as a 21,419-acre installation. The property boundary was 39 resurveyed by the Ohio Army National Guard (OHARNG) over a 2-year period from 2002 and 40 2003 and the actual total acreage of the property was found to be 21,683.289 acres. As of 41 February 2006, a total of 20,403 acres of the former 21,683-acre RVAAP have been transferred 42 to the United States Property and Fiscal Officer (USP&FO) for Ohio for use by the OHARNG as a military training site. The current RVAAP consists of 1,280 acres in several distinct parcels 43 44 scattered throughout the confines of the OHARNG Camp Ravenna Joint Military Training 45 Center (Camp Ravenna). The RVAAP and Camp Ravenna are collocated on contiguous parcels

of property and the Camp Ravenna perimeter fence completely encloses the remaining parcels of
 the RVAAP.

3

4 Camp Ravenna is in northeastern Ohio within Portage and Trumbull Counties, approximately

5 4.8 kilometers (3 miles) east-northeast of the city of Ravenna and approximately 1.6 kilometers

6 (1 mile) northwest of the city of Newton Falls (Figure 1-1). The RVAAP portions of the

7 property are solely located within Portage County. Camp Ravenna (inclusive of the RVAAP) is

8 a parcel of property approximately 17.7 kilometers (11 miles) long and 5.6 kilometers (3.5 miles)

9 wide bounded by State Route 5, the Michael J. Kirwan Reservoir, and the CSX System Railroad

on the south; Garret, McCormick, and Berry roads on the west; the Norfolk Southern Railroad on
 the north; and State Route 534 on the east (see Figures 1-1 and 1-2). Camp Ravenna is

the north; and State Route 534 on the east (see Figures 1-1 and 1-2). Camp Ravenna is
surrounded by several communities: Windham on the north; Garrettsville 9.6 kilometers

13 (6 miles) to the northwest; Newton Falls 1.6 kilometers (1 mile) to the southeast; Charlestown to

14 the southwest; and Wayland 4.8 kilometers (3 miles) to the south. When the RVAAP was

15 operational Camp Ravenna did not exist and the entire 21,683-acre parcel was a government-

16 owned, contractor-operated (GOCO) industrial facility. The RVAAP IRP encompasses

17 investigation and cleanup of past activities over the entire 21,683 acres of the former RVAAP,

18 and, therefore, references to the RVAAP in this document are considered to be inclusive of the

19 historical extent of the RVAAP, which is inclusive of the combined acreages of the current

20 Camp Ravenna and RVAAP, unless otherwise specifically stated.

21 22

23

24

1.3 Site Geology

The regional geology at RVAAP consists of horizontal to gently dipping sedimentary bedrock strata of Mississippian- and Pennsylvanian-age overlain by varying thicknesses of Pleistoceneage unconsolidated glacial deposits. Water and associated environmental contamination in finegrained glacial and alluvial materials travel down from the surface to underlying groundwater aquifers principally through fractures (termed secondary porosity) and flow between the grains (termed primary porosity).

31 32

1.3.1 <u>Unconsolidated Deposits</u>

33

34 Bedrock at RVAAP is overlain by deposits of the Wisconsin-aged Lavery Till in the western 35 portion of the facility and the younger Hiram Till and associated outwash deposits in the eastern two-thirds of the facility. Unconsolidated glacial deposits vary considerably in their character 36 37 and thickness across RVAAP, from zero (0) in some of the eastern portions of the facility to an 38 estimated 46 meters (150 feet) in the south-central portion. The glacial till found at RVAAP was 39 deposited as a more or less uniform sheet covering the bedrock surface as a ground moraine. 40 Where the bedrock is reasonably level, the surface of the till cover is smooth and gently 41 undulating. Where the bedrock surface has more relief, the till cover produces a masked 42 erosional topography. There is some evidence that varved clays, indicative of lake deposits, exist in some of the deeper bedrock valleys (USACE, 1970, 2005a). The Hiram Till is the most 43 44 extensive till in northeast Ohio and covers approximately the eastern two-thirds of RVAAP. It is 45 material from which the silty-clay loam and clay-loam soil of much of the northern part of northeastern Ohio is derived. The Hiram Till is the most clay-rich till of northeastern Ohio and 46

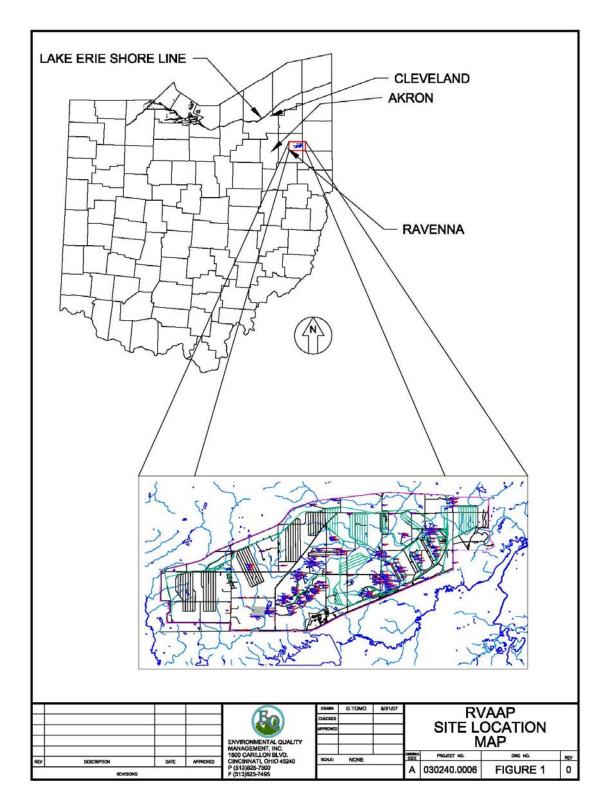
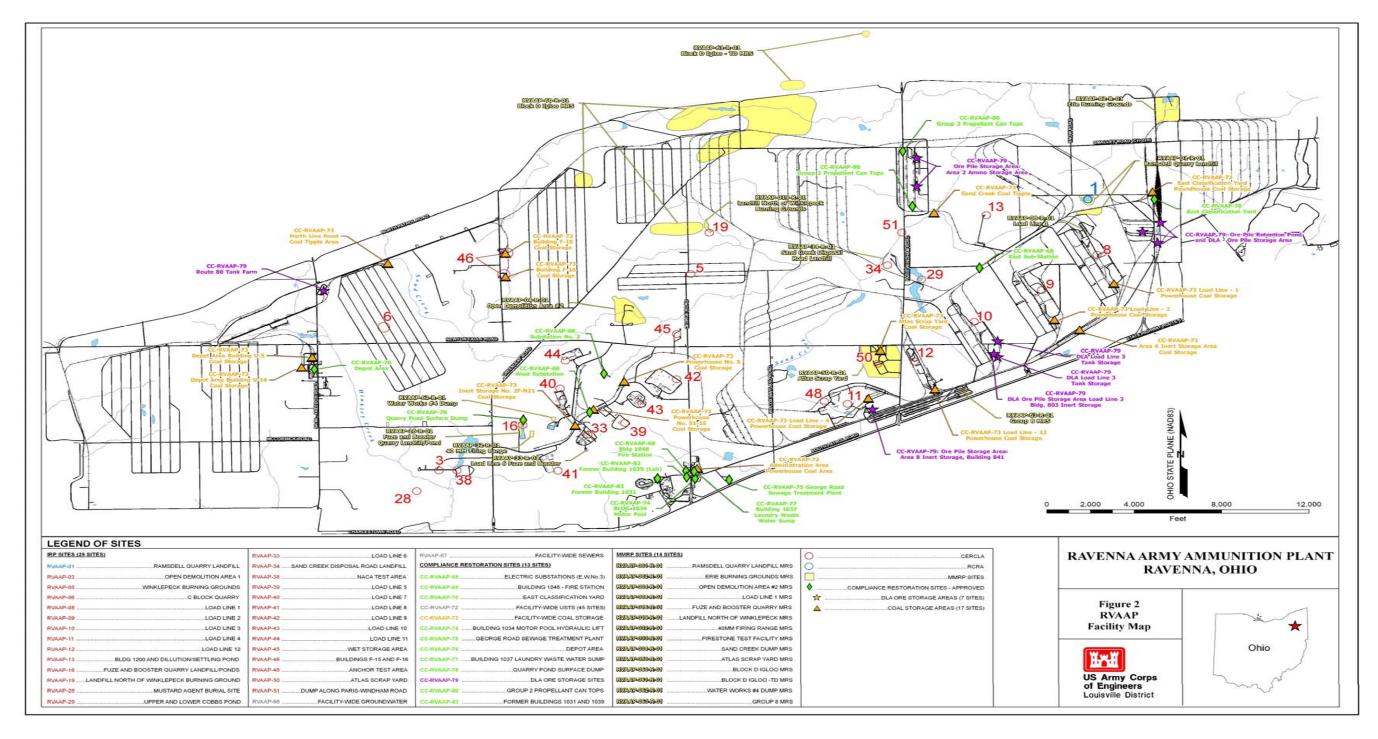



Figure 1-1. General Location Map

1

1 is only sparsely pebbly with boulders and cobbles rarely found. The Hiram Till is

- 2 characteristically thin with a median thickness of 5 feet in the eastern portion of RVAAP. The
- 3 Lavery Till is a surface till that is found in a large portion of central Portage County. It is
- 4 comprised of a clayey-silt that contains approximately 28 percent sand and 30 percent clay. The
- 5 Lavery Till contains few pebbles and only a few cobbles and boulders in marked contrast to
- 6 earlier tills found in this area. In the subsurface, below the Hiram Till, the Lavery Till is almost
 7 always present with maximum thicknesses up to 40 feet in the western portion of the facility;
- 8 although, its median thickness is only 4 feet. The Lavery Till can be found exposed across the
- 9 western third of RVAAP. The till is reported to be somewhat impermeable, with hydraulic
- 10 conductivities greater than 10^{-6} cm/sec.
- 11

12 It is unclear whether the glacial outwash deposits located in the northeast corner of RVAAP area 13 of the Hiram, Lavery, or another glacial episode in origin. No gravel deposits of the Hiram age 14 have been positively identified in Portage County. Likewise, Lavery outwash is scanty and

- 15 inconspicuous. Only the most meager gravel deposits were formed in this age.
- 16

In addition to the glacial deposits, other unconsolidated deposits include alluvium associatedwith the surface drainages that may or may not be continuous with the surrounding glacial tills.

20 1.3.2 <u>Bedrock</u>

21

19

22 The bedrock underlying the glacial deposits comprises sedimentary deposits, predominantly 23 Pennsylvanian in age, with minor deposits of Mississippian-age rocks. The Preliminary 24 Assessment for the Ravenna Army Ammunition Plant (USACE, 1996) reports that the bedrock 25 units at RVAAP display a gentle southward dip of 5 to 10 ft/mile. In the subsurface bedrock 26 below the glacial deposits, earlier erosion has exposed progressively older bedrock units in an 27 eastern direction across RVAAP. The Installation Assessment of Ravenna Army Ammunition 28 *Plant* (USATHAMA, 1978) provides a map that illustrates the subsurface geology at RVAAP. 29 The youngest bedrock unit found on RVAAP is the Homewood Sandstone Member 30 (Homewood) of the Pottsville Formation. The Homewood comprises coarse- to fine-grained clay-bonded micaceous sandstone with thin shale lenses. The Mercer Member of the Pottsville 31 32 Formation directly underlies the Homewood and consists of gray to black micaceous shale, thin 33 sandstones, and coal. The Connoquenessing Sandstone Member underlies the Mercer Member 34 and comprises coarse- to fine-grained sandstone and silty to sandy shale. The Sharon Member 35 Shale unit (Sharon Shale) consists of gray to black sand and micaceous shale with thin coal and 36 separates the Connoquenessing Sandstone Member from the underlying Sharon Conglomerate 37 (Sharon). Comprised of tan, coarse- to fine-grained orthoquartzite sandstone, the Sharon is 38 loosely cemented and is the most important aquifer found at RVAAP. The Mississippian 39 bedrock units found in the eastern portion of RVAAP comprise the Meadville Shale, a blue-gray 40 shale, and the Berea Sandstone, a massive, moderately hard, medium- to fine-grained sandstone.

1 1.4 Site Hydrogeology

1.4.1 Groundwater in Unconsolidated Deposits

5 Groundwater in the unconsolidated deposits is limited to sandy lenses in the glacial tills, 6 saturated lake clays and outwash material, and the alluvium deposits associated with the 7 numerous surface drainages at RVAAP. Groundwater is also present at the glacial till-bedrock 8 contact. Outside of the facility boundaries, unconsolidated deposits can be an important source 9 of groundwater, as many of the domestic wells and small public water supplies located near the 10 facility obtain reasonable quantities of water from wells completed in unconsolidated deposits. There is evidence that a buried valley tributary to the Mahoning River is present in the west-11 12 central portion of RVAAP (USATHAMA, 1978). Although buried valleys can be important 13 aquifers, there is no evidence to support the occurrence of significant water-bearing material in this buried valley tributary. The main buried valley aquifer associated with the Mahoning River 14 15 does not yield significant quantities of water (USATHAMA, 1978). Because the buried valley 16 aquifer that may be found on RVAAP is a tributary, finer-grained sediment would be expected in 17 this stream valley compared to the main buried valley aquifer, culminating in potentially lower 18 water yields in the tributary sediments. Water production wells previously drilled in the area 19 (Barnes, 1950) also support the insignificance of a buried valley aquifer at RVAAP. Figure 1-3 20 shows the potentiometric surface of unconsolidated sediment within the facility from October 21 2010 (USACE, 2010a). Groundwater in the unconsolidated aquifer predominantly flows in an 22 eastward direction; however, the unconsolidated zone shows numerous local flow variations 23 influenced by topography and drainage patterns. The local variations in flow direction suggest: 24 (1) groundwater in the unconsolidated deposits is generally in direct hydraulic communication 25 with surface water; and (2) surface water drainage ways may also act as groundwater discharge 26 locations. In addition, topographic ridges between surface water drainage features act as 27 groundwater divides in the unconsolidated deposits.

28 29

2 3

4

1.4.2 Groundwater in Bedrock Deposits

30

31 The principle water-bearing aquifer at RVAAP is the Sharon Conglomerate. Depending on the 32 existence and depth of overburden, the Sharon ranges from an unconfined to a leaky artesian 33 aquifer. Water yields from area wells completed in the Sharon range from 30 to 400 gallons per 34 minute (gpm) (USATHAMA, 1978). Well yields of 5 to 200 gpm were reported for on-site 35 bedrock wells completed in the Sharon (Kammer, 1982). Other local bedrock units capable of producing water include the Homewood Sandstone, which is generally thinner and only capable 36 37 of well yields less than 10 gpm, and the Connoquenessing Sandstone. The Connoquenessing Sandstone is a good aquifer where it occurs, but it is less productive than the Sharon 38

- 39 Conglomerate (Kammer, 1982).
- 40

41 Figure 1-4 shows the potentiometric surface of bedrock groundwater within the facility from

- 42 October 2010 (USACE, 2010a). The bedrock potentiometric map shows a regional eastward
- 43 flow direction that is not affected by local surface topography. For much of the eastern half of
- 44 RVAAP, the bedrock potentiometric surface is higher than the overlying unconsolidated
- 45 potentiometric surface, thus indicating an upward hydraulic potential. This evidence suggests
- that there is a confining layer that separates the two aquifers. In the far eastern area, the two
- 47

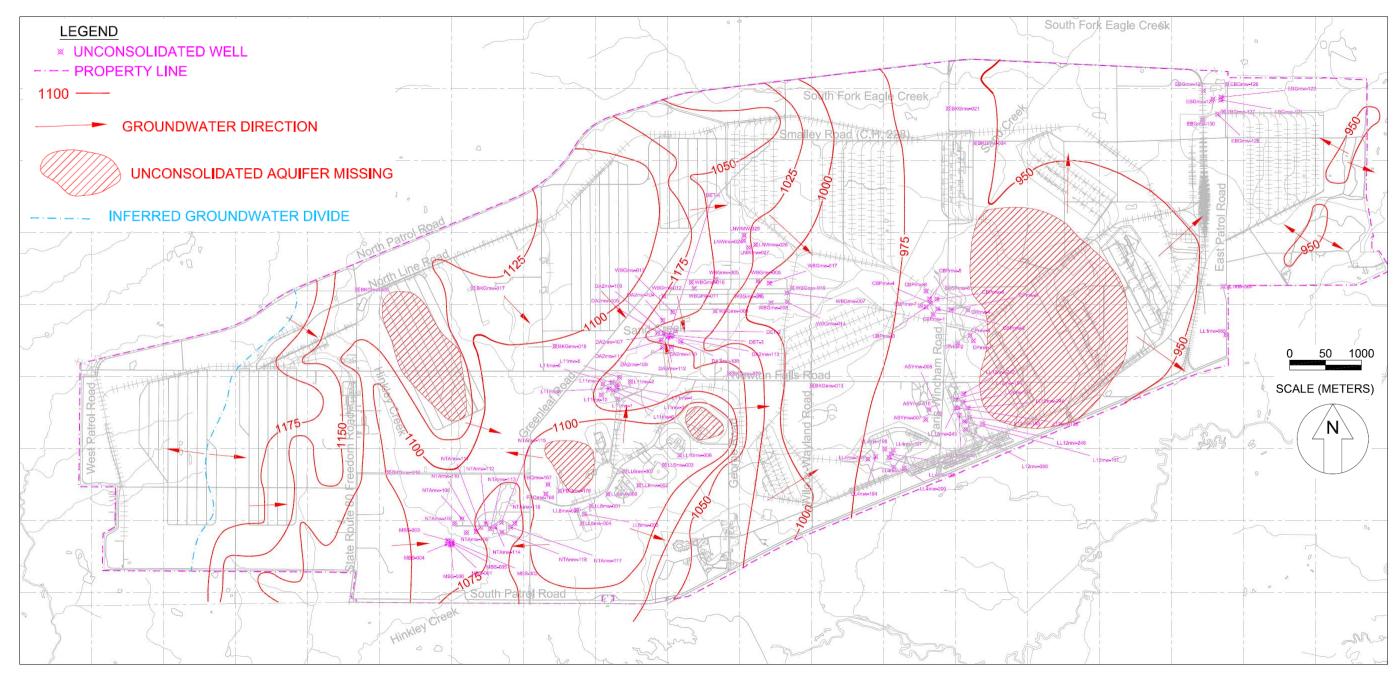


Figure 1-3. Potentiometric Surface of Unconsolidated Aquifer (Oct. 2010)



Figure 1-4. Potentiometric Surface of Bedrock – Homewood and Sharon (Oct. 2010)

potentiometric surfaces are approximately at the same elevation, thus suggesting that hydraulic
 communication between the two aquifers is occurring.

1.5 Project Organization and Schedule

1.5.1 **Project Organization and Responsibilities**

EQM's overall project organization and responsibilities are presented in the Project Management
Plan prepared for this PBA. The project manager for this project will be John M. Miller,
CHMM. Field geologists will be Colleen Lear, LG, Scott Spesshardt, CPG, and a geologist
supplied by our Team contractor, SAIC. Drilling activities will be conducted by Frontz Drilling,
and clearance of unexploded ordnance (UXO) will be conducted by PIKA International. Health
and safety requirements are addressed in Part III of this amendment.

16 **1.5.2** <u>Schedule</u>

17 18

19

20

21

3 4 5

6 7

8

Tasks to be completed under this milestone are described in this amendment to the *Facility-Wide Sampling and Analysis Plan for Environmental Investigations* (SAP) dated February 24, 2011. The schedule for this effort is aggressive and requires installation and development of the wells to be completed by December 2011 while still allowing for the 45-day Ohio Environmental Protection Agency (EPA) review cycle. This task is on a separate track from the RI Work Plan.

22 23 24

25 26

27

28

EQM's schedule to complete this project is as follows:

- Prepare and submit amendment for the Facility-Wide SAP September 1, 2011.
- Approval of amendment January 6, 2011.
- Install and develop wells January 7 through February 20, 2011.
- Sample wells Quarterly (April, July, and October 2012 and January 2013).
- 29 30

SECTION 2. FIELD ACTIVITIES

2.1 **Scope and Objective**

6 Additional monitoring wells are needed at the facility to complete hydrogeologic system 7 modeling and to conduct contaminant fate-and-transport modeling for a Facility-Wide 8 groundwater approach in support of the RI/FS and eventual ROD. The additional wells include, 9 but are not limited to, those recommended by the USACE in the Draft 2010 Addendum for 10 characterizing the nature and extent of Facility-Wide groundwater impacts in shallow and deep groundwater aquifers beneath the site. 11

12 13

15

5

14 2.2 **Sample Network and Rationale**

16 To achieve the objectives, EQM has identified 38 new wells to be installed at the facility. The 17 Draft 2010 Addendum only specifically identified 13 new wells. As mentioned previously, the 18 additional wells are necessary to complete hydrogeologic system modeling and to conduct 19 contaminant fate-and-transport modeling for a facility-wide groundwater approach. In this 20 regard, permeability testing will be performed on test cores obtained from 20 of the new wells. Twelve (12) of these wells also will be used to further evaluate potential exit pathways, 21 22 especially along the southern and eastern borders. Although the primary focus of the new wells 23 is to provide additional input in support of the Facility-Wide groundwater models, 13 of the new 24 wells have been placed in the vicinity of current Compliance Restoration (CR) sites to 25 secondarily assess potential groundwater impacts from these units. Lastly, placement of many of 26 the new wells within the RVAAP is proximate to AOCs to evaluate vertical contaminant 27 distribution and/or particle inflow/outflow through the central portion of the facility. Eighteen 28 (18) wells will be completed in the first water-bearing zone encountered, which is expected to be 29 in the unconsolidated overburden; five (5) wells in the western portion of the site are expected to 30 be completed in the Homewood Member; and 15 wells will be completed in the Sharon Member (Sharon). Completion depths of the wells will vary based on the topographic changes across 31 32 RVAAP and the depth at which the water-bearing strata are encountered. EQM predicts that the 33 Homewood Member will be the first bedrock aquifer encountered in the western portion of the property 34 based on well data from nearby AOCs (e.g., C-Block, and Fuze and Booster). In general terms, the 35 Homewood is the shallowest bedrock to the west, and the Sharon is the shallowest bedrock to the 36 east at RVAAP (i.e., the Homewood is missing in the eastern half of the site). There is a small 37 potential that the shallowest bedrock unit to be encountered in the western portion of RVAAP 38 may be the Mercer Member or the Connoquenessing Sandstone, which are exposed on the flanks 39 of pre-glacial valley walls. These two units are depositionally between the Homewood and 40 Sharon. If no groundwater is encountered in the upper portion (i.e., the upper 20 feet) of the 41 Sharon Conglomerate, the boring will be terminated and considered a dry hole. The next waterbearing unit below the top of the Sharon Conglomerate is located at the base of this formation. 42 43 Six wells (SCFmw-001 through SCFmw-006) were previously installed at the base of the Sharon 44 and provide facility-wide coverage for this lowermost aquifer; consequently, installation of 45 additional wells to the base of the Sharon Member is unwarranted. Due to the lack of hydrogeologic information in the western third of the site, some of the overburden wells may be 46 47 completed in bedrock, if the overburden material is thin (less than 5 feet thick) or absent or the Environmental Investigation Services Addendum Page 10

1 groundwater yield is negligible (i.e., less than 1 gpm) in the unconsolidated material. Table 2-1

2 provides justification for the new wells, and Table 2-2 presents the well locations, estimated well

depths, and further rationale for each selected location. Figures 2-1 through 2-3 show the

4 proposed well locations in reference to current site features and existing well locations.5

The new wells will be installed in accordance with Section 5.4 of the Facility-Wide SAP and as
described herein. Additionally, EQM will request a meeting with all stakeholders prior to
beginning drilling activities. The purpose of this meeting will be to obtain stakeholder approval,
at each location, for the placement of each well. This will allow for stakeholder input based on
actual field conditions at each location.

11

12

13 **2.3** Utility Clearance

14

15 As described in Section 5.3 of FWGWMP SAP, prior to all subsurface activities EQM will 16 notify and coordinate a utility clearance with the RVAAP Operation and Maintenance (O&M) 17 Contractor and RVAAP Environmental Manager. Ten (10) business days prior to subsurface activities on site, a request for utility clearance will be submitted in writing to the RVAAP O&M 18 19 Contractor, OHARNG Environmental Coordinator, and the RVAAP Environmental Manager. 20 The request will describe and illustrate sample locations and activities to be performed so utilities can be adequately marked or cleared prior to drilling. To expedite this effort, EQM 21 22 personnel will mark the well locations at least one (1) week prior to mobilization of the drilling 23 crew. EQM will mark the locations using painted wood slats, stakes, and or pin flags. Well 24 locations positioned in paved areas will be marked using spray paint.

25

26 In addition, EQM will also use an UXO-Qualified Technician to conduct a surface clearance and

borehole clearance for UXO for each of the proposed wells positioned in the Munitions

28 Response Site (MRS) AOCs and/or other areas where requested by the Army or where site

29 conditions are encountered that warrant surface/borehole clearance. If buried utilities or UXO

are present at the selected sample location, the boring will be field adjusted to ensure the safety
 of the sampling team. Additional details concerning UXO clearance and avoidance are presented

in Section 10.2 of the Site Safety and Health Plan (SSHP) Addendum located in Part III of this

- 33 amendment.
- 34
- 35

36 2.4 Clearing and Grubbing37

Several of the proposed well locations are located in portions of the property that are overgrown
 with small trees and underbrush. Consequently, access to these locations may require clearing
 and grubbing. EQM will coordinate all brush/vegetation clearing will OHARNG personnel.

41 After the well locations have been marked in the manner described in Section 2.3, EQM

42 personnel will identify those areas that will require clearing for drill rig access. EQM has a

43 subcontract in place with Frank's Maintenance to perform clearing and grubbing at the site.

44 They have all the necessary equipment to fulfill this function and will be used to provide access

to the various well locations, as needed. However, every effort will be made to leave larger trees 46

1

		Tab	<u>le 2-1. Justi</u>	fication f	or New Wells	-		
Map I.D.	Vertical Delineation	Horizontal Delineation	Used in Groundwater Model	Exit Pathway	CR Site Evaluation	First-water Bearing Zone Well	Bedrock Well ^a	Permeability Testing
1	X		x	х			Sharon	х
2	x		х	X			Sharon	х
3		x	x	х		x		
4		x	X	X		х		х
5	x		x				Sharon	х
6	X	x	X	X			Sharon	х
7	X	x	х				Sharon	
8	x		х				Sharon	х
9			х		CR-79, CR-80	х		
10		x	x				Sharon	
11	х		х	x			Sharon	х
12			х		CR-73	X		
13		x	х			X		х
14	х		х				Sharon	х
15	х		х				Sharon	
16	х		х				Sharon	
17		x	х			X		х
18	x		x				Sharon	х
19	х		х				Sharon	
20			х	x	CR-83	X		
21			х		CR-73, CR-76	х		
22			х			x		
23			х	x		x		
24			x		CR-73, CR-76	X		
25			х		CR-73, CR-76	X		х
26	х		х				Homewood	х
27		x	х			x		х
28	x		х				Homewood	х
29		x	х			x		
30	х		х				Homewood	х
31			х		CR-79	x		
32			х	x	CR-70, CR-73	X		
33			x	x	CR-70, CR-73		Sharon	X
34			x		IRP-45		Sharon	
35			x		CR-79	x		
36		x	x				Homewood	X
37			x	x	CR-69, CR-73, CR-74, CR-77, & CR-83	x		x
38			Х	x	CR-69, CR-73, CR-74, CR-77, & CR-83		Homewood	х

Table 2-1. Justification for New Wells

2 3 ^a Rock coring will be performed on all bedrock wells.

1

Table 2-2. Proposed Wells and Rationale.

				osed wells and Rationale.
Map ID*	RVAAP Area	Well Location	Est. Depth (ft)	Rationale / Comments
1	SE/Load Line 1	Between LL1mw-064 & LL1mw-065	30	Groundwater samples from the Sharon wells located within Load Line 1 have been identified as containing elevated concentrations of metals, explosives, and pesticides. The downgradient wells (LL1mw-064 and LL1mw-065) are screened in the shallower unconsolidated aquifer. A Sharon well installed between downgradient wells LL1mw-064 and LL1mw-065 will be used to assess GW impact vertically at this location, to monitor the potential GW exit pathway off of RVAAP, and for permeability testing.
2	Erie Burning Grounds	Paired with EBGmw-125	30	Groundwater samples collected within the Erie Burning Grounds have been identified as containing elevated concentrations of metals and phthalates. The wells in this AOC are completed in the unconsolidated aquifer. A Sharon well will be installed near well EBGmw-125 to assess GW impact vertically at this location, to monitor the potential GW exit pathway off of RVAAP, and for permeability testing.
3	SE	Paired with SCFmw-004	15-20	Well SCFmw-004 is completed at the base of the Sharon Conglomerate Member. Groundwater samples from wells in Load Line 1 and Load Line 2 have been found to contain elevated concentrations of metals, explosives, pesticides, and/or PCBs. The wells in these AOCs are completed in the upper part of the Sharon. A well installed near SCFmw-004 will be used to assess first GW downgradient of Load Lines 1 and 2, and to monitor the potential GW exit pathway off of RVAAP.
4	SE	Paired with SCFmw-002	15-20	Well SCFmw-002 is completed at the base of the Sharon Conglomerate Member. Groundwater samples from wells in Load Lines 1, 2, 3, 4, and 12 have been found to contain elevated concentrations of metals, explosives, pesticides, nitrate, and/or PCBs. The wells in these AOCs are completed in the first water-bearing zone encountered. A well installed near SCFmw-002 will be used to assess first GW downgradient of these load lines, to monitor the potential GW exit pathway off of RVAAP, and for permeability testing.
5	S/Load Line 4	Paired with LL4mw-199	35	Groundwater samples collected within Load Line 4 have been identified as containing elevated concentrations of metals. All the wells in this area are screened in the unconsolidated aquifer. A Sharon well will be installed downgradient of focus well LL4mw-193 and paired with well LL4mw-199 to assess GW impact vertically and for permeability testing.
6	Load Line 3	South- southwest of LL3mw-243	25	Groundwater samples collected within Load Line 3 have been identified as containing elevated concentrations of metals, explosives, and pesticides. A Sharon well will be installed downgradient of Load Line 3 and potentially downgradient of Load Line 12 near South Perimeter Road to assess GW impact vertically and horizontally, to monitor the potential GW exit pathway, and for permeability testing.

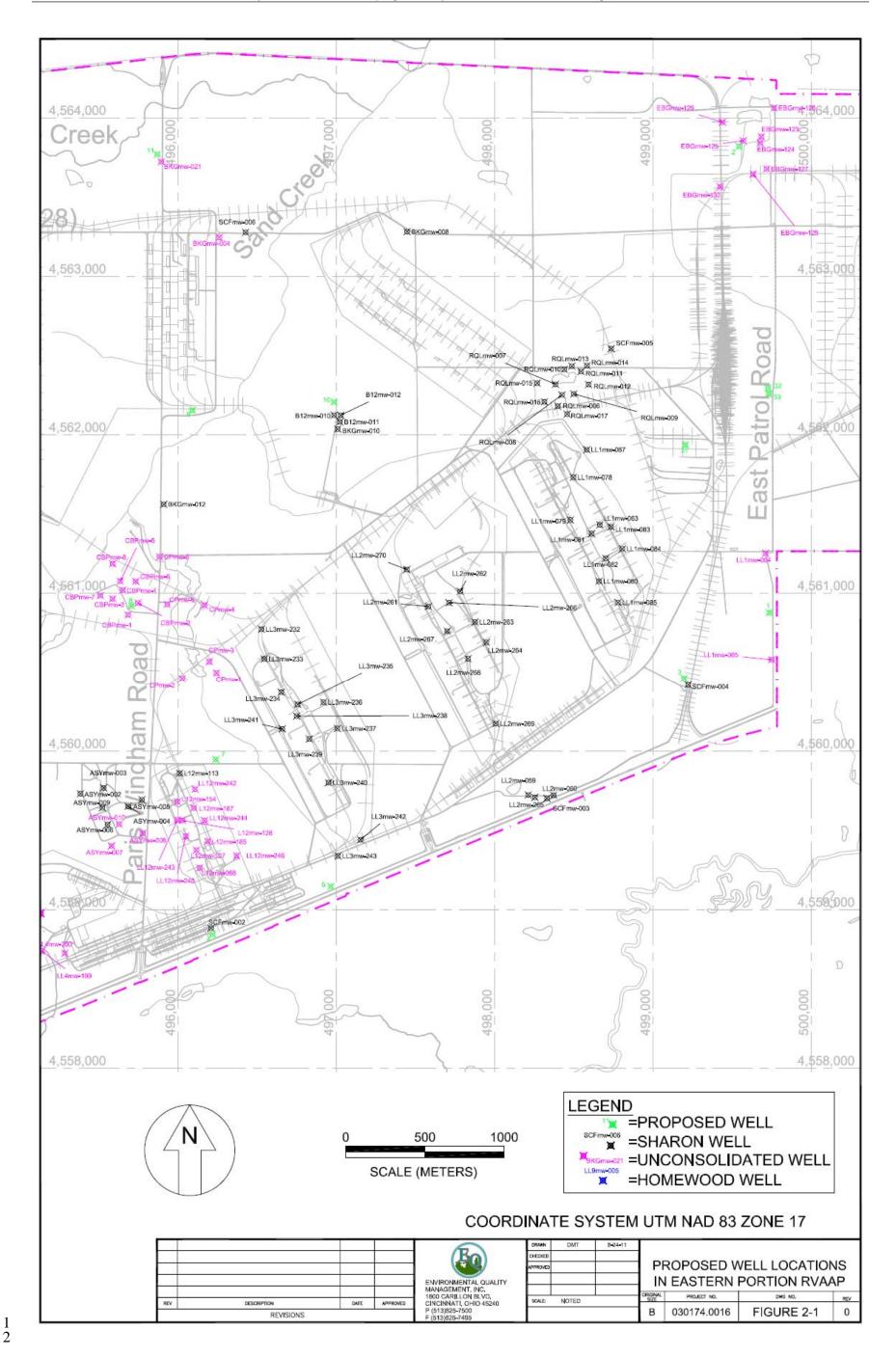
1 Table 2-2 (continued). Proposed Wells and Rational	ells and Rationale.	oposed	continued).	Table 2-2	1
--	---------------------	--------	-------------	-----------	---

Table	2-2 (continue	d). Proposed	wells and	
7	Load Line 3	Southwest of LL3mw- 241	25	Groundwater samples collected within Load Line 3 have been identified as containing elevated concentrations of metals, explosives, and pesticides. The west adjoining AOC (Load Line 12) only has wells screened in the unconsolidated aquifer and the Sharon Shale interval. Consequently, an additional downgradient well is needed west of LL3mw-241 to assess the extent of groundwater impact in the Sharon. A Sharon well will be installed southwest of well LL3mw-241 between Load Lines 3 and 12 to assess GW impact vertically and horizontally.
8	Central Burn Pits	Near CBPmw- 001	50	Groundwater samples collected at the Central Burn Pits have been identified as containing elevated concentrations of metals. All the wells in this AOC are screened in the unconsolidated formation. A Sharon well will be installed between CBPmw-001 and CBPmw-002 to assess GW impacts vertically and for permeability testing.
9	Group 2 DLA Ore Storage Area	-	25	No GW data has been generated in this area of the site, which formerly housed two ore pile storage areas and propellant can tops. Brass ingots were historically stored on the ground surface of the ore pile storage sites. A well will be installed on the downgradient side of these CR units to assess potential impact to first groundwater in this area.
10	Building 1200	Near B12mw-012	25	Groundwater samples collected within the Building 1200 Area have been identified as containing elevated concentrations of metals. The wells are screened in the Sharon aquifer. The horizontal extent of impact has not been fully defined. A Sharon well will be installed north- northwest of focus wells B12mw-010/012 to assess downgradient GW impacts.
11	North Perimeter	Paired with BKGmw-21	40	A Sharon well paired with BKGmw-021 will be installed to provide additional coverage in this unit along the northern perimeter of the site. This location has also been selected for permeability testing.
12	North Line Road Coal Tipple	-	45-50	This area was formerly used as a coal tipple. Coal dust and particles are currently present at the ground surface. No GW data has been generated in this area of the site. One well will be installed to assess GW quality in the first water- bearing zone encountered in this area located just south of North Line Road.
13	Winklepeck	Near WBGmw- 007	20	Groundwater samples collected at Winklepeck Burning Grounds have been identified as containing elevated concentrations of metals and explosives. The wells are screened in the unconsolidated aquifer. The extent of GW impact is not defined east of WBGmw-007. An unconsolidated well will be installed east of well WBGmw- 007 and south of WBGmw-016 to assess the horizontal and downgradient extent of affected GW and for permeability testing.
14	Winklepeck	Near WBGmw- 007	40-45	To evaluate the vertical extent of impact in GW in this AOC, a Sharon well will be installed east of well WBGmw-007 and south of WBGmw-016. This well will be paired with the new unconsolidated well. Permeability testing will also be performed on this well.

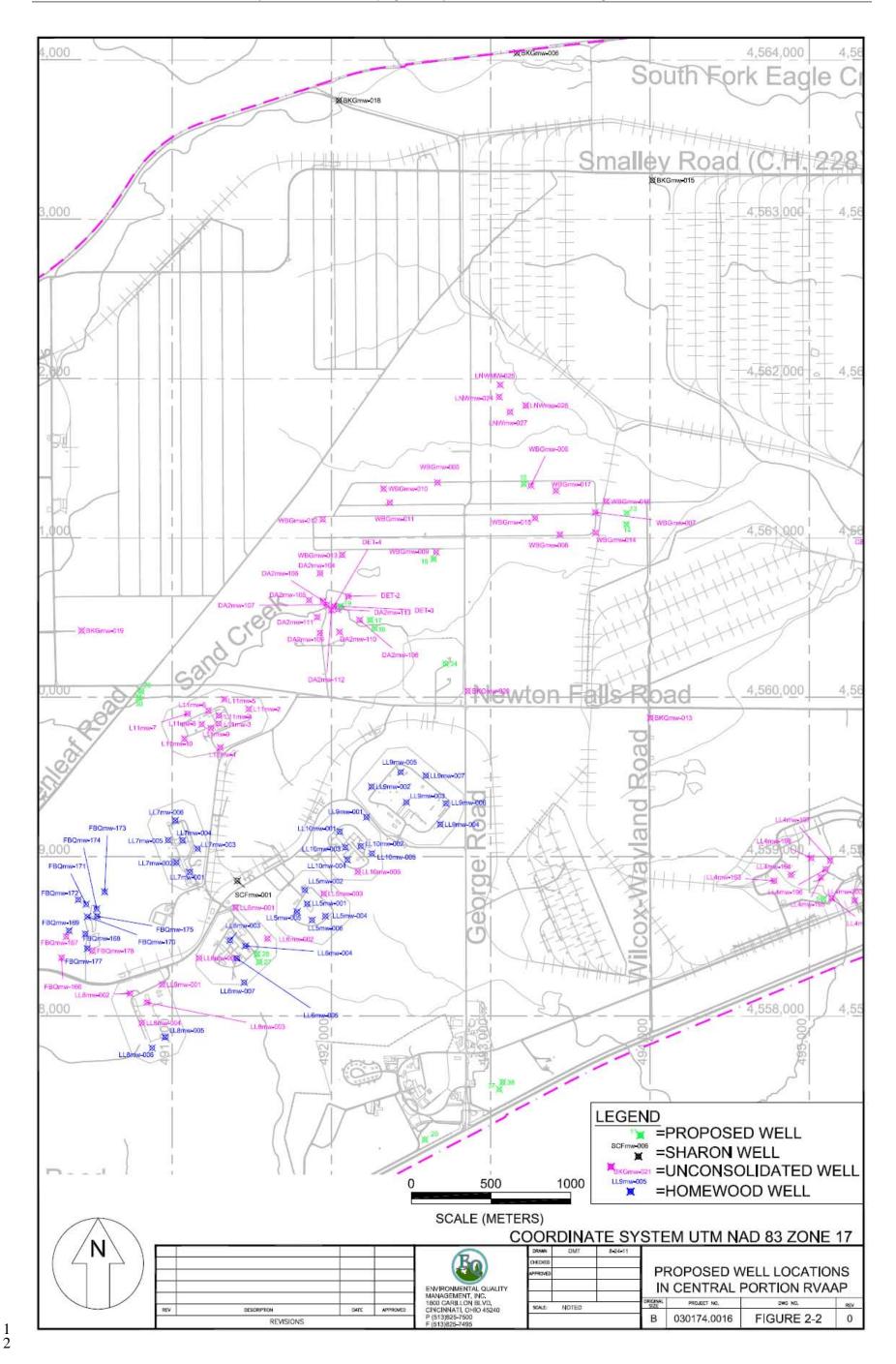
1 Table 2-2 (continued). Proposed Wells and Rationale.

lable	2-2 (continue	a). Proposea	wells and	d Rationale.
15	Winklepeck	Paired with WBGmw- 009	40-45	A Sharon well will be installed and paired with well WBGmw- 009 to assess the vertical extent of GW impact in this area of the AOC.
16	Winklepeck	Paired with WBGmw- 006	40-45	A Sharon well will be installed and paired with well WBGmw- 006 to assess the vertical extent of GW impact in this portion of the AOC.
17	Demo. Area 2	Near DA2mw- 108	15-20	Groundwater samples collected at Open Demolition Area 2 have been identified as containing elevated concentrations of hexavalent chromium and PCBs. The wells are screened in the unconsolidated aquifer. The extent of GW impact is not defined east of well DA2mw-108. An unconsolidated/
18	Demo. Area 2	Near DA2mw- 108	40-45	Sharon well pair will be installed east of wells DA2mw-108/ DA2mw-110 to assess the horizontal, vertical, and downgradient extent of GW impact. We understand the proximity to Rocket Ridge Removal activities and will coordinate as necessary. Permeability testing will be performed on both wells.
19	Demo. Area 2	Paired with DETmw- 003	40	To assess the vertical of impact in GW in this AOC, a Sharon well will be installed and paired with well DETmw-003.
20	Admin/ George Road	Post 1/ fence line area	20-30	This location is near the south property line and downgradient of several Compliance Restoration sites. A well will be installed to intercept first groundwater south- southwest of the administration and Post 1 areas to assess the potential GW exit pathway off of the RVAAP.
21	West NW	-	30	Several depots and coal storage facilities were previously located along State Route 80 Freedom Road immediately south of Newton Falls Road. No wells have been installed in this area. A well will be completed in the first water-bearing zone to assess potential GW impacts near Newton Falls Road to the northwest of these facilities.
22	West SW	-	25	The westernmost portion of the RVAAP has not been evaluated for potential GW impact. A well will be completed in the first water-bearing zone to assess the extent of western GW impact near McCormick Road.
23	South SW	-	15	A well will be completed in the first water-bearing zone to assess the extent of GW impact about 1000 meters east of SR80/Charlestown Road in alignment with the Sharon Conglomerate bedrock surface low and the Hinkley Creek exit pathway.
24	Depot Area	-	25	Several depots and coal storage facilities were previously located along State Route 80 Freedom Road. No wells have been installed in this area. A well will be completed in the first water-bearing zone to assess potential GW impacts near Route 80 to the east of the southernmost depot facility.
25	Depot Area	-	25	A second well will be completed in the first water-bearing zone to assess potential GW impacts near Route 80 to the east of the northernmost depot facility. Permeability testing will be performed at this location.

Table	2-2 (continued	<u>). Proposed v</u>	vens and						
26	NACA Test	Paired with NTAmw- 109	40-45	Groundwater samples collected at the NACA Test Area have been identified as containing elevated concentrations of metals and PCBs. The wells are screened in the unconsolidated aquifer. Deeper groundwater has not been evaluated. A Homewood well will be installed and paired with well NTAmw-109 to assess the vertical extent of GW at this location and for permeability testing.					
27		Near LL6mw-002	15-20	Groundwater samples collected within Load Line 6 have been identified as containing elevated concentrations of metals. All the wells are screened in the unconsolidated or Homewood units. A well pair will be installed in the					
28	Load Line 6	Near LL6mw-002	45-50	unconsolidated and Homewood units southeast of Load Line 6 to assess the horizontal and vertical GW quality downgradient of this AOC. Permeability testing will be conducted on both wells.					
29	Load Line 11	Near LL11mw- 007	25	Groundwater samples collected within Load Line 11 have been identified as containing elevated concentrations of SVOCs and metals. All the wells are screened in the unconsolidated formation. A well pair will be installed in the					
30	Load Line T	Near LL11mw- 007	45	unconsolidated and Homewood formations north-northwest and downgradient of well LL11mw-007 (along Newton Falls Road) to assess the horizontal and vertical GW quality. Permeability testing will be performed on the deeper well.					
31	DLA Main Ore Storage Yard Area	-	15-30	One well will be installed to assess GW quality in the fir water-bearing zone encountered in the DLA Main Ore Storage Yard area, which is a CR site located in the ea- portion of the facility.					
32	East	-	15	The East Classification Yard is a Compliance Restoration site. Groundwater has not been evaluated in this area. A well pair will be installed in the first water-bearing zone and					
33	Classification Yard	-	30	in the underlying Sharon formation east and downgradient of this AOC (near East Patrol Road) to assess GW quality. Permeability testing will be performed on the Sharon well.					
34	Wet Storage	-	30	A Sharon well will be installed near Powerhouse No. 5 to evaluate groundwater quality near this former coal storage unit. This well will also be side-gradient to Demolition Area 2.					
35	Route 80 Tank Farm	-	45-50	This area was formerly used as a DLA Ore Storage Area. Underground storage tanks reportedly existed in this area. Gamma radiation has also been identified in soils in this area. One well will be installed to assess GW quality in the first water-bearing zone encountered near the former Route 80 Tank Farm located just south of North Line Road.					
36	C Block	S of CBLmw- 002	50	Groundwater samples collected at the C-Block Quarry have been identified as containing elevated concentrations of SVOCs and PCBs. The wells are screened in the Homewood aquifer. The extent of groundwater impact has not been defined to the south. One Homewood well will be installed south-southeast of well CBLmw-002 at Newton Falls Road to assess the extent of GW impact and for permeability testing.					

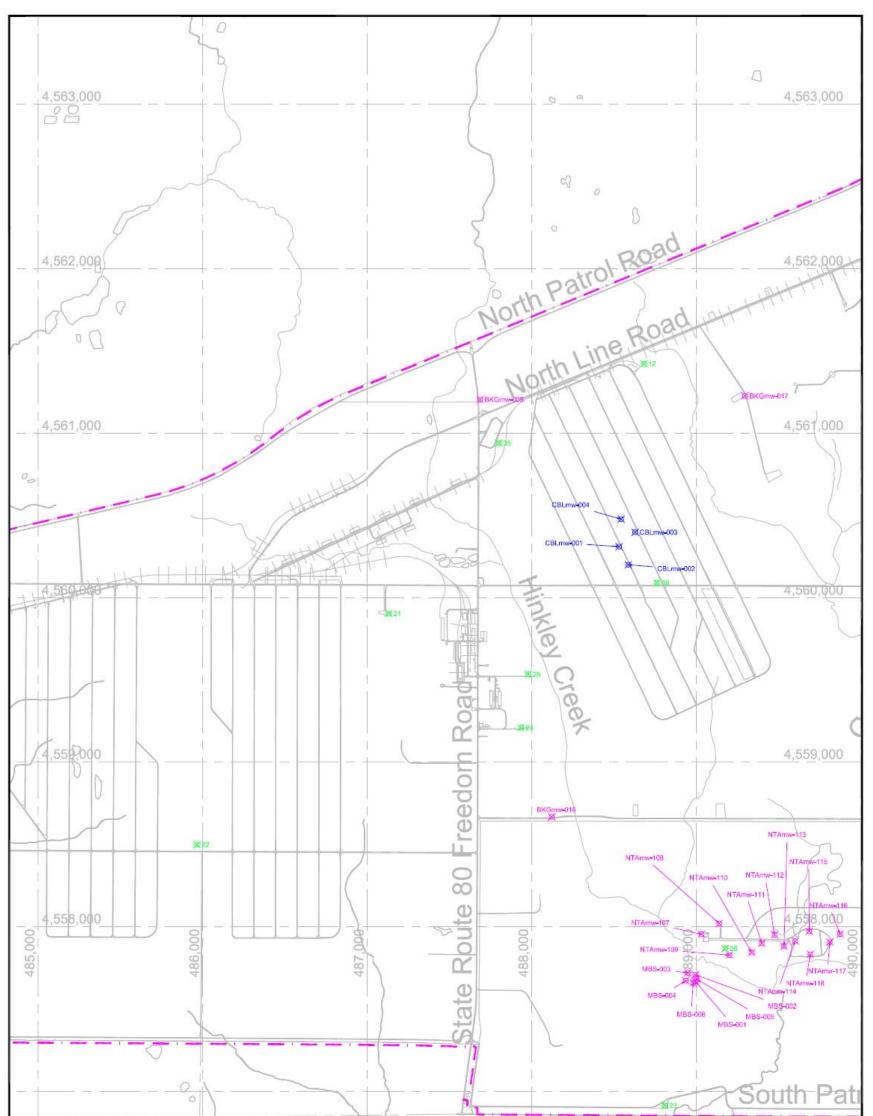

1 Table 2-2 (continued). Proposed Wells and Rationale

1 Table 2-2 (continued). Proposed Wells and Rationale.


37	Admin/ George Road	Post 1/ fence line area	20-30	This location is near the south property line and downgradient of several Compliance Restoration sites. One well will be installed to intercept the first water-bearing zone. This well will be positioned southeast of the administration and Post 1 areas to assess the potential GW exit pathway off of the RVAAP and for permeability testing.			
38	Admin/ George Road	Post 1/ fence line area	45-50	This well will be paired with well #37 to intercept the underlying bedrock aquifer (Homewood). This well will be positioned southeast of the administration and Post 1 areas to assess potential vertical contaminant distribution, the potential GW exit pathway off of the RVAAP, and for permeability testing.			

*Map ID # is correlated to proposed location on site map.

The Sharon Conglomerate wells will not be completed as basal wells for the formation (refer to Section 2).



Page 18

Environmental Investigation Services Addendum Draft

Page 19

COORDINAT				CALE	500 1000 (METERS)		SCFmw-006 X =	SHA UNC	POSED W RON WEL CONSOLID	L ATED WELL	
					ENVIRONMENTAL QUALITY MANAGEMENT, INC, 1800 CARLILON BLVD,	DRAAN CHECKED APPROVED	DMT 8-24-11			ELL LOCATIO	AP
	REV	DESCRIPTION REVISIONS	DATE	APPROVED	CINCINNATI, OHIO 45240 P (513)825-7500 F (513)825-7495	SOALE NOTED		B	030174.0016	FIGURE 2-3	REV 0

Environmental Investigation Services Addendum Draft

1

Page 20

(i.e., greater than 6-in. diameter) in place. EQM will not proceed with any brush/vegetation
 clearing without prior approval from the OHARNG.

2.5 Drilling Methods and Equipment

2.5.1 Equipment Condition and Cleaning

9 Requirements for the condition and cleaning of equipment used for well installation are
10 described in Section 5.4.2.1.1 of the Facility-Wide SAP. These requirements, as applicable, will
11 apply for equipment used to install monitoring wells.

14 2.5.2 Drilling Methods

15 16 Drilling through the overburden will be accomplished using 4.25-in.-I.D. or 6.25-in.-I.D. hollow 17 stem augers. Soil samples will be collected continuously from the surface to the total depth of 18 the boring or bedrock by driving a clean 2-in. by 24-in. split-spoon sampling device in advance of the auger string using a 140-lb drop hammer (ASTM Method D-1586). Upon retrieval of the 19 20 sampling device, the percentage of recovery will be recorded and the contained soil core will be 21 split in half, lengthwise, using a stainless steel knife. The onsite geologist will log and describe 22 the soil cores in a field logbook or Soil Boring Log as the boring is advanced. No chemical 23 analysis of the soil samples is proposed.

24

3 4 5

6 7

8

12 13

25 At five of the proposed overburden well locations, 3-in.-I.D. by 24-in.-long, thin-walled Shelby 26 Tube samples will be collected from the approximate center of the water-bearing zone to be 27 monitored. The well locations subject to Shelby Tube testing will be selected in the field. The 28 Shelby Tube will be attached to the sampling rods and hydraulically pushed the length of the 29 tube. The thin-wall sampler will be extracted through the auger string and immediately capped 30 at both ends upon retrieval pursuant to ASTM Method D-1587. The tube will be labeled and marked to orientation (i.e., top of core). The Shelby Tubes will be submitted to a geotechnical 31 32 laboratory for permeability testing using ASTM Method D-5084, "Standard Test Methods for 33 Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall 34 Permeameter."

35

36 Wells to be completed into bedrock will be advanced from the top of the bedrock surface using 37 rock coring and air rotary methods. Initially, the upper 3 to 5 feet of bedrock will be drilled, and 38 a steel surface casing extending from the ground surface to the bottom of the borehole will be 39 installed. The annulus between the casing and borehole will be sealed using a grout mixture 40 comprising Portland cement and 6 percent bentonite. After the seal has cured for a minimum of 12 hours, drilling of the bedrock portion of the borehole will be completed. The surface casing 41 will remain in place following installation of the monitoring well. Each of the well borings to be 42 completed into bedrock will be cored using an "N" series or 2-in.-diameter core to assess the 43 44 lithologies and the degree and nature of weathering and fracturing in bedrock. N-series coring 45 will be performed prior to reaming the borehole using air rotary methods to install the well.

1 Overdrilling of the borehole will be accomplished with air rotary drilling using a truck-mounted 2 air rotary rig. The rig will advance a tricone roller bit to the required drilling depth.

3

4 Rock cores will be stored in 10-ft intervals in covered wooden core boxes to preserve their 5 relative position by depth. Intervals of lost core will be noted in the core sequence. Boxes will 6 be marked on the cover (both inside and outside) and on the ends to provide project name, 7 borehole number, cored interval, and box number. The core within each completed box will be 8 photographed using a 35-mm digital camera after the core surface has been cleaned and wetted. 9 The core will be oriented so that the top of the core will be at the top of the photograph. A 10 legible scale will be placed along the core during filming, and each photograph will document the project name, well/borehole number, core box number, cored depths, and date. The cores 11

- 12 will be retained and stored at the site. The onsite geologist will record the lithologic description
- 13 of each core in the field logbook or boring log.
- 14

15 Fifteen field-selected rock core segments from the well screen interval will be removed and

16 submitted to a geotechnical laboratory for permeability testing using ASTM Method D-5084.

17 The selected core segments will range from 1 to 3 feet in length. Five of these cores will be

18 obtained from wells completed in the Homewood Member, and the remaining 10 cores will be

19 obtained from wells completed in the Sharon Formation. The cores will be labeled and marked

20 for orientation, secured in bubble wrap, and placed in a protective cylinder (e.g., Lexan tube,

21 map cylinder). The cylinder will be sealed at both ends and secured with packing tape and

22 custody seals. The outside of the cylinder will be labeled with the core information. The packed

23 core will then be placed in a cooler for transport to the geotechnical laboratory for permeability

24

testing.

25

26 If a proposed monitoring well location does not encounter water during drilling, it will be

27 abandoned in accordance with Army and Ohio EPA requirements and the location moved to a

28 suitable alternate drilling location determined by RVAAP stakeholders (anticipated to be within

29 a 50-ft radius of the original location). Drilling will continue until either 1) a well can be

30 installed at the desired water-bearing depth, or 2) no water-bearing zone has been encountered at the desired depth at three locations, including the original sample point, within the 50-ft radius.

31

32

33 Soil and bedrock cuttings will be removed from the borehole during drilling via augering or 34 high-pressure air. In the latter case, the drill cuttings will be directed into a diverter and then

35 through a discharge vent directly into a container next to the borehole. Soil and rock cuttings

36 will be containerized in Department of Transportation (DOT)-approved 55-gal drums, labeled,

37 and staged on site pending future characterization and disposal.

38

39 Should newly installed wells produce formation fluids during drilling activities, the fluids will be 40 captured, where possible, and containerized in DOT-approved 55-gal drums. The drummed

- fluids will be staged on site pending proper characterization and disposal. 41
- 42
- 43
- 44

1 2.6 Materials

2.6.1 Casing/Screen

5 The casing and screen materials for monitoring wells will be Schedule 40 polyvinyl chloride 6 (PVC), depending on field conditions as presented in Section 5.4.2.2.1 of the Facility-Wide SAP. 7 Default screen lengths will be 10 feet, unless subsurface conditions warrant the use of a shorter 8 or longer screen (e.g., 5 or 20 feet). Shorter screen lengths may be used if the first water-bearing 9 unit is encountered within 10 to 15 feet of the ground surface. A longer length screen may be 10 used for lower yielding formations or if the exact depth of the water-bearing formation cannot be 11 accurately obtained from the rock core record. Use of screen lengths other than 10 feet will be 12 subject to approval by USACE and the Ohio EPA.

13 14

15

18

2 3

4

2.6.2 Filter Pack, Bentonite, and Grout

The filter pack, bentonite, and grout materials for monitoring wells will be approved and used aspresented in Section 5.4.2.2.2 of the Facility-Wide SAP.

19 2.6.3 <u>Surface Completion</u> 20

All monitoring wells will be constructed as above-grade installations, as presented in Section
 5.4.2.2.3 of the Facility-Wide SAP, unless flush-mounted completions are specifically requested
 by OHARNG.

2.6.4 <u>Water Source</u>

25 26

The potable water source used for monitoring well installation and decontamination purposes
will be identified by RVAAP personnel and approved by USACE and Ohio EPA before use.
The collection and evaluation of the water source will follow Section 5.4.2.2.4 of the FacilityWide SAP.

30 V 31

32 2.6.5 Delivery, Storage, and Handling of Materials

All monitoring well construction materials will be delivered, stored, and handled according toSection 5.4.2.2.5 of the Facility-Wide SAP.

36 37

33

38 2.7 Monitoring Well Installation

In general, monitoring wells will be constructed of new, 2-in.-diameter Schedule 40 PVC casing
and screen. However, a 2-in.-diameter stainless steel well will be installed at location 34 (see
Table 1) to assess whether the presence of bis(2-ethylhexyl)phthalate in groundwater at Load
Line 11 is an artifact from the PVC wells. The well screens will be commercially fabricated with
0.010-in. slotted openings. The well screens will be 5 to 10 feet in length depending on the

45 subsurface conditions and flush-threaded to the solid casing. Granular filter pack (Global Supply

46 No. 7) will be inserted into the annular space around the screen and extend at least 3 feet above

1 the top of the screen interval unless subsurface conditions (e.g., overburden thickness) dictate

- that this qualification be field modified. In addition, approximately 6 inches of filter pack will be
 placed under the bottom of the well screen to provide a firm footing.
- 4

5 A bentonite seal will be placed atop the filter pack in accordance with Section 5.4.3.2.6 of the

6 Facility-Wide SAP. The bentonite seal will be a minimum of 3-ft-thick unless subsurface

7 conditions require that the thickness of this seal be field modified. The top of the bentonite seal

- 8 will be measured with a weighted tape immediately after placement.
- 9 A grout mixture of cement and bentonite will be inserted via tremie pipe above the bentonite seal
- 10 to near surface as described in Sections 5.4.2.2.2 and 5.4.2.3.7 of the Facility-Wide SAP.
- 11

12 The well will be completed at the surface with a locking 6-in.-diameter steel protective casing set

13 in a concrete pad measuring approximately 30-in. square. The wells will extend approximately

14 3 feet above the ground surface and be protected by three to four steel bollards as described in

15 Section 5.4.2.3.8 of the Facility-Wide SAP. Flush-mount covers may be substituted for the

above-grade well installations where requested by OHARNG.

17 18

19

20

24

32

37

2.8 Well and Borehole Abandonment

If abandonment of a monitoring well or borehole is required during the investigation, it will be
 abandoned according to the procedures presented in Section 5.4.2.5 of the Facility-Wide SAP.

25 **2.9** Field Measurement Procedures and Criteria

All field measurement procedures and criteria will follow Section 5.4.3 of the Facility-Wide
SAP. All monitoring wells will be field screened for volatile organic compounds (VOCs) using
a photoionization detector (PID) or organic vapor analyzer (OVA) during groundwater sample
collection. Screening will be accomplished by monitoring the headspace vapors at the top of the
riser pipe.

33 2.9.1 <u>Static Water Level</u>
 34

Water level measurements will follow the procedure presented in Section 5.4.3.1 of the Facility-Wide SAP.

38 2.9.2 pH, Conductivity, Dissolved Oxygen, and Temperature

Groundwater parameters will be obtained using a combination meter with flow-through cell
designed to measure these parameters. The readings will be recorded when the meter reading
reaches equilibrium. Groundwater field parameters will be collected in accordance with Section
5.4.3.2 of the Facility-Wide SAP.

45 Additional parameters, such as turbidity, may also be obtained, where required.

2.10 **Well Development**

2 3 Development of the newly installed monitoring wells will be performed no sooner than 4 48 hours after nor longer than 7 days beyond final installation of the wells. Prior to well 5 development, the depth to water and well depth will be measured using a decontaminated water 6 level indicator. Monitoring well development will be accomplished using a non-dedicated 7 bottom discharge/filling stainless steel bailer, a submersible pump, or a peristaltic pump. 8 Development will proceed until the criteria specified in the Facility-Wide SAP are met: 9 10 The water is clear to the unaided eye; The sediment thickness in the well is less than 1% of the screen length or 11 ٠ 12 <3.0 cm (0.1 ft);

- 13 • A minimum of five times the standing water volume in the well (to include the well 14 screen and casing plus saturated annulus, assuming 30% porosity); and
- 15 • Indicator parameters (pH, temperature, and specific conductance) have stabilized 16 according to procedures presented in Section 4.1.1 of the Facility-Wide Groundwater 17 Monitoring Program (USACE 2004) over three successive well volumes.
 - In addition to the "five times the standing water volume" criteria, five times the amount of any unrecovered water used during well installation will also be removed. Under specific circumstances, such as bedrock coring in dry rock, potable water may be introduced to the formation.
- 23 For each monitoring well developed during the field investigation a record will be prepared to 24 include information specified in Section 5.4.2.3.10.2 of the Facility-Wide SAP. Well 25 development activities shall be completed at least 14 days before groundwater sampling.
- 26

18

19

20

21

22

1

27 All well development water will be containerized, characterized, stored, and disposed of 28 pursuant to Section 8.0 of the Facility-Wide SAP for investigative-derived waste (IDW).

29 30

31 2.11 Well Survey 32

33 A topographical survey for horizontal and vertical locations will be prepared for all new wells. 34 The survey will be conducted by a currently licensed individual in the State of Ohio. Top-of-35 casing elevations will be surveyed to the nearest 0.01 feet, and horizontal control will be established to within 1.0 feet of the appropriate coordinate system. 36

37 38

39 2.12 **Groundwater Purging and Sampling** 40

41 The 38 new wells will be sampled and analyzed as part of the normal quarterly monitoring event.

42 The new wells will be sampled and analyzed for the parameters presented in Table 2-3 for four

- 43 consecutive quarters except where noted. In this latter regard, all of the new wells will be
- 44 sampled for hexavalent chromium (EPA Method 7196A) and perchlorate (EPA Method 6860)
- 45 during one monitoring event only. The new well (#35) installed near the Route 80 Tank Farm

Constituents	Method ¹
Polychlorinated biphenyls	Gas Chromatograph (GC) –
(PCBs)	Semivolatile Organics (SVOCs)
	(8082)
Pesticides	GC Semivolatile Organics
	(8081A)
Base/Neutrals and Acids	GC/Mass Spectrograph (MS)
(SVOCs)	Semivolatile Organics (8270C)
Volatile Organic Compounds	GC/MS Volatile Organics
(VOCs)	(8260B)
Nitroguanidine	Organic compounds by
(Propellant)	UV/HPLC (8330 modified)
Nitroaromatics & Nitramines	GC Semivolatile Organics
(Explosives)	Explosives (8330)
Nitrocellulose as N	General Chemistry (WS-WC-
(Propellant)	0050)
Nitrate/Nitrites	General Chemistry (353.2) ²
Cyanide (Total)	General Chemistry (9012A)
Metals (Magnesium, Manga-	Inductively Coupled Plasma
nese, Barium, Nickel, Potassium,	(6010B)
Silver, Sodium, Vanadium,	
Chromium, Calcium, Cobalt,	
Copper, Arsenic, Lead,	
Selenium)	
Metals (Antimony, Iron,	Inductively Coupled Plasma
Beryllium, Thallium, Zinc,	Mass Spectrometry (6020)
Cadmium, Aluminum)	
Perchlorates	Method 6860 (1 quarter only)
Hexavalent Chromium	Method 7196A (1 quarter only)
Mercury	(7470A, Cold Vapor) - Liquid
Alpha/beta screen	Method 900.0 ³ – Route 80 Tank
	Farm Area only.
Gamma radionuclides	Method 901.1 ³ – Route 80 Tank
	Farm Area only.

 Table 2-3.
 Current Analytical Suite of Chemicals

1 = USEPA SW846

2 = EPA Methods for Chemical Analysis of Water and Waste

3 = Prescribed Test Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032, August 1980

1 Area and the upgradient background well (BKGmw-005) to this location will also be sampled

- and analyzed for alpha/beta and gamma radionuclides since gamma radiation was previously
 identified in soil in this area of the site.
- 4

5 Static water level measurements will be made using an electronic water level indicator prior to 6 well purging. The distance between the top of the casing and the groundwater surface will be

well purging. The distance between the top of the casing and the groundwater surface will be
 recorded in the field logbook or Groundwater Sampling Log to within 0.01 feet. Relative

8 groundwater elevations for each well will be calculated by deducting the depth to groundwater

9 from the top-of-casing elevation. This information will be used to estimate flow direction. A

10 map presenting this information and interpretation will be generated for the sampling event.

11

12 2.12.1 <u>Purging</u>

Prior to sampling, each well will be purged using bailing or micropurge techniques following
those procedures specified in the FWSAP. The bailing method will be used for those wells that

have poor yields or contain minimal water (i.e., less than 2 feet). For this method a disposable

17 TeflonTM bailer will be used to purge and sample. The well will be purged to dryness and

18 allowed to recover prior to sampling. The bailer will be attached to new polyethylene rope and

19 slowly lowered until it contacts the groundwater surface. The bailer will be allowed to sink and

20 fill with a minimum of surface disturbance and then raised slowly to the surface. The sample

21 will be transferred from the bailer to the appropriate sample bottles. A minimum of one set of

22 water quality indicators [e.g., pH, specific conductance, turbidity, dissolved oxygen (DO),

23 oxidation reduction potential (ORP), and temperature] will be obtained during this procedure.

24

25 For micropurging, the purge rate will be between 100 and 500 ml/min; however, the higher rate 26 will only be used if it can be shown that the increased rate will not disturb the stagnant water 27 column above the well screen (i.e., will not result in drawdown greater than 1 foot). The 28 maximum flow rate shall not exceed 500 ml/min. Water quality indicators will be collected 29 every 3 to 5 minutes to monitor stabilization of the water quality parameters. A minimum of 30 three readings will be collected from each well during purging. Each parameter is consistent 31 with the requirements of the FWSAP, with the exception of ORP and turbidity. Oxidation 32 reduction potential and turbidity are required as additional field parameters to assist in the 33 geochemical study for groundwater.

34

Water generated during purging activities and decontamination fluids will be containerized in a Department of Transportation (DOT)-approved 55-gal drum or poly tank for future treatment and disposal. Purging activities will be recorded on the Groundwater Sampling Log or equivalent for each well. Immediately following purging, each well will be sampled. (If separate-phase liquid is present, no purging or sampling of the groundwater will be performed.)

40

41 2.12.2 <u>Sampling</u>

42

43 Once purging activities are complete, groundwater samples will be collected from below the top

- 44 of the well screen using a bladder pump (or bailer if there is low yield). Samples will be
- 45 transferred directly to laboratory precleaned sample containers. EQM's field personnel will wear
- 46 new, disposable nitrile gloves during sample collection. The gloves will be changed between

1 wells and the used gloves will be discarded appropriately. Sample aliquots will be placed in the

2 appropriate sample containers, pre-preserved (if required), sealed with Teflon-lined septa, and

3 labeled with a unique sample identification number. Samples will then be placed in a cooler

- 4 with ice and submitted to an offsite laboratory for analysis. A chain-of-custody form will
- 5 accompany the sample shipment. Groundwater sampling activities will be documented on a

6 Groundwater Sampling Log or equivalent for each monitoring well.7

8 Each well will be sampled for filtered metals. The list of metals to be analyzed is consistent with

9 Table 4.8 of the *Quality Assurance Project Plan for Environmental Investigations at the*

10 Ravenna Army Ammunition Plant (SAIC, February 2011). Sampling and analysis procedures

will follow the FWSAP. A 0.45-micron in-line filter will be used to filter samples. The filtered
sample will be transferred directly into pre-preserved sample containers supplied by the
laboratory.

- 14
- 15

16 2.13 Sample Containers, Preservatives, and Holding Times 17

18 Upon collection, samples will be transferred directly into the appropriate sample container. Only 19 pre-cleaned sampling containers supplied by the laboratory will be used. All samples will be 20 cooled to 4°C immediately upon collection and maintained at this temperature during sample 21 shipment. Table 5-1 of the Quality Assurance Project Plan (QAPP) Addendum located in Part II 22 of this amendment summarizes the container types and sizes, preservatives, and sample holding 23 times.

24 25

26 **2.14 Field Quality Control Sampling Procedures**

27 28 Since no soil or groundwater samples are being collected for chemical analysis during 29 installation of the 38 new wells (groundwater sampling will be performed as part of the quarterly 30 monitoring program), no quality control samples will be collected during well installation activities. However, quality control samples will be collected during quarterly groundwater 31 32 monitoring of the new and existing monitoring wells. These quality control samples will include 33 duplicates and split groundwater samples (10 percent of total field samples), matrix spike and 34 matrix spike duplicates (5 percent of total field samples), equipment rinsates (daily), and trip 35 blanks (with each cooler containing samples for VOC analysis) as described in Section 5.4.7 of the Facility-Wide SAP. Split samples will be submitted to the approved USACE contract 36 37 laboratory for independent analyses.

- 38
- 39

40 2.15 Equipment Decontamination

41

42 Soil sampling equipment (e.g., split spoons, augers, shovels, trowels, and mixing bowls) will be

- cleaned using steps 1, 2, and 4 below since no soil chemical analysis is being performed for thisinvestigation. Drilling equipment will be pressure washed between well locations. Well
- investigation. Drilling equipment will be pressure washed between well locations. Well
 development equipment (e.g., bailers and pumps) and portable groundwater sampling equipment

1 2 3	(e.g., bladder pumps) will be cleaned prior to collecting each sample to prevent cross- contamination using the following six-step procedure:			
4	1)	Scrub and wash with laboratory-grade detergent.		
5	2)	Rinse with approved potable water.		
6	3)	Rinse thoroughly with hydrochloric acid (2% solution) or nitric acid (10% solution).		
7 8	,	Rinse with American Society for Testing and Materials (ASTM) Type I or equivalent deionized/distilled water.		
9	5)	Rinse with pesticide-grade isopropanol or methanol (wash bottle).		
10	6)	Rinse with ASTM Type I or equivalent deionized/distilled water.		
11	7)	Allow equipment to air dry.		
12 13 14	8)	Place equipment on clean, dry plastic if it is to used immediately or wrap in aluminum foil if storage is required.		
15 16 17 18 19	decontamin the deconta	urement equipment (e.g., water level indicators, pH meters, etc.) will also be nated between well locations. Due to the sensitive nature of these measuring devices, amination procedure will involve a non-phosphate detergent wash, followed by a ter rinse, and a final rinse using ASTM Type I or equivalent water.		

SECTION 3. SAMPLE MANAGEMENT

Field personnel are responsible for the identification, preservation, packaging, handling,

5 shipping, and storage of samples obtained in the field such that all samples can be readily identified and will retain, to the extent possible, *in situ* characteristics to be determined through 6 7 analysis. All samples collected will be tracked by preparing and using a sample chain-of-8 custody form as described in Section 6.4.3 of the Facility-Wide SAP. 9 10 11 3.1 **Field Logbook** 12 13 A field sample logbook will be initiated at the start of the first onsite sampling activity and 14 maintained to record sampling activities throughout the project. The field sample logbook is a 15 controlled document that becomes part of the permanent site file. The logbook will consist of a 16 bound notebook with consecutively numbered pages that cannot be removed. All data entries 17 will be recorded using a non-erasable ink pen. 18 19 All information pertinent to on-site environmental task activities will be recorded in field 20 logbooks or field forms, including: 21 22 Date of activities • 23 Arrival and departure of sampling personnel and observers • • Field sample activities 24 25 Individual sample description (color, consistency, odor, etc.) • Sample pickup, including chain-of-custody form number, carrier, date, and time 26 • 27 Unusual events during sampling • Health and safety issues related to sampling 28 ٠ 29 Weather conditions • 30 31 All field logbook information will follow procedures identified in Section 6.1 of the Facility-32 Wide SAP. 33 34 35 3.2 **Logs and Well Installation Diagrams** 36 37 3.2.1 **Boring Logs** 38 39 Boring logs will be completed for all monitoring well boreholes, as documented in Section 5.4.2.4.1.1 of the Facility-Wide SAP. Descriptions recorded on each boring log for soil 40 41 and rock cores will be in accordance with Table 5-2 in the Facility-Wide SAP. Permeability test results will also be recorded on the boring logs, where appropriate. 42

3.2.2 <u>Well Construction Diagrams</u>

As-built well construction will be documented according to the procedures presented in Section 5.4.2.4.1.2 of the Facility-Wide SAP.

3.3 Photographs

Information regarding the documentation of photographs for the monitoring well installation is
presented in Section 5.4.2.4.2 of the Facility-Wide SAP. Representative photographs will be
taken during fieldwork activities and with particular attention to any special features of interest
that are identified during the field effort (e.g., bedrock fractures or unusual geologic features).
New well locations will also be photographed. Photographs will be suitable for presentation in a
public forum, as well as for documenting scientific information.

15 16

1 2 3

4

5 6 7

8

3.4 Sample Identification System

17 18

19 Each sample (including QC samples) will be identified with a unique sample number. This 20 number will provide easy identification of the sample in field logs, field data sheets, analytical reports, chain-of-custody forms, and project reports. The sample numbering system that will be 21 22 used to identify samples collected during the groundwater sampling is explained in Section 6.3 23 of the Facility-Wide SAP. Samples collected will be identified sequentially by following the 24 numbering system. If a sample is not collected or is reassigned to another location, a specific 25 reason and notation will be written in the project field books. The sample number system is 26 presented in Figure 3-1 and presents the sample numbers that will be used during this project. 27

28 29

30

3.5 Sample Labeling

Samples will be labeled at the time of sample collection by affixing a self-stick label to the
 sample container unless the container was already shipped with a pre-affixed label. At a
 minimum, all sample labels will include the following information:

- 34 35
- Project name
- Unique sample identification number (see Section 3.4)
- Date and time the sample was collected
- Initials of the sample collector
 - Sampling location and sample description
- 40 Preservation and analysis
- 41

- 43 Facility-Wide SAP.
- 44

⁴² Additional information that may be recorded on the labels is described in Section 6.4.1 of the

Sampling I	Location Ide	entification: XXXmm-NNN(n)		
XXX	=	Area Designator	Examples	
			LL4 -	Load Line 4
			DA2 -	Demolition Area 2
mm	=	Sample Location Type	Examples	
			MW	Monitoring Well
			SB	Soil Boring
NNN	=	Sequential Sample Location Number:	Examples	
		Unique, sequential number for each	004	
		sample location beginning with the	012	
		following number from the last number	099	
		used from previous investigation stations	107	
		and extending into any subsequent phases.		
(n)	=	Special Identifier:	Examples	
		Optional use (as needed) to identify special	D	Deep zone aquifer
		sample matrices of sample location	В	Background location
		characteristics.	А	Abandoned well
Sample Ide	entification:	XXXmm-NNN(n)-####-tt		
###	=	Sequential Sample Number	Examples	
		[must be unique for entire project site/AOC]	0001	
			0002	
			0003	
tt	=	Sample Type	Examples	
			GW	Groundwater (unfiltered)
			GF	Groundwater (filtered)
			SO	Soil Sample
			GT	Geotechnical Sample
			TB	Trip Blank
			FB	Field Blank
			ER	Equipment Rinsate

2 3 4

Figure 3-1. Sample Identification System

3.6 Sample Custody

Sample chain of custody tracks the life of a sample from collection to analysis. A record of the
sample custody will be maintained to establish and document sample possession during
collection, shipment, laboratory receipt, and laboratory analysis. This documentation will be
evidenced on a chain-of-custody record by the signatures of the individuals collecting, shipping,
and receiving each sample. Section 6.4.3 of the Facility-Wide SAP describes the sample custody
procedures in detail.

9 10

11

12

1

3.7 Documentation Procedures

Documentation and tracking of samples and field information will follow the series of stepsidentified in Section 6.5 of the Facility-Wide SAP.

15 16

17

18

3.8 Corrections to Documentation

Any corrections to documentation will follow guidance established in Section 6.6 of the FacilityWide SAP. Specifically, errors in any document will be corrected by the individual responsible
for the entry by crossing out the error with a single strike, entering the correct information or
data, and dating and initialing the change.

3.9 Groundwater Monitoring Well Installation Reports

It is anticipated that the reporting for the well installation and subsequent groundwater samplingand analysis will be included in the current FWGWMP reports.

29 30

31

32

24 25

26

3.10 Monthly Reports

33 Monthly reports will be submitted during implementation of the field investigation activities.

34 Monthly reports will be submitted on the 5^{th} day of the following month to the USACE. The

35 content of the reports will have content similar to that specified in Section 6.7 of the Facility-

- 36 Wide SAP.
- 37

38 In addition to the monthly project reports, a fieldwork letter report will be submitted to USACE

- 39 and Ohio EPA by EQM thirty (30) days following conclusion of all drilling fieldwork activities.
- 40 This letter report will serve as a transmittal of field documents including a site map showing well
- 41 installation locations and corresponding electronic drill logs, which notate the boring description
- 42 and well installation diagram.

3

SECTION 4. SAMPLE PACKAGING AND SHIPPING REQUIREMENTS

- 4 Packaging and shipping procedures will be followed in accordance with Section 7.0 of the
- 5 Facility-Wide SAP. All samples collected during this study will be properly labeled and
- 6 packaged for shipment by overnight courier to the offsite laboratory. Glass containers will be
- 7 secured in sturdy coolers to prevent breakage during transport. Ice will be placed in the coolers
- 8 to preserve the samples at 4°C. Coolers will be secured with tape and labeled to ensure the
- 9 samples are not disturbed during transportation. A chain-of-custody seal(s) will be attached so
- 10 that any attempts at opening or tampering will result in a broken seal.
- 11
- 12 Shelby tubes and rock cores for permeability testing will be placed in coolers and transported to
- 13 the geotechnical testing laboratory by EQM personnel at the conclusion of the field investigation
- 14 activities. These samples do not require refrigeration or chemical preservation prior to analysis.

SECTION 5. INVESTIGATION-DERIVED WASTE

2 3				
3 4	All IDW	including auger cuttings, personal protective equipment (PPE), disposable sampling		
5	equipment, and decontamination fluids, will be properly handled, labeled, characterized, and			
6	managed in accordance with Section 8.0 of the Facility-Wide SAP. At the conclusion of field			
7	activities for the well installation, a letter report will be submitted to USACE and the RVAAP			
8		ental Coordinator documenting the characterization and classification of the wastes.		
9	Upon app	roval of the IDW classification report, all solid and liquid IDW will be removed from		
10	the site an	d disposed of by a licensed waste disposal contractor. All shipments of IDW offsite		
11	will be co	ordinated through the RVAAP Environmental Coordinator.		
12				
13	• •	s of IDW are anticipated, which will be contained separately. The types and estimated		
14	quantities	for each include:		
15				
16	•	Soil, specifically drill cuttings from the unconsolidated surficial material;		
17	•	Development and purge water from monitoring wells;		
18	•	Decontamination fluids, including those derived from decontamination of sampling		
19		equipment and drilling equipment; and		
20	•	Expendables/solid wastes, including PPE and disposable sampling equipment.		
21				
22		ization and classification of the different types of IDW will be based on the specific		
23		described below. Expendable solid waste will be not sampled for characterization		
24	purposes.			
25		Soil. Drill outtings will be pleased in 55 gel drums. Soil outtings generated from		
26 27	•	Soil: Drill cuttings will be placed in 55-gal drums. Soil cuttings generated from individual AOCs will be consolidated in the drums. Partial drums may be moved to a		
28		different AOC with similar COPCs (e.g., the various load lines). Composite samples		
20 29		will be collected from drums generated from similar AOCs (e.g., the load lines, the		
30		western facility wells). Disposition of the drummed soil will be based on analytical		
31		results from toxicity characteristic leaching procedure (TCLP) samples collected.		
32		Additional waste characterization parameters will be analyzed as required by the		
33		selected disposal facility.		
34				
35	•	IDW Water: Development water from newly installed wells, purge water, and		
36		excess water not used for environmental samples will be placed in 55-gal drums.		
37		Disposition will be based on the analytical results of the environmental samples. If		
38		results indicate that IDW water is potentially hazardous, TCLP samples will be		
39		collected.		
40				
41	•	Decontamination Fluids: Decontamination fluids will be placed in drums or a		
42 42		polytank up to 1,500 gallons in size as needed. Disposition of decontamination liquid will be based on the collection and englysis of TCL P liquid comple(c)		
43 44		will be based on the collection and analysis of TCLP liquid sample(s).		
++				

1 Drummed soil, sediment, and IDW water will be transported to a location designated by the

2 RVAPP Environmental Coordinator, where it will be staged on wooden pallets.

3 Decontamination fluids and field laboratory wastes will also be staged at the identified location

4 within secondary containment structures. To avoid potential drum rupture due to freezing

5 conditions, drums containing liquid IDW will be filled only to 75 percent capacity.

6 7

8

5.1 Wastewater Sampling

9 10 Accumulated IDW decontamination water and purge water will be containerized in 55-gal drums 11 on site pending transport and treatment at an offsite wastewater treatment facility. Wastewater 12 samples, if needed, will be collected by gently lowering a new, disposable bailer attached to new 13 polypropylene rope into the holding vessel. The bailer has a bottom check valve that seats over 14 the bottom opening during retrieval, thereby keeping the water within the bailer column as the bailer is withdrawn from the poly tank or drum. Water collected in the bailer will be transferred 15 16 directly from the bailer to a decontaminated 3- to 5-gal glass container for homogenization. 17 Water from the bucket will then be transferred into the appropriate sample containers. The bailer 18 will be lowered into the drums several times, and to different depths, to collect a sufficient 19 representative sample of the water to submit to the laboratory for waste characterization analysis 20 in accordance with the disposal facility's characterization requirements. New, disposable nitrile 21 gloves will be donned prior to each wastewater sample event. The used gloves, bailer, and rope 22 will be discarded appropriately after each event.

23 24

25

5.2 Sampling of Soil IDW

26 27 Accumulated IDW soil cuttings will be containerized in 55-gal drums on site pending transport 28 and disposal to an offsite disposal facility. Soil drums will be segregated in the onsite staging 29 area by AOC. Grab samples will be collected using a hand auger or by manually driving a 30 decontaminated split-spoon sampler to the bottom of each container. The retrieved sample will be placed in a decontaminated stainless steel bowl or aluminum pan for homogenization. Rocks 31 32 and loose twigs will be removed and discarded. Clumps of soil will be broken down using a 33 gloved hand and mixed in the bowl. The mixture will be visually divided into quadrants, and 34 soil from the opposite quadrants in the bowl or pan will be collected using a gloved hand and 35 placed directly into the laboratory pre-cleaned container. Duplicate or split samples of the 36 composite will be formed from the two remaining quadrants in the bowl. The composite samples 37 will be sealed, labeled, and placed in a cooler with ice. New, disposable nitrile gloves will be 38 donned prior to each sample event. The used gloves and disposable pans will be discarded 39 appropriately after each event. Stainless steel bowls, hand augers, and split-spoon samplers will 40 be decontaminated in accordance with Section 2.13 of this plan after collection of each 41 composite sample.

SECTION 6. REFERENCES

Barnes, G.E. 1950. A Report on Water Conservation and Development at the Ravenna Arsenal,
Apco, Ohio. Consulting Engineer. Cleveland, Ohio.

- Kammer, H.W. 1982. A Hydrologic Study of the Ravenna Arsenal, Eastern Portage and
 Western Trumbull Counties, Ohio. Master Thesis, Kent State University.
- USACE (U.S. Army Corps of Engineers). October 1970. West Branch Reservoir Dam Final
 Report on Special Foundation and Embankment Treatment. U.S. Army Engineer District Corps
 of Engineers. Pittsburgh, Pennsylvania.
- 14 USACE. February 1996. Preliminary Assessment for the Ravenna Army Ammunition Plant,
 15 Ravenna, Ohio.
- 16

13

1 2

- USACE. February 2001. *Requirements for the Preparation of Sampling and Analysis Plans.*EM 200-1-3.
- 19

- USACE. March 2001. Quality Assurance Project Plan for Environmental Investigations at the
 Ravenna Army Ammunition Plant, Ravenna, Ohio.
- USACE. September 2004. Facility-Wide Groundwater Monitoring Program Plan for the
 Ravenna Army Ammunition Plant, Ravenna, Ohio.
- USACE. March 2005a. Phase III Remedial Investigation Report for Winklepeck Burning
 Grounds at the Ravenna Army Ammunition Plant, Ravenna, Ohio.
- 28
- 29 USACE. November 2010. Draft 2010 Addendum to the Facility-Wide Groundwater Monitoring
- Program Plan RVAAP-66 Facility-Wide Groundwater, Ravenna Army Ammunition Plant,
 Ravenna, Ohio.
- 32
- 32 SAIC. February 2011. Final Facility-Wide Sampling and Analysis Plan for Environmental
- 34 Investigations, Ravenna Army Ammunition Plant, Ravenna, Ohio.
- 35
- SAIC. February 2011. Quality Assurance Project Plan for Environmental Investigations at the
 Ravenna Army Ammunition Plant.
- 38
- 39 USATHAMA (United States Army Toxic and Hazardous Materials Agency). 1978. *Installation*
- 40 Assessment of Ravenna Army Ammunition Plant. Report No. 132.

PART II

DRAFT

FACILITY-WIDE GROUNDWATER MONITORING PROGRAM RVAAP-66 FACILITY-WIDE GROUNDWATER QUALITY ASSURANCE PROJECT PLAN ADDENDUM

RAVENNA ARMY AMMUNITION PLANT, RAVENNA, OHIO

GSA Contract Number GS-10F-0293K Delivery Order W912QR-11-F-0266

Prepared for

U.S. Army Corps of Engineers 600 Martin Luther King Jr. Place Louisville, Kentucky 40202

Prepared by

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati Ohio 45240

October 24, 2011

CONTRACTOR'S STATEMENT OF INDEPENDENT TECHNICAL REVIEW

Environmental Quality Management, Inc. (EQM) has completed the *Draft Quality Assurance Project Plan.* Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in this project. During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions were verified. This included review of data quality objectives; technical assumptions, methods, procedures, and materials used; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing United States Corps of Engineers policy.

Angye 🛙

Chemist

John M. Miller, CHMM Senior Project Manager

<u>|6 | 2i| |]</u>

TABLE OF CONTENTS

3		
4	C 4	Dece
5 6	<u>Section</u>	on Page
7	Table	es of Contentsi
8		nyms and Abbreviationsiii
9		
10	1	Introduction1
11		
12	2	Project Description
13		
14	3	Project Organization and Responsibilities
15		
16	4	Quality Assurance Objectives for Measurement Data
17		
18	5	Sampling Procedures
19	-	
20	6	Sample Custody
21	-	
22	7	Calibration Procedures and Frequency
23		7.1 Field Instruments/Equipment
24		7.2 Laboratory Instruments15
25	0	A malastical Decas dama
26	8	Analytical Procedures
27		8.1 Laboratory Analysis
28		8.2 Field Screening Analytical Protocols
29 30	9	Internal Quality Control Checks
30 31	9	
32	10	Data Reduction, Validation, and Reporting
32 33	10	Data Reduction, vandation, and Reporting
33 34	11	Performance and System Audits
35	11	
36	12	Preventive Maintenance Procedures
37	12	
38	13	Specific Routine Procedures to Assess Data Precision, Accuracy and Completeness21
39	10	
40	14	Corrective Actions
41		
42	15	Quality Assurance Reports
43		
44	16	References
45		

1

1			
2			
3		TABLE OF CONTENTS (con't)	
4			
5			
6	Section	<u>on</u> <u>Pag</u>	<u>se</u>
7			
8		List of Tables	
9			
10	2-1	Parameter and Methods	2
11			
12	3-1	Laboratory Locations	3
13			
14	4-1	Metals	5
15			_
16	4-2	Perchlorate	5
17	1.2		_
18	4-3	PCBs and Pesticides	6
19 20	4 4	Evalusives and Drenellants	7
20	4-4	Explosives and Propellants	/
21 22	4-5	Volatiles	8
22	4-5	volatiles	0
23 24	4-6	Semivolatiles	Q
24 25	4-0	Semi volames	/
25 26	4-7	General Chemistry1	1
20 27	- T -/	General Chennou y	T
28	5-1	Sampling Procedure Requirements1	3
20 29	51		5

ACRONYMS AND ABBREVIATIONS Automated Data Review ADR AOC Area of Concern BHC Benzene Hexachloride COC Chain-of-Custody COPCs Chemicals of Potential Concern United States Department of Defense DoD Electronic Data Deliverable EDD Environmental Laboratory Accreditation Program ELAP Environmental Quality Management, Inc. EOM Facility-wide Groundwater Monitoring Program FWGWMP **FWSAP** Facility-wide Sampling and Analysis Plan Facility-wide Quality Assurance Project Plan FWQAPP Government Services Administration GSA 1,3,5,7-tetranitro-1,3,5,7-tetrazocane HMX IDW **Investigative-Derived Waste** L Liter LCG Louisville Chemistry Guidelines LCS Laboratory Control Samples Limit of Detection LOD

- 24
- 25 LOO Limit of Ouantization
- Louisville District Quality Systems Manual Supplement 26 LS
- milligram per liter 27 mg/L

1

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

- milliliter 28 mL
- 29 Method Detection Limit **MDL**
- MRL Minimum Reporting Limit 30
- Matrix spike / Matrix spike duplicate MS/MSD 31
- NEIC National Enforcement Investigations Center 32
- Organic Vapor Analyzer 33 OVA
- Polycyclic Aromatic Hydrocarbons 34 PAHS
- PCB **Polychlorinated Biphenyls** 35
- Photoionization Detector PID 36 **Quality Assurance** 37 QA
- OAPP 38
- Quality Assurance Project Plan
- 39 QC **Quality Control**
- **Quality Services Manual OSM** 40 1,3,5-trinitro-1,3,5-triazine RDX 41
- **Reporting Limits** 42 **RLs**
- **Relative Percent Difference** 43 RPD
- **Ravenna Army Ammunition Plant RVAAP** 44
- 45 SAP Sampling and Analysis Plan
- Science Applications International Corporation SAIC 46

1		
2		ACRONYMS AND ABBREVIATIONS (con't)
3		
4		
5	SOPs	Standard Operating Procedures
6	SVOCs	Semivolatile Organic Compounds
7	TAL	Target Analyte List
8	TCLP	Toxicity Characteristic Leaching Procedure
9	TNT	Trinitrotoluene
10	ug/L	microgram per liter
11	um	micrometer
12	USACE	United States Army Corps of Engineers
13	USEPA	United States Environmental Protection Agency
14	VOCs	Volatile Organic Compounds
15		

1	
2	SECTION 1.0
3	
4	INTRODUCTION
5	
6	
7	In order to ensure that any data generated under the Facility-wide Groundwater Monitoring
8	Program (FWGWMP) at the former Ravenna Army Ammunition Plant (RVAAP) is of known
9	and documented quality, the following Quality Assurance Project Plan (QAPP) addendum has
10	been generated by Environmental Quality Management, Inc. (EQM). This QAPP addendum will
11	specify the requirements for precision, accuracy, completeness, and representativeness of data
12	that is expected to be achieved by any parties generating data under this program.
13	
14	All quality assurance/quality control (QA/QC) procedures are in accordance with applicable
15	professional technical standards, United States Environmental Protection Agency (USEPA)
16	requirements, government regulations and guidelines, and specific project goals and
17	requirements. EQM prepared this QAPP addendum in accordance with USEPA QAPP guidance
18	documents, such as the United States Department of Defense (DoD) Quality Services Manual
19	(QSM) for Environmental Laboratories, Version 4.1, and the United States Army Corps of
20	Engineers (USACE), Louisville District Quality Systems Manual Supplement (LS).

SECTION 2.0

PROJECT DESCRIPTION

4 5 6

1

2 3

This QAPP Addendum is part II of the Facility Wide Groundwater Monitoring Program Plan 7 8 RVAAP-66 Facility Wide Groundwater Addendum. For information on site history, past and current data collection activities, schedule, scope of the project, and sample design and rationale, 9 Part I of the Facility Wide Groundwater Monitoring Program Plan RVAAP-66 Facility Wide 10 Groundwater Addendum should be referenced. Part II of this addendum specifically pertains to 11 the requirements of analytical data generation. The groundwater samples collected under this 12 addendum will be analyzed for the Target Analyte List (TAL) metals, explosives (including 13 nitroglycerin), propellants (nitroguanidine and nitrocellulose), semivolatile organic compounds 14 (SVOCs), volatile organic compounds (VOCs), pesticides, and cyanide. Other analyses, such as 15 polychlorinated biphenyls (PCBs), perchlorate, hexavalent chromium, nitrate as N or polycyclic 16 aromatic hydrocarbons (PAHs) will be performed on an as-needed basis as data quality 17 objectives and historical data from each area of concern (AOC) are evaluated. Table 2-1 lists the 18 methods to be used by the analytical laboratories. For information on the methods typically used 19 20 in reporting each analyte, reference Table 4.1 of this addendum.

21 22

Table 2-1. Parameter and Methods Table

Table 2-1. Tatameter and Mictious Table				
	Parameter	Methods (Analytical/ Prep)		
		SW-846 6020/3005A		
	Metals	SW-846 6010B/3005A		
		SW-846 7470A		
	PCBs	SW-846 8082/3520C		
	Pesticides	SW-846 8081A/3520C		
Confirmation of	SVOCs	SW-846 8270C/3520C		
Contamination Extent	VOCs	SW-846 8260B/5030B		
	Perchlorate	SW-846 6860		
	Cyanide	SW-846 9012A		
	Explosives& Propellants	SW-846 8330/SW8330 Modified/ 3535		
	Nitrocellulose	Laboratory SOP WS-WC-0050		
	Hexavalent Chromium	SW-846 7196A		
	Nitrate as N	EPA method 353.2		
		SW-846 6020/1311		
	TCLP Metals	SW-846 6010B/1311		
		SW-846 7470A/1311		
	TCLP VOCs	SW-846 8260		
	TCLP SVOCs	SW-846 8270		
IDW Characterization	TCLP Pesticides	SW-846 8081		
	TCLP Herbicides	SW-846 8151		
	Total Cyanide	SW-846 9012		
	Total Sulfide	SW-846 9034		
	рН	SW-846 9040B		
	Flashpoint	EPA method 1010		
	1' D 1			

23 TCLP=Toxicity Characteristic Leaching Procedure

- 24 EPA- Environmental Protection Agency
- 25 SW-846=United States EPA Hazardous Waste Test Methods

SECTION 3.0 PROJECT ORGANIZATION AND RESPONSIBILITIES The sampling effort will be coordinated by EQM. Test America (North Canton, Ohio) is the primary analytical laboratory that will be providing analytical results and RTI Laboratories (Livonia, Michigan), or another ELAP approved laboratory, will be analyzing split samples for USACE. All laboratories performing work under this addendum will be ELAP approved to perform work for the DoD under the QSM. Once samples are collected by EQM, the samples are packaged as indicated in Part I of this document. Samples are then either transported via express services to PTL or picked up by a

- document. Samples are then either transported via express services to RTI or picked up by a
 Test America courier. Once the samples arrive at the North Canton facility, they are handled per
- documented laboratory procedures. Three of the laboratories within the Test America network
- will be analyzing samples collected at RVAAP, under the coordination of the Test America,
- 18 North Canton Project Manager. Table 3.1 specifies the parameters that will be handled by each
- 19 laboratory.
- 20 21

1

2 3

8

9

10

11 12

13

Table 5-1. Laboratory Docations			
Test America Location	Parameter		
	Metals		
-	PCBs		
	Pesticides		
North Conton	SVOCs/PAHs		
North Canton	VOCs		
	Hexavalent Chromium		
	Cyanide		
	IDW Characterization		
Denver	Perchlorate		
	Explosives & Propellants		
West Sacramento	Nitrate		

Table 3-1. Laboratory Locations

SECTION 4.0

QUALITY ASSURANCE OBJECTIVES FOR MEASUREMENT DATA

4 5

1

2 3

6 All analytical data generated must be of known and documented quality. To generate data of 7 8 known and documented quality, laboratories are required to comply with the requirements presented in the DoD QSM 4.2, the USACE Louisville District QSM Supplement (LS) and 9 method-specific requirements, unless specified by project-specific requirements or if written 10 approval has been obtained from the USACE through EQM. In order to maintain consistency, 11 variances previously accepted for samples analyzed at RVAAP will be applied to samples 12 analyzed under this quality plan addendum. The variances previously approved for use on the 13 FWGWMP at RVAAP under the Louisville Chemistry Guidelines (LCG) are as follows: 14 15 1) The method blank, initial calibration blank and continuing calibration blank acceptance 16 17 criteria to be less than the minimum reporting limit (MRL). 2) The laboratory control samples (LCS) lower control limit for hexachlorocyclopentadiene 18 at 10%. 19 20 3) The LS states" USACE recommends the MRLs be established at or below approximately one-half the project action level and at or above 3x the method detection limit (MDL)." 21 In some cases, Test America has had to adjust their reporting limit (RL) to less than 3x 22 the MDL in order to achieve an RL at or below the project action limit. Therefore EQM 23 proposes that the laboratory set the MRL standard at the project action limit. This action 24 would demonstrate that laboratory instrumentation can measure potential concentrations 25 of target analytes at, or above, the ranges most important to this project for the project 26 action limit. 27 28 In order to assess whether the QA objectives have been met, laboratory and field QC samples are 29 required. Field QC samples required under Part II of this document are equipment rinses, trip 30 blanks, and field duplicates. Laboratory QC used to assess analytical accuracy are the LCS, 31 method blanks, MRL checks, sample duplicates and matrix spikes. Appendix 6 of the QSM 32 specifies frequency of the laboratory QC. Field QC is to be collected at the frequency specified 33 in Part I of this document. The facility-wide QAPP (FWQAPP) addresses the quality parameters 34 each QC sample (field or lab) is used to assess. 35 36 37 The fundamental QA objectives for accuracy, precision, and sensitivity of laboratory analytical data are the OC acceptance criteria of the analytical protocols. Analytical accuracy will be 38

measured by the recoveries of the laboratory control sample (LCS) analysis. The calculated relative percent difference (RPD) between duplicate analyses [matrix spike and matrix spike

41 duplicate (MS/MSD)] is an indication of the precision of the method being employed. The 42 accuracy and precision requirements for each analytical method are incorporated in Tables 4-1

and 4-2 of the FWQAPP and are consistent with the analytical requirements found in the DoD

44 QSM. The sensitivities required for the analyses conducted at RVAAP are identified in Tables

45 4-1 through 4-7 in Part II of this document as RLs. The RLs are current as of the time of the

46 generation of this addendum. Reporting limits are subject to change based on changes in

1 instrumentation, annual MDL studies and sample volume/preparation corrections. See the

2 FWQAPP for definitions and examples of completeness, representativeness, and comparability.

3 The completeness goal for the samples analyzed under this addendum is 90%.

4

Analyte Name	Lab Method	Laboratory Reporting Limits (ug/L)	Project Action Requirements (ug/L)
Aluminum	SW846 6020	50.0	50.0
Antimony	SW846 6020	2.0	2.0
Beryllium	SW846 6020	1.0	1.0
Cadmium	SW846 6020	0.50	0.50
Iron	SW846 6020	50.0	100
Sodium	SW846 6020	1000	200
Thallium	SW846 6020	1.0	1.0
Zinc	SW846 6020	10.0	10.0
Arsenic	SW846 6010B	5.0	5.0
Barium	SW846 6010B	10.0	10.0
Calcium	SW846 6010B	1000	100
Chromium	SW846 6010B	5.0	5.0
Cobalt	SW846 6010B	5.0	5.0
Copper	SW846 6010B	5.0	5.0
Lead	SW846 6010B	3.0	3.0
Magnesium	SW846 6010B	1000	100
Manganese	SW846 6010B	10.0	10.0
Nickel	SW846 6010B	10.0	10.0
Potassium	SW846 6010B	1000	200
Selenium	SW846 6010B	5.0	5.0
Silver	SW846 6010B	5.0	5.0
Vanadium	SW846 6010B	10.0	10.0
Mercury	SW846 7470A	0.20	0.20
Hexavalent Chromium	SW846 7196	0.02mg/L	0.02mg/L

Table 4-1. Metals

Table 4-2. Perchlorate

Analyte Name	Lab Method	Laboratory Reporting Limits (ug/L)	Project Action Requirements (ug/L)
Perchlorate	SW846 6860	0.050	0.1

Analyte Name	Lab Method	Laboratory Reporting Limit (ug/L)	Project Action Requirements (ug/L)
Aroclor 1016	SW846 8082	0.50	0.20
Aroclor 1221	SW846 8082	0.50	0.20
Aroclor 1232	SW846 8082	0.50	0.20
Aroclor 1242	SW846 8082	0.50	0.20
Aroclor 1248	SW846 8082	0.50	0.20
Aroclor 1254	SW846 8082	0.50	0.20
Aroclor 1260	SW846 8082	0.50	0.20
4,4-DDD	SW846 8081A	0.030	0.050
4,4-DDD	SW846 8081A	0.030	0.050
4,4-DDT	SW846 8081A	0.030	0.050
Aldrin	SW846 8081A	0.030	0.030
alpha-BHC	SW846 8081A	0.030	0.030
alpha-Chordane	SW846 8081A	0.030	0.050
beta-BHC	SW846 8081A	0.030	0.050
delta-BHC	SW846 8081A	0.030	0.050
Dieldrin	SW846 8081A	0.030	0.030
Endosulfan I	SW846 8081A	0.025	0.05
Endosulfan II	SW846 8081A	0.025	0.05
Endosulfan sulfate	SW846 8081A	0.030	0.05
Endrin	SW846 8081A	0.030	0.05
Endrin aldehyde	SW846 8081A	0.030	0.05
Endrin ketone	SW846 8081A	0.030	0.05
gamma-BHC	SW846 8081A	0.030	0.05
gamma-Chlordane	SW846 8081A	0.030	0.050
Heptachlor	SW846 8081A	0.030	0.030
Heptachlor epoxide	SW846 8081A	0.030	0.030
Methoxychlor	SW846 8081A	0.10	0.10
Toxaphene	SW846 8081A	2.0	2.0

Table 4-3. PCBs and Pesticides

BHC = benzene hexachloride

4,4-DDD=4,4-Dichlorodiphenyldichloroethane

4,4-DDT=4,4-Dichlorodiphenyltrichloroethane

3 4 4,4-DDE=4,4-Dichlorodiphenyldichloroethylene 5

6

1 able 4-4.	Explosives and P	ropenants	
		Laboratory	Project Action
Analyte Name	Lab Method	Reporting	Requirements
		Limit (ug/L)	(ug/L)
1,3,5-Trinitrobenzene	SW846 8330	0.097	0.2
1,3-Dinitrobenzene	SW846 8330	0.097	0.2
2,4,6-TNT	SW846 8330	0.097	0.2
2,4-Dinitrotoluene	SW846 8330	0.097	0.1
2,6-Dinitrotoluene	SW846 8330	0.097	0.1
2-Amino-4,6-dinitrotoluene	SW846 8330	0.097	0.2
2-Nitrotoluene	SW846 8330	0.48	0.2
3-Nitrotoluene	SW846 8330	0.48	0.2
4-Amino-2,6-Dinitrotoluene	SW846 8330	0.097	0.2
4-Nitrotoluene	SW846 8330	0.48	0.2
HMX	SW846 8330	0.097	0.5
Nitrobenzene	SW846 8330	0.097	0.2
Nitrogylcerin	SW846 8330	0.63	3
Pentaerythritol Tetranitrate	SW846 8330	0.63	3
RDX	SW846 8330	0.097	0.5
Tetryl	SW846 8330	0.097	0.2
Nitrocellulose	WS-WC-0050	2.0	500
Nitroguanidine	SW846 8330 Modified	20	20

Table 4-4. Explosives and Propellants

2 TNT = trinitrotoluene

3 HMX = 1,3,5,7-tetranitro-1,3,5,7-tetrazocane

4 RDX = 1,3,5-trinitro-1,3,5-triazine

Analyte Name	Lab Method	Laboratory Reporting Limit (ug/L)	Project Action Requirements (ug/L)
1,1,1-Trichloroethane	SW846 8260B	1.0	1.0
1,1,2,2-Tetrachloroethane	SW846 8260B	1.0	1.0
1,1,2-Trichloroethane	SW846 8260B	1.0	1.0
1,1-Dichloroethane	SW846 8260B	1.0	1.0
1,1-Dichloroethene	SW846 8260B	1.0	1.0
1,2-Dibromoethane	SW846 8260B	1.0	1.0
1,2-Dichloroethane	SW846 8260B	1.0	1.0
1,2-Dichloroethene (total)	SW846 8260B	1.0	1.0
1,2-Dichloropropane	SW846 8260B	1.0	1.0
2-Butanone	SW846 8260B	10	10
2-Hexanone	SW846 8260B	10	10
4-Methyl-2-pentanone	SW846 8260B	10	10
Acetone	SW846 8260B	10	10
Benzene	SW846 8260B	1.0	1.0
Bromochloromethane	SW846 8260B	1.0	1.0
Bromodichloromethane	SW846 8260B	1.0	1.0
Bromoform	SW846 8260B	1.0	1.0
Bromomethane	SW846 8260B	1.0	1.0
Carbon disulfide	SW846 8260B	1.0	1.0
Carbon tetrachloride	SW846 8260B	1.0	1.0
Chlorobenzene	SW846 8260B	1.0	1.0
Chloroethane	SW846 8260B	1.0	1.0
Chloroform	SW846 8260B	1.0	1.0
Chloromethane	SW846 8260B	1.0	1.0
cis-1,2-Dichloroethene	SW846 8260B	1.0	1.0
cis-1,3-Dichloropropene	SW846 8260B	1.0	1.0
Dibromochloromethane	SW846 8260B	1.0	1.0
Ethylbenzene	SW846 8260B	1.0	1.0
M&P-Xylenes	SW846 8260B	2.0	2.0
Methylene chloride	SW846 8260B	2.0	1
o-Xylene	SW846 8260B	1.0	1.0
Styrene	SW846 8260B	1.0	1.0
Tetrachloroethene	SW846 8260B	1.0	1.0
Toluene	SW846 8260B	1.0	1.0

Table 4-5. Volatiles

Analyte Name	Lab Method	Laboratory Reporting Limit (ug/L)	Project Action Requirements (ug/L)
trans-1,2-Dichloroethene	SW846 8260B	1.0	1.0ug/L
Total Xylenes	SW846 8260B	2.0	2.0
Trichloroethene	SW846 8260B	1.0	1.0
Vinyl chloride	SW846 8260B	1.0	1.0

Table 4-5. Volatiles (continued)

Table 4-6. Semivolatiles

Analyte Name	Lab Method	Laboratory Reporting Limit (ug/L)	Project Action Requirements (ug/L)
1,2,4-Trichlorobenzene	SW846 8270C	1.0	10
1,2-Dichlorobenzene	SW846 8270C	1.0	10
1,3-Dichlorobenzene	SW846 8270C	1.0	10
1,4-Dichlorobenzene	SW846 8270C	1.0	1.0
2,2-Oxybis (1-Chloropropane)	SW846 8270C	1.0	10
2,4,5-Trichlorophenol	SW846 8270C	5.0	25
2,4,6-Trichlorophenol	SW846 8270C	5.0	5.0
2,4-Dichlorophenol	SW846 8270C	2.0	10
2,4-Dimethylphenol	SW846 8270C	2.0	10
2,4-Dinitrophenol	SW846 8270C	5.0	25
2,4-Dinitrotoluene	SW846 8270C	5.0	10
2,6-Dinitrotoluene	SW846 8270C	5.0	10
2-Chloronaphthalene	SW846 8270C	1.0	10
2-Chlorophenol	SW846 8270C	1.0	10
2-Methylnaphthalene	SW846 8270C	0.20	10
2-Methylphenol	SW846 8270C	1.0	10
2-Nitroaniline	SW846 8270C	2.0	25
2-Nitrophenol	SW846 8270C	2.0	10
3,3'-Dichlorobenzidine	SW846 8270C	5.0	5.0
3-Nitroaniline	SW846 8270C	2.0	25
4,6-Dinitro-2-methylphenol	SW846 8270C	5.0	25
4-Bromophenyl phenyl ether	SW846 8270C	2.0	10
4-Chloro-3-methylphenol	SW846 8270C	2.0	10
4-Chloroaniline	SW846 8270C	2.0	10
4-Chlorophenyl phenyl ether	SW846 8270C	2.0	10

 Table 4-6.
 Semivolatiles (continued)

Analyte Name	Lab Method	Laboratory Reporting Limit (ug/L)	Project Action Requirements (ug/L)
3 &4-Methylphenol	SW846 8270C	1.0	10
4-Nitroanaline	SW846 8270C	2.0	25
4-Nitrophenol	SW846 8270C	5.0	25
Acenaphthene	8270C	0.20	10
Acenaphthylene	8270C	0.2	10
Anthracene	8270C	0.20	10
Benzo(a)anthracene	8270C	0.20	0.20
Benzo(a)pyrene	8270C	0.20	0.20
Benzo(b)fluoranthene	8270C	0.20	0.20
Benzo(g,h,i)perylene	8270C	0.20	10
Benzo(k)fluoranthene	8270C	0.20	0.20
Benzoic acid	8270C	10	25
Benzyl alcohol	8270C	5.0	10
bis(2-Chloroethoxy)methane	8270C	1.0	10
Bis (2-chloroethyl)ether	8270C	1.0	1.0
bis(2-Ethylhexyl)phthalate	8270C	10	10
Butylbenzyl phthalate	8270C	1.0	10
Carbazole	8270C	1.0	10
Chrysene	8270C	0.20	10
Dibenzo(a,h)anthracene	8270C	0.20	50
Dibenzofuran	8270C	1.0	10
Diethyl phthalate	8270C	1.0	10
Dimethyl phthalate	8270C	1.0	10
Di-n-butyl phthalate	8270C	1.0	10
Di-n-octyl phthalate	8270C	1.0	10
Fluoranthene	8270C	0.20	10
Fluorene	8270C	0.20	10
Hexachlorobenzene	8270C	0.20	10
Hexachlorobutadiene	8270C	1.0	10
Hexachlorocyclopentadiene	8270C	10	10
Hexachloroethane	8270C	1.0	10
Indeno(1,2,3-cd)pyrene	8270C	0.20	0.2
Isophorone	8270C	1.0	10
Naphthalene	8270C	0.20	10
Nitrobenzene	8270C	1.0	10

²

Analyte Name	Lab Method	Laboratory Reporting Limit (ug/L)	Project Action Requirements (ug/L)
N-nitroso-di-n-propylamine	8270C	1.0	10
N-Nitrosodiphenylamine	8270C	1.0	10
Pentachlorophenol	8270C	5.0	5.0
Phenanthrene	8270C	0.20	10
Phenol	8270C	1.0	10
Pyrene	8270C	0.20	10

Table 4-6. Semivolatiles (continued)

Table 4-7. General Chemistry

Analyte Name	Lab Method	Laboratory Reporting Limit (mg/L)	Project Action Requirements (mg/L)
Cyanide	9012A	0.010	0.01
Nitrate as N (NO3-N)	353.2	0.1	0.1

2 3

1	
2	SECTION 5.0
3	
4	SAMPLE PROCEDURES
5	
6	
7	Sampling procedures are outlined in Part I of this document. See Table 5-1 below for container
8	and preservation requirements. Requirements listed in Table 5-1 are on a per sample basis. The
9	exact number of samples to be collected and the chemicals to be analyzed for each AOC will be
10	conducted in accordance with Section 2 of Part I of this document.
11	

·		-1 Sample Re	equirements	
Analyte Group	Containers*	Minimum Sample Size	Preservative	Holding Time (days)
	(3) 40-mL glass vials		HCl to pH<2,	
VOCs	with Teflon-lined septa	80 mL	Cool, 4°C	14 days
SVOCs	(2) 1-liter amber			7 days extraction
Pesticides	bottles with Teflon-	1 L	Cool, 4°C	40 days analysis
_ ~_	lined lid for each	12	0001, 1 0	
PCBs	analyte group		0.45	
Metals	500-mL polybottle	300 mL	0.45 um filter HNO ₃ to pH<2, Cool, 4°C	180 days, Hg at 28 days
			0.2 um filter	
			with prefilter,	
Perchlorate	250-mL polybottle	250 mL	Cool, 4°C	28 days
			NaOH to pH>12,	
Cyanide	250-mL polybottle	250 mL	Cool, 4°C	14 days
Explosives	(3) 1-liter amber			7 days extraction,
&	bottles with Teflon-	2 L	Cool, 4°C	40 days analysis
Propellants	lined lid			
Hexavalent		• • • • •		24 hours
Chromium	250-mL polybottle	200 mL	Cool, 4°C	
NUM	250 mJ malasha441a	250 mJ	H_2SO_4 to pH<2,	29. 1
Nitrate TCLP	250-mL polybottle	250 mL	Cool, 4°C	28 days
Metals		1 L		180 days, Hg at 28 days
TCLP				20 uays
VOCs		1 L		14 days
TCLP				14 days
SVOCs	(4) 1-L amber Glass	1 L		14 days
Reactive			Cool 4°C	11 duy5
Cyanide	(1) 250 mL polybottle	250 ml	Cool, 4°C	14 days
Reactive		250 III		1+ uuys
Sulfide				7 days
Sunde		<u> </u>		As soon as
pН		1 L		possible
-				· · · · ·
Flashpoint				N/A

Table 5-1 Sample Requirements

*Container requirements as listed are for one sample, the MS/MSD analyses are each considered a sample

1 **SECTION 6.0** 2 3 SAMPLE CUSTODY 4 5 6 7 This project will follow Section 6.0 of the FWQAPP and USEPA policy regarding sample 8 custody and chain-of-custody (COC) protocols as described in National Enforcement Investigations Center (NEIC) Policies and Procedures. This custody is in three parts: sample 9 collection, laboratory analysis, and final evidence files. The sample custody procedures are set 10 forth in Section 6.0 of the FWQAPP and further described in the Sections 6.0 and 7.0 of Part I of 11 this document. The Contractor Project Manager or designee will review all field activities to 12 determine whether proper custody procedures were followed during the fieldwork and to decide 13 if additional samples are required. 14 15 Coolers picked up by the laboratory rather than transported via shipping company will be signed 16 under separate team designated COCs with cooler identification numbers listed. A custody seal 17 will be attached to the "access" side of each cooler. When the courier arrives to pick up samples, 18 the sample custody will be transferred from EQM personnel to Test America. The sample 19

- 20 custody transfer will be documented on each COC.
- 21

1	
2	SECTION 7.0
3	CALIBRATION PROCEDURES AND FREQUENCY
4 5	CALIDRATION FROCEDURES AND FREQUENCY
6	
7	Calibration and maintenance of field and laboratory instrumentation will be conducted prior to
8	and during continued use to establish that the equipment is functioning to the desired sensitivity.
9	
10	
11	7.1 Field Instruments/Equipment
12	
13	Field instruments and equipment calibrations will follow procedures described in Section 7.0 of
14	the FWQAPP. A project Material and Testing Equipment logbook will not be utilized. At a
15	minimum the following information will be recorded electronically or on calibration logs as
16	identified in Part III of this document:
17	
18	• Equipment name/ identifier
19	Date/time of calibration
20	Name of calibration personnel
21	Reference standard/results
22	• Procedures used or other pertinent information.
23	
24	7.2 Loboustowy Instruments
25 26	7.2 Laboratory Instruments
26 27	Procedures and records of calibration will follow direction as stated in the DoD QSM and LS.
27	For modified methods (8330M) and methods that are governed by laboratory standard operating
28 29	procedures (SOPs) (i.e. nitrocellulose), refer to the appropriate SOP for the required calibration

procedures and frequencies.

1 **SECTION 8.0** 2 3 **ANALYTICAL PROCEDURES** 4 5 6 8.1 7 **Laboratory Analysis** 8 9 The total number of samples to be collected and chemical groups to be analyzed for this investigation are presented in Part I, Section 2 of this document. The new wells will be sampled 10 and analyzed for the parameters presented in Table 2-2 of Part I of this document for four (4) 11 consecutive quarters. In addition, all of the new wells are anticipated to be sampled for 12 hexavalent chromium during one of the 2012 monitoring events. Section 2.2 of Part III of this 13 document, presents the chemicals of potential concern (COPCs) for RVAAP. Section 5.0 of this 14 document summarizes the container types, container sizes, preservatives, and sample holding 15 times. Typical RLs for samples are listed in Section 4 of this addendum. The contract 16 17 laboratory will provide sufficient containers of the proper size and with the proper chemical preservatives for the parameters to be collected. 18 19 20 8.2 **Field Screening Analytical Protocols** 21 22 All field measurement procedures and criteria will follow Section 7.0 of this addendum and Section 5.4.3 of the FWSAP. Tabulation of the methodologies appears in Tables 4-1 and 4-2 of 23

- the FWQAPP. All monitoring wells will be field screened for VOCs using a photoionization
- 25 detector (PID) or organic vapor analyzer (OVA) during groundwater sample collection.
- 26 Screening will be accomplished by monitoring the headspace vapors at the top of the riser pipe.
- 27 Only screening of drill cuttings and core samples for organic vapors using a PID will be
- conducted; headspace analyses of drill cuttings or core samples will not be conducted.

SECTION 9.0

INTERNAL QUALITY CONTROL CHECKS

3 4

1

2

- 5
- 6 7

8 Internal quality control checks are in place to ensure the production of analytical data is of

9 known and documented quality as documented in Section 9.0 of the FWQAPP. Field sample

10 procedures are checked by assessing field duplicate and field QC samples. Field equipment is

checked as specified in Part I of this document. Samples are prepped and analyzed as directed in the DoD QSM and LS. The data generated through the analysis is verified to be of known

12 quality through the use of analytical QC, such as method blanks, calibration checks, LCS, matrix

spikes, MRL checks, internal standards, and surrogates In addition, all Test America

15 laboratories (North Canton, West Sacramento, and Denver) involved with generating data have a

written QA plan providing rules and guidelines to ensure the reliability and validity of work

17 conducted at the laboratory.

SECTION 10.0

DATA REDUCTION, VALIDATION, AND REPORTING

4 5 6

1

2 3

Field data recorded electronically will be reviewed following the conclusion of each sampling 7 event by the EQM Project Manager or designee. Laboratory data shall be reviewed by 8 laboratory personnel so as to concur with requirements stated in the DOD QSM, LS, and 9 laboratory quality plan. The contractor shall be notified of any discrepancies via email and 10 resolutions will be documented through the case narrative. Following the conclusion of 11 laboratory review, assignment of data qualifiers, and sign off by the laboratory project manager, 12 an analytical data package shall be supplied by the laboratory to the contractor. The data 13 package maybe in electronic or hard copy format. The data package shall consist of the elements 14 outlined in Section 10.3 of the FWQAPP, including ADR EDD, with the exclusion of LCS 15 control charts. The LCS control charts shall be generated by the laboratory as directed by the 16 17 laboratory quality manual and made available to EQM as requested. Analytical data will then be reviewed by qualified EQM personnel and a report generated according to Step-2 of the 18 Louisville Supplement to the QSM, with any deviations/outliers noted in the summary report. A 19 typical summary report generated by the EQM reviewer will be by laboratory workorder and 20 consist of a verification summary report, a list of samples included in the review process, 21 associated chains of custody, summaries of results and QC, checklists used in data review and a 22 summary of qualified results. 23

1	
2	SECTION 11.0
3	
4	PERFORMANCE AND SYSTEM AUDITS
5	
6	
7	Performance and system audits of both field and laboratory activities will be conducted to verify
8	that sampling and analysis are performed in accordance with the procedures established in the
9	FWSAP and FWQAPP. Audits of field and laboratory activities will include both internal and
10	external audits. A minimum of one field surveillance for the investigation will be performed by
11	EQM. This surveillance will encompass the performance of monitoring well installation and
12	completion of field logs or of monitoring well sampling and completion of field logs.
13	Laboratory audits will be in the form of onsite system audits by DoD Environmental Laboratory
14	Accreditation Program (ELAP) accrediting agency and internal QA audits as stated in the
15	FWQAPP.
	-

1	
2	SECTION 12.0
3	
4	PREVENTATIVE MAINTENANCE PROCEDURES
5	
6	
7	Preventative maintenance procedures are presented in the Section 12.0 of the FWQAPP.
8	Calibration checks and calibrations will be documented on a calibration log or equivalent. Any
9	maintenance conducted on field equipment must be documented in the logbook or electronic
10	logs. All laboratory instruments will be maintained in accordance with manufacturers'
11	specifications and the requirements of the specific method employed. Emergency repair or
12	scheduled manufacturer's maintenance will be provided under a repair and maintenance contract
13	with factory representatives or qualified in-house technical personnel.
14	

5

6 7

1

SECTION 13.0

SPECIFIC ROUTINE PROCEDURES TO ASSESS DATA PRECISION, ACCURACY AND COMPLETENESS

Field data will be assessed by the site QC Officer, or designee. The site QC Officer or his/her
designee will review the field results for accuracy by reviewing daily instrument calibrations. In
addition, completeness will be assessed by the site QC Officer or his/her designee by verifying
all samples planned for collection are collected within the sampling event.

12

13 Laboratory data will be assessed for precision, accuracy, completeness, sensitivity and

- representativeness/comparability. Precision will be assessed by evaluating duplicate sample difference RPD.
- 16

16

$RPD = \frac{|S-D|}{\frac{(S+D)}{2}} \times 100$

17 18 Where:

S = First sample value (original or matrix spike value),

21 D = Second sample value (duplicate or matrix spike duplicate value).

22

Accuracy will be evaluated by comparing the recovered values for the LCS and matrix spikes to
 the documented true values (percent recovery, %R).

- 26 % $R = 100 (x_s x_u)/K$
- 27 Where:
- 28 x_s = measured value for the spiked sample
- 29 x_u = measured value of the unspiked sample
- 30 K=the known value of spike in the sample
- 31

32 Completeness will be evaluated by the following equation and documented in the verification

- 33 report.
- 34

$Completeness = \underbrace{Number of Valid Laboratory Measurements Made}_{Number of Laboratory Measurements Planned} \times 100\%$

- Sensitivity will be assessed by the laboratory in establishing limit of detection (LOD) and limit
- of quantization (LOQ). The LOD and LOQ are determined at the frequency stated in the
- laboratory's quality manual. Instrument sensitivity can also be monitored by MRL checks.
- 39 Representativeness and comparability may be gained through statistical evaluation of data
- 40 populations, chemical charge balances, compound evaluations, or dual measurement
- 41 comparisons (e.g., total versus dissolved water analysis and field versus fixed laboratory

42 analyses).

1 2 **SECTION 14.0** 3 4 **CORRECTIVE ACTIONS** 5 6 7 8 Corrective actions may be required for two major types of problems: analytical/equipment problems and non-compliance with criteria. Analytical and equipment problems may occur 9 during sampling, sample handling, sample preparation, laboratory instrumental analysis, and data 10 review. Analytical/equipment problems will be addressed in accordance with Section 14.0 of the 11 FWQAPP with the exception that any laboratory non-conformances impacting quality of data 12 will be documented via email to the contractor, and the contractor shall direct the laboratory how 13 to proceed with analysis. The contractor will notify the USACE representative, as deemed 14 necessary depending on severity and impact; otherwise, the nonconformance will be noted in the 15 final report. 16

1	
2	SECTION 15.0
3	
4	QUALITY ASSURANCE REPORT
5	
6	
7	All performance and system audits of laboratory and field operations will be reported directly to
8	project management, program management, and USACE in accordance with Section 11.0 and
9	15.0 of the FWQAPP.

1	
2	SECTION 16.0
3	
4	REFERENCES
5	
6 7 8	DoD. 2009. United States DoD QSM for Environmental Laboratories, Version 4.1.
9	SAIC. Final Facility-Wide Sampling and Analysis Plan for Environmental Investigations,
10	Ravenna Army Ammunition Plant, Ravenna, Ohio. February 24, 2011.
11	
12	USACE. 2002. USACE Louisville Chemistry Guideline Version 5.0.
13	
14	USACE. 2004. Facility-Wide Groundwater Monitoring Program for the Ravenna Army
15	Ammunition Plant, Ravenna, Ohio, GS-10F-0350M, D.O. DACA27-03-F-0047.
16	
17	USACE. 2007. Perchlorate Analysis Addendum to the Facility-Wide Groundwater Monitoring
18	Program.
19	
20	USACE. 2007. Louisville District Quality Systems Manual Supplement.
21	
22	USEPA. 1978. National Enforcement Investigations Center (NEIC) Policies and Procedures.

PART III

DRAFT

FACILITY-WIDE GROUNDWATER MONITORING PROGRAM RVAAP-66 FACILITY-WIDE GROUNDWATER SITE SAFETY AND HEALTH PLAN

ADDENDUM

RAVENNA ARMY AMMUNITION PLANT, RAVENNA, OHIO

GSA Contract Number GS-10F-0293K Delivery Order W912QR-11-F-0266

Prepared for

U.S. Army Corps of Engineers 600 Martin Luther King Jr. Place Louisville, Kentucky 40202

Prepared by

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati, Ohio 45240

October 24, 2011

CONTRACTOR'S STATEMENT OF INDEPENDENT TECHNICAL REVIEW

Environmental Quality Management, Inc. (EQM) has completed the *Draft Facility-Wide Groundwater Monitoring Program RVAAP-66 Facility-Wide Groundwater Site Safety and Health Plan.* Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in this project. During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions were verified. This included review of data quality objectives; technical assumptions, methods, procedures, and materials used; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing United States Corps of Engineers policy.

Colleen A. Lear, LG phone: (513)-218 6244 Plan Preparer/ Senior Project Geologist Date

Date

John R. Kominsky, CIH, CSP phone: (513)-310-4473 Approval / Senior Safety & Health Manager

John M. Miller, CHMM phone: (513)-673 4065 Concurrence / Senior Project Manager

* Signatures will be obtained for the final version.

Date

STATEMENT OF CONTRACTOR'S SAFETY AND HEALTH POLICY

It is the policy of EQM to provide a safe and healthful workplace for all employees, subcontractors, and consultants in compliance with government regulations and client specifications. Effective programs which protect workers and ensure regulatory compliance are a vital corporate priority. EQM bases all of its operations on the principle that all occupational illnesses, accidents, and injuries are preventable. If an assignment cannot be done safely, it will not be done unless and until work modifications are in place so that the assignment can be done safely. Successful safety performance requires every individual's continuous involvement, teamwork, and leadership. Everyone is responsible and accountable for safety.

TABLE OF CONTENTS

3	
4	Section

1 2

Page

Acro	onyms an	d Abbreviations	i
1	Introd	luction	
1	muou		••••••
2	Site D	Description and Contamination Characterization	
	2.1	Site Description	
		2.1.1 Munitions Response Sites (MRS)	
	2.2	Contaminant Characterization	
3	Uozor	d/Disk Analysis	
3		d/Risk Analysis	
	3.1	Hazard Inventory	
	3.2	Activity Hazard Analysis	
	3.3	Potential Exposure	••••••
4	Staff		
•	Stuff		
5	Traini	ng	••••••
6	Person	nal Protective Equipment	
7	Medic	cal Surveillance	
8	Expos	sure Monitoring/Air Sampling	
9	Heat/	Cold Stress	
10		ard Operating Procedures	
	10.1	Drill Rig Operations	
	10.2	Munitions and Explosives of Concern Avoidance	
	~ ~ ~		
11	Site C	Control Measures	
10	D		
12	Perso	nal Hygiene and Decontamination	
13	Emor	anay Proceedures and Equipment	
15	13.1	gency Procedures and Equipment Phone List	
	13.2	Emergency Procedures	••••••
14	Logs,	Reports, and Recordkeeping	
	P-66 SSHP	Page i	

1			
1			
2 3		TABLE OF CONTENTS (con't)	
3 4			
5	<u>Section</u>	<u>on</u>	Page
6 7	15	References	
8 9			
9 10			
11		FIGURES	
12 13	1-1	RVAAP Site Location Map	4
14	1-2	RVAAP Facility Map	
15	4-1	Project Organizational Chart	
16	13-1	Hospital Route Map	
17	13-2	Facility Assembly / Evacuation Map	
18	15 2	r denity risseniory / Dvdedation inap	
19			
20			
21		TABLES	
22			
23	2-1	Contaminant of Potential Concern	7
24	2-2	Chemicals Potentially Used to Conduct Site Work	7
25	3-1	Hazards Inventory	8
26	3-2	Potential Exposures	10
27	4-1	Staff Organization	14
28	5-1	Training Requirements	15
29	8-1	Monitoring Requirements and Action Limits	19
30	13-1	Emergency Phone Numbers	
31			
32			
33		APPENDICES	
34			
35	А	Material Safety Data Sheets	
36	В	Activity Hazard Analysis	
37	С	Forms	
38	D	Chemical Concentration Tables	
39	E	Key Personnel Certification	
40			
41			

ACRONYMS AND ABBREVIATIONS

1		ACKOULTING AND ADDREVIATION
2		
3		
4	AOCs	Areas of Concern
5	AHA	Activity Hazard Analysis
6	Camp Ravenna	Camp Ravenna Joint Military Training Center
7	CPR	Cardiopulmonary Resuscitation
8	CEC	Civil & Environmental Consultants
9	CFR	Code of Federal Regulations
10	CIH	Certified Industrial Hygienist
11	COPCs	Chemicals of Potential Concern
12	CRZ	Contamination Reduction Zone
13	dBA	DeciBels
14	eV	electron volts
15	EQM	Environmental Quality Management, Inc.
16	F	Fahrenheit
17	FOM	Field Operations Manager
18	FP	Flashpoint
19	ft	feet
20	FWSAP	Facility-Wide Sampling and Analysis Plan
21	FWSHP	Facility-Wide Safety and Health Plan
22	GOCO	Government-owned, contractor-operated
23	GSA	Government Services Administration
24	HAZWOPER	Hazardous Waste Operations
25	H&S	Health and Safety
26	hr	hour
27	IDW	Investigation-Derived Waste
28	IP	Ionization Potential
29	IRP	Installation Restoration Program
30	Lbs	pounds
31	MEC	Munitions and Explosives of Concern
32	mmHg	millimeters of mercury
33	mm	millimeter
34	MSDSs	Material Safety Data Sheet
35	MRS	Munitions Response Site
36	NA	Not available
37	NGB	National Guard Bureau
38	OHARNG	Ohio Army National Guard
39	OJT Obio EDA	On the Job Training
40	Ohio EPA	Ohio Environmental Protection Agency
41		Occupational Safety & Health Administration Polycyclic Aromatic Hydrocarbon
42	PAHs PCBs	
43 44	PCBs	Polychlorinated Biphenyls Photoionization Detector
44 45	PID PM	Project Manager
45 46	PPE	Personal Protective Equipment
40		reisonai i rotective Equipment

ACRONYMS AND ABBREVIATIONS (con't)

3		
4		
5	ppm	parts per million
6	NIOSH	National Institute of Occupational Safety and Health
7	RTLS	Ravenna Training and Logistic Site
8	RVAAP	Ravenna Army Ammunition Plant
9	SAIC	Science Applications International Corporation
10	SAP	Sampling and Analysis Plan
11	SSHO	Site Safety and Health Officer
12	SSHP	Site Safety and Health Plan
13	SVOCs	Semivolatile Organic Compounds
14	TNT	Trinitrotoluene
15	USACE	United States Army Corps of Engineers
16	UXO	Unexploded Ordnance
17	VOCs	Volatile Organic Compounds
18	VP	Vapor Pressure

1

SECTION 1.0

INTRODUCTION

4 5

1

2 3

6 The Ravenna Army Ammunition Plant (RVAAP) Facility-Wide Safety and Health Plan for 7 8 Environmental Investigations (FWSHP) (SAIC 2011), and this Site Safety and Health Plan (SSHP) Addendum jointly set forth the minimum requirements and specific procedures for 9 protecting personnel involved in Environmental Investigative Services at the RVAAP, 10 specifically the RVAAP-66 Facility-Wide Groundwater activities. Environmental Quality 11 Management, Inc. (EQM) is responsible for implementing and completing comprehensive 12 groundwater monitoring services. This plan provides Contractors with guidance on health and 13 safety hazards and controls. Nothing in this document relieves the Contractor from the 14 requirement to comply with all applicable portions of the USACE Safety and Health 15 Requirements Manual EM 385-1-1 and Occupational Safety & Health Administration (OSHA) 16 regulations and to provide a safe workplace. All field personnel are required to comply with the 17 requirements set forth within these programs and plans. In addition, subcontractors are 18 responsible for providing their employees with a healthy and safe work place. These plans are to 19 20 be adopted and do not relieve subcontractors of their responsibilities. If the requirements of these plans are not sufficient to protect the employees of a subcontractor, that subcontractor is 21 required to supplement or modify this information with work practices and procedures that will 22 ensure the safety of its personnel and provide the information to EQM. 23 24 25 This SSHP serves as a lower-tier document addressing the hazards and controls specific to on-26 site tasks and activities involved in implementing and completing comprehensive groundwater monitoring services per the Government Services Administration (GSA) Contract Number GS-27 10F-0293K, Delivery Order W912QR-11-F-0266 for the U.S. Army Corps of Engineers 28 29 (USACE), Louisville District. This addendum references the FWSHP and all those items not duplicated within it. Details such as a description of site conditions, maximum anticipated 30 contaminant concentrations, and investigation-specific variations from the FWSHP are presented 31 in this project-specific addendum. A copy of this FWSHP and the appropriate SSHP Addendum 32 33 will be present at each work site. 34 Planned site activities consist of environmental sampling and support tasks. These tasks include 35

well installation at multiple different locations within RVAAP. Final drilling locations may
 change slightly based on the results of utility clearance by RVAAP and surveys for the presence

of Munitions and Explosives of Concern (MEC). Groundwater sampling will be conducted on

the newly-installed and existing monitoring wells consistent with the Facility-Wide Sampling

and Analysis Plan for Environmental Investigations (FWSAP) (SAIC 2011). Groundwater
 sampling will be sampled using low-flow methods as specified in the FWSAP and Part I of this

42 document. These documents address the installation and groundwater sampling of monitoring

43 wells at RVAAP.

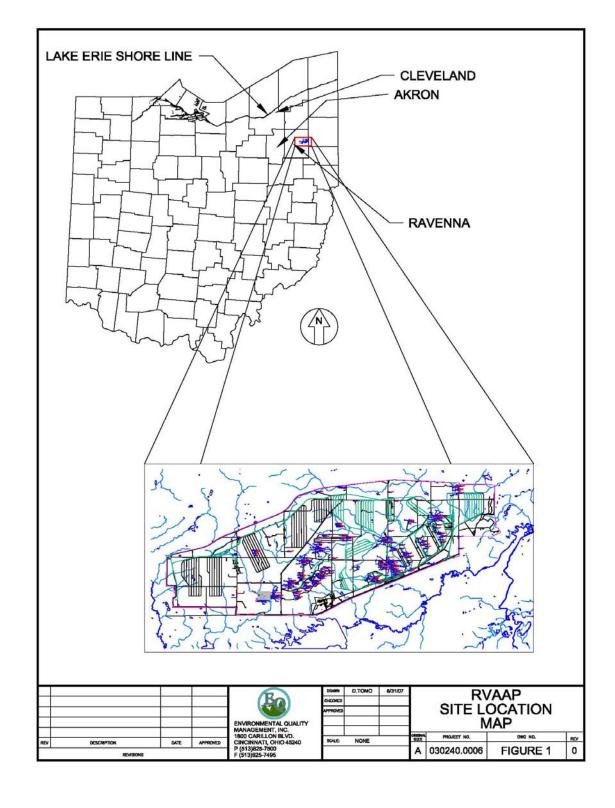
44

The most significant potential hazards posed by these tasks include: injury from ordnance and explosives; striking, rotation, and noise hazards from drilling; lifting, noise, and physical strain

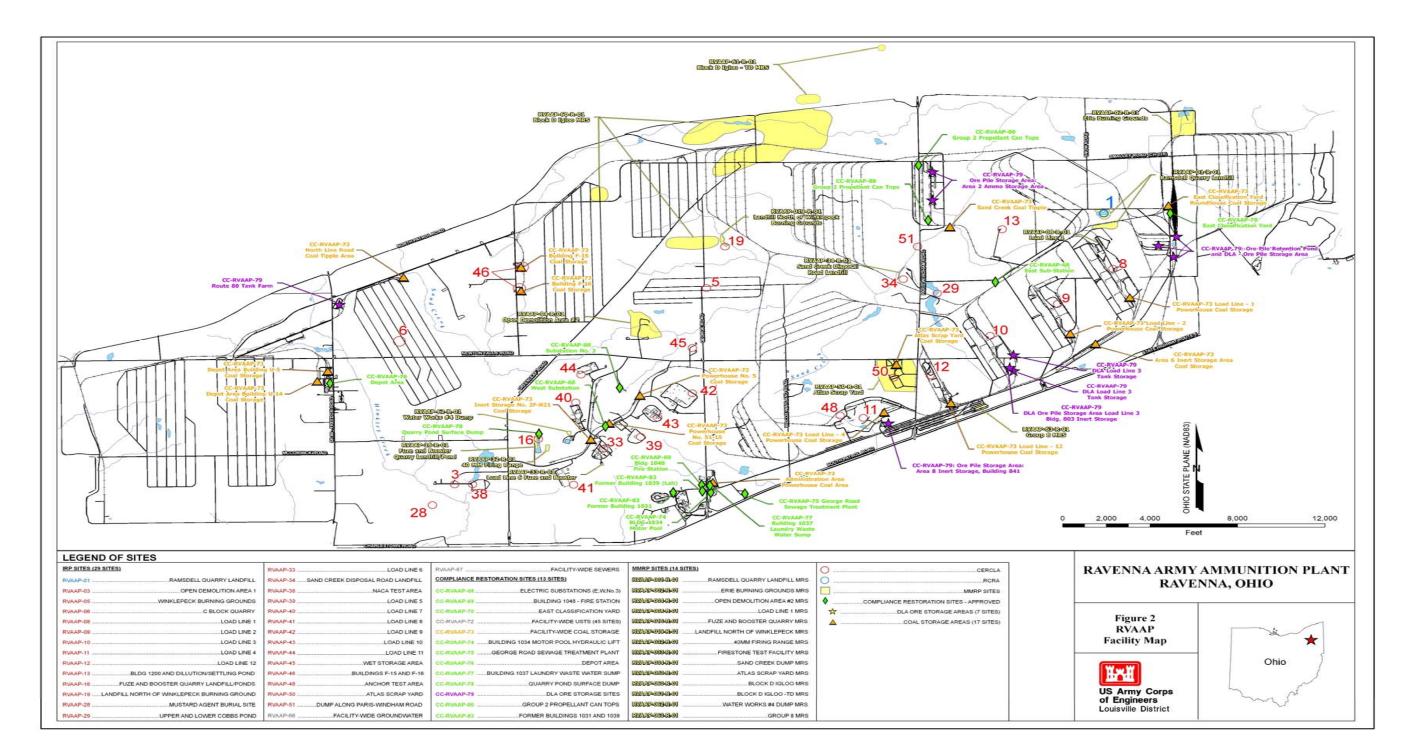
- 1 associated with operating sampling equipment; fuel or decontamination solvent fires; chemical
- 2 exposure; temperature extremes; stinging/biting insects; poisonous plants; and snakes.
- 3
- 4 The potential for chemical overexposure during the performance of the tasks is low based upon
- 5 the anticipated contaminants, nature of the planned tasks, and review of historical data available.
- 6 However, there is the potential for adverse health effects resulting from dermal contact with
- 7 contaminated groundwater, soil, or debris and chemical exposure via inhalation due to drilling
- 8 operations. This potential hazard will be mitigated through the use of nitrile or equivalent gloves
- 9 during the handling of potentially-contaminated materials.
- 10
- 11 Physical hazards are associated with waterborne operations, drilling equipment, soil sampling
- 12 equipment, and hand-operated power tools. Task-specific hazard controls have been specified
- 13 for these tasks. This investigation will be performed in Level D personal protective equipment
- 14 (PPE) plus nitrile or equivalent gloves when handling potentially contaminated materials or
- 15 heavy duty gloves for pinch/heavy lifting hazards. If necessary, the Site Safety and Health
- 16 Officer (SSHO) will upgrade the required PPE. An analysis of these hazards and specific
- appropriate controls is presented in Section 3.0. Details regarding PPE are contained in
- 18 Section 7.0.

SECTION 2.0

FACILITY DESCRIPTION AND CONTAMINATION CHARACTERIZATION


2.1 Site Description

1


2 3

8 9 The current RVAAP consists of 1,280 acres in several distinct parcels scattered throughout the confines of the Ohio Army National Guard (OHARNG) Camp Ravenna Joint Military Training 10 Center (Camp Ravenna). The RVAAP and Camp Ravenna are collocated on contiguous parcels 11 of property and the Camp Ravenna perimeter fence completely encloses the remaining parcels of 12 the RVAAP. Camp Ravenna is in northeastern Ohio within Portage and Trumbull Counties, 13 approximately 4.8 kilometers (3 miles) east-northeast of the city of Ravenna and approximately 14 1.6 kilometers (1 mile) northwest of the city of Newton Falls (Figure 2-1). The RVAAP portions 15 of the property are solely located within Portage County. Camp Ravenna (inclusive of the 16 RVAAP) is a parcel of property approximately 17.7 kilometers (11 miles) long and 17 5.6 kilometers (3.5 miles) wide bounded by State Route 5, the Michael J. Kirwan Reservoir, and 18 the CSX System Railroad on the south; Garret, McCormick, and Berry roads on the west; the 19 20 Norfolk Southern Railroad on the north; and State Route 534 on the east (see Figures 2-1 and 2-2). When the RVAAP was operational Camp Ravenna did not exist and the entire 21,683-acre 21 parcel was a government-owned, contractor-operated (GOCO) industrial facility. The RVAAP 22 Installation Restoration Program (IRP) encompasses investigation and cleanup of past activities 23 over the entire 21,683 acres of the former RVAAP and therefore references to the RVAAP in 24 this document are considered to be inclusive of the historical extent of the RVAAP, which is 25 26 inclusive of the combined acreages of the current Camp Ravenna and RVAAP, unless otherwise specifically stated. 27 28 29 The installation was active from 1941 to 1992. Activities included loading, assembling, storing, and packing military ammunition; demilitarization of munitions; production of ammonium 30 nitrate fertilizer; and disposal of "off-spec" munitions. Various munitions were handled on the 31 installation including artillery rounds of 90 mm or more and bombs up to 2,000 lbs. Industrial 32 operations consisted of 12 munitions-assembly facilities referred to as "load lines." Load Lines 33 1 through 4 were used to melt and load 2,4,6-trinitrotoluene (TNT) and Composition B into 34 large-caliber shells and bombs. Load Lines 5 through 11 were used to manufacture fuzes, 35 primers, and boosters. Load Line 12 was used to produce ammonium nitrate for explosives and 36 fertilizers prior to use as a weapons demilitarization facility. 37 38

39 In addition to production and demilitarization activities at the load lines, other areas of concern (AOCs) at RVAAP were used for the burning, demolition, and testing of munitions. These 40 burning and demolition grounds consist of large parcels of open space or abandoned quarries. 41 Potential contaminants at these AOCs include explosives, propellants, metals, waste oils, and 42 sanitary waste. Other types of AOCs present at RVAAP include landfills, an aircraft fuel tank 43 testing facility, and various general industrial support and maintenance facilities. The project 44 areas are located throughout the RVAAP facility including multiple AOCs (Figure 2-2). 45 46 47

1

Munitions Response Sites (MRS) 2.1.1

4 Some of the sites are considered to potentially have MEC since they are Munitions Response 5 sites (MRS). These sites will use MEC avoidance during soil disturbance tasks (i.e., well 6 installation) and are further described in section 10.2 of this document. For MRS with existing 7 monitoring wells, it is assumed that MEC avoidance activities have previously been cleared for 8 pathways to the wells, and no soil disturbance will occur during groundwater monitoring 9 procedures. Based on historical field work, including the well sampling during the past 10 years, 10 11 no exposure to MEC is anticipated during sampling activities. Sampling crews will use well established paths to each of the wells in these areas. The MRS pertaining to the project-specific 12 tasks are listed below: 13

- 14
- 15 • Ramsdell Quarry Landfill
- Erie Burning Grounds 16 •
- Open Demolition Area #2 17
- Load Line 1 • 18
- Fuze and Booster Ouarry 19
 - Landfill North of Winklepeck •
 - Atlas Scrap Yard •
- 22 23

20

21

24 2.2 **Contaminant Characterization**

25

Information on the potential contaminants at the facility and the reagents and chemicals that will 26 be used for the project is listed below. It is important to note that the contaminants listed below 27 28 have been detected in a number of locations at RVAAP and may be present at former operations areas. Exposure to these contaminants and reagents/chemicals (such as corrosive sample 29 preservatives, field laboratory reagents, or flammable fuels) is likely and will be controlled 30 through compliance with this addendum. There is a potential to encounter a contaminant during 31 field activities, but it does not necessarily indicate that the contaminant is present in sufficient 32 33 quantity to pose a health risk to workers.

34

35 The major chemicals of potential concern (COPCs) for RVAAP is presented in Table 2-1 and the FWSAP. These major COPCs include explosive-related chemicals (e.g., TNT, dinitrotoluene, 36 and cyclonite), propellants (e.g., nitroglycerine, nitroguanidine, and nitrocellulose), and metals 37

(e.g., arsenic, aluminum, barium, cadmium, chromium, lead, mercury, silver, selenium, and 38

zinc). Additional chemicals, including polychlorinated biphenyls (PCBs) and manganese, have 39

been identified at some AOCs. Most of the COPCs are relatively insoluble, tend to adsorb to soil 40

41 particles rather than dissolve into water, and are relatively long-lived. Specific concentrations of

these chemicals are included as tables in the latest (2010) Annual Groundwater Report for the 42

43 FWGWMP and a copy of tables will be included in Appendix D.

44

45 Chemicals to be used by EQM personnel at the site are listed below as Table 2-2. Inclusion in

this list does not necessarily indicate the chemical is present in sufficient quantity to pose a 46

- 1 health risk to workers. Materials that are considered hazardous materials under the OSHA
- 2 Hazard Communication Standard (29 CFR 1910.1200) may be used during this project. Material
- 3 Safety Data Sheets (MSDSs) for the hazardous materials are included in Appendix A. Copies of
- 4 these MSDSs will be made available to any subcontractors on this project.
- 5 6

Table 2-1. Chemicals of Potential Concern

Polychlorinated Biphenyls (PCBs)

Base/Neutrals and Acids (SVOCs)

Nitroguanidine (*Propellants*)

Nitrocellulose as N (Propellants)

Metals (Antimony, Iron, Beryllium, Thallium, Zinc, Cadmium, Aluminum)

Metals (Magnesium, Manganese, Barium, Nickel, Potassium, Silver, Sodium, Vanadium, Chromium, Calcium, Cobalt, Copper, Arsenic, Lead, Selenium)

Perchlorates

Pesticides

Volatile Organic Compounds (VOCs)

Nitroaromatics & Nitramines (Explosives)

Nitrate/Nitrites

Cyanide, (Total)

Metals (Mercury)

7

8 9

Table 2-2. Chemicals Potentially Used to Conduct Site Work

Hydrochloric acid	Equipment decontamination / Water sample preservative
Sodium Hydroxide	Water sample preservative
Sulfuric acid	Water sample preservative
Nitric acid	Equipment decontamination / Water sample preservative
Alconox	Equipment decontamination
Methanol	Equipment decontamination
Gasoline	Equipment fuel
Diesel	Equipment fuel

SECTION 3.0

HAZARD / RISK ANALYSIS

3-1. Hazards Inventory

8 9 Table 3-1 is an inventory of project-specific common hazards that may be posed during environmental investigations at RVAAP and indicates whether a particular major type of hazard 10 is present. The project-specific tasks are expected to consist of clearing vegetation; collecting 11 groundwater samples; installing monitoring wells; decontaminating equipment; and managing 12 Investigation-Derived Waste (IDW). In general, these tasks have a low potential for 13 unacceptable exposure to contaminants. Expected tasks present a variety of physical hazards 14 including biological, contact with equipment or potential MEC, slips/trips/falls, biological, noise, 15 and heat/cold stress. 16

17

1

2 3

4 5 6

7

18

Table 3-1. Hazards Inventory

YES	NO	HAZARD
	Х	Confined space entry
	X	Excavation entry
X		Heavy equipment (i.e., drill rigs)
X		Potential dangerous tools (i.e., brush clearing with machetes, sling blades)
X		Heavy lifting (cooler shipping, IDW handling)
X		Fire (fuels)
X		Spills or leaks
	X	Drowning
X		Explosion (MEC)
X		Electrical shock (electrical equipment)
X		Exposure to chemicals (e.g., site contaminants & chemicals used during work)
X		Temperature extremes
X		Biological hazards (i.e., poison ivy, Lyme disease, Histoplasmosis, & West Nile)
	Х	Gunfire (No work is anticipated during OHARNG hunts)
X		Noise (equipment)
	X	Radiation or radioactive contamination

19 20

3-2. Activity Hazard Analysis

21 22

The FWSHP includes Activity Hazard Analysis (AHA) tables (Table 3-2 of the FWSHP). These tables identify and assess potential hazards that may be encountered by personnel and prescribes the required controls. Each applicable project-specific AHA has been reviewed and revised as necessary to incorporate stricter requirements established by EQM. Each AHA is included in Appendix B, and listed below:

- 28 29
- Site mobilization and demobilization;

- Site walk and/or civil survey
- Soil boring and sampling, monitoring well installation using a drill rig and groundwater sampling;
 - Monitoring well and borehole abandonment;
 - Vegetation clearing with chainsaw, machetes and sling blades;
 - IDW handling; and
 - Equipment decontamination.
- 7 8 9

4

5

6

10 **3-3.** Potential Exposure

- 11
- 12 Information on the reagents and chemicals potentially present at the facility are described in
- 13 Section 3.2 of the FWSAP. Soil and groundwater contaminants are possible, but unlikely.
- 14 Exposure to chemicals, such as corrosive sample preservatives, field laboratory reagents, or
- 15 flammable fuels, is a possibility and will be controlled through standard safe handling practices.
- 16 Project specific reagents and chemicals are presented in Table 3-2. In case of conflicts between
- 17 American Conference of Government Industrial Hygienists (ACGIH) and other standards or
- 18 regulations the more stringent standard shall prevail.

Chemical	Health Effects ^b	-2. Potential Exposures Physical Characteristics ^b	Exposure Route(s) ^b	Exposure Limit(s) ^c
Potential Chemi	cal Exposures ^a			•
Arsenic	Ulceration of nasal septum, dermatitis, gastrointestinal disturbances, peripheral neuropathy, respiratory irritation, hyperpigmentation of skin, [potential occupational carcinogen]	Metal: Noncombustible Solid in bulk form, but a slight explosion hazard in the form of dust when exposed to flame. VP: 0mmHg	Inhalation Absorption Ingestion Contact	TWA 0.01 mg/m ³
Barium	irritation eyes, nose, upper respiratory system; benign pneumoconiosis (baritosis)	Noncombustible Solid. VP: Low; FP: NA	Inhalation Contact	TWA 0.5 mg/m ³
Cadmium	pulmonary edema, dyspnea (breathing difficulty), cough, chest tightness, substernal (occurring beneath the sternum) pain; headache; chills, muscle aches; nausea, vomiting, diarrhea; anosmia (loss of the sense of smell), emphysema, proteinuria, mild anemia; [potential occupational carcinogen]	Metal: Noncombustible Solid in bulk form, but will burn in powder form. VP: 0 mmHg	Inhalation Ingestion	TWA 0.01 mg/m ³
Chromium	irritation eyes, skin; lung fibrosis (histologic)	Noncombustible Solid in bulk form, but finely divided dust burns rapidly if heated in a flame. properties vary dependant on specific compound	Inhalation Ingestion Contact	TWA 0.5 mg/m ³ (Metals CrIII) TWA 0.05 mg/m ³ (Water soluble CrVI) TWA 0.1 mg/m ³ (Insoluble CrVI)
Dinitrotoluene	Anoxia, cyanosis; anemia, jaundice; reproductive effects; [potential occupational carcinogen]	Orange-yellow crystalline solid with a characteristic odor VP: 1 mmHg: FP: 404F	Inhalation Absorption Ingestion Contact	TWA 0.2 mg/m ³
Lead	lassitude (weakness, exhaustion), insomnia; facial pallor; anorexia, weight loss, malnutrition; constipation, abdominal pain, colic; anemia; gingival lead line; tremor; paralysis wrist, ankles; encephalopathy; kidney disease; irritation eyes; hypertension	Noncombustible Solid in bulk form.	Inhalation Ingestion Contact	TWA 0.05 mg/m ³
Mercury	irritation eyes, skin; cough, chest pain, dyspnea (breathing difficulty), bronchitis, pneumonitis; tremor, insomnia, irritability, indecision, headache, lassitude (weakness, exhaustion); stomatitis, salivation; gastrointestinal disturbance, anorexia, weight loss; proteinuria	Metal: Silver-white, heavy, odorless liquid VP: 00012 mmHg; FP: NA	Inhalation Absorption Ingestion Contact	TWA 0.01 mg/m ³ Alkyl STEL 0.03 mg/m ³ Alkyl TWA 0.1 mg/m ³ Aryl TWA 0.025 mg/m ³ Elemental/Inorganic

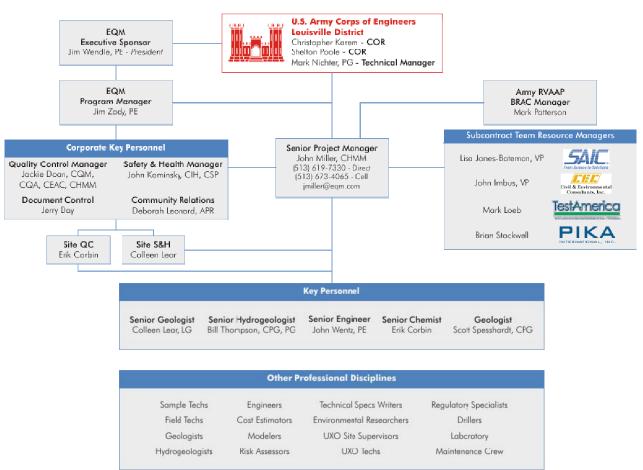
PAHs and SVOCs	Suspected human carcinogens	Colorless, white, pale. Properties vary dependant on specific compound	Inhalation Ingestion Contact	
Propellants (potentially nitrocellulose and nitroglycerin)	Faintness, rapid pulse, dizziness, muscle twitch, damage to blood cells, vomiting	Solid; VP: 0 mmHg; FP: NA May burn or explode if exposed to high temperatures or shock	Inhalation Absorption Ingestion Contact	TWA 0.05 mg/m ³
Cyclonite	irritation eyes, skin; headache, irritability, lassitude (weakness, exhaustion), tremor, nausea, dizziness, vomiting, insomnia, convulsions	White, crystalline powder, Combustible Solid. VP: 0.0004 mmHg;	Inhalation Absorption Ingestion Contact	TWA 0.05 mg/m ³
Selenium	irritation eyes, skin, nose, throat; visual disturbance; headache; chills, fever; dyspnea (breathing difficulty), bronchitis; metallic taste, garlic breath, gastrointestinal disturbance; dermatitis; eye, skin burns; in animals: anemia; liver necrosis, cirrhosis; kidney, spleen damage	Amorphous or crystalline, red to gray, combustible solid. VP: LOW; FP: NA.	Inhalation Ingestion Contact	TWA 0.2 mg/m ³
Smokeless powder (nitrocellulose)	Low toxicity	Amorphous solid; FP: 55°F		
Trinitrotoluene	irritation skin, mucous membrane; liver damage, jaundice; cyanosis; sneezing; cough, sore throat; peripheral neuropathy, muscle pain; kidney damage; cataract; sensitization dermatitis; leukocytosis (increased blood leukocytes); anemia; cardiac irreg	Colorless to pale-yellow, odorless combustible solid or crushed flakes. VP: 0.0002 mmHg; IP: 10.59 eV	Inhalation Absorption Ingestion Contact	TWA 0.1 mg/m ³
VOCs (trichloroethene example; however, properties vary depending upon the specific compound)	irritation eyes, skin; headache, visual disturbance, lassitude (weakness, exhaustion), dizziness, tremor, drowsiness, nausea, vomiting; dermatitis; cardiac arrhythmias, paresthesia; liver injury; [potential occupational carcinogen]	Colorless liquid (unless dyed blue) with a chloroform-like odor, burns with difficulty. VP: 58 mmHg; IP: 9.45 eV	Inhalation Absorption Ingestion Contact	TWA 10 ppm STEL 25 ppm
Decontamination C	hemicals and Sample Preservatives			
Hydrochloric Acid (Preservative and equipment decontamination)	irritation nose, throat, larynx; cough, choking; dermatitis; solution: eye, skin burns; liquid: frostbite; in animals: laryngeal spasm; pulmonary edema	Colorless liquid with acrid odor; VP: 40.5 atm; IP: 12.74 eV.	Inhalation Absorption Ingestion Contact	STEL 2 ppm ceiling
Alconox (used for decontamination)	Inhalation of powder may cause local irritation of mucus membranes	White powder, odorless, nonflammable. Biodegradable detergent	Inhalation Ingestion	None

Methanol (equipment decontamination)	irritation eyes, skin, upper respiratory system; headache, drowsiness, dizziness, nausea, vomiting; visual disturbance, optic nerve damage (blindness); dermatitis	Liquid; VP: 96 mmHg; FP: 52°F; IP: 10.84 eV	Inhalation Absorption Ingestion Contact	TWA 200 ppm STEL 250 ppm
Sulfuric Acid (H2SO4)	irritation eyes, skin, nose, throat; pulmonary edema, bronchitis; emphysema; conjunctivitis; stomatis; dental erosion; eye, skin burns; dermatitis	Liquid, colorless to dark brown, oily, odorless. VP: 0.001 mmHg, FP: NA	Inhalation Ingestion Contact	TWA 0.2 mg/m ³
Sodium Hydroxide (NaOH)	irritation eyes, skin, mucous membrane; pneumonitis; eye, skin burns; temporary loss of hair	Colorless to white, odorless solid (flakes, beads, granular form). VP: 0 mmHg; FP: NA, IP: NA	Inhalation Ingestion Contact	STEL 2 mg/m ³ ceiling
Nitric Acid (HNO ₃)	irritation eyes, skin, mucous membrane; delayed pulmonary edema, pneumonitis, bronchitis; dental erosion	Liquid, fuming, colorless, yellow, or red; acrid, suffocating odor. VP: 48 mmHg; FP: NA; IP: 11.95eV	Inhalation Ingestion Contact	TWA 2 ppm STEL 4 ppm
Other Potential Exp	posures			
Diesel (used for fuel for heavy equipment)	Irritation of eyes, skin, respiratory system; dizziness; headache; nausea; central nervous system	Brown, slightly viscous liquid, with characteristic odor. FP: 125.6°F	Inhalation Ingestion Contact	TWA 100 mg/m ³
Gasoline (used for fuel)	irritation eyes, skin, mucous membrane; dermatitis; headache, lassitude (weakness, exhaustion), blurred vision, dizziness, slurred speech, confusion, convulsions; chemical pneumonitis (aspiration liquid); possible liver, kidney damage; [potential occupational carcinogen]	Clear flammable liquid with aromatic odor. FP: -45°F; VP: 38- 300 mm	Inhalation Absorption Ingestion Contact	TWA 300ppm STEL 500 ppm

a The potential chemicals on this list reflect a partial compilation based on historical investigations conducted at RVAAP. Project-specific addenda must address specific potential 2 exposure based on AOC operational history and anticipated activities to be conducted.

3 b From 2010 NIOSH Pocket Guide to Chemical Hazards, the Condensed Chemical Dictionary. FP = Flash point. IP = Ionization potential. NA = Not available. NIOSH =

4 National Institute for Occupational Safety and Health. PAHs = Polycyclic aromatic hydrocarbon. SVOCs = Semi-volatile organic compounds. VOCs = Volatile organic 5 compounds. VP = Vapor pressure.


• From 2011 ACGIH Threshold Limit Values. Ppm = parts per million. STEL = Short-term exposure limit TWA = Time-weighted average 6

1 **SECTION 4.0** 2 3 STAFF ORGANIZATION, QUALIFICATIONS, AND RESPONSIBILITIES 4 5 6 This section presents the general lines of authority, responsibilities, and communication 7 procedures concerning site safety and health and emergency response. It includes key Contractor 8 positions. The EQM Project Team assembled to complete the RVAAP-66 groundwater project 9 includes the following: 10 11 EQM – overall project management, direction of all subcontractors, and responsibility for 12 completion of all deliverables. EQM will also provide field crews for sampling and well 13 installation, geology/hydrogeology expertise, engineering evaluation, and oversight for all 14 groundwater modeling and risk assessment activities. 15 16 Science Applications International Corporation (SAIC) – will provide field support, 17 groundwater modeling, risk assessment, and regulatory support. 18 19 Civil & Environmental Consultants (CEC) – will provide field support, including surveying, 20 groundwater sampling support, GIS analysis, risk assessment and groundwater modeling 21 support, and geotechnical expertise. 22 23 PIKA International – will provide unexploded ordnance (UXO) support primarily for 24 25 clearance of any subsurface excavation activities associated with this project. 26 TestAmerica – will conduct analysis of groundwater samples. 27 28 Figure 4-1 is the project organizational chart showing the principal project-specific roles and 29 lines of communication/reporting. Key contractor positions are: 30 31 • Program Manager; 32 • Project Manager (PM); 33 • Certified Industrial Hygienist (CIH); 34 • Field Operations Manager (FOM); and 35 Site Safety and Health Officer (SSHO). • 36 37 Table 4-1 identifies the responsible parties, responsibility summary, and the associated telephone 38 numbers for each of the key positions responsible for site safety and health and emergency 39 responses. See the FWSHP for more detailed information on the roles and responsibilities of key 40

- 41 positions.
- 42

Table 4-1. Staff Organization				
Responsible Party	Responsibility Summary	Telephone Number		
Program Manager	Ensure conformance with corporate and	Direct: 513-742 7298		
James G. Zody, P.E.	USACE policies and procedures.	Mobile: 513-315-5351		
Senior Project Manager John Miller, CHMM	Responsible for overall project execution.	Direct: 513-619-7330 Mobile: 513-673-4065		
Senior Safety & Health Manager John R. Kominsky, CIH, CSP	Manages the H&S program, establishing H&S policies / procedures, supporting all activities, and verifying safe work practices and conditions.	Direct: 513-742 7216 Mobile: 513-310-4473		
Field Operations Manager Scott Spesshardt, CPG	Oversees the project field activities and is responsible for site accessibility, safety, and quality assurance.	Direct: 513-619-7343 Mobile: 513-603-0213		
Site Safety and Health Officer Colleen Lear, LG	Manages H&S decisions for specific H&S activities and verifies the effectiveness of the H&S program.	Direct: 513-742 7262 Mobile: 513-218-6244		
MEC Avoidance PIKA: Brian Stockwell	Provide UXO support primarily for clearance of any subsurface excavation activities.	Direct: 330-358-7135 Mobile: 330-352-6955		

Figure 4-1. Project Organizational Chart

4

SECTION 5.0

TRAINING

4 5 6

1

2 3

7 The FWSHP training requirements are summarized for this project in Table 5-1. Documentation 8 of the required training will be maintained in the on-site project files. This documentation will include copies of Hazardous Waste Operations and Emergency Response (HAZWOPER) 40-hr, 9 8-hr refresher, Cardiopulmonary Resuscitation (CPR), first aid training, and signatures of those 10 attending on-site training. Other training, as necessary, will be maintained onsite. This includes 11 respirator fit-test certifications and supervisor training certificates; copies of medical clearance 12 reports; and entries in project logs showing the topics covered and trainer. Certifications for key 13 personnel are included in Appendix E. 14

15 16

 Table 5-1. Training Requirements

Training	Worker	Supervisor	Site Visitor (exclusion zone)
HAZWOPER (40-hr, 3-day OJT)			
HAZWOPER Annual Refresher (8-hr)			
HAZWOPER Supervisors Training (8-hr)			
CPR and First Aid Training		\checkmark	
(minimum requirement: two personnel at facility &			
one person per field team)			
General Hazard Communication Training			
(contained in 40- and 8-hr courses)			
Hearing Conservation Training			
(hearing conservation program; contained in 40- and 8-			
hr courses)			
Pre-entry Briefing			
Site-specific Hazard Communication			
(contained in pre-entry briefing)			
Safety Briefing			
(daily and whenever conditions or tasks change)			
Equipment-specific Training (drilling operators)			

17 $\sqrt{-12}$ Required

18 OJT = On-the-Job Training

SECTION 6.0

PERSONAL PROTECTIVE EQUIPMENT

General guidelines for PPE are presented in the FWSHP. This investigation will be performed
primarily in Level D and Level D+ PPE. PPE for handling potentially-contaminated materials
includes nitrile or equivalent gloves, while handling drums and lifting will include heavy duty

10 gloves. Level D and Level D+ PPE are as follows:

11

1

2 3

4 5

- 12 Level D+ Protective Equipment
- 13 Tyvek® or equivalent coveralls;
- 14 Boot covers;
- 15 Level D Protective Equipment.
- 16
- 17 Level D Protective Equipment
- 18 Coveralls/field clothes;
- 19 Safety shoes/Boots [with steel-toe/steel shank (or comparable material)];
- 20 Safety glasses with side shields;
- 21 Hard hat (if overhead hazards are present);
- 22 Nitrile or equivalent gloves if contaminated materials are handled; and
- 23 Heavy duty leather, Kevlar, or equivalent gloves (in addition to chemical-resistant gloves) for
- 24 materials handling or other tasks that pose physical hazards to the hands.
- 25

26 If the potential for increased risk becomes apparent during the investigation, protective

- 27 procedures, including protective clothing, will be upgraded, as necessary, by the SSHO. Specific
- tasks, such as soil sampling, drum handling, decontamination using a pressure washer, and soil
- 29 chemical preparation, require additional PPE (e.g., hardhats, leather gloves, and face shield), as
- 30 depicted in the AHAs.
- 31

SECTION 7.0

MEDICAL SURVEILLANCE

4 5 6

7

1

2 3

Medical Surveillance requirements are summarized in the FWSHP. All employees performing

8 on-site RVAAP work activities are to be enrolled in a medical surveillance program, per 29 CFR

9 1910.120, 1910.134, and 1910.1020. The EQM Corporate Health and Safety program ensures

that personnel and all team subcontractor personnel, who are performing hazardous waste site work, are required to be included in a medical surveillance program and undergo medical

work, are required to be included in a medical surveillance program and undergo medical
 examinations in accordance with 29 CFR 1910.120(f), Hazardous Waste Operations and

13 Emergency Response - Medical Surveillance. Certifications for key personnel participation in

14 the medical surveillance program are included in Appendix E.

15

16

SECTION 8.0

EXPOSURE MONITORING / AIR SAMPLING PROGRAM

4 5

3

1 2

Assessment of airborne chemical concentrations will be performed, as appropriate, to ensure that 6 exposures do not exceed acceptable levels. Based on historical site contaminant concentrations, 7 action levels with appropriate responses have been established for monitoring. The minimum 8 monitoring requirements and action levels are presented in Table 8-1. This information served 9 as the basis for selecting the appropriate monitoring equipment and Level D PPE for use when 10 conducting site activities. The usage of monitoring equipment [e.g., photoionization detector 11 (PID)] will depend on the activities being conducted and the potential exposures. All personal 12 exposure monitoring records will be maintained in accordance with 29 CFR 1910.1020. In 13 addition to the specified monitoring, the SSHO may perform or require additional monitoring, 14 such as organic vapor monitoring in the equipment decontamination area or personnel exposure 15 monitoring for specific chemicals. 16 17 Monitoring for IDLH is the first step and should be conducted to identify any IDLH conditions, 18

such as highly toxic levels of airborne contaminants via PID readings. Based on historical field 19 20 work, regarding well sampling during the past 10 years, no additional monitoring is anticipated. It is not anticipated air monitoring will be required during sampling. However, the SSHO will 21 examine site conditions and will contact the H&S Manager and initiate air monitoring if there is 22 any indication of potential airborne exposure. Most of the field activities are not expected to 23 pose airborne exposure hazards for the following reasons: 24

- 25 26
- Work will be performed in open areas with natural ventilation; •
- Prior site sampling indicated that contaminant concentrations are unlikely to pose an 27 airborne hazard; and 28
- The most probable contaminants (metals and PAHs are materials with relatively low 29 • vapor pressures and exposure can be controlled through dust suppression techniques. 30
- 31

Contaminant/ **Frequency/Location** | Action Levels **Required Action** Parameter Organic Periodic during <1.0 ppm Level D – No Action Vapors – remediation (sustained) Generic activities (drilling above (PID or and intrusive work) background equivalent) as Breathing zone monitoring >1.0 ppm Withdraw & evaluate (sustained) • evaluate PPE upgrade above • identify contaminants background • notify PM and H&S manager Noise General areas during \geq 85 dBA or Hearing protection Mandatory remediation around drill rigs activities around power or motorized equipment Nuisance Continuos Visible dust Stop work; use dust suppression Particulates observation techniques such as wetting surface (visible)

Table 8-1.	Monitor	ing Req	uirements	and Action	Levels

H&S = health and safety3

4 ppm = parts per million

SECTION 9.0

HEAT / COLD STRESS

4 5 6

1

2 3

7 General requirements for heat/cold stress monitoring are contained in the FWSHP. During this

8 project ambient temperatures may decrease to below 40°F and site briefings on preventing cold

9 stress will be instated. Contrary conditions of warmer ambient temperatures will include

10 briefings on controlling heat stress.

11

12 During severe weather, Building 1036 will serve as the assembly point if it becomes necessary to

evacuate one or more remedial locations, while the facility-wide assembly point is Guard Post 1.

14 Severe weather triggers the SSHO to monitor weather conditions with Guard Post 1 and/or off

15 site personnel. Site briefings on severe weather precautions, actions, and usage of shelter-in-

16 place locations will be conducted as necessary. Section 13 of this SSHP includes further details

17 for emergencies and evacuation, if necessary.

1 **SECTION 10.0** 2 3 STANDARD OPERATING AND SAFETY PROCEDURES 4 5 6 The FWSHP presents the general safety rules mandatory for all on-site employees and visitors. 7 8 The following standard procedures set forth in the FWSHP are sufficient for the site tasks: 9 10 Site rules (all site activities) • Driving requirements (speed limits, hands-free) 11 • Permit requirements (digging permits/clearance from local utilities prior to any drilling or 12 excavation) 13 14 • IDW waste handling (drums) • Electrical safety (portable equipment and conductive materials) 15 • Machine guarding and lockout/tagout (equipment repair) 16 • Fall protection (personal fall protection will be used if drilling personnel must climb the 17 upright mast or derrick.) 18 • Hazard communication (hazardous material labeling, training, and MSDSs) 19 • Illumination (natural illumination usage) 20 Sanitation (washing, drinking water, facilities) 21 • 22 • Biological (ticks/mosquitos) Fuels (storage) 23 • • Drill rig operations (well installation) 24 MEC avoidance (well installation) 25 • 26 27 Additional information for drill rig operations and MEC are detailed in the following sections to ensure that the appropriate and sufficient procedures are used to protect employees. 28 29 30 31 10.1 **Drill Rig Operations** 32 33 Drill rig operations will be performed by qualified subcontractors. General drilling practices will comply with Section 18H of the USACE Safety and Health Requirement Manual EM 385-1-1. 34

- 35 All switches (including a minimum of two functioning safety switches); gauges; and other
- 36 electrical, mechanical, pneumatic, and hydraulic systems will be in a safe and operable condition
- before arrival and during operation. The Drill Rig Operational Checklist (Figure 5-1 of the
- FWSAP) will be completed prior to commencement of drilling and at a minimum frequency of
- 39 once per week after drilling commences. All safety switches or "kill switches" will be tested and
- 40 documented every working day prior to activities on site. All safety switches must be
- 41 operational prior to drilling activities. General hoisting operations comply with the USACE
- 42 Safety and Health Requirement Manual EM 385-1-1.

23 10.2 Munitions and Explosives of Concern Avoidance

1

4 5 For drilling activities within the MRS, MEC avoidance protocols will be implemented, as discussed below, and a qualified UXO subcontractor, approved by the USACE Louisville 6 District, will provide MEC avoidance support for this project. In general all on-site workers will 7 be trained to recognize and avoid the types of MEC that may be present. Contractors and their 8 subcontractors will not handle, move, or otherwise disturb MEC or any items that cannot be 9 identified as non-MEC without specific authorization from Army. If MEC or potential MEC is 10 discovered, the area will be marked and avoided and work will continue. The UXO Technician 11 will use a hand-held magnetometer to clear an area prior to surface soil disturbance. 12 13 14 For soil disturbance activities the subcontractor's UXO technician will employ a Schonstedt Model GA-52 and/or GA-72 (or equivalent) magnetic locator for surface anomaly surveys, and a 15 Schonstedt Model MG-220 (or equivalent) magnetic gradiometer for any downhole surveys. 16 17 The UXO Team Leader will train all field personnel to recognize and stay away from propellants and MEC. Safety briefings for MEC avoidance will also be provided to all site personnel and 18 site visitors. At all well locations and off-road access routes to the locations located in MRS 19 20 areas (or other areas designated by the Army), ground surface surveys will be conducted prior to entry using visual inspection and hand-held magnetometers. Surveys of ingress and egress 21 routes will be at least twice as wide as the widest vehicle that will use the route (normally a 22 minimum of 20 feet). A work area having a radius of approximately 100 feet will be surveyed 23 around each well location. The UXO technician will clearly mark the boundaries of the cleared 24 work area and access routes. If MEC is encountered at the ground surface, the approach path 25 26 will be diverted away from the MEC, the area clearly marked with red flagging, and the area will be avoided. Any identified magnetic anomaly will also be clearly marked and the anomaly will 27 be avoided. The cleared approach paths will be the only ingress/egress routes to a particular 28 29 drilling location. 30 At each staked well location [located in MRS areas (or other areas designated by the Army)], the 31 UXO technician will use a magnetic gradiometer to clear the locations prior to drilling operations 32

- commencing. The UXO technician shall use hand auger tools to advance a small pilot hole. At
- not more than a 2-feet depth, the magnetometer will be lowered into the hole. This procedure
- will be used to ensure that smaller items of UXO, undetectable from the surface, can be detected.
- If no magnetic anomalies are located, the procedure will be repeated at approximately 2-ft to
- 37 3-ft intervals to the maximum depth required (10 feet or until bedrock is encountered, whichever 38 is less). The UXO technician will remain onsite and provide support to the project team until all
- access surveys are completed and the work areas are cleared as described above. Because all
- 40 drilling locations are outside of designated environmental areas of concern and military
- 41 munitions response program sites, the UXO technician will not be required to maintain a
- 42 continuous presence onsite. In the event a monitoring well cannot subsequently be constructed
- 43 at the planned location and drilling at an alternate location is necessary, the same MEC
- 44 avoidance protocol will be followed prior to moving to the new location. Should any MEC be
- discovered, it will be avoided. The UXO subcontractor will not be tasked with disposal of MEC
- under this specific well installation task. The UXO technician will notify the FOM, who will, in

- 1 turn, contact the PM, USACE, and RVAAP Environmental Coordinator, who will initiate the
- 2 appropriate response actions.
- 3
- 4 Work that involves, or may involve, exposure to MEC will comply EM 385-1-1, section 33 per
- 5 the FWSHP. A MEC Avoidance plan will be completed for surface and MEC anomaly
- 6 avoidance procedures to be used while conducting hazardous, toxic, radioactive waste (HTRW)-
- 7 related activities during drilling actions to be completed at EBG and DA2. The MEC anomaly
- 8 avoidance procedures contained in the plan will be developed in accordance with the EP 75-1-2
- 9 "MEC Support During HTRW and Construction Activities USACE, 2004.

SECTION 11.0

SITE CONTROL MEASURES

4 5 6

1

2 3

No formal site control is expected to be necessary for this project, as the work areas are 7 somewhat remote and bystanders are not anticipated. Public access to RVAAP is currently 8 controlled with limitations, and only authorized personnel are allowed in the AOCs; therefore, 9 access by bystanders and the public is limited. If the SSHO determines that a potential exists for 10 unauthorized personnel to approach within 25 feet of a work zone or otherwise be at risk due to 11 proximity, then exclusion zones will be established as described in the FWSHP. The SSHO will 12 monitor the implementation of the required site control work rules and will report any deviations 13 from prescribed practice to the FOM or stop work, as appropriate. An exclusion zone may not 14 be practical at all investigative locations. The SSHO will be responsible for determining the 15 need for establishing site controls and exclusion zones. An exclusion zone will be established if 16 17 the work site will be left intact and unattended for an extended period of time (e.g., leaving an open excavation or drill rig in place overnight). 18 19

20 An exclusion zone will be established around the drilling sites. At a minimum, the exclusion

21 zone will extend 25 feet from the hazard and also be at least equal to the mast height in radius so

that no part of an overturned drill rig will fall outside the zone. Contamination reduction zone

23 (CRZ) will not be necessary unless a higher level (A, B, C) of PPE is used or significant surface

24 contamination is present or suspected. A formal support zone will not be necessary unless a

25 CRZ is utilized. Building 1036 will be used as an alternative for staging clean equipment and

supplies and serves as a location for support services (e.g., staging, storing, parking, visitor area).

SECTION 12.0

PERSONAL HYGIENE AND DECONTAMINATION

5 6

1

2 3

4

The FWSHP presents examples of basic requirements for personnel decontamination keyed to
the level of protective clothing in use. This investigation will be performed primarily in Level D
and Level D+ PPE, therefore limiting the use of protection decontamination. Level D does not
require personal decontamination. Gross (muddy conditions) decontamination may necessitate
Level D+ PPE. The procedures listed below would then be followed:

12 13

1. Remove all tape (if used) from outer clothing and place in appropriate waste container.

- Carefully remove boot covers, outer contamination-resistant garment, and chemicalresistant gloves.
- 3. Wash hands and face prior to eating, drinking, or smoking. This step may be
 accomplished with soap and water or disposable disinfectant wipes.

SECTION 13.0

EMERGENCY PROCEDURES AND EQUIPMENT

Emergency contacts, telephone numbers, directions to the nearest medical facility, and general
procedures are described in this section and in Section 13.0 of the FWSHP. Emergency phone
numbers and the hospital route map are also included in this section.

10 11

12 13

1 2

3

4 5 6

13.1 Emergency Phone Numbers

In the event of an accident or incident, the SSHO <u>must first notify Guard Post 1 (330-358-2017)</u>
 who will coordinate the response. Each field team shall have a cellular phone and/or a 2-way
 radio capable of contacting Guard Post 1 for communications purposes. The radio must be tested

each morning before the start of work by radioing Security with a communication check. Each

team must have direct radio or telephone communication with the PM or FOM. Table 13-1 lists

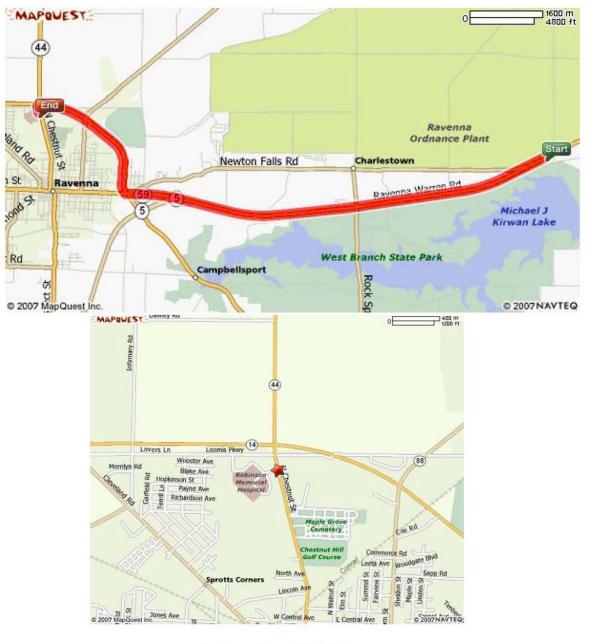
19 the emergency groups and their telephone numbers.

20 21

Table 13-1. Emergency Phone Number	Table 13-1.	Emergency	Phone	Numbers
--	-------------	-----------	-------	---------

Table 13-1. Emergency I none Numbers			
Contact	Phone Number		
RVAAP Guard Post 1	(330) 358-2017		
Hospital (Robinson Memorial, Ravenna)	(330) 297-0811/2449		
RVAAP Facility Manager, Mark Patterson	(330) 358-7311		
RVAAP Operation and Maintenance Contractor	(330) 358-3005		
Jim McGee, Vista			
USACE, Mark Nichter	(502) 315-6375		
EQM PM, John Miller	(513) 673-4065		
EQM Corporate H&S, Todd Valli	(513) 310-8419		
Ohio EPA, Eileen Mohr	(330) 963-1221		
Ohio EPA Spill Hotline	(800) 282-9378		
Fire Department (City of Ravenna)	(330) 297-5738		
Hazardous Materials Response	(330) 358-7406/7409		

22


23

24 **13.2 Emergency Procedures**

25

The SSHO will remain in charge of all personnel during emergency activities. Robinson Memorial Hospital is located approximately 32 km (20 miles) from the site at 6847 N. Chestnut Street in Ravenna, Ohio. Figure 13-1 contains a map and directions to Robinson Memorial Hospital. Building 1036 will serve as the assembly point if it becomes necessary to evacuate one or more remedial locations. The facility-wide assembly point, Guard Post 1, and evacuation routes are indicated on Figure 13-2.

- 1 Automated External Defibrillators are located at Building 1037 and Guard Post 1. Contaminated
- 2 injured personnel will be decontaminated to the extent feasible. Decontamination may be
- 3 bypassed in the event of life-threatening injuries or illnesses.

Robinson Memorial Hospital 6847 N. Chestnut Street Ravenna, Ohio (330) 297-0811

Directions: West on State Route 5. Stay straight onto OH-59 West. Turn Right onto OH-14/OH-44. Turn Left onto North Chestnut St.

Figure 13-1. Hospital Route Map

4 5

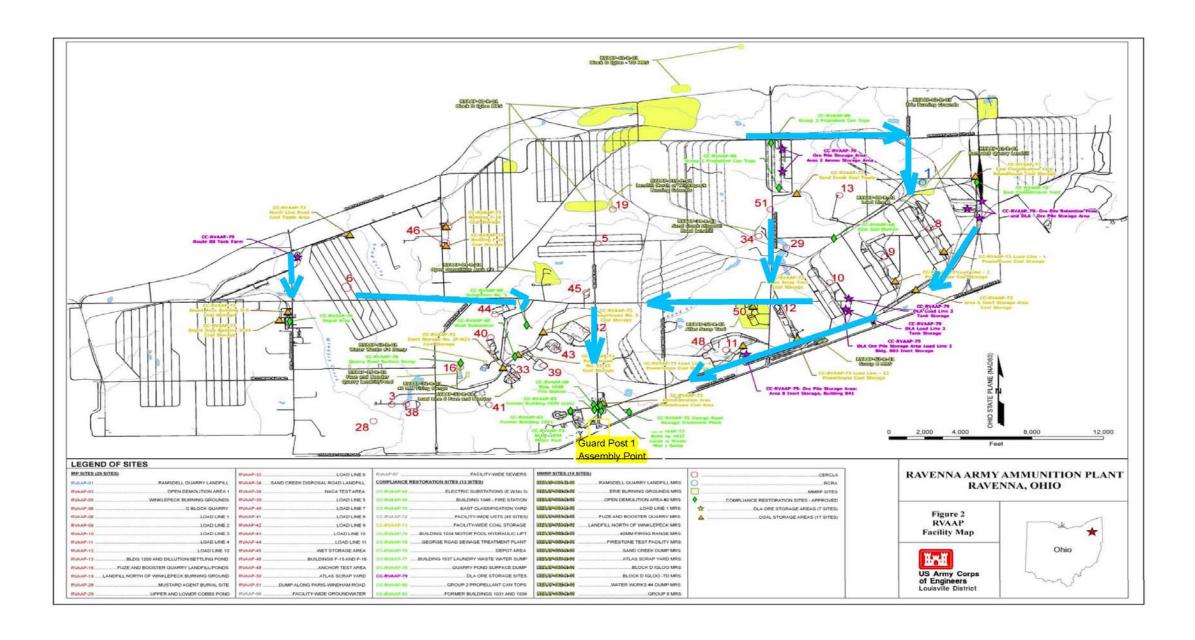


Figure 13-2. Facility Assembly / Evacuation Map

SECTION 14.0

3 LOGS, REPORTS, AND RECORDKEEPING 4 5 6 EQM adheres to the documenting activities related to daily logs, reporting, and record keeping 7 8 requirements as described in the FWSHP. 9 Training logs will contain information covered and the signatures of the trainer and those 10 attending. These logs will contain documentation of pre-entry (project start) training, 11 routine ("tailgate") safety briefings, and visitor training. 12 13 Daily safety inspection logs will contain the dates of inspections, identity of the person 14 ٠ doing the inspection, the examined areas/activities/equipment, any deficiencies, and any 15 corrective actions taken. If necessary, tracking, follow-up, and external inspections will 16 17 be conducted. 18 19 Equipment maintenance logs will contain the dates and types of routine maintenance • performed on site equipment. 20 21 The FOM will add all employees/visitors to the on-site access roster that is maintained by 22 • the RVAAP O&M Contractor. The roster includes the names of all personnel who will 23 perform on-site work or visit the site and certification of required training. It will not 24 contain the names of delivery or similar personnel. 25 26 27 ٠ Environmental and personal exposure monitoring/sampling results will be maintained in a log that will contain monitoring data, location and time of monitoring, types of work 28 being done, calibration records, and the identities of personnel performing monitoring. 29 30 31 EQM personnel and EQM subcontractors will adhere to EQM's corporate injury/illness . reporting requirements. In addition, EQM will complete and submit the USACE 32 Accident Investigation Report, as required. All accident reporting will contain all parties 33 involved and personnel responsible plus dates, identity of the person doing the 34 investigation, the examined areas, any deficiencies, and any corrective actions taken. If 35 necessary, tracking, follow-up, and external inspections will be conducted. 36 37 Samples of reporting forms are included in Appendix C but any similar or equivalent forms may 38 39 be used.

1

2

1 2	SECTION 15.0
3	
4	REFERENCES
5	
6	
7	NIOSH. 1997. NIOSH Pocket Guide to Chemical Hazards, the Condensed Chemical
8	Dictionary, Tenth Edition.
9	
10	NIOSH. 2005. NIOSH Pocket Guide to Chemical Hazards.
11	
12	Ohio Environmental Protection Agency (Ohio EPA). 2004. Director's Final Findings and
13	Orders for the Ravenna Army Ammunition Plant.
14 15	Science Applications International Corporation. 2011. Final Facility-Wide Safety and Health
15 16	Plan for Environmental Investigations, Ravenna Army Ammunition Plant, Ravenna, Ohio.
17	February 24, 2011.
18	1 contaily 21, 2011.
19	Science Applications International Corporation. 2011. Final Facility-Wide Sampling and
20	Analysis Plan for Environmental Investigations, Ravenna Army Ammunition Plant, Ravenna,
21	Ohio. February 24, 2011.
22	•
23	U.S. Army Corps of Engineers. 2004. Facility-Wide Groundwater Monitoring Program for the
24	Ravenna Army Ammunition Plant, Ravenna, Ohio. GS-10F-0350M, D.O. DACA27-03-F-0047.
25	
26	U.S. Army Corps of Engineers. 2008. USACE Safety and Health Requirements Manual.
27	EM 385-1-1.
28	
29	U.S. Army Corps of Engineers. 2004. USACE MEC Support During HTRW and Construction
30	Activities. EP 75-1-2.
31	
32	U.S. Army Corps of Engineers. 2007. USACE Safety and Occupational Health Requirements
33	for Safety and Occupational Health Requirements for Hazardous Toxic and Radioactive (HTRW)
34	Activities. ER 385-1-92.

APPENDIX A

Material Safety Data Sheets

List of Material Safety Data Sheets

- Liquinox
- Alconox
- Gasoline
- Hydrochloric Acid
- Insect Repellant
- Methanol
- Nitric Acid
- Type 1 Deionized water
- Diesel

LIQUINOX MSDS

Section 1 : MANUFACTURER INFORMATION

Supplier: Same as manufacturer.

Manufacturer: Alconox, Inc. 30 Glenn St. Suite 309 White Plains, NY 10603.

Manufacturer emergency 800-255-3924. phone number: 813-248-0585 (outside of the United States).

Manufacturer: Alconox, Inc.

30 Glenn St. Suite 309 White Plains, NY 10603.

Supplier MSDS date: 2005/02/24

D.O.T. Classification: Not regulated.

	Section 2 : HAZARDOUS INGREDIENTS					
C.A.S.	CONCENTRATION %	Ingredient Name	T.L.V.	LD/50	LC/50	
25155- 30-0	10-30	SODIUM DODECYLBENZENESULFONATE	NOT AVAILABLE	438 MG/KG RAT ORAL 1330 MG/KG MOUSE ORAL	NOT AVAILABLE	

Section 3 : PHYSICAL / CHEMICAL CHARACTERISTICS

Physical state: Liquid. Appearance & odor: Odourless. Pale yellow. Odor threshold (ppm): Not available. Vapour pressure @ 20°C (68°F). (mmHg): 17 Vapour density (air=1): >1 <u>Volatiles (%)</u> By volume: Not available. Evaporation rate

(butyl acetate = 1): < 1.

Boiling point (°C): 100 (212F) Freezing point (°C): Not available. **pH:** 8.5 Specific gravity @ 20 °C: (water = 1). 1.083 Solubility in water (%): Complete. Coefficient of water\oil dist.: Not available. VOC: None

Section 4 : FIRE AND EXPLOSION HAZARD DATA					
Flammability: Not flammable.	_				
Conditions of					

flammability:	Surrounding fire.
Extinguishing media:	Carbon dioxide, dry chemical, foam. Water Water fog.
Special procedures:	Self-contained breathing apparatus required. Firefighters should wear the usual protective gear. Use water spray to cool fire exposed containers.
Auto-ignition temperature:	Not available.
Flash point (°C), method:	None
Lower flammability limit (% vol):	Not applicable.
Upper flammability limit (% vol):	Not applicable.
Not available.	
Sensitivity to mechanical impact:	Not available.
Hazardous combustion products:	Oxides of carbon (COx). Hydrocarbons.
Rate of burning:	Not available.

Explosive power: Containers may rupture if exposed to heat or fire.

Section 5 : REACTIVITY DATA

Chemical stability: Product is stable under normal handling and storage conditions.

Conditions of instability: Extreme temperatures.

Hazardous Will not occur.

polymerization: Incompatible Strong acids.

substances: Strong oxidizing agents.

Hazardous See hazardous combustion products.

Section 6 : HEALTH HAZARD DATA

Route of entry: Skin contact, eye contact, inhalation and ingestion. **Effects of Acute** Exposure Eye contact: May cause irritation. Skin contact: Prolonged and repeated contact may cause irritation. Inhalation: May cause headache and nausea. Ingestion: May cause vomiting and diarrhea. May cause gastric distress. Effects of chronic exposure: See effects of acute exposure. LD50 of product, species & route: > 5000 mg/kg rat oral. LC50 of product, species & route: Not available. Exposure limit of material: Not available. Sensitization to product: Not available. Carcinogenic effects: Not listed as a carcinogen. Reproductive effects: Not available. Teratogenicity: Not available. Mutagenicity: Not available. Synergistic materials: Not available. Medical conditions Address Add First Aid Skin contact: Remove contaminated clothing. Wash thoroughly with soap and water. Seek medical attention if irritation persists. Eye contact: Check for and remove contact lenses. Flush eyes with clear, running water for 15 minutes while holding eyelids open: if irritation persists, consult a physician. Inhalation: Remove victim to fresh air. If irritation persists, seek medical attention. **Ingestion:** Do not induce vomiting, seek medical attention. Dilute with two glasses of water. Never give anything by mouth to an unconscious person.

Section 7 : PRECAUTIONS FOR SAFE HANDLING AND USE

Leak/Spill:	Contain the spill. Prevent entry into drains, sewers, and other waterways. Wear appropriate protective equipment. Small amounts may be flushed to sewer with water. Soak up with an absorbent material. Place in appropriate container for disposal. Notify the appropriate authorities as required.
Waste disposal:	In accordance with local and federal regulations.
	Protect against physical damage. Avoid breathing vapors/mists. Wear personal protective equipment appropriate to task.

Wash thoroughly after handling. Keep out of reach of children. Avoid contact with skin, eyes and clothing. Avoid extreme temperatures. Launder contaminated clothing prior to reuse.

Storage requirements: Store away from incompatible materials. Keep containers closed when not in use.

Section 8 : CONTROL MEASURES

Precautionary Measures

Gloves/Type:

Wear appropriate gloves.

Respiratory/Type: None required under normal use.

Eye/Type:

Safety glasses recommended.

Footwear/Type: Safety shoes per local regulations.

Clothing/Type: As required to prevent skin contact.

Other/Type: Eye wash facility should be in close proximity. Emergency shower should be in close proximity.

Ventilation requirements: Local exhaust at points of emission.

ALCONOX MSDS

Section 1 : MANUFACTURER INFORMATION				
Product name:	Alconox			
Supplier:	Same as manufacturer.			
Manufacturer:	Alconox, Inc. 30 Glenn St. Suite 309 White Plains, NY 10603.			
Manufacturer emergency phone number:	800-255-3924. 813-248-0585 (outside of the United States).			
Manufacturer:	Alconox, Inc. 30 Glenn St. Suite 309 White Plains, NY 10603.			
Supplier MSDS date:	2009/04/20			

D.O.T. Classification: Not regulated.

Section 2 : HAZARDOUS INGREDIENTS						
C.A.S.	CONCENTRATION %	Ingredient Name	T.L.V.	LD/50	LC/50	
25155- 30-0	10-30	SODIUM DODECYLBENZENESULFONATE	NOT AVAILABLE	438 MG/KG RAT ORAL 1330 MG/KG MOUSE ORAL	NOT AVAILABLE	
497-19- 8	7-13	SODIUM CARBONATE	NOT AVAILABLE	4090 MG/KG RAT ORAL 6600 MG/KG MOUSE ORAL	2300 MG/M3/2H RAT INHALATION 1200 MG/M3/2H MOUSE INHALATION	
7722- 88-5	10-30	TETRASODIUM PYROPHOSPHATE	5 MG/M3	4000 MG/KG RAT ORAL 2980 MG/KG MOUSE ORAL	NOT AVAILABLE	
7758-2 9-4	10-30	SODIUM PHOSPHATE	NOT AVAILABLE	3120 MG/KG RAT ORAL 3100 MG/KG MG/KG RABBIT DERMAL	NOT AVAILABLE	

Section 2A : ADDITIONAL INGREDIENT INFORMATION

Note: (supplier). CAS# 497-19-8: LD50 4020 mg/kg - rat oral. CAS# 7758-29-4: LD50 3100 mg/kg - rat oral.

Section 3	: PHYSICAL / CHEMICAL CHARACTERISTICS
Physical state:	Solid
Appearance & odor:	Almost odourless. White granular powder.
Odor threshold (ppm):	Not available.
Vapour pressure (mmHg):	Not applicable.
Vapour density (air=1):	Not applicable.
By weight:	Not available.
Evaporation rate (butyl acetate = 1):	Not applicable.
Boiling point (°C):	Not applicable.
Freezing point (°C):	Not applicable.
pH:	(1% aqueous solution). 9.5
Specific gravity @ 20 °C:	(water = 1). 0.85 - 1.10
Solubility in water (%):	100 - > 10% w/w
Coefficient of water\oil dist.:	Not available.
VOC:	None

Section 4 : FIRE AND EXPLOSION HAZARD DATA

Flammability:	Not flammable.
Conditions of flammability:	Surrounding fire.
Extinguishing media:	Carbon dioxide, dry chemical, foam. Water Water fog.
Special procedures:	Self-contained breathing apparatus required. Firefighters should wear the usual protective gear.
Auto-ignition temperature:	Not available.
Flash point (°C), method:	None
Lower flammability limit (% vol):	Not applicable.
Upper flammability limit (% vol):	Not applicable.
Not available.	
Sensitivity to mechanical impact:	Not applicable.
Hazardous combustion products:	Oxides of carbon (COx). Hydrocarbons.
Rate of burning:	Not available.
Explosive power:	None

Section	5	:	REACTIVITY DATA	
---------	---	---	-----------------	--

Chemical stability: Stable under normal conditions.

Conditions of instability: None known.

Hazardous polymerization: Will not occur. Incompatible Strong acids.

substances: Strong oxidizers.

Hazardous See hazardous combustion products.

Section 6 : HEALTH HAZARD DATA

Section 0 . HEALTH HAZARD DATA				
Route of entry:	Skin contact, eye contact, inhalation and ingestion.			
<u>Effects of Acute</u> Exposure				
	May agues irritation			
-	May cause irritation.			
	Prolonged contact may cause irritation.			
	Airborne particles may cause irritation.			
Ingestion:	May cause vomiting and diarrhea. May cause abdominal pain. May cause gastric distress.			
•				
LD50 of product, species & route:	> 5000 mg/kg rat oral.			
LC50 of product, species & route:				
Exposure limit of material:	Not available for mixture, see the ingredients section.			
Sensitization to product:	Not available.			
Carcinogenic effects:	Not listed as a carcinogen.			
Reproductive effects:	Not available.			
Teratogenicity:	Not available.			
Mutagenicity:	Not available.			
Synergistic materials:				
Medical conditions aggravated by exposure:	Not available.			
<u>First Aid</u>				
Skin contact:	Remove contaminated clothing. Wash thoroughly with soap and water. Seek medical attention if irritation persists.			
Eye contact:	Check for and remove contact lenses. Flush eyes with clear, running water for 15 minutes while holding eyelids open: if irritation persists, consult a physician.			
Inhalation:	Remove victim to fresh air. Seek medical attention if symptoms persist.			
Ingestion:	Dilute with two glasses of water. Never give anything by mouth to an unconscious person. Do not induce vomiting, seek immediate medical attention.			

Section 7 :	PRECAUTIONS FOR SAFE HANDLING AND USE
Leak/Spill:	Contain the spill. Recover uncontaminated material for re-use. Wear appropriate protective equipment. Contaminated material should be swept or shoveled into appropriate waste container for disposal.
Waste disposal:	In accordance with municipal, provincial and federal regulations.
	Protect against physical damage. Avoid breathing dust. Wash thoroughly after handling. Keep out of reach of children. Avoid contact with skin, eyes and clothing. Launder contaminated clothing prior to reuse.
Storage requirements:	Keep containers closed when not in use. Store away from strong acids or oxidizers. Store in a cool, dry and well ventilated area.
	Section 8 : CONTROL MEASURES
Precautionary Measures	
Gloves/Type:	
Respiratory/Type:	Neoprene or rubber gloves.
	If exposure limit is exceeded, wear a NIOSH approved respirator
Eye/Type:	\bigcirc
	Safety glasses with side-shields.
Footwear/Type:	Safety shoes per local regulations.
Clothing/Type:	As required to prevent skin contact.
Other/Type:	Eye wash capability should be in close proximity.
Ventilation requirements:	Local exhaust at points of emission.

CITGO Gasolines, All Grades Unleaded Material Safety Data Sheet

CITGO Petroleum Corporation P.O. Box 4689 Houston, TX 77210

MSDS No.

UNLEAD

Revision Date

10/14/2008

IMPORTANT: This MSDS is prepared in accordance with 29 CFR 1910.1200. Read this MSDS before transporting, handling, storing or disposing of this product and forward this information to employees, customers and users of this product.

Emergency Overview

Physical State	Liquid
Color	Trans

Transparent, clear to **Odor** amber or red.

Pungent, characteristic gasoline.

DANGER:

Extremely flammable liquid; vapor may cause flash fire or explosion.

Vapor may travel considerable distance to source of ignition and flash back.

Use Only as a Motor Fuel. Do Not Siphon by Mouth.

Harmful or fatal if swallowed - Can enter lungs and cause damage.

High concentrations of vapor reduce oxygen available for breathing and may cause suffocation.

May be harmful if inhaled or absorbed through the skin. Mist or vapor may irritate the eyes, mucous membranes, and respiratory tract.

Liquid contact may cause eye and skin irritation.

Overexposures may cause central nervous system (CNS) depression and target organ effects (See Section 3).

Harmful or fatal if swallowed - Can enter lung and cause damage.

Inhalation overexposure can increase the heart's susceptibility to arrhythmias (irregular beats).

Contains Benzene - Cancer Hazard.

Long term exposure to gasoline vapor has caused cancer in laboratory animals.

Avoid Spills. Spills may present both a physical and an environmental hazard.

SECTION 1. PRODUCT IDENTIFICATION

Trade Name	CITGO Gasolines, All Grades Unleaded	Technical Contact	(832) 486-5940
Product Number	Various	Medical Emergency	(832) 486-4700
CAS Number	Mixture.	CHEMTREC Emergency (United States Only)	(800) 424-9300
Product Family	Motor fuels.		

	* = Chronic Health Hazard
	Protective Equipment
1	Minimum Recommended See Section 8 for Details
•	
d	
_	

Hazard Rankings

Health Hazard

Fire Hazard

Reactivity

HMIS NFPA

1

3

0

* 2

3

0

Synonyms

Unleaded Gasolines; Conventional Unleaded Gasoline with Ethanol; Unleaded Gasoline with Ethanol; Reformulated Unleaded Gasoline with Ethanol; Motor Gasolines; Petrol; Automobile Motor Fuels; Finished Gasolines; Gasoline, Regular Unleaded; Gasoline, Mid-grade Unleaded; Gasoline, Premium Unleaded; Reformulated Gasolines (RFG); Reformulated Motor Fuels; Oxygenated Motor Spirits; Gasoline, Regular Reformulated; Gasoline, Mid-grade Reformulated; Gasoline, Premium Reformulated; CBOB; RBOB; GTAB; Clean Burning Gasoline (CBG); CARB Gasoline with Ethanol.

SECTION 2. COMPOSITION

Gasoline is a complex and variable mixture that originates from finished refinery streams. These streams can contain the components listed below that are regulated or are associated with certain potential health effects. The typical concentration of ethanol in gasoline does not exceed 10% (v/v).

Component Name(s)	CAS Registry No.	Concentration (%)
Toluene	108-88-3	<25
Pentanes, all isomers	Mixture	<20
Octanes, all isomers	Mixture	<20
Xylene, all isomers	1330-20-7	<18
Hexane, other isomers	Mixture	<15
Heptane, all isomers	142-82-5	<15
Ethanol	64-17-5	<10
n-Hexane	110-54-3	<8
Benzene	71-43-2	<5
Trimethylbenzenes, all isomers	25551-13-7	<5
2,2,4-Trimethylpentane	540-84-1	<5
Cumene	98-82-8	<4
Ethylbenzene	100-41-4	<4
1, 2, 4 Trimethylbenzene	95-63-6	<3
Cyclohexane	110-82-7	<3
Cyclopentane	287-92-3	<2
Naphthalene	91-20-3	<2
Styrene	100-42-5	<1

SECTION 3. HAZARDS IDENTIFICATION

Also see Emergency Overview and Hazard Ratings on the top of Page 1 of this MSDS.

Major Route(s) of Entry Skin contact. Eye contact. Inhalation. Ingestion.

Signs and Symptoms of Acute Exposure

Inhalation	Breathing high concentrations may be harmful. Mist or vapor can irritate the throat and lungs. Breathing this material may cause central nervous system depression with symptoms including nausea, headache, dizziness, fatigue, drowsiness, or unconsciousness. Breathing high concentrations of this material, for example, in an enclosed space or by intentional abuse, can cause irregular heartbeats which can cause death.
Eye Contact	This product can cause eye irritation with short-term contact with liquid, mists or vapor. Symptoms include stinging, watering, redness, and swelling. In severe cases, permanent eye damage can result.
Skin Contact	This material can cause skin irritation. The severity of irritation will depend on the amount of material that is applied to the skin and the speed and thoroughness that it is removed. It is likely that some components of this material are able to pass into the body through the skin and may cause similar effects as from breathing or swallowing it. If the skin is damaged or abraded, absorption increases.
Ingestion	

	If swallowed, this material may irritate the mucous membranes of the mouth, throat, and esophagus. It can be readily absorbed by the stomach and intestinal tract. Symptoms include a burning sensation of the mouth and esophagus, nausea, vomiting, dizziness, staggered gait, drowsiness, loss of consciousness and delirium, as well as additional central nervous system (CNS) effects.
	Due to its light viscosity, there is a danger of aspiration into the lungs during swallowing and subsequent vomiting. Aspiration can result in severe lung damage or death. Cardiovascular effects include shallow rapid pulse with pallor (loss of color in the face) followed by flushing (redness of the face). Also, progressive CNS depression, respiratory insufficiency and ventricular fibrillation leads to death.
Chronic Health Effects Summary	Intentional misuse by deliberately concentrating and inhaling gasoline can be harmful or fatal. Altered mental state, drowsiness, peripheral motor neuropathy, irreversible brain damage ("Petrol Sniffers Encephalopathy"), delirium, seizures and sudden death are associated with repeated abuse of gasoline or naphtha.
	Chronic effects of ingestion and subsequent aspiration into the lungs may include pneumatocele (lung cavity) formation and chronic lung dysfunction.
	Benzene, a component of this product, is associated with blood disorders and may damage bone marrow, causing certain types of anemia. The International Agency for Research on Cancer (IARC) (1987, 2004, 2007) and the U.S. EPA (IRIS 2007) have determined that benzene is a human carcinogen. It is also capable of causing changes in living cells' genetic material (chromosomes) and is considered to be a mutagen.
	Repeated and prolonged overexposure to n-hexane has been associated with peripheral nerve tissue damage. Adverse effects include numbness, tingling, pain, and loss of muscle control in the extremities, disorientation, impaired vision and reflexes, decline in motor function and paralysis.
	Prolonged or repeated overexposure to toluene, a component of this product, has been associated with reproductive effects in experimental animals and in long-term chemical abuse situations. Long-term overexposure to toluene has been associated with impaired color vision. Also, long-term overexposure to toluene in occupational environments have been associated with hearing damage.
	Prolonged or repeated overexposure to xylene, a component of this product, has been associated with hearing damage in laboratory animals. Repeated overexposure may cause injury to bone marrow, blood cells, kidney, and liver.
	Refer to Section 11 of this MSDS for additional health-related information.
Conditions Aggravated by Exposure	Disorders of the following organs or organ systems that may be aggravated by significant exposure to this material or its components include: Skin, Respiratory System, Liver, Kidneys, Central Nervous System (CNS), Cardiovascular System, Blood-forming system.
Target Organs	May cause damage to the following organs: blood, kidneys, lungs, the reproductive system, liver, mucous membranes, heart, peripheral nervous system, cardiovascular system, upper respiratory tract, skin, auditory system, bone marrow, central nervous system (CNS), eye, lens or cornea
Carcinogenic Potential	This material may contain benzene, ethylbenzene, naphthalene or styrene at concentrations above 0.1%. Benzene is considered to be a known human carcinogen by OSHA, IARC and NTP. IARC has identified ethylbenzene, styrene, naphthalene, gasoline and gasoline engine exhaust as possibly carcinogenic to humans (Group 2B) based on laboratory animal studies.

OSHA Hazard Classification is indicated by an "X" in the box adjacent to the hazard title. If no "X" is present, the product does not exhibit the hazard as defined in the OSHA Hazard Communication Standard (29 CFR 1910.1200).

OSHA	Health	Hazard Classification		OSH	A Physical Hazard Cl	assifica	tion	
Irritant Toxic Corrosive	X	Sensitizer Highly Toxic Carcinogenic	 Combustible Flammable Compressed Gas	X	Explosive Oxidizer Organic Peroxide		Pyrophoric Water-reactive Unstable	

SECTION 4. FIRST AID MEASURES

Take proper precautions to ensure your own health and safety before attempting rescue or providing first aid. For more specific information, refer to Exposure Controls and Personal Protection in Section 8 of this MSDS.

Inhalation	Immediately move victim to fresh air. If victim is not breathing, immediately begin rescue breathing. If heart has stopped, immediately begin cardiopulmonary resuscitation (CPR). If breathing is difficult, 100 percent humidified oxygen should be administered by a qualified individual. Seek medical attention immediately. If exposed to benzene in an emergency situation, a medical evaluation should be completed at the end of the work-shift in accordance with OSHA requirements.
Eye Contact	Flush eyes with cool, clean, low-pressure water for at least 15 minutes. Hold eyelids apart to ensure complete irrigation of the eye and eyelid tissue. If easily accomplished, check for and remove contact lenses. If contact lenses cannot be removed, seek immediate medical attention. Do not use eye ointment. Seek medical attention.
Skin Contact	Remove contaminated shoes and clothing. Flush affected area with large amounts of water. If skin surface is damaged, apply a clean dressing and seek medical attention. Do not use ointments. If skin surface is not damaged, clean affected area thoroughly with mild soap and water. Seek medical attention if tissue appears damaged or if pain or irritation persists.
Ingestion	Do not induce vomiting. If spontaneous vomiting is about to occur, place victim's head below knees. If victim is drowsy or unconscious, place on the left side with head down. Never give anything by mouth to a person who is not fully conscious. Do not leave victim unattended. Seek medical attention immediately.
Notes to Physician	INHALATION: Inhalation overexposure can produce toxic effects. Monitor for respiratory distress. If cough or difficulty in breathing develops, evaluate for upper respiratory tract inflammation, bronchitis, and pneumonitis. Administer supplemental oxygen with assisted ventilation, as required.
	This material (or a component) sensitizes the heart to the effects of sympathomimetic amines. Epinephrine and other sympathomimetic drugs may initiate cardiac arrhythmias in individuals exposed to this material. Administration of sympathomimetic drugs should be avoided.
	INGESTION: If ingested, this material presents a significant aspiration and chemical pneumonitis hazard. Induction of emesis is not recommended. Consider activated charcoal and/or gastric lavage. If patient is obtunded, protect the airway by cuffed endotracheal intubation or by placement of the body in a Trendelenburg and left lateral decubitus position.

SECTION 5. FIRE FIGHTING MEASURES

NFPA Flammability Classification	NFPA Class-IB flammable liqui	d.	
Flash Point	Closed cup: -43°C (-45°F). (Ta	gliabue [ASTM D-56])	
Lower Flammable Limit	AP 1.4 %	Upper Flammable Limit	AP 7.6 %

MSDS No.	UNLEAD	Revision Date	10/14/2008	Continued on Next Page	Page Number: 4
	UNLLAD	Revision Date	10/14/2000	Continued on Next Fage	i aye Number. 4

Autoignition Temperature	AP 280°C (536°F)
Hazardous Combustion Products	Carbon dioxide, carbon monoxide, smoke, fumes, unburned hydrocarbons, aldehydes and other products of incomplete combustion.
Special Properties	Flammable Liquid! This material releases vapors at or below ambient temperatures. When mixed with air in certain proportions and exposed to an ignition source, its vapor can cause a flash fire. Use only with adequate ventilation. Vapors are heavier than air and may travel long distances along the ground to an ignition source and flash back. A vapor and air mixture can create an explosion hazard in confined spaces such as sewers. If container is not properly cooled, it can rupture in the heat of a fire.
Extinguishing Media	 SMALL FIRE: Use dry chemicals, carbon dioxide, foam, or inert gas (nitrogen). Carbon dioxide and inert gas can displace oxygen. Use caution when applying carbon dioxide or inert gas in confined spaces. LARGE FIRE: Use foam, water fog, or water spray. Water may be ineffective. Water may not extinguish the fire. Water fog and spray are effective in cooling containers and adjacent structures. However, water can be used to cool the external walls of vessels to prevent excessive pressure, autoignition or explosion. DO NOT use a solid stream of water directly on the fire as the water may spread the fire to a larger area.
Protection of Fire Fighters	Firefighters must use full bunker gear including NIOSH-approved positive pressure self-contained breathing apparatus to protect against potential hazardous combustion or decomposition products and oxygen deficiencies. Evacuate area and fight the fire from a maximum distance or use unmanned hose holders or monitor nozzles. Cover pooling liquid with foam. Containers can build pressure if exposed to radiant heat; cool adjacent containers with flooding quantities of water until well after the fire is out. Withdraw immediately from the area if there is a rising sound from a venting safety device or discoloration of vessels, tanks, or pipelines. Be aware that burning liquid will float on water. Notify appropriate authorities of potential fire and explosion hazard if liquid enter sewers or waterways.

SECTION 6. ACCIDENTAL RELEASE MEASURES

Take proper precautions to ensure your own health and safety before attempting spill control or clean-up. For more specific information, refer to the Emergency Overview on Page 1, Exposure Controls and Personal Protection in Section 8 and Disposal Considerations in Section 13 of this MSDS.

Flammable Liquid! Release causes an immediate fire or explosion hazard. Evacuate all non-essential personnel from immediate area and establish a "regulated zone" with site control and security. A vapor-suppressing foam may be used to reduce vapors. Eliminate all ignition sources. All equipment used when handling this material must be grounded. Stop the leak if it can done without risk. Do not touch or walk through spilled material. Remove spillage immediately from hard, smooth walking areas. Prevent spilled material from entering waterways, sewers, basements, or confined areas. Absorb or cover with dry earth, sand, or other non-combustible material and transfer to appropriate waste containers. Use clean, non-sparking tools to collect absorbed material.

For large spills, secure the area and control access. Prevent spilled material from entering sewers, storm drains, other drainage systems, and natural waterways. Dike far ahead of a liquid spill to ensure complete collection. Water mist or spray may be used to reduce or disperse vapors; but, it may not prevent ignition in closed spaces. This material will float on water and its run-off may create an explosion or fire hazard. Verify that responders are properly HAZWOPER-trained and wearing appropriate respiratory equipment and fire-resistant protective clothing during cleanup operations. In an urban area, cleanup spill as soon as possible; in natural environments, cleanup on advice from specialists. Pick up free liquid for recycle and/or disposal if it can be accomplished safely with explosion-proof equipment. Collect any excess material with absorbant pads, sand, or other inert non-combustible absorbent materials. Place into appropriate waste containers for later disposal. Comply with all applicable local, state and federal laws and regulations.

MSDS No. UNLEAD

SECTION 7. HANDLING AND STORAGE

Handling FLAMMABLE LIQUID AND VAPOR. USE ONLY as a motor fuel. DO NOT siphon by mouth. DO NOT use as a lighter fluid, solvent or cleaning fluid. Prior to handling or refueling, stop all engines and auxillary equipment. Turn off all electronic equipment including cellular telephones. DO NOT leave nozzle unattended during filling or refueling a vehicle. DO NOT re-enter vehicle while refueling. Keep nozzle spout in contact with the container during the entire filling operations.

A static electrical charge can accumulate when this material is flowing through pipes, nozzles or filters and when it is agitated. A static spark discharge can ignite accumulated vapors particularly during dry weather conditions. Always bond receiving containers to the fill pipe before and during loading, following NFPA-704 and /or API RP 2003 requirements. Always keep nozzle in contact with the container throughout the loading process. Do not fill any portable container in or on a vehicle. Special precautions, such as reduced loading rates and increased monitoring, must be observed during "switch loading" operations (i.e., loading this material in tanks or shipping compartments that previously contained middle distillates or similar products).

A spill or leak can cause an immediate fire or explosion hazard. Keep containers closed and do not handle or store near heat, sparks, or any other potential ignition sources. Avoid contact with oxidizing agents. Do NOT breathe vapor. Use only with adequate ventilation and personal protection. Never siphon by mouth. Avoid contact with eyes, skin, and clothing. Prevent contact with food and tobacco products. Do NOT take internally.

When performing repairs and maintenance on contaminated equipment, keep unnecessary persons away from the area. Eliminate all potential ignition sources. Drain and purge equipment, as necessary, to remove material residues. Follow proper entry procedures, including compliance with 29 CFR 1910.146 prior to entering confined spaces such as tanks or pits. Use gloves constructed of impervious materials and protective clothing if direct contact is anticipated. Use appropriate respiratory protection when concentrations exceed any established occupational exposure level (See Section 8) Promptly remove contaminated clothing. Wash exposed skin thoroughly with soap and water after handling.

Non-equilibrium conditions may increase the fire hazard associated with this product. A static electrical charge can accumulate when this material is flowing through pipes, nozzles or filters and when it is agitated. A static spark discharge can ignite accumulated vapors particularly during dry weather conditions. Always bond receiving containers to the fill pipe before and during loading. Always confirm that receiving container is properly grounded. Bonding and grounding alone may be inadequate to eliminate fire and explosion hazards associated with electrostatic charges. Carefully review operations that may increase the risks associated with static electricity such as tank and container filling, tank cleaning, sampling, gauging, loading, filtering, mixing, agitation, etc. In addition to bonding and grounding, efforts to mitigate the hazards of an electrostatic discharge may include, but are not limited to, ventilation, inerting and/or reduction of transfer velocities. Dissipation of electrostatic charges may be improved with the use of conductivity additives when used with other mitigation efforts, including bonding and grounding. Always keep nozzle in contact with the container throughout the loading process.

Do NOT fill any portable container in or on a vehicle. Do NOT use compressed air for filling, discharging or other handling operations. Product container is NOT designed for elevated pressure. Do NOT pressurize, cut, weld, braze solder, drill, or grind on containers. Do NOT expose product containers to flames, sparks, heat or other potential ignition sources. Empty containers may contain material residues which can ignite with explosive force. Observe label precautions.

Protect the environment from releases of this material. Prevent discharges to surface waters and groundwater. Maintain handling, transfer and storage equipment in proper working order.

Misuse of empty containers can be dangerous. Empty containers may contain material residues which can ignite with explosive force. **Cutting or welding of empty containers**

can cause fire, explosion, or release of toxic fumes from residues. Do not pressurize or expose empty containers to open flame, sparks, or heat. Keep container closed and drum bungs in place. All label warnings and precautions must be observed. Return empty drums to a qualified reconditioner. Consult appropriate federal, state and local authorities before reusing, reconditioning, reclaiming, recycling, or disposing of empty containers and/or waste residues of this material.

Storage Keep container tightly closed. Store in a cool, dry, well-ventilated area. Store only in approved containers. Do not store with oxidizing agents. Do not store at elevated temperatures or in direct sunlight. Protect containers against physical damage. Head spaces in tanks and other containers may contain a mixture of air and vapor in the flammable range. Vapor may be ignited by static discharge. Storage area must meet OSHA requirements and applicable fire codes. Additional information regarding the design and control of hazards associated with the handling and storage of flammable and combustible liquids may be found in professional and industrial documents including, but not limited to, the National Fire Protection Association (NFPA) publications NFPA 30 ("Flammable and Combustible Liquid Code"), NFPA 77 ("Recommended Practice on Static Electricity") and the American Petroleum Institute (API) Recommended Practice 2003, ("Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents").

Consult appropriate federal, state and local authorities before reusing, reconditioning, reclaiming, recycling or disposing of empty containers or waste residues of this product.

SECTION 8. EXPOSURE CONTROLS AND PERSONAL PROTECTION

Engineering Controls Provide ventilation or other engineering controls to keep the airborne concentrations of vapor or mists below the applicable workplace exposure limits indicated below. All electrical equipment should comply with the National Electrical Code. An emergency eye wash station and safety shower should be located near the work-station.

Personal Protective Equipment Personal protective equipment should be selected based upon the conditions under which this material is used. A hazard assessment of the work area for PPE requirements should be conducted by a qualified professional pursuant to OSHA regulations. The following pictograms represent the minimum requirements for personal protective equipment. For certain operations, additional PPE may be required.

- **Eye Protection** Safety glasses equipped with side shields are recommended as minimum protection in industrial settings. Chemical goggles should be worn during transfer operations or when there is a likelihood of misting, splashing, or spraying of this material. A suitable emergency eye wash water and safety shower should be located near the work station.
- **Hand Protection** Avoid skin contact. Use gloves (e.g., disposable PVC, neoprene, nitrile, vinyl, or PVC/NBR). Wash hands with plenty of mild soap and water before eating, drinking, smoking, use of toilet facilities or leaving work. DO NOT use this material as a skin cleaner.
- **Body Protection** Avoid skin contact. Wear long-sleeved fire-retardant garments (e.g., Nomex®) while working with flammable and combustible liquids. Additional chemical-resistant protective gear may be required if splashing or spraying conditions exist. This may include an apron, boots and additional facial protection. If product comes in contact with clothing, immediately remove soaked clothing and shower. Promptly remove and discard contaminated leather goods.

Respiratory Protection	For known vapor concentrations above the occupational exposure guidelines (see below), use a NIOSH-approved organic vapor respirator if adequate protection is provided. Protection factors vary depending upon the type of respirator used. Respirators should be used in accordance with OSHA requirements (29 CFR 1910.134). For airborne vapor concentrations that exceed the recommended protection factors for organic vapor respirators, use a full-face, positive-pressure, supplied air respirator. Due to fire and explosion hazards, do not enter atmospheres containing concentrations greater than 10% of the lower flammable limit of this product.

General Comments Warning! Use of this material in spaces without adequate ventilation may result in generation of hazardous levels of combustion products and/or inadequate oxygen levels for breathing. Odor is an inadequate warning for hazardous conditions.

Occupational Exposure Guidelines

Substance	Applicable Workplace Exposure Levels
Gasoline	ACGIH (United States).
	TWA: 300 ppm 8 hour(s).
	STEL: 500 ppm 15 minute(s).
Pentanes, all isomers	ACGIH (United States).
	TWA: 600 ppm 8 hour(s).
	OSHA (United States).
	TWA: 1000 ppm 8 hour(s).
Octanes, all isomers	ACGIH (United States).
	TWA: 300 ppm 8 hour(s).
	OSHA (United States).
	TWA: 500 ppm 8 hour(s).
Toluene	ACGIH (United States). Skin
	TWA: 20 ppm 8 hour(s).
	OSHA (United States).
	TWA: 200 ppm 8 hour(s).
	CEIL: 300 ppm
	PEAK: 500 ppm 1 times per shift, 10 minute(s).
Hexane, other isomers	ACGIH (United States).
	TWA: 500 ppm 8 hour(s).
	STEL: 1000 ppm 15 minute(s).
Heptane, all isomers	ACGIH (United States).
	TWA: 400 ppm 8 hour(s).
	STEL: 500 ppm 15 minute(s).
	OSHA (United States).
M. La constitution and the	TWA: 500 ppm 8 hour(s).
Xylene, all isomers	ACGIH (United States).
	TWA: 100 ppm 8 hour(s).
	STEL: 150 ppm 15 minute(s).
	OSHA (United States).
Ethonol	TWA: 100 ppm 8 hour(s).
Ethanol	ACGIH (United States).
	TWA: 1000 ppm 8 hour(s).
	OSHA (United States).
Panzana	TWA: 1000 ppm 8 hour(s).
Benzene	ACGIH (United States). Skin
	TWA: 0.5 ppm 8 hour(s). STEL: 2.5 ppm 15 minute(s).
	OSHA (United States). Skin Notes: See Table Z-2 for exclusions
	in 20 CFR 1910.1028 to the PEL.
	TWA: 1 ppm 8 hour(s).
	STEL: 5 ppm 15 minute(s).
n-Hexane	ACGIH (United States). Skin
	TWA: 50 ppm 8 hour(s).
	OSHA (United States).
	TWA: 500 ppm 8 hour(s).
Cumene	ACGIH (United States).
	TWA: 50 ppm 8 hour(s)
	TWA: 50 ppm 8 hour(s). OSHA (United States). Skin

Trimethylbenzenes, all isomers	TWA: 50 ppm 8 hour(s). ACGIH (United States). TWA: 25 ppm 8 hour(s).
Ethylbenzene	ACGIH (United States).
	TWA: 100 ppm 8 hour(s).
	STEL: 125 ppm 15 minute(s).
	OSHA (United States).
	TWA: 100 ppm 8 hour(s).
Cyclohexane	ACGIH (United States).
	TWA: 100 ppm 8 hour(s).
	OSHA (United States).
Qualamentana	TWA: 300 ppm 8 hour(s).
Cyclopentane	ACGIH (United States).
Naahthalana	TWA: 600 ppm 8 hour(s).
Naphthalene	ACGIH (United States). Skin
	TWA: 10 ppm 8 hour(s). STEL: 15 ppm 15 minute(s).
	OSHA (United States).
	TWA: 10 ppm 8 hour(s).
Styrene	ACGIH (United States).
Stylene	TWA: 20 ppm 8 hour(s).
	STEL: 40 ppm 15 minute(s).
	OSHA (United States).
	TWA: 100 ppm 8 hour(s).
	STEL: 200 ppm 15 minute(s).
	PEAK: 600 ppm
	· =· ·· · · · · · · · · · · · · · · · ·

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES (TYPICAL)

Physical State	Liquid.	Color	Transparer to amber o		Odor	Pungent, characteristic gasoline.
Specific Gravity	0.72 - 0.77 (Water = 1)	рН	Not applica	able	Vapor Density	3 to 4 (Air = 1)
Boiling Range	38 to 204°C (100 to 4	00°F)		Melting/ Point	/Freezing	Not available.
Vapor Pressure	220 to 450 mm Hg at 6 to 15 Reid-psia at 3	•	,	Volatilit	y	720 to 770 g/l VOC (w/v)
Solubility in Water	Very slightly soluble ir w/w)	n cold wate	er. (<0.1 %	Viscosi (cSt @ 4		<1
Flash Point	Closed cup: -43°C (-45°F). (Tagliabue [ASTM D-56])					
Additional Properties	Average Density at 60)°F = 6.0 t	o 6.4 lbs./gal	. (ASTM D	0-2161)	

SECTION 10. STABILITY AND REACTIVITY

Chemical Stability	Stable.	Hazardous Polymerization Not expected to occur.		
Conditions to Avoid	Keep away from heat, flam oxidizing conditions and ac	e and other potential ignition sources. Keep away from strong jents.		
Materials Incompatibility	Strong acids, alkalies and oxidizers such as liquid chlorine, other halogens, hydrogen peroxide and oxygen.			
Hazardous Decomposition Products	No additional hazardous de products identified in Section	ecomposition products were identified other than the combustion on 5 of this MSDS.		

MSDS No. UNLEAD

SECTION 11. TOXICOLOGICAL INFORMATION

For other health-related information, refer to the Emergency Overview on Page 1 and the Hazards Identification in Section 3 of this MSDS.

Toxicity Data

Gasoline VAPOR (TELo) Acute: 140 ppm (Human) (8 hours) - Mild eye irritant. VAPOR (TELo) Acute: 500 ppm (Human) (1 hour) - Moderate eye irritant. INHALATION (TCLo) Acute: 900 ppm (Human) (1 hour) - CNS and pulmonary effects. DERMAL (TDLo) Acute: 53 mg/kg (Human) - Skin allergy effects. INHALATION (LC50) Acute: 101,200 ppm (Rat, Mouse, & Guinea Pig) (5 minutes).

A major epidemiological study concluded that there was no increased risk of kidney cancer associated with gasoline exposures for petroleum refinery employees or neighboring residents. Another study identified a slight trend in kidney cancers among service station employees following a 30-year latency period. Two-year inhalation toxicity studies with fully vaporized unleaded gasoline (at concentrations of 67, 292 and 2,056 ppm in air) produced kidney damage and kidney tumors in male rats, but not in female rats or mice of either sex. Results from subsequent scientific studies suggest that the kidney damage, and probably the kidney tumor response, is limited to the male rat. The kidney tumors apparently were the result of the formation of alpha-2u-globulin, a protein unique to male rats. This finding is not considered relevant to human exposure. Under conditions of the study, there was no evidence that exposure to unleaded gasoline vapor is associated with developmental toxicity. Experimental studies with laboratory animals did suggest that overexposure to gasoline may adversely effect male reproductive performance. Also, in laboratory studies with rats, the maternal and developmental "no observable adverse effect level" (NOAEL) was determined to be 9,000 ppm (75% of the LEL value). Female mice developed a slightly higher incidence of liver tumors compared to controls at the highest concentration. In a four week inhalation study of Sprague Dawley® rats, gasoline vapor condensate was determined to induce sister chromatid exchanges in peripheral lymphocytes. IARC has listed gasoline as possibly carcinogenic to humans (Group 2B).

Pentanes, all isomers

Studies of pentane isomers in laboratory animals indicate exposure to extremely high levels (roughly 10 vol.%) may induce cardiac arrhythmias (irregular heartbeats) which may be serious or fatal.

Toluene:

Effects from Acute Exposure:

Deliberate inhalation of toluene at high concentrations (e.g., glue sniffing and solvent abuse) has been associated with adverse effects on the liver, kidney and nervous system and can cause CNS depression, cardiac arrhythmias and death. Case studies of persons abusing toluene suggest isolated incidences of adverse effects on the fetus including birth defects.

Effects from Repeated or Prolonged Exposure:

Studies of workers indicate long-term exposure may be related to impaired color vision and hearing. Some studies of workers suggest long-term exposure may be related to neurobehavioral and cognitive changes. Some of these effects have been observed in laboratory animals following repeated exposure to high levels of toluene. Several studies of workers suggest long-term exposure may be related to small increases in spontaneous abortions and changes in some gonadotropic hormones. However, the weight of evidence does not indicate toluene is a reproductive hazard to humans. Studies in laboratory animals indicate some changes in reproductive organs following high levels of exposure, but no significant effects on mating performance or reproduction were observed. Case studies of persons abusing toluene suggest isolated incidences of adverse effects on the fetus including birth defects. Findings in laboratory animals were largely negative. Positive findings include small increases in minor skeletal and visceral malformations and developmental delays following very high levels of maternal exposure. Studies of workers indicate long-term exposure may be related to effects on the liver, kidney and blood, but these appear to be limited to changes in serum enzymes and decreased leukocyte counts. Studies in laboratory

animals indicate some evidence of adverse effects on the liver, kidney, thyroid, and pituitary gland following very high levels of exposure. The relevance of these findings to humans is not clear at this time.

Heptane, all isomers

n-Heptane was not mutagenic in the Salmonella/microsome (Ames) assay and is not considered to be carcinogenic.

Xylene, all isomers

Effects from Acute Exposure:

ORAL (LD₅₀), Acute: 4,300 mg/kg [Rat].

INHALATION (LC 50), Acute: 4,550 ppm for four hours [Rat].

DERMAL (LD₅₀), Acute: 14,100 uL/kg [Rabbit].

Overexposure to xylene may cause upper respiratory tract irritation, headache, cyanosis, blood serum changes, CNS damage and narcosis. Effects may be increased by the use of alcoholic beverages. Evidence of liver and kidney impairment were reported in workers recovering from a gross over-exposure.

Effects from Prolonged or Repeated Exposure:

Impaired neurological function was reported in workers exposed to solvents including xylene. Studies in laboratory animals have shown evidence of impaired hearing following high levels of exposure. Studies in laboratory animals suggest some changes in reproductive organs following high levels of exposure but no significant effects on reproduction were observed. Studies in laboratory animals indicate skeletal and visceral malformations, developmental delays, and increased fetal resorptions following extremely high levels of maternal exposure. Adverse effects on the liver, kidney, bone marrow (changes in blood cell parameters) were observed in laboratory animals following high levels of exposure. The relevance of these observations to humans is not clear at this time.

Ethanol

Inhalation exposure to ethanol vapor at concentrations above applicable workplace exposure levels is expected to produce eye and mucus membrane irritation. Human exposure at concentrations from 1000 to 5000 ppm produced symptoms of narcosis, stupor and unconsciousness. Subjects exposed to ethanol vapor in concentrations between 500 and 10,000 ppm experienced coughing and smarting of the eyes and nose. At 15,000 ppm there was continuous lacrimation and coughing. While extensive acute and chronic effects can be expected with ethanol consumption, ingestion is not expected to be a significant route of exposure to this product.

Benzene

ORAL (LD50):Acute: 930 mg/kg [Rat]. 4700 mg/kg [Mouse].INHALATION (LC50):.(VAPOR):Acute: 10000 ppm 7 hour(s) [Rat]. 9980 ppm 8 hour(s) [Mouse].

Studies of Workers Over-Exposed to Benzene:

Studies of workers exposed to benzene show clear evidence that over-exposure can cause cancer of the blood forming organs (acute myelogenous leukemia) and aplastic anemia, an often fatal disease. Studies also suggest over-exposure to benzene may be associated with other types of leukemia and other blood disorders. Some studies of workers exposed to benzene have shown an association with increased rates of chromosome aberrations in circulating lymphocytes. One study of women workers exposed to benzene suggested a weak association with irregular menstruation. However, other studies of workers exposed to benzene have not demonstrated clear evidence of an effect on fertility or reproductive outcome in humans. Benzene can cross the placenta and affect the developing fetus. Cases of aplastic anemia have been reported in the offspring of persons severely over-exposed to benzene.

Studies in Laboratory Animals:

Studies in laboratory animals indicate that prolonged, repeated exposure to high levels of benzene vapor can cause bone marrow suppression and cancer in multiple organ systems. Studies in laboratory animals show evidence of adverse effects on male reproductive organs following high levels of exposure but no significant effects on reproduction have been observed. Embryotoxicity has been reported in studies of laboratory animals but effects were

limited to reduced fetal weight and skeletal variations.

n-Hexane

This material contains n-hexane. Long-term or repeated exposure to n-hexane can cause permanent peripheral nerve damage. Initial symptoms are numbness of the fingers and toes. Also, motor weakness can occur in the digits, but may also involve muscles of the arms, thighs and forearms. The onset of these symptoms may be delayed for several months to a year after the beginning of exposure. Co-exposure to methylethyl ketone or methyl isobutyl ketone increases the neurotoxic properties of n-hexane. In laboratory studies, prolonged exposure to elevated concentrations of n-hexane was associated with decreased sperm count and degenerative changes in the testicles of rats.

Cumene

Effects from Acute Exposure:

Overexposure to cumene may cause upper respiratory tract irritation and severe CNS depression.

Effects from Prolonged or Repeated Exposure:

Studies in laboratory animals indicate evidence of adverse effects on the kidney and adrenal glands following high level exposure. The relevance of these findings to humans is not clear at this time.

Trimethylbenzenes, all isomers

Studies of Workers:

Levels of total hydrocarbon vapors present in the breathing atmosphere of these workers ranged from 10 to 60 ppm. The TCLo for humans is 10 ppm, with somnolence and respiratory tract irritation noted.

Studies in Laboratory Animals:

In inhalation studies with rats, four of ten animals died after exposures of 2400 ppm for 24 hours. An oral dose of 5 mL/kg resulted in death in one of ten rats. Minimum lethal intraperitoneal doses were 1.5 to 2.0 mL/kg in rats and 1.13 to 12 mL/kg in guinea pigs. Mesitylene (1, 3, 5 Trimethylbenzene) inhalation at concentrations of 1.5, 3.0, and 6.0 mg/L for six hours was associated with dose-related changes in white blood cell counts in rats. No significant effects on the complete blood count were noted with six hours per day exposure for five weeks, but elevations of alkaline phosphatase and SGOT were observed. Central nervous system depression and ataxia were noted in rats exposed to 5,100 to 9,180 ppm for two hours.

Ethylbenzene

Effects from Acute Exposure: ORAL (LD50), Acute: 3,500 mg/kg [Rat]. DERMAL (LD50), Acute: 17,800 uL/kg [Rabbit]. INTRAPERITONEAL (LD50), Acute: 2,624 mg/kg [Rat].

Effects from Prolonged or Repeated Exposure:

Findings from a 2-year inhalation study in rodents conducted by NTP were as follows: Effects were observed only at the highest exposure level (750 ppm). At this level the incidence of renal tumors was elevated in male rats (tubular carcinomas) and female rats (tubular adenomas). Also, the incidence of tumors was elevated in male mice (alveolar and bronchiolar carcinomas) and female mice (hepatocellular carcinomas). IARC has classified ethyl benzene as "possibly carcinogenic to humans" (Group 2B). Studies in laboratory animals indicate some evidence of post-implantation deaths following high levels of maternal exposure. The relevance of these findings to humans is not clear at this time. Studies in laboratory animals indicate limited evidence of renal malformations, resorptions, and developmental delays following high levels of maternal exposure. The relevance of these findings to humans is not clear at this time. Studies in laboratory animals indicate some evidence of renal malformations, resorptions, and evelopmental delays following high levels of maternal exposure. The relevance of these findings to humans is not clear at this time. Studies in laboratory animals indicate some evidence of renal malformations, resorptions, and developmental delays following high levels of maternal exposure. The relevance of these findings to humans is not clear at this time. Studies in laboratory animals indicate some evidence of adverse effects on the liver, kidney, thyroid, and pituitary gland.

Cyclohexane

ORAL (LD50):

Acute: 12705 mg/kg [Rat]. 813 mg/kg [Mouse].

Cyclohexane can cause eye, skin and mucous membrane irritation, CNS depressant and

narcosis at elevated concentrations. In experimental animals exposed to lethal concentrations by inhalation or oral route, generalized vascular damage and degenerative changes in the heart, lungs, liver, kidneys and brain were identified.

Cyclohexane has been the focus of substantial testing in laboratory animals. Cyclohexane was not found to be genotoxic in several tests including unscheduled DNA synthesis, bacterial and mammalian cell mutation assays, and in vivo chromosomal aberration. An increase in chromosomal aberrations in bone marrow cells of rats exposed to cyclohexane was reported in the 1980's. However, a careful re-evaluation of slides from this study by the laboratory which conducted the study indicates these findings were in error, and that no significant chromosomal effects were observed in animals exposed to cyclohexane. Findings indicate long-term exposure to cyclohexane does not promote dermal tumorigenesis.

Naphthalene

Studies in Humans Overexposed to Naphthalene:

Severe jaundice, neurotoxicity (kernicterus) and fatalities have been reported in young children and infants as a result of hemolytic anemia from over-exposure to naphthalene. Persons with Glucose 6-phosphate dehydrogenase (G6PD) deficiency are more prone to the hemolytic effects of naphthalene. Adverse effects on the kidney have also been reported from over-exposure to naphthalene but these effects are believed to be a consequence of hemolytic anemia, and not a direct effect.

Studies in Laboratory Animals:

Hemolytic anemia has been observed in laboratory animals exposed to naphthalene. Laboratory rodents exposed to naphthalene vapor for 2 years (lifetime studies) developed non-neoplastic and neoplastic tumors and inflammatory lesions of the nasal and respiratory tract. Cataracts and other adverse effects on the eye have been observed in laboratory animals exposed to high levels of naphthalene. Findings from a large number of bacterial and mammalian cell mutation assays have been negative. A few studies have shown chromosomal effects (elevated levels of Sister Chromatid Exchange or chromosomal aberrations) *in vitro*.

Styrene

Neurological injury associated with chronic styrene exposure include distal hypesthesia, decreased nerve conduction velocity, and altered psychomotor performance. These effects did not occur with exposures to airborne concentrations that were less than 100 ppm. Increased deaths from degenerative neurological disorders were found in a comprehensive epidemiological study of Danish reinforced plastics workers. These workers were reported to have a 2.5-fold increased risk for myeloid leukemia with clonal chromosome aberrations. Also, there are several studies that suggest potential reproductive effects in humans and experimental animals from overexposure to styrene. Styrene was not mutagenic in the standard (liquid phase) Ames Salmonella/microsome assay, but was weakly positive when tested in the vapor phase. IARC has listed styrene as possibly carcinogenic to humans (Group 2B).

SECTION 12. ECOLOGICAL INFORMATION

Ecotoxicity	Unleaded gasoline is potentially toxic to freshwater and saltwater ecosystems. Various grades of gasoline exhibited range of lethal toxicity (LC $_{100}$) from 40 PPM to 100 PPM in ambient stream water with Rainbow Trout (<i>Salmo irideus</i>). A 24-hour TLm (Median Toxic Limit) was calculated to be 90 PPM with juvenile American Shad (<i>Squalius cephalus</i>). In Bluegill Sunfish (<i>Lepomis macrochirus</i>), Grey Mullet (<i>Chelon labrosus</i>) and Gulf Menhaden (<i>Brevoortia patronus</i>), gasoline exhibited a 96-hour LC $_{50}$ of 8 PPM, 2 PPM, and 2 PPM, respectively.
Environmental Fate	Biodegradability: Readily biodegradable in aerobic conditions. Residual components most recalcitrant to biodegration are branched alkanes.
	Partition Coefficient (log Kow): 2.13 to 4.85.
	Photodegration: Gasoline will partition to air, with the atmospheric half-life for constituents ranging from 0.8 days to 16 days.

MSDS No. UN	LEAD Revision Date	10/14/2008	Continued on Next Page
-------------	--------------------	------------	------------------------

Stability in water: Gasoline is not readily susceptible to hydrolysis under aquatic conditions, and the constituents readily partition to air.

SECTION 13. DISPOSAL CONSIDERATIONS

Hazard characteristic and regulatory waste stream classification can change with product use. Accordingly, it is the responsibility of the user to determine the proper storage, transportation, treatment and/or disposal methodologies for spent materials and residues at the time of disposition.

Maximize material recovery for reuse or recycling. Recovered non-usable material may be regulated by US EPA as a hazardous waste due to its ignitibility (D001) and/or its toxic (D018) characteristics. Conditions of use may cause this material to become a "hazardous waste", as defined by federal or state regulations. It is the responsibility of the user to determine if the material is a RCRA "hazardous waste" at the time of disposal. Transportation, treatment, storage and disposal of waste material must be conducted in accordance with RCRA regulations (see 40 CFR 260 through 40 CFR 271). State and/or local regulations may be more restrictive. Contact your regional US EPA office for guidance concerning case specific disposal issues.

SECTION 14. TRANSPORT INFORMATION

The shipping description below may not represent requirements for all modes of transportation, shipping methods or locations outside of the United States.

US DOT Status	A U.S. Department of Transportation regulated material.			
Proper Shipping Name	Gasoline, 3, UN 1203, PG II Gasohol, 3, NA 1203, PGII (Use only for gasoline blended with less than 20% ethanol)			
Hazard Class	3 DOT Class: Flammable liquid. Packing Group II			
		UN/NA Number	UN1203 or NA1203	
Reportable Quantity	A Reportable Quantity (RQ) has not been established for this material.			
Placard(s)		Emergency Response Guide No.	128	
	FLAMMABLE LIQUID	MARPOL III Status	Not a DOT "Marine Pollutant" per 49 CFR 171.8.	

SECTION 15. REGULATORY INFORMATION

TSCA Inventory This product and/or its components are listed on the Toxic Substances Control Act (TSCA) inventory. The Superfund Amendments and Reauthorization Act of 1986 (SARA) Title III requires SARA 302/304 facilities subject to Subparts 302 and 304 to submit emergency planning and notification **Emergency Planning** information based on Threshold Planning Quantities (TPQs) and Reportable Quantities and Notification (RQs) for "Extremely Hazardous Substances" listed in 40 CFR 302.4 and 40 CFR 355. No components were identified. The Superfund Amendments and Reauthorization Act of 1986 (SARA) Title III requires SARA 311/312 Hazard facilities subject to this subpart to submit aggregate information on chemicals by "Hazard Identification Category" as defined in 40 CFR 370.2. This material would be classified under the following hazard categories:

MSDS No. UNLEAD

Fire, Acute (Immediate) Health Hazard, Chronic (Delayed) Health Hazard

SARA 313 Toxic Chemical Notification and Release Reporting	This product contains the following components in concentrations above <i>de minimis</i> levels that are listed as toxic chemicals in 40 CFR Part 372 pursuant to the requirements of Section 313 of SARA: Toluene [CAS No.: 108-88-3] Concentration: <25% Xylene, all isomers [CAS No.: 1330-20-7] Concentration: <18% n-Hexane [CAS No.: 110-54-3] Concentration: <8% Benzene [CAS No.: 71-43-2] Concentration: <5% Cumene [CAS No.: 98-82-8] Concentration: <4% Ethylbenzene [CAS No.: 100-41-4] Concentration: <4% 1,2,4Trimethylbenzene [CAS No.: 95-63-6] Concentration: <3% Cyclohexane [CAS No.: 110-82-7] Concentration: <2% Styrene [CAS No.: 100-42-5] Concentration: <1%
CERCLA	The Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) requires notification of the National Response Center concerning release of quantities of "hazardous substances" equal to or greater than the reportable quantities (RQ's) listed in 40 CFR 302.4. As defined by CERCLA, the term "hazardous substance" does not include petroleum, including crude oil or any fraction thereof which is not otherwise specifically designated in 40 CFR 302.4. Chemical substances present in this product or refinery stream that may be subject to this statute are: Toluene [CAS No.: 108-88-3] RQ = 1000 lbs. (453.6 kg) Concentration: <25% Xylene, all isomers [CAS No.: 1330-20-7] RQ = 100 lbs. (45.36 kg) Concentration: <18% n-Hexane [CAS No.: 110-54-3] RQ = 5000 lbs. (2268 kg) Concentration: <8% Benzene [CAS No.: 71-43-2] RQ = 10 lbs. (4.536 kg) Concentration: <5% 2,2,4-Trimethylpentane [CAS No.: 540-84-1] RQ = 1000 lbs. (453.6 kg) Concentration: <5% Cumene [CAS No.: 98-82-8] RQ = 5000 lbs. (2268 kg) Concentration: <4% Ethylbenzene [CAS No.: 110-54-7] RQ = 1000 lbs. (453.6 kg) Concentration: <4% Cyclohexane [CAS No.: 110-54-7] RQ = 1000 lbs. (453.6 kg) Concentration: <4% Styrene [CAS No.: 110-54-7] RQ = 1000 lbs. (453.6 kg) Concentration: <2% Styrene [CAS No.: 110-54-7] RQ = 1000 lbs. (453.6 kg) Concentration: <2% Styrene [CAS No.: 110-54-7] RQ = 1000 lbs. (453.6 kg) Concentration: <2% Styrene [CAS No.: 100-41-4] RQ = 1000 lbs. (453.6 kg) Concentration: <2% Styrene [CAS No.: 100-42-5] RQ = 1000 lbs. (453.6 kg) Concentration: <1%
Clean Water Act (CWA)	This material is classified as an oil under Section 311 of the Clean Water Act (CWA) and the Oil Pollution Act of 1990 (OPA). Discharges or spills which produce a visible sheen on waters of the United States, their adjoining shorelines, or into conduits leading to surface waters must be reported to the EPA's National Response Center at (800) 424-8802.
California Proposition 65	This material may contain the following components which are known to the State of California to cause cancer, birth defects or other reproductive harm, and may be subject to the requirements of California Proposition 65 (CA Health & Safety Code Section 25249.5): Gasoline (Wholly Vaporized and Engine Exhaust), Benzene [CAS No. 71-43-3], Toluene [CAS No. 108-88-3], Ethylbenzene [CAS No.100-41-4] and Naphthalene [CAS No.91-20-3]
New Jersey Right-to-Know Label	Gasoline [NJDEP CAS No. 8006-61-9]
Additional Remarks	As minimum requirements, CITGO recommends that the following advisory information be displayed on equipment used to dispense gasoline in motor vehicles. Additional warnings specified by various regulatory authorities may be required: "DANGER: Extremely Flammable. Use as a Motor Fuel Only. No Smoking. Stop Engine. Turn Off All Electronic Equipment including Cellular Telephones. Do Not Overfill Tank. Keep Away from Heat and Flames. Do Not leave nozzle unattended during refueling. Static Sparks Can Cause a Fire, especially when filling portable containers. Containers must be metal or other material approved for storing gasoline. PLACE CONTAINER ON GROUND. DO NOT FILL ANY PORTABLE CONTAINER IN OR ON A VEHICLE. Keep nozzle spout in contact with the container during the entire filling operation. Harmful or Fatal if Swallowed. Long Term-Exposure Has Caused Cancer in Laboratory Animals. Avoid prolonged breathing of vapors. Keep face away from nozzle and gas tank. Never siphon by mouth." WHMIS Class B-2: Flammable liquid with a flash point lower than 37.8°C (100°F). WHMIS Class D-2B: Material causing other toxic effects (TOXIC).

MSDS No. UNLEAD

SECTION 16. OTHER INFORMATION

Refer to the top of P	Page 1 for the HMIS an	d NFPA Hazard Ratings for th	nis product.	
REVISION INFORMA	TION			
Version Number	9.1			
Revision Date	10/14/2008			
ABBREVIATIONS				
AP: Approximately	EQ: Equal	>: Greater Than	<: Less Than	
NA: Not Applicable	ND: No Data	NE: Not Established		
ACGIH: American Conferen	nce of Governmental Industria	l Hygienists		
AIHA: American Industrial H	lygiene Association			
IARC: International Agency	for Research on Cancer			
NIOSH: National Institute of	of Occupational Safety and Hea	alth		
NPCA: National Paint and	Coating Manufacturers Associ	ation		
EPA: US Environmental Pr	otection Agency			
HMIS: Hazardous Materials Information System				
OSHA: Occupational Safety and Health Administration				
NTP: National Toxicology Program				
NFPA: National Fire Protect	ction Association			
DISCLAIMER OF LIA	BILITY			

THE INFORMATION IN THIS MSDS WAS OBTAINED FROM SOURCES WHICH WE BELIEVE ARE RELIABLE. HOWEVER, THE INFORMATION IS PROVIDED WITHOUT ANY WARRANTY, EXPRESSED OR IMPLIED REGARDING ITS CORRECTNESS. SOME INFORMATION PRESENTED AND CONCLUSIONS DRAWN HEREIN ARE FROM SOURCES OTHER THAN DIRECT TEST DATA ON THE SUBSTANCE ITSELF. THIS MSDS WAS PREPARED AND IS TO BE USED ONLY FOR THIS PRODUCT. IF THE PRODUCT IS USED AS A COMPONENT IN ANOTHER PRODUCT, THIS MSDS INFORMATION MAY NOT BE APPLICABLE. USERS SHOULD MAKE THEIR OWN INVESTIGATIONS TO DETERMINE THE SUITABILITY OF THE INFORMATION OR PRODUCTS FOR THEIR PARTICULAR PURPOSE.

THE CONDITIONS OR METHODS OF HANDLING, STORAGE, USE, AND DISPOSAL OF THE PRODUCT ARE BEYOND OUR CONTROL AND MAY BE BEYOND OUR KNOWLEDGE. FOR THIS AND OTHER REASONS, WE DO NOT ASSUME RESPONSIBILITY AND EXPRESSLY DISCLAIM LIABILITY FOR LOSS, DAMAGE OR EXPENSE ARISING OUT OF OR IN ANY WAY CONNECTED WITH HANDLING, STORAGE, USE OR DISPOSAL OF THE PRODUCT.

***** END OF MSDS *****

QEC MATERIAL SAFETY DATA SHEET

QUALITY ENVIRONMENTAL CONTAINERS

P.O. Box 1160, Beaver, WV 25813 800/255-3950*304/255-3900*Fax: 304/255-3901

H3880-05	Hydro	ochloric Acid		Page: 1
Effective: 02	2/06/95		Issued: 12/04/96	
J.T. BAKER, INC., 222 Red School Lane, Phillipsburg, NJ 08865		24-Hour Emergency Telephone 908/859-2151 National Response Center 800/424-8802 Chemtee 800/424-9300		
***************	SECTION I - PR	CREEKERERERE ODICT IDENTIE	RESERVERING Tratton	* 再回回电视术和间接间就回觉电影
**************		STOOL IDENTIT.	KHREEFERSEN TOUTTON	
Product Name: Common Synonyms:	Hydrochloric Acid Muriatic Acid; Ch Aqueous	lorohydric Ac	id; Hydrogen	Chloride,
Chemical Family: Formula:				
Formula Wt.:	36.46			•
CAS No.:	7647-01-0			
NIOSH/RTECS No.: Product Use:	MW4025000 Laboratory Reagent			
Product Codes:	7831,9548,9547,953	, 7,5839,9543,9	544,5367,9549	9534,9538,5214
	5814,9540,6900,553	7,9536,9539,9	529,5593,9542	,9535,5575,9546
	∕9530,5800,4800	•		

	PRECAUTION	RY LABELING		
BAKER SAF-T-DATA	* System		÷	· · ·
	HEALTH FLAMMABILITY	REACTIVITY CO	NTACT	•
				••••••
			4.5	
	SEVERE NONE	MODERATE SE	VERE	•
·	•,	•	•	
Laboratory Prote	ctive Equipment			•
•				+
		•		
			×	
	COCCLES LAB COAT	VENT PROP HOOD CLOV	ER	
•				
		utionary Labe	ling	
	POIS	SON! DANGER!		
CAUSES SEVERE BU	JRNS. MAY BE FATAL		R INHALED.	

Do not get in eyes, on skin, on clothing. Do not breathe vapor. Causes damage to Respiratory system (lungs), eyes and skin. Keep in tightly closed container. Loosen closure cautiously. Use with adequate ventilation. Wash thoroughly after handling. In case of spill neutralize with soda ash or lime and place in dry container.

OEC MATERIAL SAFETY DATA SHEET				
QUALITY ENVIRONMENTAL CONTAINERS P.O. Box 1160, Beaver, WV 25813 800/255-3950*304/255-3900*Fax: 304/255-3901				
H3880-05 Effective: 02/06/95 J.T. BAKER, INC., 222 Red School Lane, Phillipsburg, NJ 08865		Page: 2 Issued: 12/04/96 24-Hour Emergency Telephone 908/859-2151 National Response Center 800/424-8802 Chemtee 800/424-9300		
PRECAUTIONARY LABELING (CONTINUED)				
International Labeling				
Irritating to eyes and skin. Keep out of reach of children. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. SAF-T-DATA* Storage Color Code: White (corrosive)				
ESESSEE SECTION II - COMPONENTS				
Hudnochlonic Acid	<u>CAS No.</u> 7647-01-0 7732-18-5	<u>Weight %</u> 33-40 60-67	OSHA/FEL 5 ppm N/E	ACGIH/TLV 5 ppm N/E
SECTION III - PHYSICAL DATA				
Boiling Point: 149°C (300°F) (at 760 mm Hg)		Vapor Press	ure (mmHg):	N/A
Melting Point: -25°C (-13°F) (at 760 mm Hg)		Vapor Densi	ty (air=1):	1.3
Specific Gravity: 1.18 (H ₂ 0×1)		Evaporation	Rate: N/A	
Solubility(H ₂ O): Complete (100%)		% Volatiles (21°C)	by Volume:	100
pH: 1.0 (O.1M solution)				
Odor Threshold (ppm): N/A	I	Physical Sta	to: Liquid	•
Coefficient Water/Oil Distribution: N/A				
Appearance & Odor: Clear, colorless fuming liquid. Pungent odor.				

, .

,†

QEC MATERIAL SAFETY DATA SHEET QUALITY ENVIRONMENTAL CONTAINERS P.O. Box 1160, Beaver, WV 25813 800/255-3950*304/255-3900*Fax: 304/255-3901
H3880-05 Effective: 02/06/95 Hydrochloric Acid Issued: 12/04/96 24-Hour Emergency Telephone 908/859-2151
J.T. BAKER, INC., 222 Red School Lane, Phillipsburg, NJ 08865 National Response Center 800/424-8802 Chemtee 800/424-9300
SECTION IV - FIRE AND EXPLOSION HAZARD DATA
ash Point (Closed Cup): N/A NFPA 704M Rating: 3-0-0
toignition Temperature: N/A
ammable Limits: Upper - N/A Lower - N/A
<u>re Extinguishing Media</u> Use extinguishing media appropriate for surrounding fire.
 Fire-Fighting Procedures Firefighters should wear proper protective equipment and self-contained breathing apparatus with full facepiece operated in positive pressure mode. Move containers from fire area if it can be done without risk. Use water 'to keep fire-exposed containers cool. Do not get water inside containers.
<u>usual Fire & Explosion Hazards</u> May emit hydrogen gas upon contact with metal. which can form an explosive mixture with air.
<pre>>xic Gases Froduced hydrogen chloride, hydrogen, chlorine</pre>
<pre>cplosion Data-Sensitivity to Mechanical Impact None identified.</pre>
<u>xplosion Data-Sensitivity to Static Discharge</u> None identified.
SECTION V - HEALTH HAZARD DATA
hreshold Limit Value (TLV/TWA): 7 mg/m³ (5 ppm)
LV (Ceiling) is for Hydrogen chloride.
hort-Term Exposure Limit (STEL): Not Established
ermissible Exposure Limit (PEL): 7 mg/m ³ (5 ppm)
'EL (Ceiling) is for Hydrogen chloride.

٠.

, co. P.

QUALITY ENVIRONMENTAL CONTAINERS P.O. Box 1160, Beaver, WV 25813 800/255-3950*304/255-3900*Fax: 304/255-3901

	H3880-05 Effective: 02/06/95	Hydrochloric Acid	Pag Issued: 12/0 24-Hour Emergency Telephone 908/8	
	J.T. BAKER, INC., 222 Red	School Lane, Phillipsburg, NJ 08865	"National Response Center 800/424-8 Chemtee 800/424-9300	
****	SECI	CION V - HEALTH HAZARD DATA	(CONTINUED)	ERRERRE ERRE
Toxi	city of component			
		e LD ₅₀ for Hydrochloric Acid Hydrochloric Acid		40 mg/kg 900 mg/kg
		50 for Hydrochloric Acid		3124 ppm
	raperitoneal Mouse		:	190 g/kg
Intr	ravenous Mouse LD _g	50 for Water	· · · · · · · · · · · · · · · · · · ·	25 g/kg
Carc	inogenicity: N	EP: No IARC: No Z Lis	t: No OSHA Reg: No	2
Card	<u>sinogenicity</u> None identified.		·	
Repr	None identified.	• • •		· • • •
Effe	ects of Overexposi	lre	•	
·	INHALATION:	pulmonary edema, circulator damage, collapse, coughing,		
	SKIN CONTACT:	severe burns	· ·	
·	EYE CONTACT:	severe burns	· · · ·	•
	SKIN ABSORPTION:	none identified		
•	INGESTION:	is harmful and may be fata] throat, and stomach, nauses		outh,
•	CHRONIC EFFECTS:	may cause teeth damage	· .	·
Tar	get Organs respiratory syst	em, eyes, skin		
Med	ical Conditions G none identified	enerally Aggravated by Expos	sure	
Prin	mary Routes of En ingestion, inhal	<u>try</u> ation, skin contact, c yc con	itact	

OUALITY ENVIRONMENTAL CONTAINERS

P.O. Box 1160, Beaver, WV 25813 800/255-3950*304/255-3900*Fax: 304/255-3901

H3880-05

Hydrochloric Acid

Page: 5

Effective: 02/06/95

Issued: 12/04/96 24-Hour Emergency Telephone 908/859-2151

J.T. BAKER, INC., 222 Red School Lane, Phillipsburg, NJ 08865

National Response Center 800/424-8802 Chemtee 800/424-9300

SECTION V - HEALTH HAZARD DATA (CONTINUED)

Emergency and First Aid Procedures

- CALL A PHYSICIAN. If swallowed, do NOT induce vomiting. If INGESTION: conscious, give water, milk, or milk of magnesia.
- If inhaled, remove to fresh air. If not breathing, give INHALATION: artificial respiration. If breathing is difficult, give oxygen. Prompt action is essential.
- SKIN CONTACT: In case of contact, immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before re-use.
- In case of eye contact, immediately flush with plenty of EYE CONTACT: water for at least 15 minutes.

SARA/TITLE III HAZARD CATEGORIES and LISTS

Acute: Yes Chronic: Yes Flammability: No Pressure: No Reactivity: No

Extremely Hazardous Substance: Yes Contains Hydrogen Chloride (RQ = 1 LB, TPQ = 500 LBS) Contains Hydrochloric Acid (RQ = 5000 LBS) -Yes CERCLA Hazardous Substance: SARA 313 Toxic Chemicals: Yes Contains Hydrochloric Acid Generic Class: Generic Class Removed from CFR: 7/1/91 Yes TSCA Inventory:

和如下的心论这是这里的自己的时间也不可以可以这些这些这些这些这些这些这些这些这些是是这些这些是是有有有有有有不可能是是是是不是有不可能是不是是 SECTION VI - REACTIVITY DATA

Hazardous Polymerization: Will not occur Stability: Stable

heat, moisture. Conditions to Avoid:

most common metals, water, amines, metal oxides, Incompatibles: acetic anhydride, propiolactone, vinyl acetate, mercuric sulfate, calcium phosphide, formaldehyde, alkalies, carbonates, strong bases, sulfuric acid, chlorosulfonic acid

Decomposition Products: hydrogen chloride, hydrogen, chlorine

QUALITY ENVIRONMENTAL CONTAINERS

P.O. Box 1160, Beaver, WV 25813 800/255-3950*304/255-3900*Fax: 304/255-3901

H3880-05 Effective: 02/06/95 Hydrochloric Acid

Page: 6

Issued: 12/04/96 24-Hour Emergency Telephone 908/859-2151 National Response Center 800/424-8802 Chemtee 800/424-9300

J.T. BAKER, INC., 222 Red School Lane, Phillipsburg, NJ 08865

SECTION VII - SPILL & DISPOSAL PROCEDURES

x 我是我们还可能把我们已经把我们就把我们就没有我们的我们就就是我们就是我们就是我们的你们就是我们的我们的我们的,我们不能有我们的?"

Steps to be Taken in the Event of a Spill or Discharge

Wear self-contained breathing apparatus and full protective clothing. Stop leak if you can do so without risk. Ventilate area. Neutralize spill with soda ash or lime. With clean shovel, carefully place material into clean, dry container and cover; remove from area. Flush spill area with water.

J. T. Baker NEUTRASORB^R or TEAM^R 'Low Na+' acid neutralizers are recommended for spills of this product.

Disposal Procedure

Dispose in accordance with all applicable federal, state, and local environmental regulations.

EPA Hazardous Waste Number: _____.D002 (Corrosive Waste)

SECTION VIII - INDUSTRIAL PROTECTIVE EQUIPMENT

Ventilation: Use general or local exhaust ventilation to meet TLV requirements.

Respiratory Protection: Respiratory protection required if airborne concentration exceeds TLV. At concentrations up to 100 ppm, a chemical cartridge respirator with acid cartridge is recommended. Above this level, a self-contained breathing apparatus is advised.

Eye/Skin Protection: Safety goggles and face shield, uniform, protective suit, neoprene gloves are recommended.

A safety shower, an eye bath, and washing facilities should be available.

SECTION IX - STORAGE AND HANDLING PRECAUTIONS

SAF-T-DATA* Storage Color Code: White (corrosive)

Storage Requirements

Keep container tightly closed. Store in corrosion-proof area. Isolate from incompatible materials. Do not store near oxidizing materials.

	MENTAL CONTAINERS /er, WV 25813 800/255-3950*304/255-3	900*Fax: 304/255-3901
H3880-05 Effective: 02/06/95	Hydrochloric Acid	Page: 7 Issued: 12/04/96
J.T. BAKER, INC., 222 Red So	chool Lane, Phillipsburg, NJ 08865	24-Hour Emergency Telephone 908/859-2151 National Response Center 800/424-8802 Chemtee 800/424-9300
	STORAGE AND HANDLING PREC	AUTIONS (CONTINUED)
mixtures with air. chloride gas. Con	n metals produces hydrogen Thermal decomposition m tact with strong oxidizers RANSPORTATION DATA AND ADD	ay release corrosive hydrogen may pröduce chlorine gas.
azard Class:	Hydrochloric acid, soluti 8 table Quantity: 5000 LBS. 49CFR 172.101	
nternational (I.M.O.)		
abels: 8 CORROSIVE	Hydrochloric acid, soluti 8 e Pollutants: No 49CFR PART 176; IMDG Code	I.M.O. Fage: 8183 Packaging Group: II
IR (I.C.A.O.)	· · · ·	
roper Shipping Name: azard Class: N: UN1789	Hydrochloric acid, soluti 8	on Packaging Group: II
abels: 8 CORROSIVE egulatory References:	data and references conta the opinion of qualified a guide to the overall cl and is not package size s taken as a warranty or re company assumes legal res information is offered so investigation, and verifi information must be deter accordance with applicabl laws and regulations. See	e believe the transportation ined herein to be factual and experts. The data is meant as assification of the product pecific, nor should it be presentation for which the ponsibility.=== The lely for your consideration.

•

•

MATERIAL SAFETY DATA SHEET) H)()

QUALITY ENVIRONMENTAL CONTAINERS

P.O. Box 1160, Beaver, WV 25813 800/255-3950*304/255-3900*Fax: 304/255-3901

Hydrochloric Acid

Page: 8

H3880-05 Effective: 02/06/95

Issued: 12/04/96 24-Hour Emergency Telephone 908/859-2151 National Response Center 800/424-8802 Chemtee 800/424-9300

J.T. BAKER, INC., 222 Red School Lane, Phillipsburg, NJ 08865

SECTION X - TRANSPORTATION DATA AND ADDITIONAL INFORMATION (CONTINUED)

U.S. Customs Harmonization Number: 28061000000

NOTE: When handling liquid products, secondary protective containers must be

used for carrying.

-N/A = Not Applicable, or not Available;

N/E = Not Established.-

The information in this Material Safety Data Sheet meets the requirements of the United States OCCUPATIONAL SAFETY AND HEALTH ACT and regulations promulgated thereunder (29 CFR 1910.1200 et. seq.) and the Canadian WORKPLACE HAZARDOUS MATERIALS INFORMATION SYSTEM. This document is intended only as a guide to the appropriate precautionary handling of the material by a person trained in, or supervised by a person trained in, chemical handling. The user is responsible for determining the precautions and dangers of this chemical for his or her particular application. Depending on usage, protective clothing including eye and face guards and respirators must be used to avoid contact with material or breathing chemical vapors/fumes.

Exposure to this product may have serious adverse health effects. This chemical may interact with other substances. Since the potential uses are so varied, Baker cannot warn of all of the potential dangers of use or interaction with other chemicals or materials. Baker warrants that the chemical meets the specifications set forth on the label. BAKER DISCLAIMS ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED WITH REGARD TO THE PRODUCT SUPPLIED HEREUNDER, ITS MERCHANTABILITY OR ITS FITNESS

FOR A PARTICULAR PURPOSE. The user should recognize that this product can cause severe injury and even death, especially if improperly handled or the known dangers of use are not heeded. READ ALL PRECAUTIONARY INFORMATION. As new documented general safety information becomes available, Baker will periodically revise this Material Safety Data Sheet.

Note: CHEMIREC, CANUTEC, and NATIONAL RESPONSE CENTER emergency telephone numbers are to be used ONLY in the event of CHEMICAL EMERGENCIES involving a spill, leak, fire, exposure, or accident involving chemicals. All non-emergency questions should be directed to Customer Service (1-300-JTBAKER) for assistance.

COPYRIGHT 1996 Mallinckrodt Baker, Inc. * TRADEMARKS OF Mallinckrodt Baker, Inc. = = u

Approved by Quality Assurance Department.

WPC Brands, Inc. P.O. Box 4406 Bridgeton, MO 63044-0406

Material Safety Data Sheet

Complies with OSHA's Hazard Communication Standard, 29 CFR 1910.1200

I Trade Name: Repel [®] 100 Insect Re	pellent				
Product Type: Insect Repellent					
Product Item Number: 402000		Formula Code Num	ber: 01-4040		
EPA Registration Number	Manufacturer	Emergency Telephone Numbers			
305-30	dustries Corporation al Drive	For Chemical Emergency:1-800-633-For Information:1-888-880-Prepared by:C. A. DuckwDate Prepared:March 12, 3			
II Hazards Ingredient/Identity Information	ion	III Physical and Cl	III Physical and Chemical Characteristics		
Chemical%OSDEET (N.N-diethyl-m-98.11toluamide)CAS# 134-62-3	NA NA	Appearance & Odor: Boiling Point: Vapor Pressure: Specific Gravity: Vapor Density: % Volatile (by vol.): Solubility in Water: Evaporation Rate:	Clear liquid, slight odor 160 C 1.67 x 10 ⁻³ 0.996 6.7 100% NA Approximately 1 (Butyl Acetat	te = 1)	
IV Fire and Explosive Hazards Data		V Reactivity Data			
Flash Point: 311 F(pmcc) Flame Extension: NA Autoignition Temperature: N/A Fire Extinguishing Media: Carbon dioxide, Foam, Dry chemical Decomposition Temperature: NA Special Fire-Fighting Procedures: For Small Fires: Use Carbon dioxide or dry chemical extinguisher. For Large Fires: Use copious amounts of water. Unusual Fire and Explosion Hazards: Also see Section VII		Stability: Stable Polymerization: Will not occur Conditions to Avoid: None Incompatible Materials: May soften or damage some synthetics such as rayon. May damage leather. Hazardous Decomposition or Byproducts: None			
VI Health Hazard Data		VII Precautions for Safe Handling and Use			
Ingestion (Swallowing): Harmful if swallowed. <i>First Aid</i> : Call a Poison Control Center or doctor immediately for treatment advice. Have person sip a glass of water if able to swallow. Do not induce vomiting unless told to do so by a Poison Control Center or doctor. Do not give anything by mouth to an unconscious person. Eye Contact: Causes substantial but temporary eye injury. <i>First Aid</i> : Hold eyelids open and flush slowly and gently with water for 15-20 minutes. Remove contact lenses, if present, after the first 5 minutes, then continue rinsing eye. Special Notes: Probable mucosal damage may contradict the use of gastric lavage. Use of this product may cause skin reactions in rare cases. If you suspect a reaction to this product, discontinue use. Take off contaminated clothing. Rinse immediately with plenty of water for 15-20 minutes. Contact a Poison Control Center or doctor. Have the product container with you when calling or going for treatment. Health conditions Aggravated by Exposure: None known Ingredients listed by NTP, OSHA, or IARC as Carcinogens or Potential Carcinogens: None		water. Waste Disposal: Do not puncture or incinerate. If empty: Place in trash or offer for recycling. If partially filled: Call your local solid waste disposal agency or 1-800-CLEANUP for disposal instructions. Never place unused product down an indoor or outdoor drain. Handling & Storage Precautions: Keep away from heat, sparks, or open flame. Exposure to temperatures biological page to the place of the p			
VIII Control Measures		IX Transportation	Data		
Read and follow label directions. They are you this product effectively, and give necessary so protect your health.	0 0	DOT Shipping Name: DOT Hazard Class: N	Not regulated by DOT NONE		

The information and statements herein are believed to be reliable but are not to be construed as warranty or representation for which we assume legal responsibility. Users should undertake sufficient verification and testing to determine the suitability for their own particular purpose of any information or products referred to herein. NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE IS MADE.

REACTIVITY - 0 HEALTH - 2

FLAMMABILITY – 2 PERSONAL – None

Hazardous Material Identification System - (HMIS)

METHANOL

Material Safety Data Sheet

Section 1: Chemical Product and Company Identification Catalog Number:	
34485, 34488, 34500, 4829, R4828000, SSOM0010	
Product Identity: METHANOL	
Manufacturer's Name: RICCA CHEMICAL COMPANY LLC	Emergency Contact(24 hr) CHEMTREC® Domestic: 800-424-9300 International: 703-527-3887
CAGE Code: 4TCW6, 0V553, 4XZQ2	
Address: 448 West Fork Dr Arlington, TX 76012	Telephone Number For Information: 817-461-5601
Date Prepared: 3/25/99	Revision: 6 Last Revised: 05/18/2011 Date Printed: 08/24/2011 12:35:31 pm

Section 2. Composition/Information on Ingredients

Component	CAS Registry #	Concentration	ACGIH TLV	OSHA PEL
Methanol (Methyl Alcohol)	67-56-1	100	200 ppm	200 ppm
			262 mg/m3	260 mg/m3

Section 3: Hazard Identification

Emergency Overview: Flammable liquid. Primarily toxic by ingestion. Cannot be made non-poisonous. If ingested, give large quantity of water and induce vomiting. Call a physician. Contact may cause dryness and cracking of the skin. May cause irritation to the eyes. Wash areas of contact with water. May cause irritation of the respiratory system.

Target Organs: eyes, skin, respiratory system, central nervous system, gastrointestinal tract, liver.

Eye Contact: May cause irritation with burning and stinging with possible damage to the cornea and conjunctiva.

Inhalation: May cause irritation of the eyes, nose, throat, upper respiratory tract and associated mucosa. Central nervous system effects include headache, nervousness, tremors, acidosis, convulsions, dizziness, tearing, fatigue, nausea, somnolence, narcosis with stupor and loss of consciousness, circulatory collapse, respiratory failure and death.

Skin Contact: Results in drying and cracking which can lead to secondary infections and dermatitis. Dermal absorption causes many of the symptoms of inhalation.

Ingestion: Affects the brain, lungs, kidneys, gastrointestinal tract, eyes and respiratory system and can cause coma, blindness and death. Usual fatal dose: 100 - 125 milliliters.

Chronic Effects/Carcinogenicity: None

IARC - No.

NTP - No.

OSHA - No.

Reproductive Information: Reproductive effects cited in 'Registry of Toxic Effects of Chemical Substances' for Methanol (Methyl Alcohol).

Reproductive effects cited in 'Registry of Toxic Effects of Chemical Substances' for Methanol (Methyl Alcohol).

For RICCA, SpectroPure, Red Bird, and Solutions Plus Brands Emergency Contact(24 hr) -- CHEMTREC® Domestic: 800-424-9300 International: 703-527-3887

METHANOL

Teratology (Birth Defect) Information: Mutation data cited in 'Registry of Toxic Effects of Chemical Substances' for Methanol (Methyl Alcohol). Mutation data cited in 'Registry of Toxic Effects of Chemical Substances' for Methanol (Methyl Alcohol).

Section 4: First Aid Measures - In all cases, seek qualified evaluation.

Eye Contact: Irrigate immediately with large quantity of water for at least 15 minutes. Call a physician if irritation develops.
 Inhalation: Remove to fresh air. Give artificial respiration if necessary. If breathing is difficult, give oxygen.
 Skin Contact: Wash areas of contact with soap and water for at least 15 minutes. Call a physician if irritation develops.
 Ingestion: Dilute immediately with water or milk. Induce vomiting. Call a physician.

Section 5: Fire Fighting Measures

Flash Point: approximately 11°C

LFL: 7%

Method Used: CC

UFL: 36%

Extinguishing Media: Water, dry chemical, foam, or carbon dioxide. Water spray may be used to keep fire-exposed containers cool.

Fire & Explosion Hazards: Moderate explosion hazard and dangerous fire hazard when exposed to heat, sparks and open flames. Above flash point, vapor-air mixtures are explosive within flammable limits noted above. Sensitive to static discharge.

Fire Fighting Instructions: Vapors can flow along surfaces to distant ignition source and flash back. Use water spray to blanket fire, cool fire exposed containers, and to flush non-ignited spills or vapors away from fire.

Fire Fighting Equipment: Wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode.

Section 6: Accidental Release Measures

Remove all sources of ignition. Contain spill. Do not flush to sewer. Absorb with suitable inert material (vermiculite, dry sand, etc) and place in a chemical waste container for proper disposal in an approved waste disposal facility. Ventilate area of spill. Have extinguishing agent available in case of fire. Use non-sparking tools and equipment. Dispose of in accordance with local regulations.

Section 7. Handling and Storage

As with all chemicals, wash hands thoroughly after handling. Avoid contact with eyes and skin. Protect from freezing and physical damage. Store in secure, flammable storage area away from all sources of ignition. Empty containers may be hazardous since they retain product residues. **Safety Storage Code:** Flammable

Section 8: Exposure Control/Personal Protection

Engineering Controls: A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limit . Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source. Use explosion proof equipment. Respiratory Protection: If engineering controls do not maintain airborne concentrations below recommended exposure limits, an approved atmosphere supplied respirator must be worn.

Skin Protection: Chemical resistant gloves.

Eye Protection: Safety glasses or goggles.

Section 9: Physical and Chemical Properties

Appearance: Clear, colorless liquid Odor: characteristic alcohol Solubility in Water: Infinite Specific Gravity: Approximately 0.8 pH: Not Available.
 Boiling Point(°C): approximately 64.5
 Melting Point(°C): approximately -98
 Vapor Pressure: Not Applicable.

Section 10: Stability and Reactivity

Chemical Stability: Stable under normal conditions of use and storage.

Incompatibility: Strong oxidizing agents such as Nitrates, Perchlorates or Sulfuric Acid, heat, sparks, open flame. Will attack some forms of plastics, rubber and coatings. May react with metallic aluminum and generate hydrogen gas.

For RICCA, SpectroPure, Red Bird, and Solutions Plus Brands Emergency Contact(24 hr) -- CHEMTREC® Domestic: 800-424-9300 International: 703-527-3887

METHANOL

Hazardous Decomposition Products: Acrid and irritating fumes, including toxic formaldehyde and oxides of carbon, when heated to decomposition. Hazardous Polymerization: Will not occur.

Section 11. Toxicological Information

LD50, Oral, Rat: (Methanol) 5628 mg/kg, details of toxic effects not reported other than lethal dose value . Investigated as a mutagen and reproductive effector .

Section 12. Ecological Information

Ecotoxicological Information: Methanol has slight acute and chronic toxicity to aquatic life.

Chemical Fate Information: Methanol is slightly persistent in water, with a half-life of between 2 to 20 days. When released into the soil or water, this material is expected to readily biodegrade. When released into the soil, this material is expected to leach into groundwater; this material is expected to quickly evaporate. When released into the air, this material is expected to be readily removed from the atmosphere by wet deposition.

Section 13. Disposal Considerations

Absorb with suitable inert material (vermiculite, dry sand, earth) and place in a chemical waste container for proper disposal in an approved waste disposal facility for incineration in a chemical incinerator equipped with scrubber and afterburner. Ventilate area of spill. Have extinguishing agent available in case of fire. Eliminate all sources of ignition. Use non-sparking tools and equipment. Always dispose of in accordance with local, state and federal regulations.

Section 14. Transport Information

Part Numbers: 34485 20-LT, 34485 4LT, 34485 500ML, 34485C 4-LT, 34488 4LT, 34488 LT, 34488 LT, 34488C 4-LT, 34500 20-LT, 34500 20-LT, 34500 4LT, 34500 500ML, 34500C 4-LT, 4829-1, 4829-16, 4829-25, 4829-32, 4829-41, 4829-5, 4829-5HP, R4828000-4C, SSOM0010-1C, SSOM0010-4C, SSOM0010-4CS, SSOM0010-500C

D.O.T. Shipping Name: Methanol D.O.T. Hazard Class: 3 U.N. / N.A. Number: UN1230 Packing Group: II D.O.T. Label: 3

Section 15. Regulatory Information (Not meant to be all inclusive - selected regulation represented)

OSHA Status: These items meet the OSHA Hazard Communication Standard (29 CFR 1910.1200) definition of a hazardous material. TSCA Status: All components of this solution are listed on the TSCA Inventory or are mixtures (hydrates) of items listed on the TSCA Inventory. Sara Title III:

Section 302 Extremely Hazardous Substances: Not Applicable.

Section 311/312 Hazardous Catagories: Acute, Chronic, Fire: Yes; Pressure, Reactivity: No

Section 313 Toxic Chemicals:Not Applicable.

California: None Reported.

Pennsylvania: Methanol (Methyl Alcohol) is listed as an Environmental Hazard on the state's Hazardous Substances List. Methanol (Methyl Alcohol) is listed as an Environmental Hazard on the state's Hazardous Substances List.

RCRA Status: U154,U154

CERCLA Reportable Quantity: Methanol (Methyl Alcohol) - 5,000 pounds. Methanol (Methyl Alcohol) - 5,000 pounds.

WHMIS: B-2: Flammable and Combustible Material. Flammable Liquid. D-1B Poisonous and Infectious Material. Materials causing immediate and serious toxic effects - Toxic Material. D-2A: Poisonous and Infectious Material. Materials causing other toxic effects - Very Toxic Material.

For RICCA, SpectroPure, Red Bird, and Solutions Plus Brands Emergency Contact(24 hr) -- CHEMTREC® Domestic: 800-424-9300 International: 703-527-3887

METHANOL

NFPA Ratings:

Health: 1 Flammability: 3 Reactivity: 0 Special Notice Key:None HMIS Ratings: Health: 1 Flammability: 3 Reactivity: 0 Protective Equipment:B (Protective Eyewear, Gloves) Rev 1, 12-10-99: (Section 1) Revised emergency telephone number to CHEMTREC® 800-424-9300. Rev 2, 6-15-2001: Reformatted from WordPerfect® to Microsoft Word®; (Section 7) added storage code; (Section 15) added Florida and Pennsylvania state references

Rev 3, 10-09-2001: Reformatted to electronic data format.

Rev 4, 10-13-2005: (Section 1) added Red Bird catalog umbers 34485, 34488, 34500 and SpectroPure catalog number SSOM0010; (Section 15) updated WHMIS information.

Rev 5, 06-14-2006: (Section 1) added catalog number R4828000.

Rev 6, 05-18-2011: (Section 8) revised respiratory protection to include atmosphere supplied respirator if necessary.

When handled properly by qualified personnel, the product described herein does not present a significant health or safety hazard. Alteration of its characteristics by concentration, evaporation, addition of other substances, or other means may present hazards not specifically addressed herein and which must be evaluated by the user. The information furnished herein is believed to be accurate and represents the best data currently available to us. No warranty, expressed or implied, is made and RICCA CHEMICAL COMPANY assumes no legal responsibility or liability whatsoever resulting from its use.

QUALITY ENVIRONMENTAL CONTAINERS

P.O. Box 1160, Beaver, WV 25813 800/255-3950*304/255-3900*Fax: 304/255-3901

Nitric Acid

Page: 8

Effective: 09/15/95

N3660-12

Issued: 12/04/96 24-Hour Emergency Telephone 908/859-2151 National Response Center 800/424-8802

J.T. BAKER, INC., 222 Red School Lane, Phillipsburg, NJ 08865

SECTION X - TRANSPORTATION DATA AND ADDITIONAL INFORMATION (CONTINUED)

> laws and regulations. See shipper requirements 49CFR 171.2, Certification 172.204, and employee training 49 CFR 173.1(b).

U.S. Customs Harmonization Number: 28080000000

NOTE: When handling liquid products, secondary protective containers must be used for carrying.

-N/A = Not Applicable, or not Available; -N/E = Not Established Mallinckrodt Baker provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER MAKES NO REPRESENTATIONS, OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION. Note: CHEMTREC, CANUTEC and NATIONAL RESPONSE CENTER emergency telephone numbers are to be used ONLY in the event of CHEMICAL EMERGENCIES involving a spill, leak, fire, exposure, or accident involving chemicals. All non-emergency questions should be directed to Customer Service (1-800-JTBAKER) for assistance. COPYRIGHT 1996 MALLINCKRODT BAKER, INC. *TRADEMARKS OF MALLINCKRODT BAKER, INC. Approved by Quality Assurance Department.

QUALITY ENVIRONMENTAL CONTAINERS

P.O. Box 1160, Beaver, WV 25813 800/255-3950*304/255-3900*Fax: 304/255-3901

N3660 -12

Nitric Acid

Page: 7

Effective: 09/15/95

Issued: 12/04/96 24-Hour Emergency Telephone 908/859-2151 National Response Center 800/424-8802 Chemtec 800/424-9300

J.T. BAKER, INC., 222 Red School Lane, Phillipsburg, NJ 08865

÷

SECTION IX - STORAGE AND HANDLING PRECAUTIONS (CONTINUED)

Special Precautions

Nitric acid increases the flammability of, and can ignite many organic materials such as wood, solvents, etc., and can release toxic oxides of nitrogen. In addition certain mixtures of strong nitric acid with benzene, 1,2-dichloroethane, or dichloromethane may be detonatable. Spillage may cause fire.

SECTION X - TRANSPORTATION DATA AND ADDITIONAL INFORMATION

Domestic (D.O.T.)

Proper Shipping Name: Nitric acid (other than red fuming, with not more than 70 percent nitric acid) Hazard Class: 8 UN/NA: UN2031 Reportable Quantity: 1000 LBS. Packaging Group: II Labels: 8 CORROSIVE Regulatory References: 49CFR 172.101

International (I.M.O.)

Proper Shipping Name:NITRIC ACID (other than red fuming, all concentrations)Hazard Class:8I.M.O. Page: 8195UN:UN2031Marine Pollutants: NoPackaging Group: IILabels:8CORROSIVERegulatory References:49CFR PART 176; IMDG Code

AIR (I.C.A.O.)

Proper Shipping Name:	NITRIC ACID, other than red fuming, with not more than
	70 percent nítric acid
Hazard Class:	8
UN: UN2031	Packaging Group: 11
Labels: 8 CORROSIVE	
Regulatory References:	49CFR PART 175; ICAO=== We believe the transportation data and references contained herein to be factual and the opinion of qualified experts. The data is meant as a guide to the overall classification of the product and is not package size specific, nor should it be taken as a warranty or representation for which the company assumes legal responsibility.=== The information is offered solely for your consideration,

investigation, and verification. Any use of the information must be determined by the user to be in accordance with applicable Federal, State, and Local

Page: 6

OUALITY ENVIRONMENTAL CONTAINERS

P.O. Box 1160, Beaver, WV 25813 800/255-3950*304/255-3900*Fax: 304/255-3901

Nitric Acid N3660 -12 Issued: 12/04/96 Effective: 09/15/95 24-Hour Emergency Telephone 908/859-2151 National Response Center 800/424-8802 J.T. BAKER, INC., 222 Red School Lane, Phillipsburg, NJ 08865 Chemtec 800/424-9300 SECTION VII - SPILL & DISPOSAL PROCEDURES Steps to be Taken in the Event of a Spill or Discharge Wear self-contained breathing apparatus and full protective clothing. Stop leak if you can do so without risk. Ventilate area. Neutralize spill with soda ash or lime. With clean shovel, carefully place material into clean, dry container and cover; remove from area. Flush spill area with water. Prevent run-off from entering drains, sewers, or streams. Keep combustibles (wood, paper, oil, etc.) away from spilled material. J. T. Baker NEUTRASORB^R or TEAM^R 'Low Na+' acid neutralizers are recommended for spills of this product. Disposal Procedure Dispose in accordance with all applicable federal, state, and local environmental regulations. DO02, DO03 (Corrosive, Reactive Waste) EPA Hazardous Waste Number: Aqu atic Toxicity Mosquito Fish 96 Hr-TLm = 72 mg/L SECTION VIII - INDUSTRIAL PROTECTIVE EQUIPMENT Use general or local exhaust ventilation to meet TLV Ventilation: requirements. Respiratory Protection: At any detectable concentration, any self-contained breathing apparatus that has a full facepiece and is operated in a pressure- demand or other positive-pressure mode. Safety goggles and face shield, uniform, protective Eye/Skin Protection: suit, neoprene gloves are recommended. SECTION IX - STORAGE AND HANDLING PRECAUTIONS SAF-T-DATA* Storage Color Code: Yellow (reactive)

Storage Requirements Keep container tightly closed. Store separately and away from flammable and combustible materials. Isolate from incompatible materials. Keep product out of light.

Continued on Page: 7

QUALITY ENVIRONMENTAL CONTAINERS P.O. Box 1160, Beaver, WV 25813 800/255-3950*304/255-3900*Fax: 304/255-3901

N3660 -12

Nitric Acid

Page: 5

Effective: 09/15/95

Issued: 12/04/96 24-Hour Emergency Telephone 908/859-2151 National Response Center 800/424-8802 Chemtee 800/424-9300

J.T. BAKER, INC., 222 Red School Lane, Phillipsburg, NJ 08865

SECTION V - HEALTH HAZARD DATA (CONTINUED)

Emergency and First Aid Procedures

- INGESTION: CALL A PHYSICIAN. If swallowed, do NOT induce vomiting. If conscious, give water, milk, or milk of magnesia.
- INHALATION: If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Prompt action is essential.
- SKIN CONTACT: In case of contact, immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before re-use.
- EYE CONTACT: In case of eye contact, immediately flush with plenty of water for at least 15 minutes.

SARA/TITLE III HAZARD CATEGORIES and LISTS

Acute: Yes Chronic: Yes H	lammability: No Pressure: No Reactivity: Yes
Extremely Hazardous Subst	cance: Yes Contains Nitric Acid (RQ = 1,000 LBS, TPQ = 1,000 LBS)
CERCLA Hazardous Substand	e: Yes Contains Nitric Acid (RQ = 1000 LBS)
SARA 313 Toxic Chemicals:	
Generic Class:	Generic Class Removed from CFR: 7/1/91
TSCA Inventory:	Yes
Stability: Stable	SECTION VI - REACTIVITY DATA Hazardous Polymerization: Will not occur
Conditions to Avoid: H	neat, light, moisture.
	strong bases, carbonates, sulfides, cyanides, combustible materials, organic materials, strong reducing agents, most common metals, powdered metals, carbides, ammonium hydroxide, water, alcohols

Decomposition Products: oxides of nitrogen, hydrogen

Continued on Page: 6

õ

QUALITY ENVIRONMENTAL CONTAINERS P.O. Box 1160, Beaver, WV 25813 800/255-3950*304/255-3900*Fax: 304/255-3901

•

N3660 -12	Nitric Acid	Page: 4
Effective: 09/15/2	95	Issued: 12/04/96
J.T. BAKER, INC., 222 R	ed School Lane, Phillipsburg, NJ 08865	24-Hour Emergency Telephone 908/859-2151 National Response Center 800/424-8802 Chemtee 800/424-9300
SEC	TION V - HEALTH HAZARD DATA	
T-1-1-44 The Dot T	C for Nitrio Acid	2500 ppm
Inhalation-iHr Rat I		110 mg/kg
Unreported route; ma	20	430 mg/kg
Oral human TDLo Nitr Intraperitoneal Mous		190 g/kg
Intravenous Mouse LD		25 g/kg
	60	ist: No OSHA Reg: No
<u>Carcinogenicity</u> None identified.	;f	
Reproductive Effects None identified.		
Effects of Overexpos	sure	·
INHALATION:	severe irritation or burn coughing, difficult breat edema, lung inflammation, fatal.	s of respiratory system, hing, chest pains, pulmonary unconsciousness, and may be
SKIN CONTACT:	severe irritation or burn	S
EYE CONTACT:	severe irritation or burn	S
SKIN ABSORPTION	: none identified	
INGESTION:	nausea, vomiting, severe throat, stomach, and may	burns, ulceration - mouth, be fatal.
CHRONIC EFFECTS	: damage to lungs, teeth	
Target Organs eyes, skin, muc	ous membranes, respiratory	system, lungs, teeth, GI tract
Medical Conditions damaged skin, e	Generally Aggravated by Exp ye disorders, cardiopulmona	osure ry disease, lung disease
Primary Routes of E inhalation, ing	<u>ntry</u> estion, eye contact, skin c	contact

OUALITY ENVIRONMENTAL CONTAINERS P.O. Box 1160, Beaver, WV 25813 800/255-3950*304/255-3900*Fax: 304/255-3901 Page: 3 Nitric Acid N3660-12 Issued: 12/04/96 Effective: 09/15/95 24-Hour Emergency Telephone 908/859-2151 National Response Center 800/424-8802 J.T. BAKER, INC., 222 Red School Lanc, Phillipsburg, NJ 08865 Chemtec 800/424-9300 SECTION IV - FIRE AND EXPLOSION HAZARD DATA NFPA 704M Rating: 3-0-0 OXY Flash Point (Closed Cup): N/A Autoignition Temperature: N/A Flammable Limits: Upper - N/A Lower - N/A Fire Extinguishing Media Use water, dry chemical, or soda ash. Special Fire-Fighting Procedures Firefighters should wear proper protective equipment and self-contained breathing apparatus with full facepiece operated in positive pressure mode. Move exposed containers from fire area if it can be done without risk. Use water to keep fire-exposed containers cool; do not get water inside containers. Unusual Fire & Explosion Hazards Strong oxidizer. Contact with combustible materials, flammable materials, or powdered metals can cause fire or explosion. Reacts with most metals to produce hydrogen gas, which can form an explosive mixture with air. A violent exothermic reaction occurs with water. Sufficient heat may be produced to ignite combustible materials. Toxic Gases Produced oxides of nitrogen, hydrogen Explosion Data-Sensitivity to Mechanical Impact None identified. Explosion Data-Sensitivity to Static Discharge None identified. SECTION V - HEALTH HAZARD DATA Threshold Limit Value (TLV/TWA): 5.2 mg/m³ (2 ppm) Short-Term Exposure Limit (STEL): 10 mg/m³ (4 ppm) Permissible Exposure Limit (PEL): 5 mg/m³ (2 ppm) Toxicity of components

OEC MATERIAL SAFETY DATA SHEET					
QUALITY ENVIRONMENTAL CONTAINERS P.O. Box 1160, Beaver, WV 25813 800/255-3950*304/255-3900*Fax: 304/255-3901					
N3660 -12 Effective: 09/15/95	Nitric Acid		Issued: 12/0		
J.T. BAKER, INC., 222 Red School Lane, Phillipsbu		National Respo Chemitee 800/4	gency Telephone 908/8 inse Center 800/424-8 124-9300	802	
PRECAUTIONARY I	ABELING (CO	NTINUED)			
		***********	INSCREEKEES		
spray. In case of spill, neutral			10.		
Inter	mational La	beling			
		·			
Causes severe burns. Keep out of reach of children. Do eyes, rinse immediately with plent immediately all contaminated cloth	ty of water	vapor. In o and seek mee	case of cont lical advice	tact with e. Take off	
SAF-T-DATA* Storage Color Code: Y	ellow (react	ive)			
			**********	*********	
SECTION II	- COMPONENTS			*********	
Component	CAS No.	Weight % 65-70	OSHA/PEL	ACGIH/TLV	
Nitric Acid Water	7697-37-2 7732-18-5	65-70 29-35	2 ppm N/E	2 ppm N/E	

SECTION III -	HISICAL DA		=============	=======	
Boiling Point: 121°C (249°F) (at 760 mm Hg)		Vapor Press (20°	ure (mmHg): C)	9	
Melting Point: -42°C (-43°F) (at 760 mm Hg)		Vapor Densi	ty (air=1):	N/A	
Specific Gravity: 1.41 (H ₂ O=1)		Evaporation	Rate: N/A		
Solubility(H ₂ O): Complete (100%)		% Volatiles (21°C)	by Volume:	100	
pH: 1.0 (0.1M solution)					
Odor Threshold (ppm): 0.27		Physical Sta	te: Liquid		
Coefficient Water/Oil Distributio	on: N/A		í	-:	
Appearance & Odor: Clear, colorle	Appearance & Odor: Clear, colorless liquid. Suffocating odor.				

·

.

·

Continued on Page: 3

	MATERIAL SAF ENVIRONMENTAL CONTAINERS 160, Beaver, WV 25813 800/255-3950	ETY DATA SHEET *304/255-3900*Fax: 304/255-3901
N3660 -12 Effective: 0	9/15/95	Page: 1 Issued: 12/04/96 24-Hour Emergency Telephone 908/859-2151
J.T. BAKER, INC.	, 222 Red School Lanc, Phillipsburg, NJ 08865	National Response Center 800/424-8802 Chemtee 800/424-9300
	SECTION I - PRODUCT I	DENTIFICATION
Product Name: Common Synonyms: Chemical Family: Formula: Formula Wt.: CAS No.: NIOSH/RTECS No.: Product Use: Product Codes:	HNO ₃ 63.01 7697-37-2 QU5775000 Laboratory Reagent	Acid 9600,9597,9601,5113,9606,9607,9602
	PRECAUTIONARY LABE	
BAKER SAF-T-DATA	* System	
· · ·	HEALTH SEVERE HEALTH FLAMMABILITY NONE REACTIVIT SEVERE NONE	B CONTACT EXTREME
Laboratory Prote	ctive Equipment	
	GOGGLES 2 SHIELD LAB COAT VENT 2 SHIELD 2 APRON	PROPER
	U.S. Precautionar	y Labeling
	POISONI DA	NGER!

HARMFUL IF INHALED AND MAY CAUSE DELAYED LUNG INJURY. LIQUID AND VAPOR CAUSE SEVERE BURNS. MAY BE FATAL IF SWALLOWED OR INHALED. STRONG OXIDIZER. CONTACT WITH COMBUSTIBLE MATERIALS, FLAMMABLE MATERIALS, OR POWDERED METALS CAN CAUSE FIRE OR EXPLOSION. SPILLAGE MAY CAUSE FIRE OR LIBERATE DANGEROUS GAS. Keep from contact with clothing and other combustible materials. Do not store near combustible materials. Do not get in eyes, on skin, on clothing. Do not breathe vapor. Keep in tightly closed container. Use with adequate ventilation. Wash thoroughly after handling. In case of fire, use water

ThermoFisher SCIENTIFIC

Material Safety Data Sheet Revision Date 29-Dec-2009

Creation Date 29-Dec-2009

Revision Number 1

1. PRODUCT AND COMPANY IDENTIFICATION

Product Name

Deionized Water

In vitro diagnostic

Cat No.

290-065, 23-290-065, 751-610, 23-751-610, 751-628, 23-751-628, 25065A

Synonyms No information available.

Recommended Use

Company

Fisher Diagnostics A Division of Fisher Scientific Company, LLC A Part of Thermo Fisher Scientific, Inc. 8365 Valley Pike Middletown, VA 22645-1905 Tel: (800) 528-0494

2. HAZARDS IDENTIFICATION

Emergency Telephone Number

Chemtrec US: (800) 424-9300

Chemtrec EU: (202) 483-7616

Emergency Overview The product contains no substances which at their given concentration are considered to be hazardous to health				
Appearance Colorless	Physical State Liquid	Odor odorless		
Target Organs	None known.			
Potential Health Effects				
Acute Effects Principle Routes of Exposure				
Eyes Skin Inhalation Ingestion	No hazard from product as supplied. No hazard from product as supplied. Low hazard for usual industrial or commercial handling. Low hazard for usual industrial or commercial handling.			
Chronic Effects	None known.			
See Section 11 for additional Toxicological information.				
Aggravated Medical Conditions	No information available.			

3. COMPOSITION/INFORMATION ON INGREDIENTS

Haz/Non-haz

Component	CAS-No	Weight %
Water	7732-18-5	100.0

4. FIRST AID MEASURES

Eye Contact	Flush eyes with water as a precaution. Get medical attention immediately if symptoms occur.
Skin Contact	Rinse with water. Get medical attention immediately if symptoms occur.
Inhalation	Move to fresh air. Get medical attention immediately if symptoms occur.
Ingestion	Do not induce vomiting. Get medical attention immediately if symptoms occur.
Notes to Physician	Treat symptomatically.

5. FIRE-FIGHTING MEASURES

Flash Point Method	Not applicable No information available.
Autoignition Temperature Explosion Limits Upper Lower	No information available. No data available No data available
Suitable Extinguishing Media	Substance is nonflammable; use agent most appropriate to extinguish surrounding fire
Unsuitable Extinguishing Media	No information available.
Hazardous Combustion Products	No information available.
Sensitivity to mechanical impact Sensitivity to static discharge	No information available. No information available.
Specific Hazards Arising from the Chemical None known.	

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear

NFPA Health 0		Flammability 0	Instability 0	Physical hazards N/A			
	6. A	CCIDENTAL RELEAS	E MEASURES				
Personal Precautions	Use	personal protective equipment					
Environmental Precaution	ons Sho	uld not be released into the env	vironment.				

Methods for Containment and Clean Soak up with inert absorbent material. Keep in suitable and closed containers for disposal. Up

7. HANDLING AND STORAGE

Handling	Handle in accordance with good industrial hygiene and safety practice.
Storage	Keep containers tightly closed in a dry, cool and well-ventilated place.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering Measures	Ensure that eyewash stations and safety showers are close to the workstation location.
Exposure Guidelines	This product does not contain any hazardous materials with occupational exposure limits established by the region specific regulatory bodies.
NIOSH IDI H. Immediately Dengerous to Lif	

NIOSH IDLH: Immediately Dangerous to Life or Health

Personal Protective Equipment
Eye/face ProtectionWear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's
eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166
Wear appropriate protective gloves and clothing to prevent skin exposure
Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard EN
149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits
are exceeded or if irritation or other symptoms are experienced

9. PHYSICAL AND CHEMICAL PROPERTIES

Physical State
Appearance
Odor
Odor Threshold
рН
Vapor Pressure
Vapor Density
Viscosity
Boiling Point/Range
Melting Point/Range
Decomposition temperature °C
Flash Point
Evaporation Rate
Specific Gravity
Solubility
log Pow
Molecular Weight
Molecular Formula

Liquid Colorless odorless No information available. 5.5 - 7.5@ 25°C No information available. 0.694 No information available. 100°C / 212°F 0°C / 32°F No information available. Not applicable > 1 (Butyl Acetate = 1.0) 1.00 No information available. No data available 20.14 H2O

10. STABILITY AND REACTIVITY

Stability

Conditions to Avoid

Stable under normal conditions.

None known.

Incompatible Materials	None known
Hazardous Decomposition Products	None known
Hazardous Polymerization	Hazardous polymerization does not occur
Hazardous Reactions .	None under normal processing.

11. TOXICOLOGICAL INFORMATION

Acute Toxicity

Component	LD50 Oral	LD50 Dermal	LC50 Inhalation						
Water	90 mL/kg (Rat)	Not listed	Not listed						
Irritation	No information available.								
Toxicologically Synergistic Products	No information available.								
Chronic Toxicity									
Carcinogenicity	There are no known carcinogenic chemicals in this product								
Sensitization	No information available.								
Mutagenic Effects	No information available.								
Reproductive Effects	No information available.								
Developmental Effects	No information available.								
Teratogenicity	No information available.								
Other Adverse Effects	See actual entry in RTECS fo	r complete information.							
Endocrine Disruptor Information	No information available								
	12. ECOLOGICAL								

Ecotoxicity

Contains no substances known to be hazardous to the environment or that are not degradable in waste water treatment plants.

Persistence and Degradability	No information available			
Bioaccumulation/ Accumulation	No information available			
Mobility	No information available			

13. DISPOSAL CONSIDERATIONS

Waste Disposal Methods Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification

14. TRANSPORT INFORMATION

DOT	Not regulated
TDG	Not regulated
ΙΑΤΑ	Not regulated
IMDG/IMO	Not regulated

15. REGULATORY INFORMATION

International Inventories

Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	CHINA	KECL
Water	Х	Х	-	231-791- 2	-		Х	-	Х	Х	KE- 35400 X

Legend:

X - Listed

E - Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.

F - Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.

N - Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.

P - Indicates a commenced PMN substance

R - Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.

S - Indicates a substance that is identified in a proposed or final Significant New Use Rule

T - Indicates a substance that is the subject of a Section 4 test rule under TSCA.

XU - Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).

Y1 - Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.

Y2 - Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b) Not applicable

SARA 313

Not applicable

SARA 311/312 Hazardous Categorization	
Acute Health Hazard	

Acute Health Hazard	No
Chronic Health Hazard	No
Fire Hazard	No
Sudden Release of Pressure Hazard	No
Reactive Hazard	No

Clean Water Act

Not applicable

Clean Air Act Not applicable

OSHA Not applicable

CERCLA Not Applicable

California Proposition 65

This product does not contain any Proposition 65 chemicals.

State Right-to-Know

Not applicable

U.S. Department of Transportation

Reportable Quantity (RQ):	Ν
DOT Marine Pollutant	Ν
DOT Severe Marine Pollutant	Ν

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico - Grade

No information available

Canada

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all the information required by the CPR.

WHMIS Hazard Class Non-controlled

16. OTHER INFORMATION

Prepared By	Regulatory Affairs Thermo Fisher Scientific Tel: (412) 490-8929		
Creation Date	29-Dec-2009		
Print Date	29-Dec-2009		
Revision Summary	"***", and red text indicates revision		

Disclaimer

The information provided on this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guide for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered as a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other material or in any process, unless specified in the text.

End of MSDS

CITGO No. 1 Diesel Fuel, All Grades Material Safety Data Sheet

CITGO Petroleum Corporation P.O. Box 4689 Houston, TX 77210

MSDS No.

AG1DF

12/31/2007

Hazard Rankings

= Chronic Health Hazard

Protective Equipment

Minimum Recommended

See Section 8 for Details

Health Hazard

Fire Hazard

Reactivity

HMIS NFPA

0

2

Λ

* 1

2

Ω

Revision Date

IMPORTANT: This MSDS is prepared in accordance with 29 CFR 1910.1200. Read this MSDS before transporting, handling, storing or disposing of this product and forward this information to employees, customers and users of this product.

Emergency Overview

Physical State Liquid.

Color Clear to light amber. Odor

Characteristic, kerosene-like.

WARNING!

Combustible liquid; vapor may cause flash fire. Harmful or fatal if swallowed - can enter lungs and cause damage. Mist or vapor can irritate the respiratory tract. Liquid contact can cause eye or skin irritation. May be harmful if inhaled or absorbed through the skin. Overexposure can cause central nervous system (CNS) depression and/or other target organ effects. Diesel engine exhaust can cause upper respiratory tract irritation and reversible pulmonary effects. Spills may create a slipping hazard.

SECTION 1. PRODUCT IDENTIFICATION

Trade Name	CITGO No. 1 Diesel Fuel, All Grades	Technical Contact	(832) 486-5940
Product Number	Various	Medical Emergency	(832) 486-4700
CAS Number	8008-20-6	CHEMTREC Emergency (United States Only)	(800) 424-9300
Product Family	Fuels.		
Synonyms	None		

SECTION 2. COMPOSITION

This product may be composed, in whole or in part, of any of the following refinery streams:

Kerosene [CAS No.: 8008-20-6] Hydrodesulfurized Kerosine (Petroleum) [CAS No.: 64742-81-0] Hydrodesulfurized Middle Distillate (petroleum) [CAS No.: 64742-80-9] Straight-run Middle Distillate (Petroleum) [CAS No.: 64741-44-2] Hydrodesulfurized Light Catalytic Cracked Distillate (Petroleum) [CAS No.: 68333-25-5] Light Catalytic Cracked Distillate (Petroleum) [CAS No.: 64741-59-9]

This product contains the following chemical components: **Component Name(s)**

CAS Registry No.

Concentration (%)

CITGO No. 1 Diesel Fuel, All Grades

Nonane, all isomers	Mixture.	20 - 30
Ethylmethylbenzenes (Ethyltoluenes)	25550-14-5	1 - 3
Naphthalene	91-20-3	0 - 3
Trimethylbenzenes, all isomers	25551-13-7	0 - 2
Ethylbenzene	100-41-4	0 - 1
Xylene, all isomers	1330-20-7	0 - 1
1, 2, 4 Trimethylbenzene	95-63-6	0 - 1
Cumene	98-82-8	0 - 1

SECTION 3. HAZARDS IDENTIFICATION

Also see Emergency Overview and Hazard Ratings on the top of Page 1 of this MSDS.

Major Route(s) of Entry Skin contact. Eye contact. Inhalation.

Signs and Symptoms of Acute Exposure

Inhalation	Breathing mist or vapors concentrations well above occupational exposure levels can irritate the mucous membranes of the nose, throat, bronchi, and lungs and can cause transient central nervous system (CNS) depression. Signs and symptoms of CNS depression include headache, dizziness, nausea, blurred vision, slurred speech, flushed face, confusion, weakness, fatigue or loss of consciousness depending upon the concentration and/or duration of exposure. In severe cases, overexposure by inhalation can cause convulsions, coma, or death.
Eye Contact	This product can cause eye irritation with short-term contact with liquid, mists or vapor. Symptoms include stinging, watering, redness, and swelling. In severe cases, permanent eye damage can result.
Skin Contact	Animal test results on similar materials suggest that this product can cause moderate to severe skin irritation. Symptoms include redness, itching, and burning of the skin. Also, certain components of this material may be absorbed through the skin and produce CNS depression effects (see "Inhalation" above). If the skin is damaged, absorption increases. Prolonged and/or repeated contact may cause severe dermatitis and/or more serious skin disorders. Chronic symptoms may include drying, swelling, scaling, blistering, cracking, and/or severe tissue damage.
Ingestion	If swallowed, this material may irritate the mouth, throat, and esophagus. It can be absorbed into the blood stream through the stomach and intestinal tract. Symptoms may include a burning sensation of the mouth and esophagus, nausea and vomiting. In addition, it can cause central nervous system effects characterized by dizziness, staggering, drowsiness, delirium and/or loss of consciousness.
	Because of the low viscosity, this material can enter the lungs directly by aspiration during swallowing or subsequent vomiting. Aspiration of a small amount of liquid can cause severe lung damage and/or death.
Chronic Health Effects Summary	Secondary effects of ingestion and subsequent aspiration into the lungs may cause pneumatocele (lung cavity) formation and chronic lung dysfunction.
	This product contains petroleum middle distillates similar to those shown to produce skin tumors on laboratory rodents following repeated application. All tumors appeared during the latter portion of the typical 2-year lifespan of the animals. Certain studies have shown that washing the exposed skin of the test animal with soap and water between treatments greatly reduces the potential tumorigenic effects. These data suggest that good personal hygiene is effective in reducing the risk of this potential adverse health effect.
	This material and/or its components have been associated with developmental toxicity, reproductive toxicity, genotoxicity, immunotoxicity, and/or carcinogenicity. Refer to Section 11 of this MSDS for additional health-related information.
Conditions Aggravated by Exposure	Medical conditions aggravated by exposure to this material may include skin disorders, chronic respiratory diseases, neurological conditions, liver or kidney dysfunction.
Target Organs	

MSDS No.	AG1DF	Revision Date	12/31/2007
----------	-------	---------------	------------

CITGO No. 1 Diesel Fuel, All Grades

May cause damage to the following organs: kidneys, liver, upper respiratory tract, skin, eyes, central nervous system (CNS).

Carcinogenic Potential This material contains ethylbenzene and naphthalene at concentrations at or above 0.1%. Ethylbenzene is considered possibly carcinogenic to humans by IARC. (See Section 11.) NTP has determined that exposure to diesel exhaust particulates, a complex mixture of combustion products of diesel fuel, is reasonably anticipated to be a human carcinogen.

OSHA Hazard Classification is indicated by an "X" in the box adjacent to the hazard title. If no "X" is present, the product does not exhibit the hazard as defined in the OSHA Hazard Communication Standard (29 CFR 1910.1200).

OSHA Health Hazard Classification		OSHA Physical Hazard Classification							
Irritant Toxic Corrosive	X	Sensitizer Highly Toxic Carcinogenic		Combustible Flammable Compressed Gas	X	Explosive Oxidizer Organic Peroxide		Pyrophoric Water-reactive Unstable	

SECTION 4. FIRST AID MEASURES

Take proper precautions to ensure your own health and safety before attempting rescue or providing first aid. For more specific information, refer to Exposure Controls and Personal Protection in Section 8 of this MSDS.

Inhalation	Move victim to fresh air. If victim is not breathing, immediately begin rescue breathing. If breathing is difficult, 100 percent humidified oxygen should be administered by a qualified individual. Seek medical attention immediately. Keep the affected individual warm and at rest.
Eye Contact	Check for and remove contact lenses. Flush eyes with cool, clean, low-pressure water for at least 15 minutes while occasionally lifting and lowering eyelids. Do not use eye ointment unless directed to by a physician. Seek medical attention if excessive tearing, irritation, or pain persists.
Skin Contact	Remove contaminated shoes and clothing. Flush affected area with large amounts of water. If skin surface is damaged, apply a clean dressing and seek medical attention. Do not use ointments. If skin surface is not damaged, clean affected area thoroughly with mild soap and water. Seek medical attention if tissue appears damaged or if pain or irritation persists.
Ingestion	Do not induce vomiting. If spontaneous vomiting is about to occur, place victim's head below knees. If victim is drowsy or unconscious, place on the left side with head down. Never give anything by mouth to a person who is not fully conscious. Do not leave victim unattended. Seek medical attention immediately.
Notes to Physician	Inhalation overexposure can produce toxic effects. Monitor for respiratory distress. If cough or difficulty in breathing develops, evaluate for upper respiratory tract inflammation, bronchitis, and pneumonitis. Vigorous anti-inflammatory/steroid treatment may be required at first evidence of upper airway or pulmonary edema. Administer 100 percent humidified supplemental oxygen with assisted ventilation, as required.
	If ingested, this material presents a significant aspiration/lipoid or chemical pneumonitis hazard. As a result, induction of emesis is not recommended. Consider administration of an aqueous slurry of activated charcoal followed by a cathartic such as magnesium citrate or sorbitol. Also, treatment may involve careful gastric lavage if performed soon after ingestion or in patients who are comatose or at risk of convulsing. Protect the airway by placement in Trendelenburg and left lateral decubitus position or by cuffed endotracheal intubation. If vital signs become abnormal or symptoms develop, obtain a chest x-ray and liver function tests. Antibiotics are indicated if pulmonary bacterial infection occurs. Monitor for cardiac function and arterial blood gases in severe exposure cases.

MSDS No. AG1DF

SECTION 5. FIRE FIGHTING MEASURES

NFPA Flammability Classification	NFPA Class-II combustible liquid.			
Flash Point	Closed cup: 38°C (100°F). (Per	nsky-Martens. (Minimum))		
Lower Flammable Limit	AP 0.7 %	Upper Flammable Limit	AP 5 %	
Autoignition Temperature	>254°C (489.2°F)			
Hazardous Combustion Products	Carbon dioxide, carbon monoxid sulfur and/or nitrogen.	de, smoke, fumes, unburned	hydrocarbons and oxides of	
Special Properties	Combustible Liquid! This material releases vapors when heated above ambient temperatures. Vapors can cause a flash fire. Vapors can travel to a source of ignition and flashback. A vapor and air mixture can create an explosion hazard in confined spaces such as sewers. Use only with adequate ventilation. If container is not properly cooled, it can rupture in the heat of a fire.			
Extinguishing Media	SMALL FIRE: Use dry chemical LARGE FIRE: Use foam, water cooling containers and adjacent not extinguish the fire. Water ca excessive pressure, autoignition on the fire as the water may spr	fog, or water spray. Water for structures. However, water an be used to cool the externa or explosion. DO NOT use	og and spray are effective in can cause frothing and/or may al walls of vessels to prevent	
Protection of Fire Fighters	Firefighters must use full bunker self-contained breathing appara decomposition products and oxy maximum distance or use unma with foam. Containers can build with flooding quantities of water area if there is a rising sound fro or pipelines. Be aware that burr potential fire and explosion haza	tus to protect against potentia /gen deficiencies. Evacuate a nned hose holders or monitor pressure if exposed to radian until well after the fire is out. om a venting safety device or hing liquid will float on water.	al hazardous combustion or area and fight the fire from a nozzles. Cover pooling liquid ht heat; cool adjacent containers Withdraw immediately from the discoloration of vessels, tanks, Notify appropriate authorities of	

SECTION 6. ACCIDENTAL RELEASE MEASURES

Take proper precautions to ensure your own health and safety before attempting spill control or clean-up. For more specific information, refer to the Emergency Overview on Page 1, Exposure Controls and Personal Protection in Section 8 and Disposal Considerations in Section 13 of this MSDS.

Combustible Liquid! Release can result in a fire hazard. Evacuate all non-essential personnel from release area. Establish a regulated zone with site control and security. Eliminate all ignition sources. Stop the leak if it can done without risk. A vapor-suppressing foam may be used to reduce vapors. Properly bond or ground all equipment used when handling this material. Avoid skin contact. Do not walk through spilled material. Verify that responders are properly trained and wearing appropriate personnel protective equipment. Dike far ahead of a liquid spills. Do not allow released material to entry waterways, sewers, basements, or confined areas. This material will float on water. Absorb or cover with dry earth, sand or other non-combustible material. Use clean, non-sparking tools to collect absorbed material. Place spent sorbent materials, free liquids and other clean-up debris into proper waste containers for appropriate disposal. Certain releases must be reported to the National Response Center (800/424-8802) and state or regulatory authorities. Comply with all laws and regulations.

SECTION 7. HANDLING AND STORAGE

Handling Combustible Liquid!

A static electrical charge can accumulate when this material is flowing through pipes, nozzles or filters and when it is agitated. A static spark discharge can ignite accumulated vapors particularly during dry weather conditions. Always bond receiving containers to the fill pipe before and during loading. Always keep nozzle in contact with the container throughout the loading process. Do not fill any portable container in or on a vehicle. Special precautions, such as reduced loading rates and increased monitoring, must be observed during "switch loading" operations (i.e., loading this material in tanks or shipping compartments that previously containing gasoline or similar low flash point products).

Fire hazard increases as product temperature approaches its flash point. Keep container closed and drum bungs in place. Remove spillage immediately from walking areas. Do not handle or store near heat, sparks or other potential ignition sources. Do not handle or store with oxidizing agents. Avoid breathing mist or vapor. Never siphon by mouth. Do not taste or swallow. Avoid contact with eyes, skin and clothing. Use gloves constructed of impervious materials and protective clothing if direct contact is anticipated. Provide ventilation to maintain exposure potential below applicable exposure levels. Avoid water contamination. Wash thoroughly after handling. Prevent contact with food or tobacco products.

When performing repairs and maintenance on contaminated equipment, keep unnecessary persons from hazard area. Eliminate heat, flame and other potential ignition sources. Drain and purge equipment, as necessary, to remove material residues. Remove contaminated clothing. Wash exposed skin thoroughly with soap and water after handling.

StorageStore in a cool, dry, well-ventilated place. Keep containers tightly closed. Do not store this
product near heat, flame or other potential ignition sources. Do not store with oxidizers. Do
not store this product in unlabeled containers. Do not puncture or incinerate containers.
Ground all equipment containing this material. All electrical equipment in areas where this
material is stored or handled must meet all applicable requirements of the NFPA's National
Electrical Code (NEC). Store and transport in accordance with all applicable laws.

SECTION 8. EXPOSURE CONTROLS AND PERSONAL PROTECTION

Engineering Controls Provide ventilation or other engineering controls to keep the airborne concentrations of vapor or mists below the applicable workplace exposure limits indicated below. All electrical equipment should comply with the National Electric Code. An emergency eye wash station and safety shower should be located near the work-station.

Personal Protective Equipment Personal protective equipment should be selected based upon the conditions under which this material is used. A hazard assessment of the work area for PPE requirements should be conducted by a qualified professional pursuant to OSHA regulations. The following pictograms represent the minimum requirements for personal protective equipment. For certain operations, additional PPE may be required.

Eye Protection Safety glasses equipped with side shields are recommended as minimum protection in industrial settings. Chemical goggles should be worn during transfer operations or when there is a likelihood of misting, splashing, or spraying of this material. A suitable emergency eye wash water and safety shower should be located near the work station.

Hand Protection

CITGO No. 1 Diesel Fuel, All Grades

Avoid skin contact. Use heavy duty gloves constructed of chemical resistant materials such as Viton® or heavy nitrile rubber. Wash hands with plenty of mild soap and water before eating, drinking, smoking, use of toilet facilities or leaving work. DO NOT use gasoline, kerosene, solvents or harsh abrasives as skin cleaners.

Body Protection Avoid skin contact. Wear long-sleeved fire-retardant garments (e.g., Nomex®) while working with flammable and combustible liquids. Additional chemical-resistant protective gear may be required if splashing or spraying conditions exist. This may include an apron, boots and additional facial protection. If product comes in contact with clothing, immediately remove soaked clothing and shower. Promptly remove and discard contaminated leather goods.

Respiratory Protection Airborne concentration will determine the level of respiratory protection required. Respiratory protection is normally not required unless the product is heated or misted. For known or anticipated vapor or mist concentrations above the occupational exposure guidelines (see below), use a NIOSH-approved organic vapor respirator equipped with a dust/mist prefilter if adequate protection is provided. Protection factors vary depending upon the type of respirator used. Respirators should be used in accordance with OSHA requirements (29 CFR 1910.134).

General Comments Warning! Use of this material in spaces without adequate ventilation may result in generation of hazardous levels of combustion products and/or inadequate oxygen levels for breathing. Odor is an inadequate warning for hazardous conditions.

Occupational Exposure Guidelines

Substance	Applicable Workplace Exposure Levels
Nonane, all isomers	ACGIH (United States).
	TWA: 200 ppm 8 hour(s).
Ethylmethylbenzene, all isomers	Not available.
Naphthalene	ACGIH (United States). Skin
	TWA: 10 ppm 8 hour(s).
	STEL: 15 ppm 15 minute(s).
	OSHA (United States).
	TWA: 10 ppm 8 hour(s).
Trimethylbenzenes, all isomers	ACGIH (United States).
	TWA: 25 ppm 8 hour(s).
Ethylbenzene	ACGIH (United States).
	TWA: 100 ppm 8 hour(s).
	STEL: 125 ppm 15 minute(s).
	OSHA (United States).
	TWA: 100 ppm 8 hour(s).
Xylene, all isomers	ACGIH (United States).
	TWA: 100 ppm 8 hour(s).
	STEL: 150 ppm 15 minute(s).
	OSHA (United States).
	TWA: 100 ppm 8 hour(s).
1, 2, 4 Trimethylbenzene	Not available.
Cumene	ACGIH (United States).
	TWA: 50 ppm 8 hour(s).
	OSHA (United States). Skin
	TWA: 50 ppm 8 hour(s).
Sulfur	ACGIH (United States, 1996).
	TWA: 2 ppm
	STEL: 5 ppm
	OSHA (United States).
	TWA: 5 ppm
	NIOSH
	TWA: 2 ppm
	STEL: 5 ppm
Diesel exhaust particulate	ACGIH (United States, 2001).
	TWA: 0.05 mg/m^3
Toluene	ACGIH (United States). Skin
	TWA: 20 ppm 8 hour(s).
	OSHA (United States).

CITGO No. 1 Diesel Fuel, All Grades

Benzene	TWA: 200 ppm 8 hour(s). CEIL: 300 ppm PEAK: 500 ppm ACGIH (United States). Skin TWA: 0.5 ppm 8 hour(s).
	STEL: 2.5 ppm 15 minute(s).
	OSHA (United States). Skin Notes: See Table Z-2 for exclusions
	in 20 CFR 1910.1028 to the PEL. TWA: 1 ppm 8 hour(s).
	STEL: 5 ppm 15 minute(s).
Middle distillates, petroleum	Not available.
Kerosene	NIOSH REL (United States).
Kelosene	TWA: 100 mg/m ^{3} 8 hour(s).
Hydrodesulfurized Kerosine (Petroleum)	Not available.
Hydrodesulfurized middle distillate (petroleum)	Not available.
Straight-run middle distillate (petroleum)	ACGIH (United States, 1998). Skin TWA: 100 mg/m ³
Distillates, petroleum, hydrodesulfurized light catalytic cracked	Not available.
Distillates, petroleum, light catalytic cracked	Not available.

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES (TYPICAL)

Physical State	Liquid.	Color	Clear to ligh amber.	nt	Odor	Characteristic, kerosene-like.
Specific Gravity	0.82 (Water = 1)	рН	Not Applica	ble.	Vapor Density	4 (Air = 1)
Boiling Range	AP 150º C (AP 302º F	⁻)		Melting/ Point	Freezing	Not available.
Vapor Pressure	<0.3 kPa (<2 mm Hg) (at 20°C)		Volatility		AP 825 g/l VOC (W%) (ASTM D2369) =	
Solubility in Water	Very slightly soluble in cold water.			Viscosity (cSt @ 40°C)		AP 3
Flash Point	Closed cup: 38°C (100°F). (Pensky-Martens. (Minimum))					
Additional Properties	Density = AP 6.8 lbs/gal.; Viscosity (ASTM D2161) = 30 - 40 SUS @ 100º F					

SECTION 10. STABILITY AND REACTIVITY

Chemical Stability	Stable.	Hazardous Polymerization Not expected to occur.		
Conditions to Avoid	Keep away from heat, flame oxidizing conditions and age	e and other potential ignition sources. Keep away from strong ents.		
Materials Incompatibility	Strong acids, alkalies, and oxidizers such as liquid chlorine, other halogens, hydrogen peroxide and oxygen.			
Hazardous Decomposition Products	No additional hazardous de products identified in Sectio	composition products were identified other than the combustion n 5 of this MSDS.		

SECTION 11. TOXICOLOGICAL INFORMATION

For other health-related information, refer to the Emergency Overview on Page 1 and the Hazards Identification in Section 3 of this MSDS.

Toxicity Data

Naphthalene

Studies in Humans Overexposed to Naphthalene:

Severe jaundice, neurotoxicity (kernicterus) and fatalities have been reported in young children and infants as a result of hemolytic anemia from over-exposure to naphthalene. Persons with Glucose 6-phosphate dehydrogenase (G6PD) deficiency are more prone to the hemolytic effects of naphthalene. Adverse effects on the kidney have also been reported from over-exposure to naphthalene but these effects are believed to be a consequence of hemolytic anemia, and not a direct effect.

Studies in Laboratory Animals:

Hemolytic anemia has been observed in laboratory animals exposed to naphthalene. Laboratory rodents exposed to naphthalene vapor for 2 years (lifetime studies) developed non-neoplastic and neoplastic tumors and inflammatory lesions of the nasal and respiratory tract. Cataracts and other adverse effects on the eye have been observed in laboratory animals exposed to high levels of naphthalene. Findings from a large number of bacterial and mammalian cell mutation assays have been negative. A few studies have shown chromosomal effects (elevated levels of Sister Chromatid Exchange or chromosomal aberrations) *in vitro*.

Trimethylbenzenes, all isomers

Studies of Workers:

Levels of total hydrocarbon vapors present in the breathing atmosphere of these workers ranged from 10 to 60 ppm. The TCLo for humans is 10 ppm, with somnolence and respiratory tract irritation noted.

Studies in Laboratory Animals:

In inhalation studies with rats, four of ten animals died after exposures of 2400 ppm for 24 hours. An oral dose of 5 mL/kg resulted in death in one of ten rats. Minimum lethal intraperitoneal doses were 1.5 to 2.0 mL/kg in rats and 1.13 to 12 mL/kg in guinea pigs. Mesitylene (1, 3, 5 Trimethylbenzene) inhalation at concentrations of 1.5, 3.0, and 6.0 mg/L for six hours was associated with dose-related changes in white blood cell counts in rats. No significant effects on the complete blood count were noted with six hours per day exposure for five weeks, but elevations of alkaline phosphatase and SGOT were observed. Central nervous system depression and ataxia were noted in rats exposed to 5,100 to 9,180 ppm for two hours.

Ethylbenzene

Effects from Acute Exposure: ORAL (LD50), Acute: 3,500 mg/kg [Rat]. DERMAL (LD50), Acute: 17,800 uL/kg [Rabbit]. INTRAPERITONEAL (LD50), Acute: 2,624 mg/kg [Rat].

Effects from Prolonged or Repeated Exposure:

Findings from a 2-year inhalation study in rodents conducted by NTP were as follows: Effects were observed only at the highest exposure level (750 ppm). At this level the incidence of renal tumors was elevated in male rats (tubular carcinomas) and female rats (tubular adenomas). Also, the incidence of tumors was elevated in male mice (alveolar and bronchiolar carcinomas) and female mice (hepatocellular carcinomas). IARC has classified ethyl benzene as "possibly carcinogenic to humans" (Group 2B). Studies in laboratory animals indicate some evidence of post-implantation deaths following high levels of maternal exposure. The relevance of these findings to humans is not clear at this time. Studies in laboratory animals indicate limited evidence of renal malformations, resorptions, and developmental delays following high levels of maternal exposure. The relevance of these findings to humans is not clear at this time. Studies in laboratory animals indicate limited evidence of renal malformations, resorptions, and evelopmental delays following high levels of maternal exposure. The relevance of these findings to humans is not clear at this time. Studies in laboratory animals indicate some evidence of renal malformations, resorptions, and developmental delays following high levels of maternal exposure. The relevance of these findings to humans is not clear at this time. Studies in laboratory animals indicate some evidence of adverse effects on the liver, kidney, thyroid, and pituitary gland.

CITGO No. 1 Diesel Fuel, All Grades

Diesel exhaust particulate

Lung tumor and lymphomas were identified in rats and mice exposed to unflitered diesel fuel exhaust in chronic inhalation studies. Further, epidemiological studies have identified increase incidences of lung cancer in US railroad workers and bladder cancer in bus and truck drivers possibly associated with exposure to diesel engine exhaust. NTP has determined that exposure to diesel exhaust particulates, a complex mixture of combustion products of diesel fuel, is reasonably anticipated to be a human carcinogen. In addition, NIOSH has identified complete diesel exhaust as a potential carcinogen.

Hydrodesulfurized middle distillate (petroleum)

INHALATION LC50, Acute: 4.6 to 7.64 mg/L for four hours [Rat] - Dyspnea, nasal discharge, alopecia and excessive salivation.

ORAL LD50, Acute >500 g/kg [Rat Screening Level] Diarrhea, hyperactivity, ptosis and somnolence.

DERMAL LD50, Acute: >2,000 mg/kg [Rabbit Screening Level]

BUEHLER DERMAL, Acute: Non-sensitizing [Guinea Pig].

14-Day DERMAL, Subchronic: 0.05 ml/kg applied 3 times per week [Mouse, Human skin grafted to Athymic nude Mice] - Irritation and epidermal hyperplasia.

62-Week DERMAL, Chronic: 0.05 ml/kg applied 3 times per week [Mouse] - Extreme skin irritation; moderate increase in contact-point skin tumors.

Straight-run middle distillate (petroleum)

INHALATION, LC50, Acute: 1.72 mg/L for four hours [Male Rat]. INHALATION, LC50, Acute: 1.82 mg/L for 4 hours [Female Rat]. ORAL, LD50, Acute: >5,000 mg/kg [Rat screening level] - Diarrhea, hypoactivity and somnolence.

DERMAL, LD50, Acute: >2,000 mg/kg [Rabbit screen].

BUEHLER DERMAL, Acute: Non-sensitizing [Guinea Pig].

28-Day DERMAL, Subchronic: Moderate irritation at 200 to 2,000 mg/kg with no other treatment-related clinical effects observed.

SECTION 12. ECOLOGICAL INFORMATION

Ecotoxicity	Freshwater Toxicity:				
	Concentration: 2400 ppm Exposure: 48 hrs. Species: Juven. Am. Shad (Squalius cephalus) Effect: TLM				
	Concentration: >127 ppm Exposure: 96 hrs. Species: Bluegill (Lepomis macrochirus) Effect: LC50				
	Saltwater Toxicity				
	Concentration: 10 ppm Exposure: 96 hrs. Species: Menhaden (<i>Brevoortia patronus</i>) Effect: LC50				
	Concentration: 10 ppm Exposure: 96 hrs. Species: Grass Shrimp Effect: LC50				
Environmental Fate	If spilled, this material will normally evaporate. Hydrocarbon components may contribute to atmospheric smog. If released to the subsoils, petroleum middle distillate fuels will strongly adsorb to soils. Groundwater should be considered as an exposure pathway. Liquid and vapor can migrate through the subsurface and preferential pathways (such as utility line backfill) to downgradient receptors.				
	Middle distillates are potentially toxic to freshwater and saltwater ecosystems. Distillate fuels will normally float on water. In stagnant or slow-flowing waterways, a hydrocarbon layer can cover a large surface area. As a result, this oil layer can limit or eliminate natural atmospheric oxygen transport into the water. With time, if not removed, oxygen depletion in the waterway can cause a fish kill or create an anaerobic environment. Also, this coating action can also kill plankton, algae, and water birds.				

MSDS No. AG1DF

SECTION 13. DISPOSAL CONSIDERATIONS

Hazard characteristic and regulatory waste stream classification can change with product use. Accordingly, it is the responsibility of the user to determine the proper storage, transportation, treatment and/or disposal methodologies for spent materials and residues at the time of disposition.

> Maximize material recovery for reuse or recycling. If spilled material is introduced into a wastewater treatment system, chemical and biological oxygen demand (COD and BOD) will likely increase. Vapor emissions from a bio-oxidation process contaminated with this material might be a potential health hazard.

> Recovered non-usable material may be regulated by US EPA as a hazardous waste due to its ignitibility characteristic (D001). In addition, conditions of use may cause this material to become a hazardous waste, as defined by Federal or State regulations. It is the responsibility of the user to determine if the material is a hazardous waste at the time of disposal. Transportation, treatment, storage, and disposal of waste material must be conducted in accordance with RCRA regulations (see 40 CFR Parts 260 through 271). Contact your regional US EPA office for guidance concerning case specific disposal issues. State and/or local regulations might be even more restrictive.

SECTION 14. TRANSPORT INFORMATION

The shipping description below may not represent requirements for all modes of transportation, shipping methods or locations outside of the United States.

US DOT Status Proper Shipping Name	A U.S. Department of Transportation (DOT) regulated material. The following U. S. DOT hazardous materials shipping description applies to bulk packaged material that is transported by highway or rail. Alternate shipping descriptions may be required for product transported by marine vessel, air or other method and for non-bulk packaged material. Diesel Fuel, No. 1, Combustible liquid, NA1993, PG III				
Hazard Class	DOT Class: Combustible liquid with point greater than 37.8°C (100°F).	a flash Packing Group UN/NA Number	III NA 1993 or UN 1202		
Reportable Quantity	A Reportable Quantity (RQ) has not been established for this material.				
Placard(s)		Emergency Response Guide No.	128		
	COMBUSTIBLE	MARPOL III Status	Not a DOT "Marine Pollutant" per 49 CFR		

Pollutant" per 49 CFR 171.8.

SECTION 15. REGULATORY INFORMATION

TSCA Inventory	This product and/or its components are listed on the Toxic Substances Control Act (TSCA) inventory.			
SARA 302/304 Emergency Planning and Notification	The Superfund Amendments and Reauthorization Act of 1986 (SARA) Title III requires facilities subject to Subparts 302 and 304 to submit emergency planning and notification information based on Threshold Planning Quantities (TPQs) and Reportable Quantities (RQs) for "Extremely Hazardous Substances" listed in 40 CFR 302.4 and 40 CFR 355. No components were identified.			
SARA 311/312 Hazard Identification The Superfund Amendments and Reauthorization A facilities subject to this subpart to submit aggregate Category" as defined in 40 CFR 370.2. This materia hazard categories:			mit aggregate information on ch	nemicals by "Hazard
MSDS No. AG1DF	Revision Date	12/31/2007	Continued on Next Page	Page Number: 10

CITGO No. 1 Diesel Fuel, All Grades

	fire, Acute (Immediate) Health Hazard, Chronic (Delayed) Health Hazard
SARA 313 Toxic Chemical Notification and Release Reporting	This product contains the following components in concentrations above <i>de minimis</i> levels that are listed as toxic chemicals in 40 CFR Part 372 pursuant to the requirements of Section 313 of SARA: Naphthalene [CAS No.: 91-20-3] Concentration: 1.5% Ethylbenzene [CAS No.: 100-41-4] Concentration: 0.5%
CERCLA	The Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) requires notification of the National Response Center concerning release of quantities of "hazardous substances" equal to or greater than the reportable quantities (RQ's) listed in 40 CFR 302.4. As defined by CERCLA, the term "hazardous substance" does not include petroleum, including crude oil or any fraction thereof which is not otherwise specifically designated in 40 CFR 302.4. Chemical substances present in this product or refinery stream that may be subject to this statute are: Naphthalene [CAS No.: 91-20-3] RQ = 100 lbs. (45.36 kg) Concentration: 1.5% Ethylbenzene [CAS No.: 100-41-4] RQ = 1000 lbs. (45.36 kg) Concentration: 0.5% Xylene, all isomers [CAS No.: 1330-20-7] RQ = 100 lbs. (45.36 kg) Concentration: 0.5% Benzene [CAS No.: 71-43-2] RQ = 10 lbs. (4.536 kg) Concentration: 0.045%
Clean Water Act (CWA)	This material is classified as an oil under Section 311 of the Clean Water Act (CWA) and the Oil Pollution Act of 1990 (OPA). Discharges or spills which produce a visible sheen on waters of the United States, their adjoining shorelines, or into conduits leading to surface waters must be reported to the EPA's National Response Center at (800) 424-8802.
California Proposition 65	This material may contain the following components which are known to the State of California to cause cancer, birth defects or other reproductive harm, and may be subject to the requirements of California Proposition 65 (CA Health & Safety Code Section 25249.5): Naphthalene: 1.5% Ethylbenzene: 0.5% Diesel exhaust particulate Toluene: 0.045%
New Jersey Right-to-Know Label	Diesel Fuel
Additional Remarks	Federal Hazardous Substances Act, related statutes, and Consumer Product Safety Commission regulations, as defined by 16 CFR 1500.14(b)(3) and 1500.83(a)(13): This product contains "Petroleum Distillates" which may require special labeling if distributed in a manner intended or packaged in a form suitable for use in the household or by children. Precautionary label dialogue should display the following: DANGER: Contains Petroleum Distillates! Harmful or fatal if swallowed! Call Physician Immediately. KEEP OUT OF REACH OF CHILDREN!

SECTION 16. OTHER INFORMATION

Refer to the top of Page 1 for the HMIS and NFPA Hazard Ratings for this product.

REVISION INFORMATION

Version Number	2.1
Revision Date	12/31/2007

ABBREVIATIONS

AP: ApproximatelyEQ: Equal>: Greater Than<: Less Than</th>NA: Not ApplicableND: No DataNE: Not EstablisheACGIH: American Conference of Governmental Industrial Hygienist:AIHA: American Industrial Hygiene AssociatiorIARC: International Agency for Research on CancerNTP: National Toxicology ProgramNIOSH: National Institute of Occupational Safety and HealthOSHA: Occupational Safety and Health Administration

CITGO No. 1 Diesel Fuel, All Grades

NPCA: National Paint and Coating Manufacturers Association NFPA: National Fire Protection Association HMIS: Hazardous Materials Information System EPA: US Environmental Protection Agency

DISCLAIMER OF LIABILITY

THE INFORMATION IN THIS MSDS WAS OBTAINED FROM SOURCES WHICH WE BELIEVE ARE RELIABLE. HOWEVER, THE INFORMATION IS PROVIDED WITHOUT ANY WARRANTY, EXPRESSED OR IMPLIED REGARDING ITS CORRECTNESS. SOME INFORMATION PRESENTED AND CONCLUSIONS DRAWN HEREIN ARE FROM SOURCES OTHER THAN DIRECT TEST DATA ON THE SUBSTANCE ITSELF. THIS MSDS WAS PREPARED AND IS TO BE USED ONLY FOR THIS PRODUCT. IF THE PRODUCT IS USED AS A COMPONENT IN ANOTHER PRODUCT, THIS MSDS INFORMATION MAY NOT BE APPLICABLE. USERS SHOULD MAKE THEIR OWN INVESTIGATIONS TO DETERMINE THE SUITABILITY OF THE INFORMATION OR PRODUCTS FOR THEIR PARTICULAR PURPOSE.

THE CONDITIONS OR METHODS OF HANDLING, STORAGE, USE, AND DISPOSAL OF THE PRODUCT ARE BEYOND OUR CONTROL AND MAY BE BEYOND OUR KNOWLEDGE. FOR THIS AND OTHER REASONS, WE DO NOT ASSUME RESPONSIBILITY AND EXPRESSLY DISCLAIM LIABILITY FOR LOSS, DAMAGE OR EXPENSE ARISING OUT OF OR IN ANY WAY CONNECTED WITH HANDLING, STORAGE, USE OR DISPOSAL OF THE PRODUCT.

***** END OF MSDS *****

APPENDIX B

Activity Hazard Analysis

Table 3-2. Activity Hazard Analysis

Date Prepared: July 1, 2010

Project: RVAAP Facility-Wide Environmental Investigation Activities Job: Site Mobilization and Demobilization Prepared By: Reviewed By:

 E = Extremely High Risk H = High Risk M = Moderate Risk L = Low Risk 			P r	obabili	i t y	
		Frequent	Likely	Occasional	Seldom	Unlikely
S e v e r i t y	Catastrophic					
	Critical					
	Marginal					
	Negligible					

Risk Assessment Code (RAC):

Recommended Protective Clothing & Equipment:

Level D PPE

JOB STEPS	HAZARDS	ACTIONS TO ELIMINATE OR MINIMIZE HAZARDS	EM 385-1-1 (PARA REF)
			、 ,
General	Biological hazards	Level D PPE	EM 385-1-1
	(bees, mosquitoes,	Insect repellant, as necessary. Pant legs tucked into boots or otherwise closed to minimize tick entry or contact with	06.D
	ticks, Lyme disease,	harmful plants	
	histoplasmosis,	Inspect for ticks during the day and at the end of each work day (see Section 10.18)	
	poisonous plants,	Avoidance of accumulations of bird or bat droppings (see Section 10.17)	
	wasps, and snakes)	Protective ointments and/or specialized cleaners if working in areas with poisonous plants	
		Site-specific instruction in recognition and avoidance of harmful plants and/or animals	
	Temperature	Administrative controls (see Section 9.0)	EM 385-1-1 06.I
	extremes	Cooled (shaded) or warmed break area depending on the season	
		Routine breaks in established break area and unscheduled breaks, if needed (see Section 9.0)	
		Chilled water if temperature exceeds 70°F	
		Monitoring – ambient temperature measurements at least twice daily. Temperatures greater than 80°F, temperatures less	
		than 30°F, and the use of impermeable clothing require additional controls (see Section 9.0)	
		Site- and season-specific instruction in weather hazards and hazard controls	
	Contact with MEC	On-site training in ordnance recognition for all field personnel. Any investigation work within a MRS will follow MEC	EM 385-1-1
		avoidance protocol. MEC surveys will be conducted in MRSs by a UXO technician for intrusive work and a UXO	33.A
		technician will accompany investigation teams. Avoid areas or withdraw all personnel from area, as directed by UXO	
		technician, if ordnance or suspected ordnance is discovered. Monitoring - visual surveys for ordnance. Instrument surveys	
		by UXO technicians in MRS. Follow requirements of governing Explosive Safety Submittal, if required, for the project.	
CELRL Form 1259	, 1 November 2001	Previous Versions are Obsolete a	and Should Not Be Used

Date Prepared: July 1, 2010 Project: RVAAP Facility-Wide Environmental Investigation Activities Job: Site Mobilization and Demobilization

JOB STEPS	HAZARDS	ACTIONS TO ELIMINATE OR MINIMIZE HAZARDS	EM 385-1-1 (PARA REF)
General	Exposure to chemicals	Wash face and hands and any other exposed areas prior to taking anything by mouth. HAZWOPER training and medical clearance	EM 385-1-1 06.A and B, and Section 28
	Severe weather	Locate nearest severe weather shelter/strong structure before beginning fieldwork. Suspend fieldwork if lightning within 10 miles of site or tornado warning issued. Do not work in areas subject to flash flooding	EM 385-1-1 06.I
Vehicle Operation	Vehicle accidents	Vehicle operation (valid driver's license, seat belt use, routine vehicle inspections, no cell phone use while driving, compliance with applicable laws and regulations, and defensive driving). Visual inspection includes the vehicle and any associated items such as trailers or external cargo carriers. The operator verifies that the following items are present and functional: seatbelt(s), lights, turn signals, operating brakes, speedometer, fuel gage, horn, windshield, windshield wiper, defrosting/defogging system, rear view mirror, cab, non-slip surfaces on steps, and tires (approximately proper inflation) While driving on RVAAP, facility personnel shall take necessary precautions to avoid hitting deer. Observe and maintain posted speed limits for both day and night driving conditions.	EM 385-1-1 18
Moving Equipment	Musculoskeletal injuries (lifting heavy items)	Maximum 50 lb per individual, safety shoes, mechanical assistance >50 lb An evaluation of potential pinch points and/or weight strain should be conducted. Clear area of all unnecessary equipment and slip/trip hazards. Additional help will be obtained by workers or mechanical assistance used on-site if equipment to be moved is unwieldy, has a weight >50 lb, or has to be moved by maneuvering through awkward positioning Plan activities so body is not twisted/contorted	EM 385-1-1 14.A
CELRL Form 1259	General safety hazards (slips, trips, and falls)	Clean and organized work areas, keeping walkways and working areas clear, including snow, ice, and standing water Previous Versions are Obsolete	EM 385-1-1 2.B

Date Prepared: July 1, 2010 Project: RVAAP Facility-Wide Environmental Investigation Activities Job: Site Mobilization and Demobilization

Equipment to be Used	Inspection Requirements	Training Requirements
Vehicles	Daily safety inspections of operations. Initial and at	HAZWOPER 40-hr training and current refresher training
	least weekly inspections of equipment	Medical clearance
General hand tools, if necessary	All tools must be inspected daily and taken out of service if damaged	Properly trained personnel to operate equipment
	Daily vehicle inspection	Valid driver's licenses
		Site-specific training including site hazard communication training
CELDL Form 1250, 1 November 2001		CPR and first aid training for at least two on-site personnel and at least one person per field team

CELRL Form 1259, 1 November 2001

Date Prepared: July 1, 2010

Project: RVAAP Facility-Wide Environmental Investigation Activities Job: Site Walk and/or Civil Survey Prepared By: Reviewed By:

 $\mathbf{E} = \mathbf{E} \mathbf{x} \mathbf{t} \mathbf{r} \mathbf{e} \mathbf{m} \mathbf{e} \mathbf{h} \mathbf{r} \mathbf{h} \mathbf{r} \mathbf{h} \mathbf{k}$ Probability $\mathbf{H} = \text{High Risk}$ $\mathbf{M} = \mathbf{M}$ oderate Risk Likely Occasional Unlikely Frequent Seldom $\mathbf{L} = \text{Low Risk}$ Catastrophic erity Critical Marginal > S e Negligible

JOB STEPS	HAZARDS	ACTIONS TO ELIMINATE OR MINIMIZE HAZARDS	EM 385-1-1 (PARA REF)
			. ,
General	Biological hazards	Level D PPE	EM 385-1-1 06.D
	(bees, mosquitoes,	Insect repellant, as necessary	
	ticks, Lyme	Pant legs tucked into boots or otherwise closed to minimize tick entry and contact with harmful plants	
	disease,	Inspect for ticks during the day and at the end of each work day (see Section 10.18)	
	histoplasmosis,	Avoidance of accumulations of bird or bat droppings (see Section 10.17)	
	poisonous plants,	Protective ointments and/or specialized cleaners if working in areas with poisonous plants	
	wasps, and snakes)	Site-specific instruction in recognition and avoidance of harmful plants and/or animals	
	Temperature	Administrative controls (see Section 9.0)	EM 385-1-1 06.I
	extremes	Cooled (shaded) or warmed break area depending on the season	
		Routine breaks in established break area and unscheduled breaks if needed (see Section 9.0)	
		Chilled water if temperature exceeds 70°F	
		Monitoring – ambient temperature measurements at least twice daily. Temperatures greater than 80°F, temperatures less	
		than 30°F, and the use of impermeable clothing require additional controls (see Section9.0)	
		Site- and season-specific instruction in weather hazards and hazard controls	
	Contact with MEC	On-site training in ordnance recognition for all field personnel. Any investigation work within a MRS will follow MEC	EM 385-1-1 33.A
		avoidance protocol. MEC surveys will be conducted in MRSs by a UXO technician for intrusive work and a UXO	
		technician will accompany investigation teams. Avoid areas or withdraw all personnel from area, as directed by UXO	
		technician, if ordnance or suspected ordnance is discovered. Monitoring - visual surveys for ordnance. Instrument surveys	
		by UXO technicians in MRS. Follow requirements of governing Explosive Safety Submittal, if required, for the project.	
CELRL Form 1259	, 1 November 2001	Previous Versions are Obsole	te and Should Not Be Used

Recommended Protective Clothing & Equipment:

Level D PPE

Risk Assessment Code (RAC):

Date Prepared: July 1, 2010 Project: RVAAP Facility-Wide Environmental Investigation Activities Job: Site Walk and/or Civil Survey

JOB STEPS	HAZARDS		ACTIONS TO ELIMINATE OR MINIMIZ	E HAZARDS	EM 385-1-1 (PARA REF)			
General	Exposure to chemicals	Wash face and hands clearance	EM 385-1-1 06.A and B and Section 28					
	Severe weather	Locate nearest severe weather shelter/strong structure before beginning fieldwork. Suspend fieldwork if lightning within 10 miles of site or tornado warning issued. Do not work in areas subject to flash flooding						
Vehicle Operation	Vehicle accidents	compliance with app any associated items and functional: seath wiper, defrosting/def inflation) While driving on RV	Wehicle operation (valid driver's license, seat belt use, routine vehicle inspections, no cell phone use while driving, compliance with applicable laws and regulations, and defensive driving). The visual inspection includes the vehicle and any associated items such as trailers or external cargo carriers. The operator verifies that the following items are present and functional: seatbelt(s), lights, turn signals, operating brakes, speedometer, fuel gage, horn, windshield, windshield wiper, defrosting/defogging system, rear view mirror, cab, non-slip surfaces on steps, and tires (approximately proper nflation)EMWhile driving on RVAAP, facility personnel shall take necessary precautions to avoid hitting wildlife. Observe and naintain posted speed limits for both day and night driving conditions.EM					
	Equipment to be U	sed	Inspection Requirements	Training Requirements				
Vehicles			Daily safety inspections of operations. Initial and at least weekly inspections of equipment Daily vehicle inspection	HAZWOPER 40-hr training and current refree Medical clearance Properly trained personnel to operate equipm Valid driver's licenses Site-specific training including site hazard cor CPR and first aid training for at least two on-s least one person per field team	nmunication training			

CELRL Form 1259, 1 November 2001

Date Prepared: July 1, 2010

Project: RVAAP Facility-Wide Environmental Investigation Activities

Job: Soil Boring and Sampling, Monitoring Well Installation Using a Drill Rig, and Groundwater Sampling

Prepared By:

Reviewed By:

Recommended Protective Clothing & Equipment:

Level D + PPE including hardhat plus nitrile or equivalent gloves for contact with contaminated material and hearing protection during drill rig operations

	Extremely High Risk		Pr	obabili	i t y	
M =	High Risk Moderate Risk Low Risk	Frequent	Likely	Occasional	Seldom	Unlikely
	Catastrophic					
i t y	Critical					
v e r	Marginal					
s e	Negligible					

JOB STEPS	HAZARDS	ACTIONS TO ELIMINATE OR MINIMIZE HAZARDS	EM 385-1-1 (PARA REF)	
General	Biological hazards	Level D PPE	EM 385-1-1 06.D	
	(bees, mosquitoes,	Insect repellant, as necessary		
	ticks, Lyme	Pant legs tucked into boots or otherwise closed to minimize tick entry and contact with harmful plants		
	disease,	Inspect for ticks during the day and at the end of each work day (see Section 10.18)		
	histoplasmosis,	Avoidance of accumulations of bird or bat droppings (see Section 10.17)		
	poisonous plants,	Protective ointments or specialized cleaners if working in areas with poisonous plants		
	wasps, and snakes)	Site-specific instruction in recognition and avoidance of harmful plants and animals		
	Temperature Administrative controls (see Section 9.0)			
	extremes	Cooled (shaded) or warmed break area depending on the season		
		Routine breaks in established break area and unscheduled breaks if need (see Section 9.0)		
		Chilled water if temperature exceeds 70°F		
		Monitoring – ambient temperature measurements at least twice daily. Temperatures greater than 80°F, temperatures less		
		than 30°F, and impermeable clothing require additional controls		
		Site- and season-specific instruction in weather hazards and hazard controls		
	Contact with MEC	On-site training in ordnance recognition for all field personnel. Any investigation work within a MRS will follow MEC	EM 385-1-1 33.A	
		avoidance protocol. MEC surveys will be conducted in MRSs by a UXO technician for intrusive work and a UXO technician		
		will accompany investigation teams. Avoid areas or withdraw all personnel from area, as directed by UXO technician, if		
		ordnance or suspected ordnance is discovered. Monitoring - visual surveys for ordnance. Instrument surveys by UXO		
		technicians in MRS. Follow requirements of governing Explosive Safety Submittal, if required, for the project.		
CELRL Form 12	259, 1 November 2001		lete and Should Not Be Used	

L_____

Risk Assessment Code (RAC):

Date Prepared: July 1, 2010

Project: RVAAP Facility-Wide Environmental Investigation Activities

Job: Soil Boring and Sampling, Monitoring Well Installation Using a Drill Rig, and Groundwater Sampling

JOB STEPS	HAZARDS	ACTIONS TO ELIMINATE OR MINIMIZE HAZARDS	EM 385-1-1 (PARA REF)
General	Lifting heavy items	Evaluation of potential pinch points and/or weight strain. Clear area of all unnecessary equipment and slip/trip hazards. Additional help will be obtained by workers or mechanical assistance used on-site if equipment to be moved is unwieldy, has a weight >50 lb, or has to be moved by maneuvering through awkward positioning	EM 385-1-1 14.A
	Severe weather	Locate nearest severe weather shelter/strong structure before beginning fieldwork. Suspend fieldwork if lightning within 10 miles of site or tornado warning issued. Do not work in areas subject to flash flooding	EM 385-1-1 06.I
Drilling	General safety hazards (rotating machinery, suspended loads, moving equipment, slips, and falls)	Level D PPE (see Section 6.0) plus hard hat No employees under lifted loads At least two functional kill switches Functional back-up alarm Drill rig manual on-site Only experienced operators Exclusion zone at least equal to mast height Hazardous waste safety training Monitoring - daily site safety inspections. Weekly drill rig inspections	EM 385-1-1 18.H
	Noise	Hearing protection within 7.6 m (25 ft) of rig unless rig-specific monitoring indicates noise exposure of less than 90 dB Monitoring - daily safety inspections	EM 385-1-1 05.C
	Fire (vehicle fuels or subsurface contaminants)	Fuels stored in safety containers labeled/listed by nationally recognized testing laboratory Bonding and grounding during fuel transfers Fuel storage areas marked with "No Smoking" or "Open Flame" signs No ignition sources within 50 ft of fuel storage areas Fire extinguishers in all fuel use areas and inspected monthly Monitoring - combustible gas indicator if buried organic material or other source of flammable gas is suspected	EM 385-1-1 09.A
CELRL Form 1	Contact with buried or overhead electrical or other hazards 259, 1 November 2001	Identification and clearance of overhead and underground utilities Monitoring - visual of all work areas Previous Versions are Obsol	EM 385-1-1 05.I

Date Prepared: July 1, 2010

Project: RVAAP Facility-Wide Environmental Investigation Activities

Job: Soil Boring and Sampling, Monitoring Well Installation Using a Drill Rig, and Groundwater Sampling

JOB STEPS	HAZARDS		ACTIONS TO ELIMINATE OR MINIMIZE HAZARDS				
Drilling	Operating hand tools or power tools	Clean and organize through GFCI	d work areas, keeping walkways and working areas clear.	110-V portable tools will be connected	EM 385-1-1 13.A		
Soil and Groundwater Sampling	Exposure to chemicals	taking anything by Hazard communica MSDS for chemica Chemical container Medical clearance Decontamination o					
	Cuts or other injuries from opening sampling tubes	or other injuries opening Use dedicated tube cutter or hooked safety blades when using polymer sample tubes. Wear heavy cut-resistant gloves when opening polymer sample tubes. Keep fingers from between split spoon halves					
Shipping and Packing Samples	Hazardous material shipping/transportation regulatory violation or spill (soil and groundwater samples)		Ensure DOT/IATA compliance if shipping chemicals or other hazardous materials or samples EM 385-1- Iazardous materials shippers must be trained and certified 6.B.03.f				
	Equipment to be Use	d	Inspection Requirements	Training Requirements			
Drill rig			Daily safety inspections of operations. Initial and at least weekly inspections of excavation equipment Daily vehicle inspection	HAZWOPER 40-hr training and current refresher training Medical clearance			
Support truck Sampling equipment if necessary CELRL Form 1259, 1 November 2001			All tools must be inspected daily and taken out of service if damaged Properly trained personnel to operate drill Site-specific training including site hazard CPR and first aid training for at least two of least one person per field team		-		

Date Prepared: July 1, 2010

Project: RVAAP Facility-Wide Environmental Investigation Activities

Level D + PPE including hardhat plus nitrile or equivalent gloves for contact with

contaminated material + hearing protection during drill rig operation

Job: Monitoring Well and Borehole Abandonment

Recommended Protective Clothing & Equipment:

Prepared By:

Reviewed By:

Risk Assessment Code (RAC):

	$\mathbf{E} = \mathbf{E}$ xtremely High Risk		P r o b a b i l i t y					
	$\mathbf{M} = \mathbf{I}$	High Risk Moderate Risk .ow Risk	Frequent	Likely	Occasional	Seldom	Unlikely	
ſ		Catastrophic						
	ity	Critical						
	v e r	Marginal						
	Ser	Negligible						

EM 385-1-1 JOB STEPS HAZARDS ACTIONS TO ELIMINATE OR MINIMIZE HAZARDS (PARA REF) Level D PPE General **Biological** EM 385-1-1 06.D hazards (bees. Insect repellant, as necessary mosquitoes, Pant legs tucked into boots or otherwise closed to minimize tick entry and contact with harmful plants Inspect for ticks during the day and at the end of each work day (see Section 10.18) ticks, Lyme Avoidance of accumulations of bird or bat droppings (see Section 10.17) disease, histoplasmosis, Protective ointments or specialized cleaners if working in areas with poisonous plants Site-specific instruction in recognition and avoidance of harmful plants and animals poisonous plants, wasps, and snakes) Temperature Administrative controls (see Section 9.0) EM 385-1-1 06.I Cooled (shaded) or warmed break area depending on the season extremes Routine breaks in established break area and unscheduled breaks if needed (see Section 9.0) Chilled water if temperature exceeds 70°F Monitoring - ambient temperature measurements at least twice daily Temperatures greater than 80°F, temperatures less than 30°F, and impermeable clothing require additional controls Site- and season-specific instruction in weather hazards and hazard controls On-site training in ordnance recognition for all field personnel. Any investigation work within a MRS will follow MEC Contact with EM 385-1-1 33.A MEC avoidance protocol. MEC surveys will be conducted in MRSs by a UXO technician for intrusive work and a UXO technician will accompany investigation teams. Avoid areas or withdraw all personnel from area, as directed by UXO technician, if ordnance or suspected ordnance is discovered. Monitoring - visual surveys for ordnance. Instrument surveys by UXO technicians in MRS. Follow requirements of governing Explosive Safety Submittal, if required, for the project.

CELRL Form 1259, 1 November 2001

Date Prepared: July 1, 2010 Project: RVAAP Facility-Wide Environmental Investigation Activities Job: Monitoring Well and Borehole Abandonment

JOB STEPS	HAZARDS	ACTIONS TO ELIMINATE OR MINIMIZE HAZARDS	EM 385-1-1 (PARA REF)
General	Lifting heavy items	Evaluate the lift and potential pinch points and/or weight strain. Clear area of all unnecessary equipment and slip/trip hazards. Additional help will be obtained by workers or mechanical assistance used on-site if equipment to be moved is unwieldy, has a weight >50 lb, or has to be moved by maneuvering through awkward positioning	EM 385-1-1 14.A
	Severe weather	Locate nearest severe weather shelter/strong structure before beginning fieldwork. Suspend fieldwork if lightning within 10 miles of site or tornado warning issued. Do not work in areas subject to flash flooding	EM 385-1-1 06.I
Drilling to Abandon Wells	General safety hazards (rotating machinery, suspended loads, moving equipment, slips, and falls)	Level D PPE (see Section 6.0) plus hard hat No employees under lifted loads At least two functional kill switches or switches that require continuous force to activate Functional back-up alarm Drill rig manual on-site Only experienced operators Exclusion zone at least equal to mast height	EM 385-1-1 18.H
	Noise	Hearing protection within 7.6 m (25 ft) of rig unless rig-specific monitoring indicates noise exposure of less than 90 dB Monitoring - daily safety inspections	EM 385-1-1 05.C
	Fire (vehicle fuels or subsurface contaminants)	Fuels stored in safety containers labeled/listed by nationally recognized testing laboratory Bonding and grounding during fuel transfers Fuel storage areas marked with "No Smoking" or "Open Flame" signs No ignition sources within 50 ft of fuel storage areas Fire extinguishers in all fuel use areas and inspected monthly Monitoring - combustible gas indicator if buried organic material or other source of flammable gas is suspected	EM 385-1-1 09.A
	Electric shock	Identification and clearance of overhead and underground utilities Monitoring - visual of all work areas 110-V electrical tools connected through GFCI	EM 385-1-1 05.I
	Struck by equipment, cables, drill rods	Level D+ PPE with hard hat. Maintain general work area awareness, separate work area from drill rig and moving parts where possible. Drilling subcontractor will operate per their own health and safety programs, plans, and procedures and will provide trained and qualified personnel. Driller will inspect the rig at the start of each shift. Drill rig will be equipped with at least two kill switches or will be operated by dead man switches. No workers under suspended heavy loads	EM 385-1-1 18.H
	Operating hand tools or power tools	Clean and organized work areas, keeping walkways and working areas clear. 110-V portable tools will be connected through GFCI	EM 385-1-1 13.A
CELRL Form 1259	9, 1 November 2001	Previous Versions are Obsol	ete and Should Not Be Used

Date Prepared: July 1, 2010 Project: RVAAP Facility-Wide Environmental Investigation Activities Job: Monitoring Well and Borehole Abandonment

Equipment to be Used	Inspection Requirements	Training Requirements
Drill rig	Daily safety inspections of operations. Initial and at least weekly inspections of excavation equipment	HAZWOPER 40-hr training and current refresher training
		Medical clearance
Support truck	Daily vehicle inspection	Properly trained personnel to operate drill rig
Hand tools, if necessary	All tools must be inspected daily and taken out of service if damaged	Site-specific training including site hazard communication training
		CPR and first aid training for at least two on-site personnel and at least one person per field team

CELRL Form 1259, 1 November 2001

Risk Assessment Code (RAC):

Date Prepared: July 1, 2010

Project: RVAAP Facility-Wide Environmental Investigation Activities Job: Vegetation Clearing with Chainsaws, Machetes, and Sling Blades Prepared By: Reviewed By:

Recommended Protective Clothing & Equipment:

Level D + PPE with hardhat and nitrile or equivalent gloves for contact with contaminated material. Faceshield, leg protection, and combination earplugs/earmuffs required when operating chainsaw.

$\mathbf{E} = \mathbf{E} \mathbf{x} \mathbf{t} \mathbf{r} \mathbf{e} \mathbf{m} \mathbf{e} \mathbf{H} \mathbf{g} \mathbf{h} \mathbf{R} \mathbf{i} \mathbf{s} \mathbf{k}$		P r o b a b i l i t y				
M =	High Risk Moderate Risk Low Risk	Frequent	Likely	Occasional	Seldom	Unlikely
	Catastrophic					
S e v e r i t y	Critical					
	Marginal					
	Negligible					

JOB STEPS	HAZARDS	ACTIONS TO ELIMINATE OR MINIMIZE HAZARDS	EM 385-1-1 (PARA REF)
General	Biological hazards	PPE (boots, work clothes – long pants and shirts with sleeves)	EM 385-1-1 06.D
	(bees, mosquitoes,	Insect repellant, as necessary	
	ticks, Lyme disease,	Pant legs tucked into boots or otherwise closed to minimize tick entry or contact with harmful plants	
	histoplasmosis,	Inspect for ticks during the day and at the end of each work day (see Section 10.18)	
	poisonous plants,	Avoidance of accumulations of bird or bat droppings (see Section 10.17)	
	wasps, and snakes)	Protective ointments and/or specialized cleaners if working in areas with poisonous plants	
		Site-specific instruction in recognition and avoidance of harmful plants and/or animals	
	Temperature	Administrative controls (see Section 9.0)	EM 385-1-1 06.I
	extremes	Cooled (shaded) or warmed break area depending on the season	
		Routine breaks in established break area and unscheduled breaks if needed (see Section 9.0)	
		Chilled water if temperature exceeds 70°F	
		Monitoring – ambient temperature measurements at least twice daily. Site- and season-specific instruction in weather	
		hazards and hazard controls. Temperatures greater than 80°F, temperatures less than 30°F, and the use of impermeable	
		clothing require additional controls (see Section 9.0)	
	Contact with MEC	On-site training in ordnance recognition for all field personnel. Any investigation work within a MRS will follow MEC avoidance protocol. MEC surveys will be conducted in MRSs by a UXO technician for intrusive work and a UXO	EM 385-1-1 33.A
		technician will accompany investigation teams. Avoid areas or withdraw all personnel from area, as directed by UXO	
		technician, if ordnance or suspected ordnance is discovered. Monitoring - visual surveys for ordnance. Instrument surveys	
		by UXO technicians in MRS. Follow requirements of governing Explosive Safety Submittal, if required, for the project.	
CELRL Form 1259	9, 1 November 2001	Previous Versions are Obsolet	e and Should Not Be Used

Date Prepared: July 1, 2010

Project: RVAAP Facility-Wide Environmental Investigation Activities

Job: Vegetation Clearing with Chainsaws, Machetes, and Sling Blades

JOB STEPS	HAZARDS	ACTIONS TO ELIMINATE OR MINIMIZE HAZARDS	EM 385-1-1 (PARA REF)
General	Lifting heavy items	Evaluate potential pinch points and/or weight strain. Clear area of all unnecessary equipment and slip/trip hazards. Additional help will be obtained by workers or mechanical assistance used on-site if equipment to be moved is unwieldy, has a weight >50 lb, or has to be moved by maneuvering through awkward positioning	EM 385-1-1 14.A
	Severe weather	Locate nearest severe weather shelter/strong structure before beginning fieldwork. Suspend fieldwork if lightning within 10 miles of site or tornado warning issued. Do not work in areas subject to flash flooding	EM 385-1-1 06.I
Operating Machinery	General safety hazards (rotating machinery, contact with sharp edges, slips, and falls)	Level D PPE (see Section 6.0) plus hard hat Only experienced operators Personnel operating brush-clearing tools must maintain separation of at least 4.5 m (15 ft) Tools must be inspected daily and taken out of service if damaged Exclusion zone if there is a potential for entry of unauthorized personnel	EM 385-1-1 13.A and F
	Chainsaw kickback and related hazards	Level D protection including safety glasses or goggles, safety shoes, heavy duty work gloves, chainsaw chaps Saws must have automatic chain brake or kickback device Idle speed adjusted so chain does not move when idling Saws must not be used to cut above shoulder height Saws must be held with both hands when operating Additional requirements at EM 385-1-1, Section 31	EM 385-1-1 13.F
	Noise (chainsaw)	Hearing protection within 7.6 m (25 ft) of operating chainsaw unless equipment-specific monitoring indicates noise exposure of less than 90 dB	EM 385-1-1 05.C
	Fire (fuels)	Fuels stored in safety containers labeled/listed by a nationally recognized testing laboratory Bonding and grounding during fuel transfers Fuel storage areas marked with "No Smoking" or "Open Flame" signs No ignition sources within 50 ft of fuel storage areas Fire extinguishers in all fuel use areas and inspected monthly Gasoline-powered equipment turned off and allowed to cool for at least 5 min prior to fueling	EM 385-1-1 09.A
	Exposure to chemicals	PPE (Level D) plus nitrile or equivalent gloves for contact with contaminated material. Washing face and hands prior to taking anything by mouth. Minimal contact Chemical containers labeled to indicate contents and hazard	EM 385-1-1 06.A and B
	Electric shock	Electrical tools (110 V) must be connected through heavy duty power cord to GFCI Previous Versions are Obsol	EM 385-1-1 05.I

CELRL Form 1259, 1 November 2001

Date Prepared: July 1, 2010 Project: RVAAP Facility-Wide Environmental Investigation Activities Job: Vegetation Clearing with Chainsaws, Machetes, and Sling Blades

Equipment to be Used	Inspection Requirements	Training Requirements
Chainsaws, Machetes, and Sling Blades	Daily safety inspections of operations All tools must be inspected daily and taken out of	HAZWOPER 40-hr training and current refresher training Medical clearance
	service if damaged	Properly trained personnel to operate tools Site-specific training including site hazard communication training CPR and first aid training for at least two on-site personnel and at least one person per field team

CELRL Form 1259, 1 November 2001

Risk Assessment Code (RAC):

Date Prepared: July 1, 2010 Project: RVAAP Facility-Wide Environmental Investigation Activities Job: IDW Handling Prepared By: Reviewed By:

Recommended Protective Clothing & Equipment:

Level D + PPE and nitrile or equivalent gloves for contact with contaminated material

	Extremely High Risk	P r o b a b i l i t y					
M =	High Risk Moderate Risk Low Risk	Frequent	Likely	Occasional	Seldom	Unlikely	
	Catastrophic						
i t y	Critical						
Sever	Marginal						
	Negligible						

JOB STEPS	HAZARDS	ACTIONS TO ELIMINATE OR MINIMIZE HAZARDS	EM 385-1-1 (PARA REF)
General	Biological hazards (bees,	PPE (boots, work clothes – long pants and shirts with sleeves)	EM 385-1-1 06.D
	mosquitoes, ticks, Lyme	Insect repellant, as necessary	
	disease, histoplasmosis,	Pant legs tucked into boots or otherwise closed to minimize tick entry or contact with harmful plants	
	poisonous plants, wasps,	Inspect for ticks during the day and at the end of each work day (see Section 10.18	
	and snakes)	Avoidance of accumulations of bird or bat droppings (see Section 10.17)	
		Protective ointments and/or specialized cleaners if working in areas with poisonous plants	
		Site-specific instruction in recognition and avoidance of harmful plants and/or animals	
	Temperature extremes	Administrative controls (see Section 9.0)	EM 385-1-1 06.I
	_	Cooled (shaded) or warmed break area depending on the season	
		Routine breaks in established break area and unscheduled breaks if needed (see Section 9.0)	
		Chilled water if temperature exceeds 70°F	
		Monitoring – ambient temperature measurements at least twice daily	
		Temperatures greater than 80°F, temperatures less than 30°F, and use of impermeable clothing require additional	
		controls	
		Site- and season-specific instruction in weather hazards and hazard controls	
	Contact with MEC	On-site training in ordnance recognition for all field personnel. Any investigation work within a MRS will follow	EM 385-1-1 33.A
		MEC avoidance protocol. MEC surveys will be conducted in MRSs by a UXO technician for intrusive work and a	
		UXO technician will accompany investigation teams. Avoid areas or withdrawal of all personnel from area, as	
		directed by UXO technician, if ordnance or suspected ordnance is discovered. Monitoring - visual surveys for	
		ordnance. Instrument surveys by UXO technicians in MRS. Follow requirements of governing Explosive Safety	
		Submittal, if required, for the project.	
CELRL Form 1259	9, 1 November 2001	Previous Versions are Obsolet	e and Should Not Be Used

Date Prepared: July 1, 2010 Project: RVAAP Facility-Wide Environmental Investigation Activities Job: IDW Handling

3JOB STEPS	HAZARDS	ACTIONS TO ELIMINATE OR MINIMIZE HAZARDS	EM 385-1-1 (PARA REF)
General	Lifting heavy items	Evaluate lifts in advance. Clear area of all unnecessary equipment and slip/trip hazards. Additional help will be obtained by workers or mechanical assistance used on-site if equipment to be moved is unwieldy, has a weight >50 lb, or has to be moved by maneuvering through awkward positioning	EM 385-1-1 14.A
	Severe weather	Locate nearest severe weather shelter/strong structure before beginning fieldwork. Suspend fieldwork if lightning within 10 miles of site or tornado warning issued. Do not work in areas subject to flash flooding	EM 385-1-1 06.I
Operating equipment	General hazards (lifting equipment, manual lifting, and slips)	Level D PPE including heavy duty gloves for materials handling (see Section 6.0) Unnecessary personnel will stay well clear of operating equipment Functional back-up alarm on fork trucks, bobcats, trucks, etc. Documented forklift training for forklift operators Only experienced operators will be allowed to operate equipment No personnel allowed under lifted loads Lifts of over 50 lb will be made with two or more personnel or with lifting equipment Hazardous waste safety training Compliance with EM 385-1-1, Sections 14 and 16	EM 385-1-1 14.A and 18.G.29
	Load stability	All loads will be secured to the forklift with locking strap or equivalent. Whenever possible, loads will be transported without stacking	EM 385-1-1 14.A and 18.G.29
	Visibility	Ensure maximum visibility is available when transporting drums. If vision is obscured, drive in reverse if possible	EM 385-1-1 14.A
	Pinch points	Be aware of all pinch points when handling drums or containers. Heavy duty gloves	EM 385-1-1 14.A
	Musculoskeletal injuries (opening/closing drums)	Plan activities so body is not twisted/contorted. Evaluate potential pinch points. Use proper tools for the task. Lifts of more than 50 lb require mechanical assistance or buddy lift	EM 385-1-1 13.A
	Fire (vehicle fuels and flammable contaminants)	Fuels stored in safety containers labeled/listed by a nationally recognized testing laboratory Bonding and grounding during fuel transfers Fuel storage areas marked with "No Smoking" or "Open Flame" signs Fire extinguishers in all fuel use areas and inspected monthly No ignition sources within 50 ft of areas where flammable materials are stored	EM 385-1-1 09.A
	Noise	Hearing protection within 7.6 m (25 ft) of any noisy drum moving equipment unless equipment-specific monitoring indicates exposures less than 90 dB	EM 385-1-1 05.C
	Electric shock	Identification and clearance of overhead utilities. Maintain at least 10 ft from all electrical wiring, more for high-voltage systems. Electrical tools must be connected through GFCI	EM 385-1-1 05.I
	Exposure to chemicals 9, 1 November 2001	PPE (Level D) plus nitrile or equivalent gloves for contact with contaminated material. Washing face and hands prior to taking anything by mouth Minimal contact Previous Versions are Obsolet	EM 385-1-1 06.A and B

Date Prepared: July 1, 2010 Project: RVAAP Facility-Wide Environmental Investigation Activities Job: IDW Handling

Equipment to be Used	Inspection Requirements	Training Requirements
Fork trucks, bobcats, and trucks, if necessary	Daily safety inspections of operations. Initial and at least weekly inspections of equipment	HAZWOPER 40-hr training and current refresher training Medical clearance
Hand tools	All tools must be inspected daily and taken out of service if damaged	Properly trained personnel to operate equipment Site-specific training including site hazard communication training CPR and first aid training for at least two on-site personnel and at
		least one person per field team

CELRL Form 1259, 1 November 2001

Risk Assessment Code (RAC):

Probability

Date Prepared: July 1, 2010 Project: RVAAP Facility-Wide Environmental Investigation Activities

Job: Equipment Decontamination (Hot or Pressurized Water Washing, Soap and Water

Washing, HCl, and Metha ol Dinco) nol or Is

Prepared By:

Reviewed By:

JOB STEPS

General

Recommended Pr

Level D + PPE an

and Methanol or Isopropa Protective Clothing & Eq	M = L =	- Critical		Likely	Occasional	Seldom	Unlikely	
		Sevel	Marginal Negligible					205.1.1
HAZARDS	ACTIONS TO ELI	MINATE OR	MINIMIZE HAZ	ZARDS				385-1-1 A REF)
Biological hazards (bees, mosquitoes, ticks, Lyme disease, histoplasmosis, poisonous plants, wasps, and snakes) Temperature extremes	 PPE (boots, work clothes – long pants and shirts with sleeves) Insect repellant, as necessary Pant legs tucked into boots or otherwise closed to minimize tick entry or contact with harmful plants Inspect for ticks during the day and at the end of each work day (see Section 10.18) Avoidance of accumulations of bird or bat droppings (see Section 10.17) Protective ointments and/or specialized cleaners if working in areas with poisonous plants Site-specific instruction in recognition and avoidance of harmful plants and/or animals Administrative controls (see Section 9.0) Cooled (shaded) or warmed break area depending on the season Routine breaks in established break area and unscheduled breaks if needed (see Section 9.0) Chilled drinks if temperature exceeds 70°F Monitoring – ambient temperature measurements at least twice daily. Temperatures greater than 80°F, temperatures less than 30°F, and the use of impermeable clothing require additional controls 							
Contact with MEC On-site training in ordnance recognition for all field personnel. Any investigation work within a MRS will follow MEC avoidance protocol. MEC surveys will be conducted in MRSs by a UXO technician for intrusive work and a UXO technician will accompany investigation teams. Avoid areas or withdraw all personnel from area, as directed by UXO technician, if ordnance or suspected ordnance is discovered. Monitoring - visual surveys for ordnance. Instrument surveys by UXO technicians in MRS. Follow requirements of governing Explosive Safety Submittal, if required, for the project.					a UXO ed by UXO trument	EM 385	5-1-1 33.A	
Electric shock	GFCIs for electrical equipment/tools used in decont insulation and remove unsafe equipment from use	amination. In	spect electrical equ	uipment for c	lamaged o	-		5-1-1 11.E

 $\mathbf{E} = \mathbf{E} \mathbf{x} \mathbf{t} \mathbf{r} \mathbf{e} \mathbf{m} \mathbf{e} \mathbf{h} \mathbf{r} \mathbf{h} \mathbf{k} \mathbf{h}$

CELRL Form 1259, 1 November 2001

Date Prepared: July 1, 2010

Project: RVAAP Facility-Wide Environmental Investigation Activities

Job: Equipment Decontamination (Hot or Pressurized Water Washing, Soap and Water Washing, HCl, and Methanol or Isopropanol Rinse)

JOB STEPS	HAZARDS		ACTIONS TO ELIMINATE OR MINIMI	ZE HAZARDS	EM 385-1-1 (PARA REF)						
General	Lifting heavy items	hazards. Additio	valuate potential pinch points and/or weight strain prior to lifting. Clear area of all unnecessary equipment and slip/trip azards. Additional help will be obtained by workers or mechanical assistance used on-site if equipment to be moved is awieldy, has a weight >50 lb, or has to be moved by maneuvering through awkward positioning								
	Severe weather		vere weather shelter/strong structure before beginning fiel r tornado warning issued. Do not work in areas subject to		EM 385-1-1 06.I						
Equipment Decontamination	Hot water, slips, falls, and equipment handling		e Section 6.0) plus nitrile or PVC gloves baranax or rain suit (when operating steam washer)		EM 385-1-1 13.A						
	Noise (spray washer)	Hearing protection 90 dB	on when washer is operating unless equipment-specific mo	nitoring indicates that exposure is less than	EM 385-1-1 05.C						
	Fire (decontamination solvents and gasoline)	laboratory. Fuel Fire extinguisher	lammable material stored in original containers or in safety containers labeled/listed by a nationally recognized testing boratory. Fuel storage areas marked with "No Smoking" or "Open Flame" signs ire extinguisher kept near decontamination area and inspected monthly to ignition sources within 50 ft of areas where flammable materials are stored or used for decontamination								
	Exposure to chemicals	taking anything b of adequate venti Hazard communi MSDS on-site All chemical con	us nitrile or equivalent gloves for contact with contaminat by mouth. Minimal contact. When using volatile chemical lation. cation training for chemical tools tainers labeled to indicate contents and hazard sequipment for flushing eyes of harmful chemicals		EM 385-1-1 06.A and B						
	Equipment to be Used		Inspection Requirements	Training Requirements	5						
Hand tools			Daily safety inspections of operations. Initial and at least weekly inspections of equipmentDaily test of GFCIsAll tools must be inspected daily and taken out of service if damaged	HAZWOPER 40-hr training and current refres Medical clearance Site-specific training including site hazard com CPR and first aid training for at least two on-si least one person per field team	ding site hazard communication training for at least two on-site personnel and at						

APPENDIX C

Forms

RVAAP Contractors to provide this form listing all personnel performing duties on the facility prior to starting work.

All contractor personnel performing Environmental work or entering a AOC MUST provide current HAZWOPER training certificate to Operating Contractor

RVAAP CONTRACTOR ACCESS ROSTER

Date	

	Contractor	Envir	onmental	l Quality	y Manage	mei	nt, Ir	nc.	
				In			HAZV	NOPER File	Training On
No.	Name	In	Out	Out		Co	mpleted by Op	per. Contractor	
						Y	N	Initials	Comment
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13						-			
14									
15									

Former Ravenna Army Ammunition Plant H&S Pre-Event Sign In

Fill all appllicable boxes if you have or have reviewed

Print Name,	Signature	Date	40hr	Current 8hr	First Aid/CPR	H&S Plan & briefing	Medical Surveillance	Other
John Doe, ABC Corp		12/06/11-	X	x	x	x	X	
		12/00/11=	~				Λ	

MONITORING LOG

DATE/TIME	SAMPLING LOCATION	INSTRUMENT (Mfg./Model)	MEASURED AGENT	RESULTS ()	SAMPLED BY	COMMENTS/ ACTIVITIES
	4					

CALIBRATION LOG

DATE/TIME	INSTRUMENT (Mfg./Model)	CALIBRATION MATERIAL	STANDARD ()	RESULTS ()	COMMENTS/ CALIBRATOR
	_				

PR	OJE	ECT:_	DAILY SAFETY INSPECTION Page 1 of 2
N	Y	NA	Item
_			Daily safety briefing conducted
			Emergency numbers and route to hospital posted
			SSHP onsite, available to employees, and complete
-			Required exposure monitoring conducted and documented
		-	Monitoring instruments (PID, OVA, CGI) calibrated daily against known standard and documented
_		and a financial	First aid kit available and inspected weekly
			Personnel wearing PPE required by SSHP for field work (at least safety shoes or boots, safety glasse with side shields, and nitrile or similar gloves to handle potentially contaminated material)
-			Personnel using buddy system (maintain visual or verbal contact and able to render aid)
			If temperature >70 :: heat stress training conducted, cool fluids available, pulse rates of personnel wearing Tyvek are being monitored, work/rest cycle in SSHP being followed
		_	If temperature <40 IF: cold stress training conducted, controls in SSHP implemented
			Personnel using appropriate biological hazard controls (See SSHP)
		- 425	Drill rig operating manual on site
-	_		Drill rigs inspected weekly and documented
			Personnel near drill rig or other overhead hazards wearing hardhats
			Each of two drill rig kill switches tested daily
-			Employees excluded from under lifted loads
-			Unnecessary personnel excluded from hazardous areas, specifically near drill rigs
			Radius of exclusion zone around drill rig at least equal to mast height
			Personnel wearing hearing protection when within 25 feet of drill rigs, generators, or other noisy equipment
			Containers of flammable liquids closed and labeled properly
			Fully charged fire extinguisher available 25 to 50 feet from flammables storage area and inspected monthly
			Personnel exiting potentially contaminated areas washing hands and face before eating
			Personnel using steam washer wearing faceshield, hearing protection, heavy duty waterproof gloves. Saranax or rainsuit

PROJECT	DAILY SAFETY INSPECTION Page 2 of 2
	Portable electrical equipment double insulated or plugged to a GFCI
	Electrical wiring covered by insulation or enclosure
	Three wire, UL approved, extension cords used
	Housekeeping adequate (walkways clear of loose, sharp or dangerous objects and trip hazards, work areas clear of objects that might fall on employees)
	Walking/working surfaces safe (not slippery, no unguarded holes, no trip hazards)
	Excavations deeper than 5 feet shored or sloped (if personnel will enter) and in compliance with SSHP
	Moving (rotating) machinery guarded to prevent employee contact
	Fall protection provided for work at elevations greater than 4 feet
	All containers of hazardous material labeled to indicate contents and hazards
	MSDSs for hazardous materials on site
	If work is conducted in areas open to hunting (and during season) high visibility vests and other alerting systems such as lights, noise devices (radios) in use
	15-minute eyewash (accessible and full) within 100 feet of areas where corrosive sample preservatives are poured
-	Potable and non-potable water labeled
	Chainsaws have anti kick-back protection, personnel wearing cut resistant gloves, protective chaps
	Visitor access controlled
	Site hazards and controls consistent with SSHP
	Site hazard controls appropriate and sufficient
ctions tal	ten to correct or control any "N" responses
lame	Signature Date

8

	DAILY HEALTH AND SAFETY SUMMARY PROJECT NAME: PROJECT NO:										
NAME:	DATE:	M Tu W Th F Sa Su	TIME:								
TASKS PER	FORMED:										
1980, 246 /11, di											
k.					1018449.250 - 000. 3						
			<u></u>		2						
alah la			8		n a na						
<u>A</u>	18	<u> </u>									
<u> </u>					ہ میں ک						
	<u>6</u>										
<u> </u>	unter and a paper of the		2 J	and the second sec							
anna a' the second					• • • • • • • • • • • • • • • • • • •						
OFF-NORMA	LEVENTS:		<u></u>								
	<u></u>		1949 - 19		Contactory (
	··· · · · · ·				645						
·											
		· · · · · · · · · · · · · · · · · · ·									
<u>_</u>											

	TAILGATE SAFETY MEETING LOG PROJECT NAME: PROJECT NO:									
DATE:	M Tu W Th F Sa Su	TIME:								
WEATHER:				OK-						
WORKING C	ONDITIONS:			2						
PPE:										
	DALERSON DE									
ITEMS DISC	USSED:									
				3. ²⁰⁰						
		1048, SQ								
	a									
			11- 11- 11- 11- 11- 11- 11- 11- 11- 11-							
		a a konsta r — Ma İsaba B	·····							
		····· =:-								
THE FOLLOWIN	G INDIVIDUALS ATTENDED 1	HE DAILY TAILGA	TE SAFETY MEETING (SIGNATUR	ES)						
<u> </u>										
		2 1001 212								
*										
<u></u>										

SITE SAFETY AND HEALTH OFFICER

(For Safety Staff only)	REPORT NO	D. ERO CO	DE		A	SCIDE	NT INVI	VIY CORPS	N REPOR	Г	10)	CONTR	UIREMENT OL SYMBOL: C-S-8(R2)
1. PERSOI	NNEL CLASS	IFICATION		INJURY/ILL	NESS/FAT	other ballenging ballenging of	and the second state of th	ROPERTY DAM	AGE	MOTOR V	HICLE INV	OLVED	DIVING
		MILITARY		I					OTHER				
	CTOR			0					OTHER				
				FATAL	OTHE	R		>					\geq
2.			_		1	PE	RSONAL D	and the state of t					
a. Name (Last	t, First, MI)			b. AGE	c. SEX	E []	FEMALE	d. SOCIAL SE	CURITY NUM	BER			e. GRADE
f. JOB SERIES	S/TITLE		g. DUT	Y STATUS	AT TIME C	OF ACCIE	DENT	h. EMPLOYMI	ENT STATUS	AT TIME OF	ACCIDENT		
				ידעם אס []	OFF DUT	סד 🗌 יסד Y	Y	ARMY A		ARMY RE	NATIONAL		VOLUNTEER
3.						GENE	RAL INFOR	MATION					
a. DATE OF A (month/day)	(CCIDENT /year)	b. TIME OF AG (Military tin		c. EXACT	LOCATIO	N OF AC	CIDENT				d. CONTR (1) PRIM		S NAME
e. CONTRACT	T NUMBER					2 1	SERVIC	ACTIVIT	DOUS/TOXIC	WASTE	1		
	VORKS		Y	A/E		Ē				DERP	(2) SUBC	ONTRAC	TOR:
	(Specify) _	H 10000444					1 01120 01			(Specify)			
4.	Iopecnyr _	CONSTR	JCTION A	Contraction of the second	R (Specify		d correspo	nding code num	ber in box fro	om list - see	helo menul		
a. CONSTRUC	CTION ACTIV					(COD #	b T	YPE OF CONST					(CODE) #
5. a. SEVERITY			NFORMA	TION (Inclu	<u>de name o</u>	n line and	(CO	C. 1997		items e, f & c. ESTIMAT DAYS HO ALIZED	ED d	. ESTIMA	ATED DAYS
e. BODY PAR	T AFFECTED						(CODE)	g. TYPE AND S	SOURCE OF I	NJURY/ILLN	ESS		
PRIMARY						#							(CODE)
SECONDAR	(#	(CODE)	TYPE					#
f. NATURE OF		JURY				#	(CODE)	SOURCE				2	(CODE)
6.			PUPU	EATALITY	(IFill in lin)		racaandan	ce code number	in hav can	holo monul			
a. ACTIVITY	AT TIME OF	ACCIDENT	POBLIC	FATALIT	<i>[[]]]</i>	#	(CODE)	b. PERSONAL	FLOATATION			N/A	
7.				L TVP	05 0011		VEHICLE						
a. TYPE OF V			100115		E SWIPE	_		REAR END	c. SEAT BE	and the second sec	ED NOT	USED	NOT A VAILABLE
			(Specify)		DADSIDE				(1) FRONT (2) REAR S		-	_	
8.					HER <i>(Speci</i>	19.72		L INVOLVED	Le, near o				
a. NAME OF	ITEM				F	b. OWN		LINVOLVED			c. \$ AMOU	NT OF D	AMAGE
(1)													
(2)													
(3) 9.		VESSEL/FL	DATING P	LANT ACC	IDENT (Fill	in line ar	nd correspo	ndence code nu	umber in box	from list - se	e help menu	,	
a. TYPE OF V	ESSEL/FLOA						(CODE)	b. TYPE OF C					(CODE) #
10.				ACC	IDENT DES	CRIPTIO	N (Use add	itional paper, if	necessary)				
ENG FORM	3394, MAR	99 Versio	12		EI	DITION OF	SEP 89 IS C	BSOLETE.			Page 1 of 4 p	ages (l	Proponent: CESO

11. CAUS	SAL FA	CTOR(S)	(Read Instruction Before Completing)						
a. (Explain YES answers in item 13)	YES	NO	a. (CONTINUED)		YES	NO			
DESIGN: Was design of facility, workplace or equipment a factor?			CHEMICAL AND PHYSICAL AGENT FACTORS: Did exp chemical agents, such as dust, fumes, mists, vapo physical agents, such as, noise, radiation, etc., cor to accident?	rs or					
INSPECTION/MAINTENANCE: Were inspection & mainten- ance procedures a factor?	: Were inspection & mainten- OFFICE FACTORS: Did office setting such as, lifting of furniture, carrying, stooping, etc., contribute to th								
PERSON'S PHYSICAL CONDITION: In your opinion, was the physical condition of the person a factor? SUPPORT FACTORS: Were inappropriate tools/resources provided to properly perform the activity/task?									
OPERATING PROCEDURES: Were operating procedures a factor?	er selection ent	P. 🗌							
JOB PRACTICES: Were any job safety/health practices not followed when the accident occurred?									
HUMAN FACTORS: Did any human factors such as, size or strength of person, etc., contribute to accident?			 WAS A WRITTEN JOB/ACTIVITY HAZARD ANALYS FOR TASK BEING PERFORMED AT TIME OF ACCID 		ETED				
ENVIRONMENTAL FACTORS: Did heat, cold, dust, sun, glare, etc., contribute to the accident?			YES (If yos, attach a copy.)		NO				
12.			TRAINING						
a. WAS PERSON TRAINED TO PERFORM ACTIVITY/TASK?	1	b. TYPE	OF TRAINING. c. DATE OF MOST	RECENT F	ORMAL TRA	INING.			
YES NO			SSROOM ON JOB (Month)	(Day) (Yea	ar)				
13. FULLY EXPLAIN WHAT ALLOWED OR CAUSED THE ACCIDE indirect causes.) (Use additional paper, if necessary)	ENT; II	NCLUDE D	A CONTRACTOR OF		1.1.2				
a. DIRECT CAUSE									
b. INDIRECT CAUSE(S)									
14. ACTION(S) TAKE	N, ANT	TICIPATED	OR RECOMMENDED TO ELIMINATE CAUSE(S).						
15. 0	DATES	FOR ACT	IONS IDENTIFIED IN BLOCK 14.						
a. BEGINNING (Month/Day/Year)			b. ANTICIPATED COMPLETION (Month/Day/Year)						
c. SIGNATURE AND TITLE OF SUPERVISOR COMPLETING REPO	ORT	d. C	ATE (Mo/Da/Yr) e. ORGANIZATION IDENTIFIER (Div,	Br, Sect)	f. OFFICE S	SYMBOL			
CONTRACTOR		_							
16.		MANAG	GEMENT REVIEW (1st)						
a. CONCUR b. NON CONCUR c. COMME	INTS								
SIGNATURE		TITLE		DATE					
17. MANAGEMENT F	REVIEV	N (2nd - C	hief Operations, Construction, Engineering, etc.)						
a. CONCUR b. NON CONCUR c. COMMEN	ITS								
SIGNATURE	TITLE			DATE					
18. SAFE	ETY AI	ND OCCU	PATIONAL HEALTH OFFICE REVIEW						
a. CONCUR b. NON CONCUR c. ADDITION	NAL A	CTIONS/C	OMMENTS						
SIGNATURE	TITLE			DATE					
19.		CON	IMAND APPROVAL						
COMMENTS									
COMMANDER SIGNATURE				DATE					

Page 2 of 4 pages

*U.S. GOVERNMENT PRINTING OFFICE: 1993-0-791-757

10.	ACCIDENT DESCRIPTION (Continuation)
13a.	DIRECT CAUSE (Continuation)

Page 3 of 4 pages

13b.	INDIRECT CAUSES (Continuation)
14	ACTIONICS TAKEN ANTICIDATED OD DECOMMENDED TO ELIMINATE CALLOF(O)
14.	ACTION(S) TAKEN, ANTICIPATED, OR RECOMMENDED TO ELIMINATE CAUSE(S) (Continuation)

Page 4 of 4 pages

APPENDIX D

Chemical Concentration Tables

Area	Well Number	Monitored Zone	Analyte	Oct-09 Le (µg/L)	vel	Jan-10 Leve (µg/L.)	el	Jul-10 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wie Backgroun (µg/L)
		1	Aluminum	46.1	J	50.0 U	,	NT	200	36000	0
			Barium	15.7		16.6		NĨ	2000	2600	256
			bis(2-Ethylhexyl) phthalate	10	υ	1.0 J		NT	NS	4.8	*
			Calcium	144000		170000		NT	NS	NS	53100
			Iron	631	J	50.0 U	,	NT	300	11000	1430
tas Scrap Yard	ASYmw-001	Bedrock	Magnesium	47100		55400		NT	NS	NS	15000
			Manganese	1040		1140		NT	50	880	1340
		1	Nickel	2.8	J	10.0 U	J	NT	NS	730	83.4
			Potassium	1190		1120		NT	NS	NS	5770
			Sodium	6340		7020		NŤ	NS	NS	51400
			Zinc	7.6		10.0 U	J	NT	5000	11000	52.3
			Acetone	17		10.0 U	n	NT	NS	5500	•
			Aluminum	50.0	U	67.3		NT	200	36000	0
			Barium	12.3		14.7		NT	2000	2600	256
			bis(2-Ethylhexyl) phthalate	10	U	0.97 J	<u> </u>	NT	NS	4.8	· ·
ulas Scrap Yard	ASYmw-002	Bedrock	Calcium	94800		96800		NT	NS	NS	53100
			Magnesium	19800		20000		NT	NS	NS	15000
			Manganese	10	υ	4 J	,	NT	50	880	1340
			Sođum	2260		2130		NT	NS	NS	51400
			Zinc	3.3	1	10.0 U	<u>ر</u>	NT	5000	11000	52.3
			Acetone	2.1	J₿.	10.0 U	n	NT	NS	5500	•
			Arsenic	8.6		5.0 U	<u>ر</u>	NT	10	0.045	0
			Banum	15.4		18.9		NT	2000	2600	256
	•		Calcium	196000		175000		ТИ	NS	NS	53100
Was Scrap Yard	ASYmw-003	Bedrock	Iron	2580		50.0 U	J	NT	300	11000	1430
	ASTIIMOUS	Deciver	Magneslum	68900		55800	_	NT	NS	NS	15000
			Manganese	529		45		NT	50	880	1340
]			Polassium	1730		1070		NT	NS	NS	5770
			Sedium	21700		29000		ИТ	NS	NS	51400
			Zinc	2.4	JΒ	10.0 U		NT	5000	11000	52.3
			Acetone	10	U	1.2 J	18	NT	NS	5500	•
			Arsenic	28		23.2		NT	10	0.045	0
			Barium	12.7	L	12.7		NT	2000	2600	256
		1	bis(2-Ethylhexyl) phthalale	1.3	J	0.9 J) (i)	NT	NS	4.8	•
			Calcium	163000		157000		NT	NS	NS	53100
Was Scrap Yard	ASYmw-004	Bedrock	Iron	1940	J	1490 J]	NT	300	11000	1430
			Magnesium	81600	1	79600		NT	NS	NS	15000
			Manganese	201		211		N۲	50	880	1340
			Polassium	3480	L	2850		NT	NS	NS	5770
			Sodium	52300	<u> </u>	51600	_	NT	NS	NS	51400
			Zinc	+	JB	10.0 U		NT	5000	11000	52.3
			2,6-Dinitrololuene	5.0		0.06 J	_	NT	NS .	36	*
			Acetone		JB	10 (_	NT	NS	5500	•
			Aluminum	43.6	J	50.0 U	J	17	200	36000	0
			Barium	32.7		28.5	_	NT	2000	2600	256
			beta-BHC	0.017	<u> </u>	0.030 (NT	NS	0.037	
			bis(2-Ethyinexyl) phthalate		<u>v</u>	J	12	лт	NS	4.8	
ulas Scrap Yard	ASYmw-005	Bedrock	Calcium	153000	- · ·	146000	_	NT	NS	NS	53100
			Cobalt	3.4	1	5.0 L		ทา	NS	730	0
			iron	289	 	50.0 L	U	NT	300	11000	1430
			Magneslum	45100		42600		NT	NS	NS	15000
			Manganese	618		207		NT	50	880	1340
			hear a	2.2	1.1	10.0 L		NT	NS	730	83.4
			Nickel Polassium	2580	ľ	1740	<u> </u>	NT	NS	NS	5770

Table 4-2 Summar	v of Constituents	Detected October	2009-July 2010

(_____

Area	Well Number	Monitored Zone	Analyte	Oct-09 Le (µg/L)		Jan-10 Lu (µg/L		Jul-10 Leve (µg/L)	мсь (µg/L)	Region 9 PRG (µg/L)	Facility-Wide Background (µg/L)
			1,3,5-Trinitrobenzene	0.099	U	0.032	JB	NT	NS	1100	•
			Acetone	2.3	JB	10	UJ	NT	NS	5500	*
			Arsenic	17	1	16.1		ТИ	10	0.045	0
			Barium	14.3		14.8		NT	2000	2600	256
			bis(2-Ethylhexyl) phthalate	1.6	J	10 - 1 1	J.∰	IN	NS	4.8	•
Allen Cours Voud	101/000	Destructo	Calcium	113000		116000		NT	NS	NS	53100
Atlas Scrap Yard	ASYmw-006	Bedrock	Iron	1360		1120	J	NT	300	11000	1430
			Magnesium	71500		72300		NT	NS	NS	15000
			Manganese	177		169		NT	50	880	1340
			Polassium	3240		2860		NT	NS	NS	5770
-			Sodium	38000	1	39900		ти	NS	NS	51400
			Zinc	3	JB	10.0	U	NT	5000	11000	52.3
			Barium	20.6	1-	18.5		NT	2000	2600	82.1
			Calcium	138000		126000		NT	NS	NS	115000
			Magnesium	54500	+	47300		NT	NS	NS	43300
Atlas Scrap Yard	ASYmw-007	Unconsolidated		205		188		NT	50	880	1020
			Polassium	1450		1170		NT	NS	NS	2890
			Sodium	36400	- · ·	33500		NT	NS	NS	45700
			Zinc		JB	10.0	U	NT	5000	11000	60.9
		· · ·	1,3,5-Trinitrobenzene	0.098		0.033		NT	NS	1100	*
			3-Nitroloivene	0.49	.	0.16		NT	NS	120	4
			Acetone		JB	a na mara a la cara a	w	זא	NS	5500	,
			Aluminum	6300	-	1160		NT	200	36000	Û
			Arsenic	26.4		10.3		Ти	10	0.045	11.7
			Barium	45.3	-	18.8		<u>м</u>	2000	2600	82.1
			Calcium	208000		167000		NT	NS	NS	115000
			Chromium	9.3		2.1	<u> </u>	NT	100	110	7.3
			Cobalt	8.7	-		w	NT	NS	730	0
				15	.	5.0		NT	1300	1500	0
Atlas Scrap Yard	ASYmw-008	Unconsolidated	Copper	17000		3210	<u>.</u>	NT	300	11000	279
			Iron			3210		NT NT		NS	0
			Lead	5.8				NT NT	15 NS		43300
			Magnesium	97900	+	78100		<u> </u>		NS 880	1020
			Manganese	412		64.7		NT	50	<u> </u>	
			Nickel	16.9	÷	4,4		NT	NS	730	0
			Phenol	1.0	-	1.1		NT	NS	11000	
			Potassium	5410		3660		NT	NS	NS	2890
			Sođum	36300		31000		NT	NS	NS	45700
			Vanadium	10.7	-	10.0	-	NT	NS	36	0
			Zinc	36.5	1	11.5	_	NT	5000	11000	60.9
			1,3,5-Trinitrobenzene	0.10	-	0.033	<u> </u>	NT	NS	1100	
			Aluminum	142		496		NT	200	36000	0
			Barium	26.9	+	27.1		NT	2000	2600	258
			bis(2-Ethylhexyl) phthalate		U	0.95		NT	NS	4.8	*
		1	Calcium	196000	+	188000		NT	NS	NS	53100
Atlas Scrap Yard	ASYmw-009	Bedrock	fron	323	+	811		Nĩ	300	11000	1430
			Magnesium	72700		69900		TM	NS	NS	15000
		1	Manganese	607	+ •	624		TM	50	880	1340
			Potassium	1560	+	1500		NT	NS	NS	5770
			Sodium	23400	+	22500		NT	NS	NS	51400
			Zinc	3.5	JB .	5	JВ	NT	5000	11000	52.3

ĺ

(

ĺ

Area	Well Number	Monitored Zone	Analyte	Oct-09 Le (µg/L)		Jan-10 Le (µg/L]	vel	Jul-10 Level (ug/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wi Backgrour (µg/L)
			1,3,5-Trinitrobenzene	0.1	U	0.044	JB	Л	NS	1100	4
			Aluminum	50.0	U	1160		NĨ	200	36000	0
			Arsenic	49.8		148		NT	10	0.045	11.7
			Banium	56.1		56.4		NT	2000	2600	82.1
			beta-BHC	0.014	J	0.030	W	NT	NS	0.037	*
			bis(2-Ethylhexyl) phthalate	10.0	U	(† 1 . 2	J.	ИТ	NS	4.8	
			Calcium	119000		94400		NT	NS	NS	115000
Atlas Scrap Yard	ASYmw-010	Unconsolidated	Iron	2530		6760	J	NT	300	11000	279
-			Magnesium	86700		80300		П	NS	NS	43300
			Manganese	139	Γ	96.2		NT	50	880	1020
			Nickel	10.0	U	2.6	J	NT	NS	730	0
			Potassium	2730		2760		NT	NS	NS	2890
			Sodium	45900		43600		NT	NS	NS	45700
			Zinc	2.6	JВ	12.3	В	NT	5000	11000	60.9
			1,3,5-Trinitrobenzene	0.099	38	. NT		NT	NS	1100	*
			Arsenic	11.5		NT		NT	10	0.045	11.7
			Barium	48.5		NĨ		NT	2000	2600	82.1
			Calclum	87900		NT		NT	NS	NS	115000
			Iron	1440	-	NT		NT	300	11000	279
Demolition Area 2	DETmw-003	Unconsolidated	Magneslum	32800		NŤ		NT	NS	NS	43300
			Manganésé	266		NT		NT	50	880	1020
			Potassium	1780		NT	_	NT	NS	NS	2890
			Sođum	12000		NT		NT	NS	NS	45700
			Zinc	5.4	JВ	NT		NT	5000	11000	60.9
	•		Acetone	2.2	J 8	NT		NT	NS	5500	*
			Barium	63.4		NT		NT	2000	2600	82.1
			bis(2-Ethy/hexyl) phthalate	0.9	J	NT		NT	NS	4.8	•
			Calcium	145000		Nĩ		NT	NS	NS	115000
			них	1.5		NT		NT	NS	1800	4
Demolition Area 2	DETmw-004	Unconsolidated	Magnesium	28600		IN		NT	NS	NS	43300
			Manganese	21.9		NT		МТ	50	880	1020
			Potassium	1820		TM		NT	NS	NS	2890
			RDX	0.43	J .	TM		٨Т	NS	0.61	*
			Sodium	3100		NT		NT	NS	NS	45700
			Zinç	10.6	в	NT		মা	5000	11000	60.9
		1	Aluminum	53.7		T/N		NT	200	36000	0
			Calcium	66100		NT		NT	NS	NS	53100
			Carbon tetrachloride	1.6	<u>j 7</u>	NT		NT	5	0.17	*
			Chieroform	0.26		TM		NT	NS	0.17	٠
			non	133		זא		NT	300	11000	1430
.oad Line 10	LL10mw-001	Bedrock	Magnestum	23800	Į	TM		NT	NS	NS	15000
			Manganese	2.6		NT		NT	50	880	1340
			Polassium	1030	-	NI		NT	NS	NS	5770
			RDX	0.078		NT		NT	NS	0.61	*
			Sođum	8320		INT		ทา	NS	NS	51400
			Zinc		JB	NT		NT	5000	11000	52.3
			Banum	17.3		NT		NT	2000	2600	256
			bis(2-Ethylhexyl) phthalate	8.1		NT		NT	NS	4.8	+
			Calcium	36300	ŀ	NT		NT	NS	NS	53100
.oad Line 10	LL10mw-002	Bedrock	Magneslum	10700	⊢	NT		NT	NS	NS	15000
			Polassium	910	l	ти ТИ		NT	NS	NS	5770
		1	1.070222/011		ا ```	NT		NT	,10		51400

(.....

Area	Well Number	Monitored Zone	Analyte	Oct-09 Le (µg/L)		Jan-10 Leve (µg/L)	l Jul-10 L (µg/L		MCL (µg/L)	Region 9 PRG (µg/L)	Facllity-Wide Background (µg/L)
			Calcium	51200		NT	. NT	ŕ	NS	NS	53100
			Carbon tetrachloride	2.8		NT	NT		5	0.17	
			Chloroform	0.26	J.	NT	NT		NS	0.17	e
Load Line 10	LL10mw-003	Bedrock	Magnesium	14500		NT	NT		NS	NS	15000
			Nitrocellutose	0,13	J8	NT	NT		NS	4.8	•
		1	Sodium	10300		NT	NT		NS	NS	51400
			Barium	3.1	J	NT	NT		2000	2600	256
			Calcium	68400		NT	NT		NS	NS	53100
			Magnesium	20200		NT	NT		NS	NS	15000
Load Line 10	LL10mw-004	Bedrock	Manganese	24.4		NT	NT		50	880	1340
			Sodium	4210		NT	NT		NS	NS	51400
			Zinc	4.2	JВ	NT	NT		5000	11000	52.3
			Barium	3.3	J	NT	NT		2000	2600	256
			Calcium	62200		NT	NT		NS	NS	53100
			Magnesłum	14500		NT	TN		NS	NS	15000
load Line 10	LL10mw-005	Bedrock	Manganese	15.8		NT	NT		50	880	1340
			Sodium	3400		NT	NT		NS	NS	51400
			Zinç	2.5	JВ	NŤ	NT		5000	11000	52.3
			Barium	12.2		NT	NT		2000	2600	82.1
			Calcium	17800		NT	лт		NS	NS	115000
			Magnesium	6980		NT	TM		NS	NS	43300
oad Line 10	LL10mw-006	Unconsolidated		4.5	J	NT	NT		50	880	1020
			Potassium	1020		NT	- NT		NS	NS	2890
			Socium	2730		NŤ	١		NS	NS	45700
	· ·		Zinc	3.9	JB	NT	NT		5000	11000	60.9
		-	Banium	76.1	F	NT	- NT		2000	2600	82.1
			bis(2-Ethylnexyl) phthalate	350	<u> </u>	NT	NT		NS	4.8	+
			Calcium	88500	-	NT	ТИ		NS	NS	115000
			Magnesium	29000		NT	ТИ		NS	NS	43300
Load Line 11	LL11mw-001	Unconsolidated	Manganese	960		NT	INT		50	880	1020
		1	Polassium	954	J	NT	TN I		NS	NS	2890
			Sođum	12400		NŤ	NT		NS	NS	45700
			Zinc	2.9	JB	NT	NT		5000	11000	60.9
	1	· · ·	Barium	29.9		NT	INT		2000	2600	82.1
			beta-BHC	0.012	J	NT	NT	•	NS	0.037	•
			bis(2-Ethylhexyl) phthalate	8.6	J ::	NT	זא		NS	4.8	*
			Calcium	101000		NT	NT		NS	NS	115000
			Iron	143	Ĵ	NT	IN		300	11000	279
oad Line 11	LL11mw-003	Unconsolidated	Magnesium	30500		NT	דא		NS	NS	43300
			Manganese	498		NŤ	זא		50	880	1020
			Potassium	981	J	NT	NT		NS	NS	2890
		Sođum	10800		NT	NT		NS	NS	45700	
		Zinc	5.6	JB	NT	NT		5000	11000	60.9	
	1	1	Barium	53.3		NT	NT		2000	2600	82.1
			bis(2-Ethylhexyl) phthalate	1.8	J	NT	NT		NS	4.8	
			Cadmium	1.7	<u> </u>	NT	NT		5	18	0
			Calcium	78900		NT	NT		NS	NS	115000
.oad Une 11	LL11mw-004	Unconsolidated	Magnesium	25700		NT	NT		NS	NS	43300
			Manganese	272		NT	NT		50	880	1020
			Potassium	1100	\square	NT	NT		NS	NS	2890
			Sođum	12700		NT	NT		NS	NS	45700

(.....

Ċ	Å	Wall Hornhon	Monitored			_							Facility-Wide
(Area	Weli Number	Zone	Analyte	Oct-09 Le (µg/L)	vel	Jan-10 Le (ug/L)		Jul-10 Le (µg/L.)		MCL (µg/L)	Region 9 PRG (ug/L)	Background (µg/L)
				Aluminum	102		NT		NT		200	36000	0
				Barium	28.1		NT		TN		2000	2600	82.1
				bis(2-Ethylhexyl) phthalate	1.5	J	NT		TM		NS	4.8	*
				Cadmium	0.26	J	NT		TN		5	18	0
				Calcium	8580		NT		ТИ		NS	NS	115000
				Cobalt	1.5	J	NT	· · ·	NT		NS	730	0
	Load Line 11	LL11mw-005	Unconsolidated	lron	225		NT		TN		300	11000	279
				Magnesium	4510		NT		TΜ		NS	NS	43300
				Manganese	43.8		NT		NT		50	880	1020
				Nickel	12.2		NT		NT		NS	730	0
				Sodium	3030		NT		NT		NS	NS	45700
				Zinc	22.4	В	NT		NT		5000	11000	60.9
				Banum	28.3		NT		TN		2000	2600	82.1
				Calcium	81100		NŤ		NT		NS	NS	115000
	fand line ff	11 (4 000	11	Magneslum	17300		NT		ТИ		NS	NS	43300
	Load Line 11	LL11mw-006	Unconsolidated	Polassium	860	J	NT		ТИ		NS	NS	2890
				Selenium	5.3		NT		NT		50	180	0
				Sođum	7890		NT		TM		NS	NS	45700
				Aluminum	25.3	J	NT		TN		200	36000	0
				Barium	49.4		NT		NT		2000	2600	82.1
				bis(2-Ethylhexyl) phthalate	0.83	J	NT		NT		NS	4.8	· ·
				Calcium	115000		NT		NТ		NS	NS	115000
	Load Line 11	LL11mw-008	Unconsolidated	iron	26.6	J	NT		NT		300	11000	279
			DIROUSOBOBIED	Magnesium	33800		NT		NT		NS	NS	43300
		•		Manganese	29.4		NĨ		NT		50	880	1020
		•		Polassium	1130		NT		NT		NS	NS	2890
1				Sođum	4920		NT		NT		NS	NS	45700
(<u>·</u>	Zinc	3.7	JB	NT		NT		5000	11000	60.9
X .		:		1,3,5-Trinitrobenzene	0.098	U	0.036		NT		NS	1100	
				2,6-Dinitrotoluene	0,098	<u>18</u>	0.1	U	NT		NS	36	•
				Aluminum	41.7	J	26		NT		200	36000	0
				Banium	66.3		76.4		NT		2000	2600	82.1
				bls(2-Ethylhexyl) phthalale	0.95	្រ	10		NT		NS	4.8	
				Calcium	82400		85400		NT		NS	NS	115000
	Load Line 11	LL11mw-009	Unconsolidated	Magneslum	28500		27800		NT		NS	NS _	43300
				Manganese	706		856		NT		50	880	1020
				Nickel	2.3		10.0	<u> </u>	NT		NS	730	0
				Nitrobenzene	0.098		0.064	-	NT		NS	3.4	
	•			Polassium	958	J	905	J	NT		NS	NS	2890
				Sođum	12800		11600		דא		NS	NS	45700
				Tetrachloroethene	ં ૅંંચ્યનાં	÷.	3.8		NT		5	0,1	
				Zinc	2.9		10.0	U	NT		5000	11000	60.9
				Aluminum	26.3	J	NT		NT		200	36000	0
				Banum	66.3	<u> </u>	NT		NT		2000	2600	82.1
				bis(2-Ethylhexyl) phthalate	- 0.88	J	NT		NT		NS	4.8	
				Calcium	80200	$\left \right $	NT		NT NT		NS 100	NS	115000
	Load Line 11	LL11mw-010	Unconsolidated	Chromium	1.7		NT		NT		100	110	7.3
				Iron	249	<u>۲</u>	NT AT	ŀ	NT	-	300 NG	11000 NS	279 43300
				Magnesium	31300	\vdash	NT		NT		NS	NS	
				Manganese	430		NŤ		NT		50 NP	880 NG	1020 2890
				Polassium	1380		NT		NT		NS	NS	
	L	L	1	Sodium	27600		NT		NT		NS	NS	45700

Area	Well Number	Monitored Zone	Analyte	Oct-09 Le (µg/L)		Jan-10 Leve (µg/L)	l Jul-10 (49		MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wide Background (µg/L)
			1,3,5-Trinitrobenzene	0.039		NT	N N		NS	1100	•
			Arsenic	14.4	•	NT	N	+	10	0.045	0
			Bañum	64.2		NT	N		2000	2600	256
			Calcium	78300		NT			NS	NS	53100
and line C	11.0-100.005	Badrosly		946		NT	N		300	11000	1430
.cad Line 6	LL6mw-005	Bedrock	Iron			NT	N		NS	NS	15000
			Magnesium	24400		NT	N		50	880	1340
			Manganese			NT	N N		NS	NS	5770
			Polassium	1040			N	-	NS	NS	51400
			Socium	8640		NT	_	_	-	1	51400
			1,3,5-Trinitrobenzene	0.037		NT NT	N		NS	1100	•
			2,6-Dinitrololuene	0.09		NT	N	-	NS	36	
	j		Aluminum	180	J	NT	<u>N</u>		200	36000	0
			Barium	26.5		NT	N		2000	2600	82.1
			Cadmium	0.47	J	TM	N		5	18	0
.oad Line 6	LL6mw-006	Unconsolidated	Calcium	73100		NT	N		NS	NS	115000
			Iron	363	J	NT	N		300	11000	279
			Magnesium	29100	ļ	NT	<u> N</u>	_	NS	NS	43300
		-	Manganese	72.4		NT	<u>N</u>		50	880	1020
			Polassium	1850		NT	N		NS	NS	2890
			Sodium	8220		NT	<u>N</u>	+	NS	NS	45700
			Zinc	3.9	JΒ	NТ	N	· •	5000	11000	60.9
			Aluminum	117	J	NT	N	ſ	200	36000	0
			Barium	15.4		NT	N	rl	2000	2600	256
			bis(2-Ethylhexyl) phthalate		J	NT	N	r	NS	4.8	+
	•		Cadmium	0.46	J	NŤ	N	r	5	18	0
			Calcium	55400		NT	N	r	NS	NS	53100
.cad Line 6	LL6mw-007	Bedrock	iron	185	J	NT	N	r T	300	11000	1430
			Magnesłum	22700		NТ	N	r	NS	NS	15000
			Manganese	394		NT	N	r	50	880	1340
			Potassium	869	J	NT	N	5	NS	NS	5770
			Sođium	7790		NT	N	r –	NS	NS	51400
			Zinc	2.4	JB	NT	N	+	5000	11000	52.3
			1,1,1-Trichkoroethane	<u> </u>		NT	- N		NS	3200	*
			1,1-Dichloroethane	3.3		NT	N		NS	810	1
				8.4		NT	N	1	7	340	•
		ĺ	1,1-Dichloroelhene (total) Barium	22,1		NT		· {	2000	2600	256
				33600		NT			NS	NS	53100
			Calcium	33000		NT NT		-	NS	730	0
and line 7	11.7 004	Deducate	Cobalt	0000		NT	N N			11000	1430
.oad Line 7	LL.7mw-001	Bedrock	Iron	8360	J				300		
			Magnesium	11600		NT	N		NS	NS	15000
			Manganese	460	<u> </u>	NT	Ň	-	50	880	1340
			Nickel	9.6	J	NT	N		NS	730	83.4
			Potassum	1020	L	NT	N		NS	NS	5770
			Sodium	5800	L	NT	N		NS	NS	51400
			Zinc	50.2	J	NT	N	_	5000	11000	52.3
			Banium	51.7		NT	N		2000	2600	256
			Cadmium	0.4	J	NT	N	-	5	18	0
			Calcium	37100		NT	N		NS	NS	53100
			Magnesium	7830		NT	N		NS	NS	15000
oad Line 7	LL.7m%-002	Bedrock	Manganese	311		м	N	r	50	880	1340
			Nickel	8.4	J	NT	N	Г	NS	730	83.4
			Potassium	1830		NT	N	Т	NS	NS	5770
			Sodium	2590		NT	N	r	NS	NS	51400
	1	1	Zinç		JВ	NŤ	N		5000	11000	52.3

(_____

Area	Well Number	Monitored Zone	Analyte	Oct-09 Level	Jan-10 Leve	1	MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wi Backgrou (µg/L)
		ļ		(µg/L)	(µg/L)	(µg/L)			(19/1)
			1,3,5-Trinitrobenzene	0.042 J	NT	NT	NS	1100	
			Barium	48.1	זא		2000	2600	256
			bis(2-Ethylhexyl) phthalale	10	NT	NT	NS	4.8	
			Calcium	15800 J	NT	NT	NS	NS	53100
			Cobali	4.6 J	NT	NT	NS	730	0
			Iron	17200	NT	NT	300	11000	1430
and line 7	LL7mw-003	Bedrock	Magnesium	5700	NT	NT	NS	NS	15000
Load Line 7	LL/IIW-003	Deurous	Manganese	1340	NT	NT	50	880	1340
			Nickel	5.8 J	NT	NT	NS	730	83.4
			Nitrobenzene	0.13 J	NT	NT	NS	3.4	4
			Polassium	1160	NT	Л	NS	NS	5770
			Sođum	5240	NT	NT	NS	NS	51400
			Thasium	0.41 J8	NT	NT	2	2.4	0
			Zinc	14.3 B	NŤ	NT	5000	11000	52.3
			1,3,5-Trinitrobenzene	0.035 J	NT	TN	NS	1100	+
			Barium	40.5	NT	NT NT	2000	2600	256
			bis(2-Ethylnexyl) phthalate	2.3 J	NŤ	NT	NS NS	4.8	*
			Calcium	8400	NT	NT	NS	NS NS	53100
					- NT		NS	730	0
			Cobalt	5.5			-	1800	
			HMX	0.048 J	NT		NS		1100
Load Line 7	LL7mw-004	Bedrock	Iron	17000 J	NT	NT	300	11000	1430
			Magnesium	6260	NT	NT	NS	NS	15000
			Manganese	1230	NT	זא	50	880	1340
			Nickel	5.3 J	NT	זא	NS	730	83.4
			Potassium	1390	NT	NT	NS	NS	5770
			รอดับท	15100	NT	ТИ	NS	NS	51400
			Zin¢	14.4 B	ITA	NT	5000	11000	52.3
			1,3,5-Trinitrobenzena	0.032 J	TM	NT	NS	1100	
		1	Aluminum	81.1 J	NT	NT	200	36000	0
			ອລາເພາ	150	NT	NT	2000	2600	256
			beta-BHC	0.014 J	ŇŤ	NT	NS	0.037	*
			bis(2-Ethylnexyl) phthalate	1.9 J -	NT	NT	NS	4.8	•
		-	Calcium	9040	NT	ти	NS	NS	53100
			Cobalt	8.2	NT	NT	NS	730	0
Load Line 7	L1.7mw-005	Bedrock	Iron	1290 J	NT	NT	300	11000	1430
Loud Line F			Magnesium	5150	NT	NT	NS	NS	15000
			Manganese	2320	NT	NT	50	880	1340
			Nickel	10.6	NT	NT	NS	730	83.4
		1	· · · · · · · · · · · · · · · · · · ·	0.051 J		NT	NS	3.4	• •
			Nitrobenzene				NS	NS	5770
			Potassium	1120	NT:	NT			
			Sodium	2070	TM NT		NS	NS 11000	51400
	1		Zinc	8.9 JB	NT		5000	11000	52.3
	1	1	1,3,5-Trinitrobenzena	0,039 J	NT	NT	NS	1100	
			Barium	15.5	NT	ТИ	2000	2600	256
	1		bis(2-Ethylhexyl) phthalate	2.2 J	NT	NT NT	NS	4.8	*
			Cadmium	0.3 J	NT	NT	5	18	0
			Calcium	8010	NT	МТ	NS	NS	5310
			нмх	0.085 J	NT	মা	NS	1800	*
	11 7 444	n.t.st	iron	2880 J	NT	NT	300	11000	1430
Load Line 7	LL7mw-006	Bedrock	Magnesium	5070	NT	NT	NS	NS	15000
			Manganese	1240	NT	TN	50	880	1340
			Nickel	7.3 J	NT	TN	NS	730	83.4
			Potassium	902 J	NT	NT	NS	NS	5770
	1		RDX	0.78 J	NT NT	NT	NS	0.61	
		1	Sodium	7650	NT		NS	NS	51400

(

(_____

Area	Well Number	Monitored Zone	Analyte	Oct-09 Le (µg/L)		Jan-10 Levi (µg/L)	el Jul-10 L (µg/L		MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wide Background (µg/L)
			Aluminum	65	_	NT NT	- 		200	36000	0
			Barium	33.6		NT			2000	2600	82.1
			Calcium	81900	┢──	NT	Ти		NS	NS	115000
			1/00	942		NT	NT		300	11000	279
.oad Line 8	LL8mw-001	Unconsolidated	Magneslum	43600		NT	NT		NS	NS	43300
			Manganese	125			NT		50	880	1020
			Potasstum	1670		NT	NT.		NS	NS	2890
			Sodium	29100		NT	NT	:	NS	NS	45700
	-		Arsenic	6.6	J	NT	NT		10	0.045	11.7
			Barium	38.9	-	NT	NT		2000	2600	82.1
			Calcium	95300		NT	NT		NS	NS	115000
			Iron	3850		NT	<u>л</u>		300	11000	279
.oad Line 8	L1.8mw-002	Unconsolidated	Magneslum	38600		NT			NS	NS	43300
			Manganese	333		NT			50	880	1020
		1	Polassium	2070		NT	אד אד		NS	NS	2890
	1		Sođum	29400		NT	 NT		NS	NS	45700
			Aluminum	47.5	J	มา	NT		200	36000	0
			Arsenic	4.1		งก	NT		10	0.045	11.7
			Barium	24.3		NT			2000	2600	82.1
			Caldum	129000		NT	TN		NS	NS	115000
		1 .	Iron	929		NT	NT		300	11000	279
.oad Line 8	LL8mw-003	Unconsolidated	Magneslum	46000	— i	л	NT		NS	NS	43300
			Manganese	677		NT	TN		50	880	1020
			Nitrocellulose	0.15	В	NT	TN		NS	4.8	*
			Polassium	2520	-	NT	IN I		NS	NS	2890
			Sodium	45400		NT	 TM		NS	NS	45700
			Aluminum	23.3	J	NT	NT NT		200	36000	0
			Arsenic	3.3	<u> </u>	NT	TM		10	0.045	11.7
			Barium	10.7	-	NT	NT		2000	2600	82.1
			Caldum	88900		NT	TM		NS	NS	115000
.oad Line 8	L1.8mw-004	Unconsolidated	Chromium	1.4	J	NT	NT.		100	110	7.3
			Magnesium	43500	-	NT	NT		NS	NS	43300
			Manganese	31.5		NT	NT		50	880	1020
			Polassium	1290		NT	NT		NS	NS	2890
			Sodium	23300		NT	МТ		NS	NS	45700
			Aluminum	170		NT	NT		200	36000	0
			Barium	11.7		NT	NT		2000	2600	256
			bis(2-Ethylhexyl) phthalate	2.8	. []]		NT		NS	4.8	•
		-	Calcium	64400	4	NT	 М		NS	NS	53100
			Iron	1180		IN	ייי אד		300	11000	1430
.oad Line 8	L1.8mw-005	Bedrock	Magnéslum	21600		IN TM	NT		NS	NS	15000
	1		Manganese	2690		NT	NT		50	880	1340
			Nickel	2050		NT	NT		NS	730	83.4
			Sodium	11000	ř-	NT	NT		NS	NS	51400
			Zinc		JΒ	NT	NT		5000	11000	52.3
	1		Barium	15.5	-	NT	NT		2000	2600	256
	1		Calcium	70700		NT			NS	NS	53100
			Magnesium	28800	- · ·	NT	TN I		NS	NS	15000
.cad Line 8	LL8mw-006	Bedrock		20000		NT NT	NT		NS	4.8	10000
			NitroceEulose	1620	-00 <u>.</u>	NT	TM I		NS	4.0 NS	5770
			Polassium Sodium	4760		NI NT	TN T		NS NS	NS	51400

(Area	Well Number	Monitored Zone	Anatyte	Oct-09 Lev (µg/L)	rel	Jan-10 Level (µg/L)	Jul-10 Leve (µg/L)	I MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wide Background (µg/L)
				Acetone	17	JB	NT	NT	NS	5500	•
				Barlum	8.1	J	NT	NT	2000	2600	256
				bis(2-Ethylhexyl) phthalate	5.3	٦C	NT	NT	NS	4.8	*
				Calcium	37100		NT	NT	NS	NS	53100
	Load Line 9	LL9mw-001	Bedrock	Magnesium	11300		NT	NT	NS	NS	15000
		•		Manganese	3.6	Ĵ	NT	NT	50	880	1340
				Polassium	888	J	NT	NT	NS	NS	5770
				Sodium	2940		NT	NT	NS	NS	51400
				Aluminum	36	1	NT	NT	200	36000	0
]	Banum	3.3	J	NT	NT	2000	2600	256
				bis(2-Ethyinexyi) phthalate	5.6	J	NŤ	NT	NS	4.8	£.
				Calcium	17400		NT	NT	NS	NS	53100
				Magnesium	7520		NT	זא	NS	NS	15000
	Load Line 9	LL9mw-002	Bedrock	Manganese	9.2	J	NT	NT	50	880	1340
				Nickel	5.5	J	NT	NT	NS	730	83.4
				Potassium	1300		NT	NT	NS	NS	5770
				Sodium	1940		NT	NT	NS	NS	51400
				Zinc	4.5	JB	NT	NT	5000	11000	52.3
				Aluminum	357		NT	NT	200	36000	0
				Barium	12.9		NT	NT	2000	2600	256
			· ·	Calcium	18100		NT	ТИ	NS	NS	53100
				Iron	3240		NT	NT	300	11000	1430
				Magneslum	5220		NT	NT	NS	NS	15000
	Load Line 9	LL9mw-003	Bedrock	Manganese	111		NT	NT	50	880	1340
		•		Nickel	6.6	J	NT	NT	NS	730	83.4
		-		Polassium	2180		NT	Л	NS	NS	5770
				Socium	2770		NT	١٢	NS	NS	51400
(Zin¢	21.2	B	NT	NT	5000	11000	52.3
\mathcal{L}				Barium	31	_	NT	Л	2000	2600	256
				Calcium	12000		TM	NT	NS	NS	53100
				Cobalt	4.9	J	NT	NT	NS	730	0
]		1	Iron	10600		NT	NT	300	11000	1430
				Magnesium	9850		NT	NT	NS	NS	15000
	Load Line 9	LL9mw-004	Bedrock	Manganese	2290		NT	IN	50	880	1340
				Nickel	6.9	J	NT	NT	NS	730	83.4
				Sođum	4650		NT	Л	NS	NS	51400
				Thallium	0.33	J	NT	ТИ	2	2.4	0
				Zinc	12.9	8	NT	NT	5000	11000	52.3
			<u> </u>	Aluminum	50.5		NT	ЛТ	200	36000	0
				Calcium	9220		NŤ	ТИ	NS	NS	53100
				Iron	157		NT	NT	300	11000	1430
				Magneslum	4710		NT	ТИ	NS	NS	15000
	Load Line 9	LL9mw-005	Bedrock	Manganese	24.8		NT	זא	50	880	1340
				Nickel	5.3	J	NT	ТИ	NS	730	83.4
				Sodium	3870		NT	NT	NS	NS	51400
		1		Zinc	58.1	J	NT	NT	5000	11000	52.3

Area	Well Number	Monitored Zone	Analyte	Осt-09 Le (µg/L		Jan-10 Levei (ug/L)	Jul-10 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wide Background (µg/L)
			Aluminum	23.5	J	NT	NT	200	36000	0
			Barium	43.6		NT	NT	2000	2600	.256
			bis(2-Ethyihexyi) phthalate	1.7	J 🗅	NT	NT	NS	4.8	*
			Calclum	5280		NT	NT	NS	NS	53100
			Iron	1930		NT	NT	300	11000	1430
Load Line 9	LL9mw-006	Bedrock	Magnesium	5800		NT	NT	NS	NS	15000
		1	Manganese	677		NT	NT	50	880	1340
			Nickel	11.2	<u> </u>	NT	TN	NS	730	83.4
			Potassium	1130		NT	NT	NS	NS	5770
			Sodium	2660		NT	NT	NS	NS	51400
			Zinc	10.8	В	NŤ	TN	5000	11000	52.3
			2,6-Dinitrotoluena	860.0	JB	NT	NT	NS	36	+
			Barium	14.8		ТИ	NT	2000	2600	256
			Calcium	12000	Γ	NT	NT	NS	NS	53100
	ł		Cobait	9.3		NT	МТ	NS	730	0
			Iron	9900		NT	NT	300	11000	1430
Load Line 9	LL9mw-007	Bedrock	Magnesium	6450		NT	NT	NS	NS	15000
			Manganese	1050		NT	NT	50	880	1340
			Nickel	19.2	—	NT	NT	NS	730	83.4
			Polassium	1270		NT	TM	NS	NS	5770
			Sodium	3090		NT	NT	NS	NS	51400
			Zinc	25.9	B	Nĩ	NT	5000	11000	52.3
			Arsenic	71.4		NT	NT	10	0.045	0
			Barium	51.8		NT	NT	2000	2600	256
	•		beta-BHC	0.015	J	NT	NT	NS	0.037	•
	1		Calcium	144000		NT	TN	NS	NS	53100
			Cobait	6.2		NT	лт	NS	730	0
			НМХ	1.5		NT	NT	NS	1800	*
Ramsdell Quarry			Iron	23900	j	NT	NT	300	11000	1430
Landfäl	RQLmw-007	Bedrock	Magnesium	86600		NT	NT	NS	NS	15000
			Manganese	1740		NT	NT	50	880	1340
			Nickel	12.6		ΝΤ	NT	NS	730	83.4
			Potassium	7220		NT	NT	NS	NS	5770
			RDX	0,43	J .	NT	NT	NS	0.61	+
			Sođum	9590		NT	NT	NS	NS '	51400
			Zinc	16.8	8	NT	NT	5000	11000	52.3
			alpha-BHC	0.023	J.	NT	NT	NS	0.011	+
			Arsenic	29.9		NT	NT	10	0.045	0
			Barium	89		NT	NT	2000	2600	256
			beta-BHC	0.0095	្រ៍ិ	TN	NT	NS	0.037	•
			Caloium	57700		NT	NT	NS	NS	53100
			Chromium	1.5	J	NT	NT	100	110	0
Ramsdell Quarry	RQLmw-008	Bedrock	delta-BHC	0.025		NT	NT	NS	NS	•
Landfill			Iron	49600	_	NT	NT	300	11000	1430
			Magnestum	62900		NT	NT	NS	NS	15000
			Manganese	408		NT	NT	50	880	1340
			Potassium	3690		NT	NT	NS	NS	5770
			Sodium	8350		TM	NT	NS	NS	51400
			Zinc	18.5	R	NT	NT	5000	11000	52.3

(.....

Area	Well Number	Monitored Zone	Analyte *	Осt-09 Le (µg/L)		Jan-10 Le (µg/L)		Jul-10 Lo (µg/L		MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wi Backgrour (µg/L)
			1,3,5-Trinitrobenzene	0.1	JB	NT		NT		NS	1100	•
			Arsenic	8.9		NŤ		NT		10	0.045	0
		1	Barlum	36.1		NT		NT		2000	2600	256
			Calcium	22600		NT		NT		NS	NS	53100
			Chromium	1.8	J	NŤ		NT		100	110	0
Ramsdell Quarry	RQLmw-009	Bedrock	Cobalt	4.6	J	NT		NT		NS	730	0
andfill	RGDIM-009	DEGIOCX	Iron	5280	J	NT		NT		300	11000	1430
			Magnesium	20200		NŤ		NT		NS	NS	15000
			Manganese	1260		NT		NT		50	880	1340
			Potassium	3900		TN T		NT		NS	NS	5770
			Sođium	1870		NT		NT		NS	NS	51400
			Zinc	6.9	JB	IN		NT		5000	11000	52.3
			Barium	NT		NT		44.5		2000	2600	82.1
			bis(2-Ethylhexyl) phthalate	NT		NT		0.88	JB 🗌	NS	4.8	+
		1	Calcium	NT		NT		54300		NS	NS	115000
			lron	NT		NT		517		300	11000	279
Load Line 1	LL1mw-064	Unconsolidated	Magnesium	NT		NT		9330		NS	NS	43300
			Manganese	NT		NT		112		50	880	1020
			PETN	NT		NT		3 1,3		NS	NS	*
			Sodium	NT		NT		4890		NS	NS	45700
	· · · ·		Barium	NT		NT	-	48.6		2000	2600	82.1
			bis(2-Ethylhexyl) phthalate	NT		NT		5.4	JB	NS	4.8	•
			Calcium	NT		NT		79300		NS	NS	115000
			Iron	NT		NT		127		300	11000	279
Load Line 1	LL 1mw-065	Unconsolidated	Magneslum	NT		NT		19900		NS	NS	43300
			Manganese	NT	<u> </u>	NT		256		50	880	1020
			Potassium	NT		NT		845	J	NS	NS	2890
			Sodium	NT		NT		10700		NS	NS	45700
			1,3,5-Trinitrobenzene	NT		NT		0.038	JB	NS	1100	
			Barium	NT		NT		11.2		2000	2600	256
			bis(2-Ethylhexyi) phthalate	NT		NŤ		2.1	J 8	NS	4.8	•
			Calcium	NT		NT		29400		NS	NS	53100
Load Line 1	LL1mw-067	Bedrock	Magnesium	NT		NT		10400		NS	NS	15000
			Manganese	NT	-	NT		13.1		50	880	1340
			Nickel	NT		NT		21.5		NS	730	83.4
			Sooīum	NT		NT		1590		NS	NS	45700
			1,3,5-Trinitrobenzene	NT		NT		0.047	JB 🔅	NS	1100	+
			Aluminum	NT		NT		110		200	36000	0
			Barium	NT	F	NT	-	16.2		2000	2600	256
			bis(2-Ethylhexyl) phthalate	NT		NT			ं श	NS	4.8	*
			Calcium	NT	-	NT		47300		NS	NS	53100
			Di-n-butyl phthalate	NT		NT	<u> </u>	0.8	j 😨	NS	NS	•
Load Line 1	LL1mw-078	Bedrock	Magnesium	TN	_	NT		7390		NS	NS	15000
			Manganese	NT		NT	-	71		50	880	1340
			Nickel	NT	_	NT	-	4.5	J	NS	730	83.4
			Polassium	NT		NT		3100		NS	NS	5770
			RDX	NT	 	NT		0.095	J	NS	0.61	*
			Sodium	NT		NT		3770		NS	NS	45700

(_____

Area	Well Number	Monitored Zone	Analyte	Oct-09 Level (µg/L)	Jan-10 Le (µg/L)		Jul-10 Լ (µg/l	.)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wide Background (µg/L)
			1,3,5-Trinitrobenzene	NT	NT		1.3	J	NS	1100	*
			1,3-Dinitrobenzene	NT	NT		v 0.93		NS	3.6	ŧ
			2,4,6-Trinitrolouene	NT	NT		0.92		NS	2.2	*
			2,4-Dinitrololuene	NT	NT		- 0.71		NS	73	1
			2,6-Dinitrololuene	NT	NT		0.89		NS	36	•
			2-Amino-4,6-dinitrotoluene	NT	NT		5.6		NS		*
			4-Amino-2,6-Dinitrotoluene	NT IN	NT		7.9		NS		t
			Aluminum	NT	NT		45.2	J	200	36000	0
			Barium	NT	NT		26.5		2000	2600	256
oad Line 1	LL1mw-080	Bedrock	beta-BHC	NT	NT		0.048	J	NS	0.037	٠
			bis(2-Ethylhexyl) phthalate	NT	NT		42	J 8	NS	4.8	*
			Calcium	NT	NT		130000		NS	NS	53100
			delta-BHC	NT	NT		0.019	j	NS	NS	+
		1	нмх	NT	NT		14		NS	1800	*
			Magnesium	NT	NT		9180		NS	NS	15000
			Manganese	NT	NT		25.5		50	880	1340
			Polassium	NT	NT		3310		NS	NS	5770
			RDX	NT	NT	1	88	J	NS	0.61	*
			Sodium	NT	NT		4320		NS	NS	51400
			2,4-Dinitrotoluena	NT	NT		0.058	JB	NS	73	÷
			2-Amino-4,6-dinitrotoluene	NT	NT		1.6	12	NS	NS	t
			4-Amino-2,6-Dinitrotoluene	NT	NT		2.2		NS	NS	t
			Banum	NT	NT		18.2		2000	2600	256
			bela-BHC	NT	NT		0.011	្រ	NS	0.037	•
	· ·		bis(2-Ethylhexyl) phthalate	NT	NT	ł	1.6	JB	NS	4.8	*
			Calcium	NT	NT		54300		NS	NS	53100
	ļ		Cobalt	NT	NT		6.2		NS	730	0
oad Line 1	LL.1mw-081	Bedrock	нмх	NT	NT		0,44	8	NS	1800	4
			Iron	NT	TN		4200		300	11000	1430
			Magnesium	NT	NT		12000		NS	NS	15000
		1	Manganese	NT	NT		1830		50	880	1340
		ł	Nickel	NT	NT		11		NS	730	83.4
			Potassium	NT	NT		2350		NS	NS	5770
			RDX	NT	ЛТ		1		NS	0.61	1
			Sodium	זא	NT		2050		NS	NS	51400
			Zinc	лт	NT		48.5		5000	11000	52.3
		1	Barium	NT	NT		9.9	J	2000	2600	256
			bis(2-Ethylhexyl) phthalate	лт	NT		2	JB		4.8	+
			Cadmium	NT	NT		0.18		5	18	0
			Calcium	NT	NT		29800		NS	NS	53100
			Cobait	NT	NT		8.2		NS	730	0
		<u> </u>	Iron	NT	NT		5150		300	11000	1430
oad Line 1	LL1mw-082	Bedrock	Magneslum	זא	NT		12300		NS	NS	15000
			Manganese	NT	NT		1080		50	880	1340
			Nickel	NT	NT		17.9		NS	730	83.4
			Polassium	NT	NT		1460		NS	NS	5770
			Sodium	NT	NT		1190		NS	NS	51400
			Zinc	NT	NT		49.1		5000	11000	52.3

(Area	Well Number	Monitored Zone	Analyte	Oct-09 Level (µg/L.)	Jan-10 Level (µg/L)	Jul-10 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wide Background (µg/L)
				1,3,5-Trinitrobenzene	NT	NT	9.2 J	NS	\$100	٠
				2,4,6-Trinitrolouene	NT	NT	6 J	NS	2.2	*
	1			2,4-Dinitrololuene	NT	NT	3.1 J	NS	73	
				2,4-Dinitrotoluene	NT	NT	1.5 J	NS	73	•
				2,6-Dinitrololuene	NT	NT	∃≣ 13 J	NS	36	*
			ł	2-Amino-4,6-dinitrotoluene	NT	NT	16 J	NS	NS	
				2-Nitrotoluene	NT	NT	0.18 J	NS	0.049	+
				4-Amino-2,6-Dinitrotoluene	NT	NT	36 J	(NS	NS	
				Aluminum	NT	NT	813	200	36000	0
				Banum		NT	15.8	2000	2600	256
		11.4002	The decade	8ery2ium	NT	NT	0.33 J	4	73	0
	Load Line 1	LL1mw-083	Bedrock	bis(2-Ethylhexyl) phthalate	NT	NT	0.96 JB	NS	4.8	
				Cadmium	NT	NT	0.7	5	18	0
				Calcium	NT	NT	23200	NS	NS	53100
				Cobalt	NT	NT	11.1	NS	730	0
		1		нмх	лт	NT	0.061 JB	NS	1800	•
				Magnesium	лт	NT	4910	NS	NS	15000
			ł	Manganese	NT	NT	497	50	880	1340
				Nickel	NT	NT	34.1	NS	730	83.4
				Polassium	NT	NT	2230	NS	NS	5770
				Sođum	NT	NT	9730	NS	NS	51400
				Zinc	NT	NT	40.1	5000	11000	52.3
				1,3,5-Trinitrobenzene	NT	NT	5.9 J	NS NS	1100	+
				1,3-Dinitrobenzene	NT	NT	0.37 J	NS	3.6	•
				2,4,6-Trinitrolouene	NT	NT	9.2 J -	NS	2.2	*
				2,4-Dinitrotoluene	NT	NT	1.8 J	NS	73	*
				2,6-Dinitrololuene	NT	NT	0,82 J	NS	36	E .
1				2-Amino-4,6-dinitrololuene	NT	NT	14 J) NS	NS	•
(4-Amino-2,6-Dinitrotoluene	זא	NT	32 J	NS	NS	*
``				4-Nitrokolvene	NT T	NT	0.18 J	NS	0.66	1
	1			Aluminum	NT	NT	335	200	36000	Û
				Barium	NT	NT	14	2000	2600	256
		1		beta-BHC	NT	זא	0.26 J	NS	0.037	*
				bis(2-Ethyihexyi) phthalate	NT	NT	3.4 JB	ns	4.8	+
	Load Line 1	LL.1mw-084	Bedrock	Cadmium	NT	NT	1.6	5	18 .	0
				Calcium	NT	NT	45600	NS-	NS	53100
				Cobalt	NT	NT	15.7	NS	730	0
				Copper	NT	NT	5.4	1300	1500	0
				НМХ		NT	0.25 JB	NS	1800	+
	1		ł	Magneslum	NT	NT	2710	NS	NS	15000
			1	Manganese	אד	NT	196	50	880	1340
			1	Nickel	NT	NT	26.8	NS	730	83.4
				Polassium	NT	NT	2260	NS	NS	5770
				RDX	דא	אד	0.76 J		0.61	*
	1			Sodum	NT	NT	2630	NS	NS	51400
				Zinc	NT	NT	58.5	5000	11000	52.3

Area	Well Number	Monitored Zone	Analyte	Oct-09 Leve (µg/L.)	#	Jan-10 Lev (µg/L)	el	Jul-10 L (µg/L		MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wide Background (µg/L)
			Banum			VT 1		13.4		2000	2600	256
			bis(2-Ethylhexyl) phthalate	NT	_	NT I			<u>38</u>	NS	4.8	+
			Calcium	NT	-	NT I		64600	VLA, GUE	NS	NS	53100
			Cobait	NT	-	NT I		2,8	I	NS	730	0
				NT		NT	-	435	J.	300	11000	1430
oad Line 1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dedroch	fron	NT	-	NT		18300		NS	NS	1430
	LL1mw-085	Bedrock	Magnesium	+	-+		_					1340
			Manganese	NT	-	NT		564		50	880	83.4
			Nickel	NT		<u>л</u>	-	11.4		NS	730	
			Potassium	NT		T	_	1690		NS	NS	5770
	1		Sodium	NT		<u>л</u>		1380		NS	NS	51400
		ļ	Zinc	NT	_	NT	_	4.1	J	5000	11000	52.3
			Arsenic	זא	<u>-</u>	NT	_	29.4		10	0.045	11.7
			Banium	זא	-	<u>भा</u>	_	383		2000	2600	82.1
			bis(2-Ethylhexyl) phthalale	NT	-	গা		- 2.4	JB	NS	4.8	
			Calcium	NT	-	11	_	159000		NS	NS	115000
.cad Line 12	LL12mw-088	Unconsolidated	Iron	NT	_	ਆ		3890		300	11000	279
		+	Magnesłum	NT	-	T		55700		NS	NS	43300
			Manganese	NT	_	গ		428		50	880	1020
			Polassium	NT	!	গ		2820	J	NS	NS	2890
			Sodium	NT	ł	VT IV		13500		NS	NS	45700
			Zinc	NT	ł	ম		5.6	JВ	5000	11000	60.9
			1,3,5-Trinitrobenzene	NT	Ţ	νī		0.058	J	NS	1100	+
			Arsenic	NT	ł	٦T		9.7		10	0.045	11.7
			Barium	NT	1	ιπ I		24.2		2000	2600	82.1
	•		beta-BHC	NT	Ţ	τ		0.018	1	NS	0.037	4
			bis(2-Ethylhexyl) phthalate	NT	_	vī			JB	NS	4.8	
			Calcium	NT	-	νī	-	162000		NS	NS	115000
oad Line 12	LL12mw-107	Unconsolidated		NT	_	vr		1.8	.I	NS	730	0
	CCIENT IOI	Since in the second	lion	лт	_	NT I		2640		300	11000	279
			Magnestum	אז		NT TV		67100	•	NS	NS	43300
				NT	-+	VT I		242		50	880	1020
			Manganese			vi vi	-	2230	1	NS	NS	2890
			Potassium	NT	-		-		5		NS	45700
	ļ		Sodium	NT	-	17	-	17300	in a c	NS		45700
	<u> </u>		Tetryl	NT		ν τ	_	0.074	J	NS	360	
			Aluminum	NT	_	ντ		103000		200	36000	0
			Antimony	NT	-+	۹T	_	1.1	J	6	15	0
		1	Arsenic	NT	_	11	$ \rightarrow$	249		10	0.045	11.7
			Banum	NT	_	<u>ντ</u>		381		2000	2600	82.1
			Beryäum	NT		11		5		4	73	0
			bis(2-Ethylhexyl) phthalate	NT	1	١T		1.9	JB	NS	4.8	*
			Cadmium	NT	1	π		0.54		5	18	0
			Calcium	NŤ	1	Π		284000		NS	NS	115000
			Chromhum	NT	ľ	ΝΤ		163		100	110	7.3
		1	Cobalt	NT	1	νr		121		NS	730	0
		}	Copper	NT	1	VT I		257		1300	1500	- Q
oad Line 12	LL12mw-113	Unconsolidated	Iron	NT	1	π		354000		300	11000	279
			Lead	NT	-+-	ग		127		15	NS	0
			Magnestum	NT		VT I		151000		NS	NS	43300
			Manganese	NT	-	<u></u> л	-	5730		50	880	1020
			Nickel	NT	-	ντ I		283		NS	730	0
		1	Nitrate-Nitrite ¹	NT		<u>л</u>		0.2		1	1	•
			Phenol	NT	_	ντ 		0.2	<u>.</u>	NS	11000	*
				+ · · · · · · · · · · · ·	-		-		_		NS	2890
			Polassium	NT	_	গা 👘		23700	J	NS		
		· ·	Sootum	NT	-	<u>भ</u>		24800		NS	NS	45700
			Tha®um	NT	11	vr L	- 1	1.9		2	2.4	0
			Vanadium	NT	-+-	vī l	- 1	179		NS	36	0

Ċ

(Area	Well Number	Monitored Zone	Analyte	Oct-09 Lev (µg/L)	vel	Jan-10 Lev (µg/L.)	rel	Jul-10 L. (µg/L		MCL (ug/L)	Region 9 PRG (µg/L)	Facility-Wide Background (µg/L)
				Alumiaum	NT		NT		1960		200	36000	0
				Antimony	NT		NT		0.16	J	6	15	0
				Arsenic	NT		NT		47.5		10	0.045	11.7
				Banum	NT		NT		61.3		2000	2600	82.1
			1	bis(2-Ethylhexyl) phthalate	NT		NT		2.3	JB 🗧	NS	4.8	*
				Calcium	NT		NT		183000		NS	NS	115000
				Chromium	NT		NT		2.8	J	100	110	7.3
				Cobalt	NT		NT		2.8	J	NS	730	0
	Load Line 12	LL12mw-128	Unconsolidated	lron	NT		NT		6890	J	300	11000	279
				Lead	NT		NT		2.3	J	15	NS	0
				Magnesium	NT		NT		109000		NS	NS	43300
				Manganese	NT		NT		242		50	880	1020
				Nickel	NT		NT		4.8	J	NS	730	0
				Potassium	NT		NT		2770	J	NS	NS	2890
				Sođum	NT		NT		22100		NS	NS	45700
				Vanadium	NT		NT		2,5	J	NS	36	0
				Zinc	NT		NT		19.8	j	5000	11000	60.9
				Arsenic	NT		NT		21.4		10	0.045	0
		1		Barium	NT		NT		64.4		2000	2600	82.1
			1	beta-BHC	NT		NT		0.1	J	NS	0.037	*
			1	bis(2-Ethylnexyl) phthalate	NT		NT		1.3	JB	NS	4.8	A
				Calcium	NT		NT		140000		NS	NS	115000
				Chromium	NT		NT		2	J	100	110	7.3
				Cobalt	NT		NT		2	J	NS	730	0
	Load Line 12	LL12mw-153	Unconsolidated	HMX	NĨ		NT		0.055	J Car	NS	1800	*
				Irón	NT		NT		3420		300	11000	279
	:		1	Magnesium	NT		NT		76800		NS	NS	43300
(1		Manganese	NT		NT		188		50	880	1020
Υ.				Nickel	NT		NT		2.7	J	NS	730	0
				Potassium	NT		NT		2010	J	NS	NS	2890
				Sodium	NT		NT		23400		NS	NS	45700
				Zin¢	NT		NT		9	JВ	5000	11000	60.9
				Arsenic	NT		NT		16.2		10	0.045	11.7
	1			Barium	NT		NT		44.1		2000	2600	82.1
				beta-BHC	NT		NT		0.011	J	NS	0.037	+
				bis(2-Ethylhexyl) phthalate	NT		NT		1.5	JB	NS	4.8	+
	Load Line 12	LL12mw-154	Unconsolidated	Calcium	NT		NT		147000		NS	NS	115000
		LL 12/0W-104	UNCONSCIENT	Iron	NT		NT	T	1760		300	11000	279
				Magnesium	NT		NT		70000		NS	NS	43300
				Manganese	NT		NT		85.9		50	880	1020
				Potassium	NT		NT		1820	J	NS	NS	2890
			1	Socium	NT		NT		24300		NS	NS	45700

Area	Well Number	Monitore Zone	Analyte		Oct-09 Let (µg/L)	rel	Jan-10 L (ug/L			l0 Level g/L)	MCL (µg/l.)	Region 9 PRG (vg/L)	Facility-Wie Backgroun (µg/L.)
			1,3,5-Trinitrobenzene	N			NT			isi j	NS	1100	() ¹ 9/4/
			Aluminum	N			NT		_	9.5 J	200	36000	0
1			Arsenic	N			NT		2:	.6	10	0.045	11.7
			Barium	N1			NT .		62	.7	2000	2600	82.1
	1		Benzo(a)anthracene	NT		_]	NT		Ō.	23	NS	0.092	02.1
	l		Benzo(b)fluoranthene	NT			NT		0	22	NS	0.092	+
			Benzo(g,h,i)perylena	NT		_[NT I		0.	22	NS		•
			Benzo(k)fluoranthene	זא		1	NT I		0.	2	NS	0.92	
			bis(2-Ethylhexyl) phthalate			N	л		- 4	9 JB	NS	4.8	
			Calcium	NT		_[N	π		6550	· · · ·	NS	NS	115000
Load Line 12	LL12mw-182		Chrysene	NT		N	ग		0.2	1	NS	9.2	
	LC 12/11W-102	Unconsolidate		NT		N	π		0.2	1	NS	0.0093	
			Di-n-butyl phthalate	NT	_	N	π		0.8	9 JB	NS	NS	
	Í		Fluoranthene	NT		N	T I		0.2	/ -	NS	NS	
			Indeno(1,2,3-cd)pyrene	NT		N	T	-	0.2	-	NS	0.092	
			Iron	NT		N	T		76	-	300	11000	
			Magnesłum	NT		N	ī		5150		NS	NS	279
			Manganese	NT		N	r l		43.7		50	880	43300
			Nitrate-Nitrite ¹	NT		м	r l		0.03	Lia I	1	1	1020
			Potasstum	NT		NT		-	4080		NS	NS	
	1		Pyrene	NT		NT			0.21	ř- †	NS	NS NS	2890
			Sođum	NT		NT			25100		NS		
	+		Tetryl	NT		NT			0.068	1.21	NS	NS	45700
			Arsenic	NT		NT		+	29.8	<u>, .</u>	10	360	
			Banum	NT		NT		+-	65			0.045	11.7
			bis(2-Ethylhexyl) phthalate	NT		NT		-+-	2.4	163	2000	2600	82.1
			Calcium	NT		NT		+-	2.4 87600	- <u>-</u>	NS	4.8	*
ad Line 12	LL12mw-183	Unconsolidated	Heptachlor	NT		NT			0.027	1	NS	NS	115000
		UNAVISOLUBIED.	Iron	NT		NT			867		0.4	0.015	•
			Magnestum	NT		NT		+	36400		300	11000	279
			Manganese	NT		NT			-		NS	NS	43300
			Potassium	NT		NT			47.7		50	880	1020
			Sodium	NT		NT				'	NS	NS	2890
			Arsenic	NT		NT		+ <u>+</u> '	9800		NS	NS	45700
		Ĩ	Barium	NT		NT			15,8		10	0.045	11.7
		1	ols(2-Ethylhexyl) phthalate	NT		NT		+	8.7 J	<u> </u>	2000	2600	82.1
	l l		Calcium	NT		NT IV		-	3.8 J		NS	4.8	
		ļ.	100	NT		VT .		1	3000		NS		115000
d Line 12	UL12mw-184	Unconsolidated	lagnesium	NT		<u>ग</u> ग		+	2300 J		300	11000	279
	1		langanese	NT		ភ			0000		NS		43300
1	1		Beats areas 1	NT		а 17			469	_	50	880	1020
		P		NT		н п			0.07 JE		1	1	•
				NT		_			410 J		VS		2890
				NT	N	Π		35	600	11	VS	NS A	15700

Area	Well Number	Monitored Zone	Analyte	Oct-09 Le (µg/L)	vel	Jan-10 Le (µg/L)		Jul-10 L (µg/L		MCL (µg/L)	Region 9 PRG (µg/L)	Facility-W Backgrou (µg/L
			Barium	NT		NT		49.4		2000	2600	82.1
			bis(2-Ethylhexyl) phthalate	NT		NT		2.6	JB .	NS	4.8	*
			Butyl benzyl phthalate	NT	-	NT		<u>77</u> 1,4		NS	7300	+
			Cadmium	NT		NT		0.26	J	5	18	0
			Calcium	NT		лт		665000		NS	NS	11500
			Di-n-butyl phthalate	NT	-	NT		3 2 0.75	JB	NS	NS	+
			HAX	NT		NT	—	0.076	្រះ	Nns	1800	*
Load Line 12	LL12mw-185	Unconsolidated		NT		NT		287000		NS	NS	43300
			Manganese	אז		NT		1380		50	880	1020
			Nickel	NT		NT		6.2	J	NS	730	0
			Nitrate-Nitrite ¹	NT		NT		160		1	1	*
			Nitrocellulose	NT	-	л		0.54	5.7 <u>_</u> 4_1	NS	NS	•
			Potassium	NT		NT		7120	J	NS	NS	2890
			Sodium	NT		NT	\vdash	52300		NS	NS	45700
			Tetryl	NT		NT		0.075	J X	NS	360	*
			Antimony	TN	-	NT		0.45	J.	6	15	0
			Barium	NT		NT	\vdash	49		2000	2600	82.1
			beta-BHC	NT		אד	╞──	0.013	1.10	NS	0.037	+
				NT		NT		3.3		NS	4.8	*
			bis(2-Ethyihexyi) phthalate Calcium	NT	-	NT		139000	00 (NS	NS	11500
			Cobalt	NT	⊢	NT		1.7		NS	730	0
	1				-	NT NT		0.76		NS	NS	*
	11.40	11	Di-n-butyl phthalate	NT NT		NT		0.0091		NS	NS	8
Load Line 12	LL12mw-188	Unconsolidated		NT	_	NT		64700	J)	NS	NS	43300
			Magnésium	NT	_	NT		275		50	880	1020
			Manganese				<u> </u>			NS	730	0
			Nickel Nitrate-Nitrite ¹	NT NT		NT NT		2.2		113	/30 	
			1		┣	NT NT	┣			NS	NS	2890
			Potassium	NT NT			-	1690 14700	J	NS	NS	45700
			Sodium	-	-			0.054	1.80	NS	360	40700
			Tetryl	NT NT	┢	NT		281	J .S.S.S	2000	2600	82.1
			Barium			NT NT	\vdash		JB 🗧	NS	4.8	02.1
			bls(2-Ethylhexyl) phthalate	NT	┞	NT	<u> </u>		JD S.	NS	4.0 NS	11500
			Calcium	NT	 			960000		NS NS	730	0
			Cobalt	NT	ļ	NT	<u> </u>	10.2			· · · · · ·	4330
			Magnesium	ТИ	┡	NT		301000		NS	NS .	i
Load Line 12	LL12mx-187	Unconsolidated	Manganese	NT	┣	NT	-	2020		50	880	1020
			Nickel	TM	 	NT		15.3	 	NS	730	0
			Nitrate-Nitrite ¹		⊢	NT		1400		1	1	
			Nitrocellulose		┣	NT	-	5.7		NS	NS	0000
			Polassium			NT	┢	54200	J	NS	NS	2890
		1	Sodium		┞		 	35600	<u> </u>	NS	NS	4570
		<u> </u>	Zinc	NT	-	NT	<u> </u>	11	+	5000	11000	60.9
			Aluminum	NT		NT		65		200	36000	0
	1		Barium	NT	_	NT	 	41.4	16 ⁻⁰⁰	2000	2600	82.1
		1	bis(2-Ethyihexyi) phthalate	NT	_	NT		2.4		NS	4.8	
			Calcium	NT	┣	NT N T	_	134000		NS	NS	11500
			Cobalt	NT	⊢	NT	_	1.5		NS	730	0
			Heptachlor	NT		NT		0.017		0.4	0.015	· · ·
Load Line 12	L1.12mw-188	Unconsolidated	HMX	NT	-	NT	_	0.052	J	NS	1800]
			Iron	NT	_	NT VT	_	246		300	11000	279
			Magnesium	NT	-	NT	 	108000		NS	NS	4330
			Manganese	NT	┞_	NT	 	433		50	880	1020
			Nitrate-Nitrite ¹	NT		NT	_	0.2		1	1	
			Potassium	TM	1	NT	 	1930		NS	NS	2890
		[RDX	TNT		NT		0.067	J	NS	0.61	•
	1	I	Sodium	NT	1	NT	1	32200	1	NS	NS	4570

(.....

(

Area	Weli Number	Monitored Zone	Analyte	Oct-09 La (µg/L		Jan-10 Le (µg/L)	Jul-10 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wide Background (µg/L)
			Aluminum	NТ		NT	298	200	36000	0
			Arsenic	NT		NT	5.1	10	0.045	11.7
			Barium	NT		NT	18.5	2000	2600	82.1
			beta-BHC	NT		NT	- 0.014 J	NS	0.037	+
			bis(2-Ethylhexyl) phthalate	NT		NT	2.8 JB	NS	4.8	t
			Calcium	NT		NT	 152000	NS	NS	115000
	-		Cobait	NT		NT	1.9 J	NS	730	0
			Di-n-butyl phthalate	NT	1	NT	0.75 JB	NS	NS	*
oad Line 12	LL12mw-189	Unconsolidated	Iron	NT		NT	1320 J	300	11000	279
			Magnesium	NT		NT	72200	NS	NS	43300
			Manganese	NT		NT	310	50	880	1020
			Naphthalene	NT		NT	 0.29	NS	6.2	\$
			Nitrate-Nivite ¹	אד		NT	0.07 JB	1	1	
			Nitrocellulose	NT		NT	0.12 J	NS	NS	1
			Potassium	דא		NT	1800 J	NS	NS	2890
			Socium	NT		NT	49200	NS	NS	45700
			Tetryl	NT		NT	 0.059 J	NS	360	*
			Arsenic	NT		NT	21,3	10	0.045	11.7
			Barium	NT		NT	22	2000	2600	82.1
			bis(2-Ethyihexyi) phthalate	NT		NT	1.7 JB	NS	4.8	Ł
			Butyl benzyl phthalate	NT		ТИ	0.89 J	NS	7300	8
			Calcium	NT		NT	69300	NS	NS	115000
			Iron	NT		NT	833	300	11000	279
oad Line 12	LL12mw-242	Unconsolidated	Isophorona	NT	[NT	0.38 J	NS	71	+
	· ·		Magnesium	NT	Γ	NT	46500	NS	NS	43300
			Manganese	NT	Γ	NT	56	50	880	1020
			Potassium	NT	1	NT	1630 J	NS	NS	2890
		}	Silver	NT		NT	 1.9 J	100	180	0
			Sodium	NT		NT	33800	NS	NS	45700
			Tetryl	NT	1	NT	0.057 JB	NS	360	•
			2-Bulanone	NT	1	NT	1.3 JB	NS	7000	
			Antimony	NT		NT	 0.63 J	6	15	Û
			Arsenic	זא		NT	6.5	10	0.045	11.7
			Barium	NT		NT	 27.6	2000	2600	82.1
			beta-BHC	TM		NT	0.012 J	NS	0,037	+
			bis(2-Ethylhexyl) phthalate	NT		NT	4.4 JB	NS	4.8	*
			Calcium	NT	1-	NT	124000	NS	NS	115000
oad Line 12	LL12mw-243	UnconsoSdated	Cobalt	NT		NT	1.5 J	NS	730	0
			Magnesłum	NT		NT	81500	NS	NS	43300
		1	Manganese	NT		NT	281	50	880	1020
			Nickel	NT		NT	2.7 J	NS	730	0
			Nitrogiycerin	NT		NT	0,38 J	NS	4.8	
			Potassium	NT	t	NT	 3320 J	NS	NS	2890
		1	Sodium	NT		NT	 22800	NS	NS	45700

Ċ

(Area	Well Number	Monitored Zone	Analyte	Oct-09 Ler (µg/L)	ve)	Jan-10 Level (µg/L)	Jul-10 (µg/		MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wide Background (µg/L)
				2-Butanone	NT		NT	1.0	J8	NS	7000	•
				Acetone	NT		NT	1.	J8	NS	5500	*
				Aluminum	NT		NT	33700		200	36000	0
				Antimony	NT		NT	0.73	J	6	15	0
	1			Arsenic	NT		NT	51.1		10	0.045	11.7
				Barium	NT		NT	22		2000	2600	82.1
				Beryllum	NT		NT	1.4		4	73	0
				bis(2-Ethylinexyl) phthalate	NT		NT	1.	JB	NS	4.8	+
				Calcium	NT		NT	95400		NS	NS	115000
				Chromium	NT		NT	4		100	\$10	7.3
				Cobalt	NT		NT	28.	,	NS	730	0
	Load Line 12	LL12mw-244	Unconsolidated	Copper	л		NT	48.:		1300	1500	0
				tron	NT		NT	7880	J	300	11000	279
				Lead	NT		NT	2	1	15	NS	0
				Magneslum	זא		NT	40500		NS	NS	43300
				Manganese	NT	_	NT	955	1	50	880	1020
				Nickel	NT		NT	72.		NS	730	0
				Nitrate-Nitrite ¹	NT		NT	0.0	J8 🤆	1	1	•
				Polasslum	NT		NT	950	J	NS	NS	2890
				Sodium	NT	_	NT	9250		NS	NS	45700
				Toluene	NT		NT	02	J	1000	720	t.
				Vanadium	TN		NT	49		NS	36	0
				Zinc	NT	-	NT	-	J	5000	11000	60.9
				1,3,5-Trinitrobenzene	T		NT	0.05	1	NS	1100	*
		•		Antimony	NT		NT	0.2		6	15	0
				Arsenic	NT		NT	9.1		10	0.045	0
				Barium	NT		NT	34.6	-	2000	2600	82.1
				bis(2-Ethylhexyl) phthalate	NT		NT	1.		NS	4.8	*
				Calcium	INT		NT	13400		NS	NS	115000
				Cobalt	NT		NT		2]	NS	730	0
	Load Line 12	LL12mw-245	Unconsolidated	Cyanide ¹	NT		NT	0.00		0.2	0.73	•
					NT NT		NT	6540		NS	NS	43300
				Magneslum Manganese	NT		NT	10		50	880	1020
				Nickel	אד		NT		J	NS	730	0
				Nitrate-Nitrite ¹	NT		INT	0,		1	1	•
					NT		NT	314	+	NS	NS	2890
				Potassium	NT		זא	23200		NS	NS	45700
				Sodium	NT	_	NT	2020	+	10	0.045	11.7
				Arsenic	NT		NT	29. 35.5		2000	2600	82.1
				Banum		_	NT	000 1000		2000 NS	1	• •
				bis(2-Ethyinexyi) phthalate	NT	_			+		4.8	
				Calcium		-	NT	102000	+	NS 300	NS 11000	115000 279
		1140	1	Iron Management	NT		NT			300 NS	1	43300
	Load Line 12	LL12mw-246	Unconsolidated		NT		NT	5040			NS	÷ .
			1	Manganese	TM		NT	74.	_	50 NC	880	1020
				Naphthalene	NT		NT	1		NS	6.2	
				Nitrale-Nitrite ¹	NT		NT		3,18	1	1	
	1		1	Potassium	NT		NT NT	638	13	NS NS	NS	2890

Area	Well Number	Monitored Zone	Analyte	Oct-09 Le		Jan-10 Lo (µg/L		Jul-10 I (µg/1		MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wide Background (µg/L)
				NT UP	1	NT ₩	, T	0.11		NS	1100	*
			1,3,5-Trinitrobenzene 2,4-Dinitrotoluene	NT	┼──	INT	<u> </u>	0.25		NS	73	•
				NT	\vdash	NT					NS	*
			2-Amino-4,6-dinitrotoluene			INT		0.31		NS	NS	•
			4-Amino-2,6-Dinitrotoluene	NT	┢┈	<u></u>				NS		
			Aluminum	NT	-	NT Vir		21.5	J	200	36000	0
			Arsenic	NT	 	NT	<u> </u>	6.4		10	0.045	0
			Barium	л	<u> </u>	NT		203		2000	2600	256
			Calcium	NT	Į	NT		30000		NS	NS	53100
.oad Line 2	LL2mw-059	Bedrock	Cobalt	NT	ļ	NT	<u> </u>	29.1		NS	730	0
			Cyanide ¹	NT		NT		0.0058		02	0.73	•
			HMX	NT	L	NT		0.14	JB 🔅	NS	1800	*
		-	Irón	NT		NT	I	7090		300	11000	1430
			Magnesium	NT		NT		8290		NS	NS	15000
			Manganese	NT		NT		5530		50	880	1340
			Nickel	NT		TN		22.4		NS	730	83.4
			Potassium	זא		NT		883	J	NS	NS	5770
			Scolum	NT		NT		5170		NS	NS	51400
			Zinc	NT	1	NT		4	JВ	5000	11000	52.3
	-		2-Amino-4,6-dinitrotoluene	NT		NT		0.45		NS	NS	
			4-Amino-2,6-Dinitrotoluene	NT		NT		0.54		NS	NS	•
		}	Antimony	NT	· ···	NT	\vdash	0.17	J	6	15	0
			Banum	NT		NT		23.9	-	2000	2600	256
.cad Line 2	LL2mw-060	Bedrock	Calclum	NT		NT		45200		NS	NS	53100
		1	Magnesium	NT	\vdash	NT		8470		NS	NS	15000
				NT	\vdash	NT		25.7		50	880	1340
			Manganese Sođium	NT	┨──	NT		23.7		NS	NS	51400
	· · · · · · · · · · · · · · · · · ·			NT	-	NT			1.1		2.2	
			2,4,6-Trinitrolouene		· · · ·	NT		0.058	J.;	NS		
			Arsenio	NT		<u> </u>		11.2		10	0.045	0
			Barium	NT	_	NT		19.1		2000	2600	256
			bis(2-Ethylhexyi) phthalate		┣—	NT		0.87		NS	4.8	
			Calcium	NT	<u> </u>	NT		59200		NS	NS	53100
.oad Line 2	LL2mw-261	Bedrock	Cobait	NT	ļ	NT		2.2	J	NS	730	0
			Iron	NT		NT		2290		300	11000	1430
			Magnesium	NT		лт		21700		NS	NS	15000
			Manganese	NT	L	NT		375		50	880	1340
			Nickel	NT	<u> </u>	NT	<u> </u>	3.9	J	NS	730	83.4
			Potassium	NT	_	NT		1070		NS	NS	5770
			Sodium	NT		NT		10800		NS	NS	51400
			Aluminum	NT		NT		24.9	J	200	36000	0
			Barium	NT		NT		16.2		2000	2600	256
			bis(2-Ethylhexyl) phthalate	NT		NT		1.1	J8	NS	4.8	•
	1		Calcium	NT	-	NT		47100		NS	NS	53100
oad Line 2	L1.2mw-262	Bedrock	Magnesium	NT		NT		34200		NS	NS	15000
			Manganese	NT		NT		77.4		50	880	1340
			Nickel	NT		лт	 	10.7		NS	730	83.4
	1		Potassium	NT		NT	-	1770		NS	NS	5770
			Sođum	NT	-	NT		7430		NS	NS	51400
	1		Arsenic	NT		NT		15.4		10	0.045	0
			Barium	NT		NT		21.5		2000	2600	256
				NT		NT				2000 NS	2000 NS	230 53100
			Calcium	NT	_	NI NT		30900				0
			Cobait					3.2		NS	730	0 +
oad Line 2	LL2mw-263	Bedrock	HMX	NT	<u> </u>	NT	-	0.078		NS	1800	
			Iron	NT	⊢	NT		4670		300	11000	1430
			Magnestum	NT	 	NT		13800		NS	NS	15000
			Manganese	NT		NT	 	1450	_	50	880	1340
			Nickel	NT		NT		5.6	J	NS	730	83.4
	1		Sodium	NT	1	NT		3930		NS	NS	51400

(.....

ĺ

Area	Well Number	Monitored Zona	Analyte	Oct-09 Leve (µg/L)	el	Jan-10 Lev (µg/L)	el	Jul-10 L Jygy)		MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wie Backgrour (µg/L)
		—	Aluminum	NT		ЛТ		26.4	J	200	36000	0
	1		Barium	NT		NT		8.8	J	2000	2600	256
			bis(2-Ethyihexyl) phthalate	NT		NT		2.5	JB	NS	4.8	•
			Calcium	NT	-	NT		76100		NS	NS	53100
			Cobalt	NT		NT		5.6		NS	730	0
Load Line 2	LL2mw-265	Bedrock	lion	NT		NT		614		300	11000	1430
			Magnesium	NT		NT		22700		NS	NS	15000
			Manganese	NT		NT		1430		50	880	1340
- 			Nickel	NT		NT		19		NS	730	83.4
			Sođum	NT		NT		10400		NS	NS	51400
			Acetone	NT		NT		2.5	JB	NS	5500	*
			Aluminum	NT		NT		1060		200	36000	0
			Arsenic	NT		NT		5.6		10	0.045	0
			Barium	NT		NT		19.1		2000	2600	256
			beta-BHC	NT		NT		0.029	J	NS	0.037	
			bis(2-Ethylhexyl) phthalate	אז		NT		5.8	JB 🛛	NS	4.8	4
			Cadmium	NT		NT		0.24	J	5	18	0
		n. h. h	Calcium	אז		NT		18400		NS	NS	53100
Load Line 2	LL2min-266	Bedrock	Cobalt	אד		NT		17		NS	730	0
			Iron	NT		NT		5080		300	11000	1430
		1	Magnesium	NT	-	NT		9620	[NS	NS	15000
			Manganese	NT		NT		1390		50	880	1340
			Nickel	NT		NT		16.5		NS	730	83.4
			Potassium	NT	_	NT		1270		NS	NS	5770
	•		Socium	NT		NT		9520		NS	NS	51400
			Zinc	NT		NT		10.6	В	5000	11000	52.3
			2,4,6-Trinitrolouene	NT		NT		0.27		NS	2.2	•
			2,4-Dinitrololuene	NT		NT		0.22	1	NS	73	*
			2-Amino-4,6-cEnitrotoluene	NT		NT		1,3		NS	NS	•
			4-Amino-2,6-Dinitrototuene	NT		NT				NS	NS	
			Banum	ЛТ		NŦ		14.9		2000	2600	256
			bis(2-Ethylhexyl) phthalate	NT		NT		2.3	JB	NS	4.8	•
			Calcium	NT		NT		37900		NS	NS	53100
Load Line 2	LL2mw-267	Bedrock	Cobalt	NT		NT		4.5	J	NS	730	0
			нмх	זא		NT		<u> </u>		NS	1800	+
			kon	NT		NT		1240		300	11000	1430
			Magneslum	NT		NT		18900		NS	NS	15000
			Manganese	NT		NT		622	1	50	880	1340
			Nickel	NT		NT		3.6	J	NS	730	83.4
			ROX	NT		NT		1.1	[NS	0.61	*
			Socium	NT		NT		16500	1	NS	NS	51400
			Barium	лт		NT		215		2000	2600	256
			bis(2-Ethylhexyl) phthalate	ТИ		NT		્રાત	JB -	NS	4.8	,
			Calcium	NT		NT		30300	<u> </u>	NS	NS	53100
			Iron	NT		NT		5990		300	11000	1430
Load Line 2	LL2mw-269	Bedrock	Magnesium	NT		พา		15200		NS	NS	15000
			Manganese	NT		NT		1540		50	880	1340
			Potassium	NT		NT		2970		NS	NS	5770
		1	Socium	NT		NT		5930		NS	NS	51400

(

(_____

Area	Well Number	Monitored Zone	Anchdo	Oct-09 Le		Jan-10 Le		Jul-10 1		MCL	Region 9 PRG	Facility-Wide Background
			Analyte	(µg/L) אד	 	(µg/L)		(ug/1	.)	(µg/L)	(µg/L) 2600	(µg/L) 256
		ł	Barium Butyl benzyl phthalate	NT	-	NT NT		13.1 13		2000	7300	250
			· · · · · · · · · · · · · · · · · · ·	NT	┼—	NT		44400		ns NS	7300 NS	53100
			Calcium Cobalt	INT	-	NT		44400		NS	730	0
			Endrin ketone	NT		NT		0,009	J -	NS	NS	•
			Iron	NT	<u> </u>	NT		1420	4 6.0	300	11000	1430
			Magnesium	NT INT	-	NT		16800		NS	NS	1450
Load Line 2	LL2mw-270	Bedrock	Manganese	NT	┣	NT	_	384		50	880	1340
			Nickel	NT		NT		12.7		NS	730	83.4
			Phenol	NT	-	NT		1.4		NS	11000	*
			Polassium	NT	<u> </u>	NT		1070		NS	NS	5770
			Sodium	NT	\vdash	NT		2190		NS	NS	51400
			Tetryl	NT	┣	NT			JB	NS	360	1400
			Zinc	NT	-	NT		3.5	J	5000	11000	52.3
			Arsenic	אר		NT		3.5	-	10	0.045	0
			Barium	NT		NT		26.1	3	2000	2600	256
			bis(2-Ethylhexyl) phthalate	זא	-	NT		20.1	ខេ	NS	4.8	200
			Calcium	NT		NT		60300	012.1	NS	NS NS	53100
				NT		NT		39800		NS	NS	15000
Load Line 3	LL3mw-232	Bedrock	Magnesium	NT		NT		39000		50	680	1340
-			Manganese	ואד אד		NT			1	NS	730	83,4
			Nickel	NT		NT		7.8	J	NS	730 NS	5770
			Potassium					3650				
			Sođum	NT NT		NT		8570	17	NS	NS	51400
	•		Zinc			NT		7.8		5000	11000	52.3
			2,6-Dinitrololuene	NT		NT				NS	36	
			2-Amino-4,6-dinitroloiuene	NT NT		NT		0,41	J	NS	NS	
			4-Amino-2,6-Dinitrotoluene	NT		NT		0.78		NS	NS	
			Barlum	NT		NT NT		9.8		2000	2600	256
			Benzyl alcohol			NT		0.84	<u>18</u> -	NS	11000	*
			Butyl benzyl phthalate	NT		NT		2	,	NS	7300	
			Calcium	NT		NT		51100		NS	NS	53100
Load Line 3	LL3mw-234	Bedrock	Cobalt	NT		NT		1.5		NS	730	0
			HMX	NT		NT		0.083	38 ୍ର	NS	1800	
			Iron	NT	_	NT NT		1210		300	11000	1430
			Magnesium	NT		NT		19800		NS	NS	15000
			Manganese	NT		NT NT		2190	3	50	880	1340
			Nickel	NT				7	3	NS	730	83.4 c770
			Polassium	NT NT		NT NT		1750	1 200	NS	NS	5770
	:		RDX		_				J .,:3.	NS	0.61	
			Sodium	NT		NT		8990	1000	NS	NS	51400
			1,3,5-Trinitrobenzene	NT		NT		0.032		NS	1100	
			2,4,6-Trinitrolouene	NT		NT NT		0.31	J L L	NS	2.2	
			2-Amino-4,6-dinitrololuene	NT		NT	_	0,17		NS	NS	
			4-Amino-2,6-Dinitrololuene	NT		NT NT		0.33		NS	NS	
			Antimony	NT	_	NT		0.15	J	6 NO	15	0
Load Line 3	LL3mw-236	Bedrock	Calcium	NT	_	NT		22200		NS	NS	53100
			Magneslum	NT	_	NT		13700		NS	NS	15000
			Manganese	NT		NT		235	,	50 NO	880	1340
			Nickel	NT NT		NT NT		7.9	J	NS	730 NS	83.4
			Polassium	151		NI		1330		NS	NS NS	5770
			Sodium	NT		NT		3620		NS	NS	51400

ĺ

(Атеа	Well Number	Monitored Zone	Analyte	Oct-09 Levei (µg/L.)	Jan-10 Level (µ9/L)	Jul-10 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wide Background (µg/L)
				1,3,5-Trinitrobenzene	NT	NT	0.34 J	NS	1100	•
]		2,4,6-Trinitrolouene	NT	NT	0.26 J	NS	2.2	•
				2,4-Dinitroloiuene	NT	NT	0.11	NS	73	\$
				2-Amino-4,6-dinitrolowene	NT	NT	0.63	NS	NS	3
				4-Amino-2,6-Dinitrotoluene	NT	NT	0.95	NS	NS	*
				Aluminum	ЛТ	NT	46.6 J	200	36000	0
				Barium	NT	NT	10.4	2000	2600	258
				bis(2-Ethylhexyl) phthalate	NT	NT	8.7 JB	NS	4.8	•
				Calcium	NT	NT	9730	NS	NS	53100
				Carbon tetrachloride	NT	NT	0.37 J	<u> </u>	0.17	*
	Load Line 3	LL3mw-239	Bedrock	Chloroform	NT	NT	0.52 J	NS	0.17	+
				HMX	ЛТ	NT	0.19 8 2	NS	1800	*
				kon	NT	NT	218	300	11000	1430
				Magnesium	NT	NT	5160	NS	NS	15000
				Manganese	NT	NT	101	50	880	1340
				Nickel	NT	NT	6.1 J	NS	730	83.4
				Potassium	NT	NT	1280	NS	NS	5770
				RDX	NT	NT	1.7	NS	0.61	1
				Sodium	TM	NT	18700	NS	NS	51400
				Zinc	NT	NT	6 JB	5000	11000	52.3
		- · · · ·		Aluminum	NT	NT	22.8 J	200	36000	0
				Barium	NT	NT	33.4	2000	2600	82.1
	ł			bis(2-Ethylhexyl) phthalate	NT	NT	8.2 JB	NS	4.8	*
				Calcium	NT	NT	57700	NS	NS	115000
	Load Line 4	LL4mw-196	Unconsolidated	lion	NT	лт	393	300	11000	279
				Magnesium	NT	NT	18100	NS	NS	43300
				Manganese	NT	NT	183	50	880	1020
(Socium	NT	NT	1460	NS	NS	45700
(Antimony	NT	NT	0.16 J	6	15	0
				Barium	NT	ЛТ	15.1	2000	2600	82.1
				bis(2-Ethylhexyl) phthalate	NT	NT	5 1.1 JB	NS	4.8	+
				Calcium	Л	NT	139000	NS	NS	115000
	Load Line 4	LL4mw-197	Unconsolidated	HMX	ЛЛ	NT	0.041 JB	NS	1800	4
		1		Magnesium	NT	NT	21400	NS	NS	43300
				Potassium	NT	NT	1250	NS	NS	2890
	1			Sodium	NT	NT	1130	NS	NS	45700

Notes:

NS = no standard NT = not tested

All inorganics are filtered, all organics are not filtered

* There are no background levels for organic constituents

J = estimated result. Results have been qualified "J" For more details refer to Data Verification/Validation Reports in

In the FWGWMP October 2009 and January, and July 2010 Sampling Reports

B = organic or inorganic analysis when the analyte is found in the method blank or any of the field blanks

R = Rejected data

U = analyzed but not detected at or above the reporting limit

Bold = inorganic constituent detected above Facility-Wide background levels

Italics = Inorganic constituent detected below the Facility-Wide background levels

Shaded boxes indicate any contituent, which does not have a background value, detected above the reporting limit.

1 = mg/l

(itoring Program 2010 Annual Report
(RVAAP Facility-Wide Groundwater

ļ

ŧ

	Facility-Wide Background	(µg/L)	*	0	0	0	256	*	53100	*	0	0	0	*	1430	15000	1340	83.4		5770	*	51400	0	52.3
0	Region 9 PRG	(µg/L)	1100	36000	15	0.045	2600	4.8	SN	1000	110	730	0.73	11	11000	NS	880	730	3.6	NS	0.61	SN	2.4	11000
- July 201		MCL (µg/L)	NS	200	9	10	2000	SN	SN	SN	100	NS	0.2	2	300	NS	50	NS	NS	NS	NS	NS	5	5000
s April 2009	Jul-10 Level	(ng/L)	0.11 U	50 U	2 U	13.1	39.4	0.00 control 0.00 co	102000	0.69 June	5 U	5 U	0.01 U	0.027 J	814	28600	194	3.3 J	NT	1670	0.11 U	13000	10 U	10 U
Constituents Detected in the Sharon Conglomerate Wells April 2009 - July 2010	Jan-10 Level (tra/L	(0.2 U	50 N	0.34 J	15.2	48.6	1 U	104000	n 1	5 U	2 U	0.0076 J	0.05 U	1320	29300	261	6.5 J	NT	1800	5. 1 0.091 3 5	13700	0.25 UJ	45.4 J
Sharon Cong		Oct-09 Level (µg/L)	0,2 U	1720	1.5 J	11.7	83.3	Şetaşları — 14	F 00086	61 00	2.1 J	1.8 J	0.01 U	0.25 R	4760	27800	336	8.9 J	NT	2060	0.5 U	12700	0.46 J	173 J
Detected in the		July-09 Level (µg/L.) Oct-09 Level (µg/L	0.22 U	100 U	1.5 J	5 U	62,5	6.1 U	89200 J	1 U	5 U	5 U	0.01 U	0.5 U	2960	27800	f 677	f 1.9	0.00 (0.00 (0.00 (0.00))	L 0102	0.55 U	12500	. 2 U	274 J
	Anril-09 Level	(hg/L)	0.085 J	100 U	1.6.1	3.3 J	51.6	1.5 U	58500	1 U	5 U	3.1 J	0.01 U	0.5 U	6850 J	2000	L 767 J	7.3 UJ	NT	2010 J	0.52 U	11800	0.17 J	14.8 U
Table 4-3 Summary of (Analyte	1,3,5-Trinitrobenzene	Aluminum	Antimony	Arsenic	Barium	bis (2-Ethylhexyl) phthalate	Calcium	Carbon disulfide	Chromium	Cobait	Cyanide ²	Endrin ketone	Iron	Magnesium	Manganese	Nickel	Perchiorate ²	Potassium	RDX	Sodium	Thallium	Zinc
		Well Number										- <u></u> , , , ,	C/ Family 001											
		Årea											Sharon	Conglomerate										

FWGWMP 2010 Annual Report Final

March 2011

.

Т

<u>6</u>

ť
l Repo
lal Tal
Ann
2010 Anr
1 201(
gran
Prog
ng l
itori
Mon
ater M
dwa
uno
Ğ
Vide
ty-Wid
acility
ш. О
VAAF
Ŕ

Well Number	r Analyte	April-09 Level (µg/L)	July-09 Level (µg/L)	July-09 Level (µg/L) Oct-09 Level (µg/L)	Jan-10 Level (µg/L)	Jul-10 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)	Facility-Wide Background (µg/L)
	4-Amino-2, 6-Dintirotoluene	101 101 101 101 101 1033	0.2 U	0.22 U	0.2 U	0.1 U	NS	73	*
·	Auminum	100 U	100 U	48 J	100 U	50 U	200	36000	0
	Antimony	3.8 J	1.4 J	0.73 J	0.44 J	0.15 J	6	15	0
	Arsenic	12.2	17	18.6	20.6	12.5	10	0.045	0
	Barium	49.9	162	42.9	2.04	38	2000	2600	256
	bis(2-Ethylhexyl) phthalate	1.3 U	U 8.1	01	n I	2.5 JB	SN	4.8	*
	Calcium	92900	۲ 00706	88000	87700	83400	NS	SN	53100
	Carbon disulfide	1 U	12 (10) (10) (0) (0) (10) (10)	\$	2010 - 10192 J.C	0.34.0	SN	1000	*
	Cobalt	1.8 J	១ទ	5 U	5 U	5 U	NS	730	0
SCFmw-002	2 Di-n-butyl phthalate	1 U	10	10	1 U	0.02 (0.82 JU)	SN	SN	+
	lron	100 U	216	645	062	233	300	11000	1430
	Magnesium	31500	29300	28200	28300	27000	NS	NS	15000
	Manganese	82.1 J	102 J	32	96.3	67.3	50	880	1340
	Nickell	L 6.7	0 0 1	40 U	U 04	10 U	SN	730	83.4
	Perchlorate ²	NT	0.02.J	IN	1N	NT	NS	3.6	*
	Potasium	4790 J	L 0072	2370	L 2180 J	2190	SN	NS	5770
	Sodium	27100	25300	22300	21600	50500	SN	SN	51400
	Tetryi	1.0.0 States of the second	0.2 U	1.14/14/14/0322	0.2 U	0.1 U	SN	360	*
	Zinc	5 U	131 J	20.6	35.3 J	10 U	5000	11000	52.3
	1,3,5-Trinitrobenzene	And and 0.056-0 and	0.21 U	0.2 U	0.2 U	0.1 U	SN	1100	+
	Acetone	10 UJ	10 UJ	10 U	10 UJ	3.4.JB	SN	5500	•
	Aluminum	100 U	.100 U	74.7 J	100 U	50 U	200	36000	0
	Antimony	0.75 J	1.4	0.32 J	0.34 J	2 U	9	15	0
	Arsenic	3.7 J	5 U	5 U	5 U	5 U	10	0.045	0
	Banum	77.9	81.5	261	71.8	75.2	2000	2600	256
	beta-BHC	0.05 U	0.5 U	0.05 U	0.05 U	C 0.0092 J	NS	4.8	*
	bis(2-Ethylhexyl) phthalate	1.9 U	1.2 U	10	1 U	14.15. 15.JB	SN	4.8	*
SCFmw-003	3 Calcium	74900	74500 J	74200	69400	71100	SN	SN	53100
	lron	187 U	491	610	614	390	300	11000	1430
	Magnesium	30500	29800	29900	28400	29000	SN	NS	15000
	Manganese	269 J	271 J	248	243	237	50	880	1340
	Perchlorate ²	TN	1	NT	NT	IN	SN	3.6	*
	Potassium	1460 J	1510 J	2300	1320 J	1420 J	SN	NS	5770
	Sodium	7340	7320	8110	6760	6860	NS	NS	51400
	Thallium	, 2 U	2 U	0.14 JB	2 U	10 U	2	2.4	0
	Zhor	80111	Irar		- 0.00		0001		¢ ç

FWGWMP 2010 Annual Report Final

•

1102 لر 1

(·					
(Facility-Wide Background (µg/L.)	*	0	0	256	*	53100	*	1430	15000	1340	+	5770	51400	52.3	٠	0	0	0	256	53100	•	0	*	1430	15000	1340	83.4	*	*	5770	51400	0	52.3
	Region 9 PRG (µg/L)	1100	36000	15	2600	4.8	SN	1000	11000	NS	880	11000	NS	NS	11000	1100	36000	15	0.045	2600	NS	1000	730	1800	11000	NS	088	730	3.6	SN	NS	NS	2.4	11000
	MCL (µg/L)	SN	200	9	2000	NS	SN	SN	300	SN	50	SN	SN	NS	5000	SN	200	9	10	2000	NS	NS	NS	NS	300	NS	99	NS	SN	SN	NS	NS	2	5000
ınual Repor	Jul-10 Level (µg/L)	0.098 U	50 U	2 U	97.9	0.92 JB	135000	10	50 U	54200	624	0.81,0%	2440	12700	10 U	0.1 U	50 U	2 U	5 U	22.4	89400	10.64 J	5 U	0.1 U	4440	43100	1750	10 U	NT	0.68 U	2180	. 8400	10	10 U
itoring Program 2010 Annual Report	Jan-10 Level (µg/L)	0.23 UJ	100 U	0.35 UJ	102	00000000000000000000000000000000000000	146000	0.72 J	100 U	58400	681	10	2350	13300	10 U	0.2 UJ	100 U	0.73 J	-10	44.1	97500	1 U	5 U	0.5 U	2610	42600	1350	2.9 J	NT	0.42 J	2190 J	12100	0.18 UJ	57.5
		0.2 U	203	0.53 J	117	10	144000	0.61 B	316	57800	646	1 U	2470	13200	67.9	0.21 U	76.8 J	0.66 J	11.3	40.9	97400		5 U	0.53 U	2970	42900	1360	4.5 J	NT	3.2 U	2420	11700	0.35 J	47.7
Facility-Wide Groundwater	July-09 Level (µg/L) Oct-09 Level (µg/L)	0.21 U	100 U	0.13 J	119	1.3 U	139000	1 U L	100 U	55600	626	1 U	2340 J	12900	10 U	0.21 U	100 U	2.1	8.7	44	£ 00976	10	· 2.2 J	0.52 U	2120	42800	1270 J	4.2 J	0.042 July 240 July 2	· 3.2 U	2920	13200	2 U	333 J
RVAAP Facility-Wi	April-09 Level (µg/L)	0:022 °C	100 U	1.3 J	142	1 m	153000	n 1	100 U	61800	C 269	1 U	2620 J	14900	6.4 UJ	14 - 14 - 10:028 - 14	100 U	2.5 J	8.7	37.7	93700	14440 N 0.323 - 3	9.7	A. M. S. A. A. D. O. O. S. W. F. A. S.	2120 J	44800	1660 J	24.8 UJ	NT	3.1 U	3650 J	17500	2 U	15.4 U
RV	Analyte	1,3,5-Trinitrobenzene	Auminum	Antimony	Banum	bis (2-Ethylhexyl) phthalate	Calcium	Carbon disulfide	Iron	Magnesium	Manganese	Phenol	Potassium	Sodium	Zinc	1,3,5-Trinitrobenzene	Aluminum	Antimony	Arsenic	Banum	Calcium	Carbon disulfide	Cobalt	HMX	Iron	Magnesium	Manganese	Nickel	Perchiorate ²	PETN	Potassium	Sodium	Thallium	Zinc
	Well Number								100-MILL00																SCFmw-005									
(i	Area							Sharon	Congiomerate															ť	Conclomerate									

FWGWMP 2010 Annual Report Final

March 2011

6

цо
al Re
0 Annual
I Ani
5
23
ram
Prog
p
Ē
붠
5
Σ
/ater
융
ŝ
<u>n</u> D
Ū
/ide
ş
cility
ΡFa
<u>م</u>
Z
RVAAP

Facility-Wide Region 9 PRG Background		NS 1100 +	MS 0.66 *	NS 5500 +	200 36000 0	6 15 0	10 0.045 0	2000 2600 256	NS 0.037 +	NS 4.8 +	NS NS 53100	NS 1000 +	NS 730 0	300 11000 1430	NS NS 15000	50 880 1340	+	NS NS 5770		NS NS 51400	NS 2.4
Jul-10 Level		0.11 N	10.18 J 👔 N	PULLER 4.9 [JB] N	50 U 2	2 U	12.8	107 20	A 0.0213.33	1.000 (0.000) N	58300 h	2 7	5 U	332 3	16300 N	153 5	0.1	5740 N		10900 N	
Jan-10 Level (µg/L	(0.2 UJ	0.51 U	10 U	100 U	0.86 J	13.8	127	0.05 U	ין נ	67400	Press, Contra 0154 (Up)	5 U	569	17600	190	0.1 U	1670		10400	10400 0.18 UJ
·	Oct-09 Level (µg/L)	0.2 U	0.5 U	10 U	21.3 J	5 Ú	14.1	191	0.5 U	1 U	64400 J	1 U	5 U	613	16500	121	()	1390 J		9970	9970 0.6 JB
	July-09 Level (µg/L) Oct-09 Level (µg/L	0.2 U	0.51 U	10 UJ	100 U	0.98 J	12.6	118	0.05 U	1:1 U	64300	1 U	5 U	417	16500	121	0.1 U	1470 J	0000	8900	9900 0.15 J
April-09 Level		The second s	0.48 U	10 U	100 U	1 1 1	12.9	112	0.05 U	3.6 U	63200	10	2.2 J	318	16500	176 J	0.1 U	1430	0770	3440	2 U
	Analyte	1,3,5-Trinitrobenzene	4-Nitrotoluene	Acetone	Aluminum	Antimony	Arsenic	Banum	beta-BHC	bis(2-Ethylhexyl) phthalate	Calcium	Carbon disulfide	Cobait	iron	Magnesium	Manganese	Nitrate-Nitrite ¹	Potassium	Coolium	oodiditii	Thallium
	Well Number										SCEmu-O06	000-4011 1000									
	Area										Sharon	Conglomerate									

NS = no standard NT = not tested

All inorganics are filtered, all organics are not filtered

* There are no background levels for organic constituents

J = estimated result. Results have been qualified "J" For more details refer to Data Verification/Validation Reports in

in the FWGWMP October 2009 and January, and July 2010 Sampling Reports

B = organic or inorganic analysis when the analyte is found in the method blank or any of the field blanks

R = rejected data

U = analyzed but not detected at or above the reporting limit

Bold = inorganic constituent detected above Facility-Wide background levels

Italics = inorganic constituent detected below the Facility-Wide background levels

Shaded boxes indicate any contituent, which does not have a background value, detected above the reporting limit.

1 = mg/l

2 = the Region 9 PRG of 3.6 µg/L for the July 2008 event. There is no MCL for perchlorate.

On February 18, 2005 the USEPA establised a Drinking Water Equivalent Levei (DWEL) for perchlorate at 24.5 µg/L

יז 2011 (

								**** -
Area	Well Number	Monitored Zone	Analyte	Oct-09 Level (µg/L)	Jan-10 Level (µg/L)	Jul-10 Level (µg/L)	MCL (µg/L)	Region 9 PR (µg/L.)
Atlas Scrap Yard	ASYmw-001	Bedrock	Iron	631 J	50.0 U	NT	300	11000
	ASTRIA-OUT	Detrook	Manganese	1040	1140	NT	50	880
			Arsenic	8,6	5.0 U	NT	10	0.045
Atlas Scrap Yard	ASYmw-003	Bedrock	Iron	2580	50.0 U	NT	300	11000
			Manganese	529	45	NT	50	880
			Arsenic	28	23.2	NT	10	0.045
Atlas Scrap Yard	ASYmw-004	Bedrock	Iron	1940 J	1490 J	NT	300	11000
			Manganese	201	211	NT	50	880
Atlas Scrap Yard	ASYmw-005	Bedrock	Manganese	618	207	NT	50	880
			Arsenic	. 17	16.1	NT	10	0.045
Atias Scrap Yard	ASYmw-006	Bedrock	Iron	1360	1120 J	NT	300	11000
			Manganese	177	169	NT	50	880
Atlas Scrap Yard	ASYmw-007	Unconsolidated	Manganese	205	188	NT	50	880
		1	Aluminum	6300	1160 J	NT	200	36000
			Arsenic	26.4	10.3 J	NT	10	0.045
Atlas Scrap Yard	ASYmw-008	Unconsolidated	tron	17000 J	3210 J	NT	300	11000
			Manganese	412	64.7	NT	50	880
			Aluminum	142	496	NT	200	36000
Atlas Scrap Yard	ASYmw-009	Bedrock	Iron	323 J	811 J	NT	300	11000
			Manganese	607	624	NT	50	880
			Aluminum	50.0 U	1160	NT	200	36000
			Arsenic	49.8	148	NT	10	0.045
Atlas Scrap Yard	ASYmw-010	Unconsolidated	Iron	2530	6760 J	NT	300	11000
			Manganese	139	96.2	NT	50	880
			Arsenic	11.5	NT	NT	10	0.045
Demosition Area 2	DETmw-003	Unconsolidated	Iron	1440	NT	NT	300	11000
	22000 000		Manganese	266	NT	NT	50	880
Load Line 10	LL10mw-001	Bedrock	Chloroform	0.26 J	NT	NT	NS	0.17
Load Line 10	LL10mw-002	Bedrock	bis(2-Ethyihexyi) phthalate	8.1 J	ТИ	NT	NS	4.8
Loud Bho to	EETOINI 000		Carbon tetrachloride	2.8	NT	NT	5	0.17
Load Line 10	LL10mw-003	Bedrock	Chloroform	0.26 J	NT	. NT	NS	0.17
Load Line 11	LL11mw-001	Unconsolidated	Manganese	960	NT	NT	50	880
	LETTAIN OUT	Onconsosidated	bis(2-Ethylhexyl) phthalate	8.6 J	NT	NT	NS	4.8
Load Line 11	LL11mw-003	Unconsolidated	Manganese	498	NT	NT	50	880
Load Line 11	LL11mw-004	Unconsolidated	Manganese	272	NT	NT	50	880
LOAU LHIB II	LLI film 004	Unconsociated	bis(2-Ethylhexyl) phthalate	0.95 J	10	NT NT	NS	4.8
Load Line 11	LL11mw-009	Unconso5dated		706	856	NT	50	880
LYNN LNG	LET HIM-003	OTTO INCOME VALUE	Tetrachloroethene	4,1	3.8	NT	5	0.1
Load Line 11	LL11mw-010	UnconsoSdated	Manganese	430	NT	NT	50	880
LUAU LANG II		Onconsolated	Arsenic	14:4	NT	NT	10	0.045
Load Line 6	LL6mw-005	Bedrock	Iron	946 J	NT	NT	300	11000
	ELORIW-000	Deviver	· · · · · · · · · · · · · · · · · ·	501	NT	-NT	50	880
Load Lina P	L1.6mw-006	Unconsolidated	Manganese Iron	363 J	NT	NT	300	11000
Load Line 6	LL6mw-006			303 5	NT	NT	50	880
Load Line 6	LLOHIW-007	Bedrock	Manganese 1,1-Dichloroethene (total)	8.4	NT NT	NT	7	340
lond line 7	117000-004	Bedrock		8360 J	NT	NT	300	11000
Load Line 7	LL7mw-001	Deglock	Iron	+			50	880
Land Line 7	11.7	Deducali	Manganese	450	NT	NT		880
Load Line 7	LL7mw-002	Bedrock	Manganese	311	NT NT	NT NT	50 NG	
1	117	0, 2, -3;	bis(2-Ethylhexyl) phthalate	10	NT NT	NT NT	NS	4.8
Load Line 7	LL7mw-003	Bedrock	Iron	17200	NT	NT	300	11000

Table 4-5. Exceedances of MCLs and Region 9 PRGs

Area	Well Number	Monitored Zone	Analyte	Oct-09 Level (µg/L.)	Jan-10 Level (µg/L)	Jul-10 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)
Load Line 7	LL7mw-004	Bedrock	Iron	17000 J	NT	NT	300	11000
			Iron	1290 J	NT	NT	300	11000
Load Line 7	LL7mw-005	Bedrock	Manganese	2320	NT	NT	50	880
			Iron	2880 J	NT	NT	300	11000
Load Line 7	LL7mw-006	Bedrock	Manganese	1240	NT	NT	50	880
			RDX	0.78 J	NT	NT	NS	0.61
			Iron	942	NT	NT	300	11000
Load Line 8	LL8mw-001	Unconsolidated	Manganese	125	NT	NT	50	880
			Arsenic	6.6 J	NT	NT	10	0.045
Load Line 8	L1.8mw-002	Unconsolidated	Iron	3850	TM	NT	300	11000
			Manganese	333	NT	NT	50	880
			Arsenic	4.1 J	NT	NT	10	0.045
Load Line 8	LL8mw-003	Unconsolidated	Iron	929	NT	NT	300	11000
· ·- ···· ·			Manganese	677	NT	NT	50	880
Load Line 8	1.1.8mw-004	Unconsolidated	<u>+</u>	3,3 J	NT	NT	10	0.045
			lion	1180	NT	NT	300	11000
Load Line 8	LL8mw-005	Bedrock	Manganese	2690	NT	NT	50	880
Load Line 9	LL9mw-001	Bedrock	bis(2-Ethylhexyl) phthalate	5.3 J	NT	NT	NS	4.8
Load Line 9	LL9mw-002	Bedrock	bis(2-Ethylhexyl) phthalate	5.6 J	NT	NT	NS	4.8
Load Line a	LCOIMOUL	Deditock	1000	3240		NT	300	11000
Load Line 9	LL.9mw-003	Bedrock		111	NT NT	NT	50	680
		-	Manganèse	10600	NT	NT	300	11000
Load Line 9	LL9mw-004	Bedrock	fron				50	880
			Manganese	2290	NT	NT	300	
Load Line 9	LL9mw-006	Bedrock	Iron	1930	NT	NT	l	11000
			Manganese	677	NT	NT	50	880
Load Line 9	LL9mw-007	Bedrock	Iron	9900	NT	NT	300	11000
			Manganese	1050	NT	NT	50	880
Ramsdell Quarry			Arsenic	71.4	NT	NT	10	0.045
Landfill	RQLmw-007	Bedrock	Iron	23900 J	NT	NT	300	11000
			Manganese	1740	NT	NT	50	880
			alpha-BHC	0.023 J	NT	NT	NS	0.011
Ramsdell Quarry	RQLmw-008	Bedrock	Arsenic	29.9	NT	. NT	10	0.045
Landfill			Iron	49600 J	NT	NT	300	11000
			Manganese	408	NT	NT	50	880
Ramsdell Quarry			Arsenic	8.9	NT	NT	10	0.045
Landfill	RQLmw-009	Bedrock	Iron	5280 J	NT	NT	300	11000
			Manganese	1260	NT	NT	50	880
Load Line 1	LL1mw-064	Unconsolidated	101	NT	NT	517	300	11000
Load Line 1	LL1mw-065	Unconsolidated		NT	NT	256	50	880
Load Line 1	LL1mw-078	Bedrock	Manganese	NT	NT	71	50	880
Load Line 1	LL1mw-080	Bedrock	bela-BHC	NT	NT	0.048 J	NS	0.037
			RDX	NT	NT	88 J	NS	0.61
			Iron	NT	NT	4200	300	11000
Load Line 1	LL1mw-081	Bedrock	Manganese	NT	NT	1830	50	880
			RDX	NT	NT	1	NS	0.61
Load Line 1	LL1mw-082	Bedrock	Iron	NT	NT	5150	300	11000
		LUVAVOR	Manganese	NT	NT	1080	50	880
			2,4,6-Trinitrolouene	NT	NT	5 J	NS	2.2
Load Line 1	L1.1mw-083	Bedrock	2-Nitrotoluene	NT	NT	0.18 J	NS	0.049
-200 2010 1	LL IN111°000	DEVIDER	Aluminum	NT	NT	813	200	36000
		1	Manganese	NT	NŤ	497	50	880

.

ĺ

(_____

(Area	Well Number	Honitored Zone	Analyte	Oct-09 Level (µg/L)	Jan-10 Level (µg/L)	Jui-10 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)
				2,4,6-Trinitrolouene	NT	NT	9.2 J	NS	2.2
			1	Aluminum	NT	NT	335	200	36000
	Load Line 1	LL1mw-084	Bedrock	beta-BHC	NT	NT	0.26 J	NS	0.037
				Manganese	NT	NT	196	50	880
			1	RDX	NT	NT	0.76 J	NS	0.61
				Iron	NT	NT	435	300	11000
	Load Line 1	LL1mw-085	Bedrock	Manganese	NT	NT	564	50	880
		· · · · · · · · · · · · · · · · · · ·		Arsenic	NT	NT	29.4	10	0.045
	Load Line 12	LL12mw-088	Unconsolidated	lron	NT	NT	3890	300	11000
				Manganese	NT	NT	428	50	880
				Arsenic	. NT	NT	9.7	10	0.045
	Load Line 12	LL12mw-107	Unconsolidated	Iron	NT	NT	2640 J	300	11000
				Manganese	NT	NT	242	50	880
		1		สมเกมา	NT	NT	103000	200	36000
				Arsenic	NT	٨T	249	10	0.045
				BeryElum	NT	NT	5	4	73
				Chromium	NT	NT	163	100	110
	Load Line 12	LL12mw-113	Unconsolidated	lron	NT	NT	354000	300	11000
				Lead	NT	NT	127	15	NS
				Manganese	NT	NT	5730	50	880
				Vanadium	NT	NT	179	NS	36
				Aluminum	NT	NT	1960	200	36000
				Arsenic	NT	NT	47.5	10	0.045
	Load Line 12	LL12mw-128	Unconsolidated	iron	NT	NT	6890 J	300	11000
				Manganese	NT	NT	242	50	880
				Arsenic	NT	NT	21.4	10	0.045
1				beta-BHC	NT	NT	0.1 J	NS	0.037
(Load Line 12	LL12mw-153	Unconsolidated	Iron	NT	٨T	3420	300	11000
N _e				Manganese	NT	NT	188	50	880
		1		Arsenic	NT	NT	16.2	10	0.045
	Load Line 12	LL12mw-154	Unconsolidated	Iron	NT	NT	1760	300	11000
				Manganese	NT	NT	.85.9	50	880
				Arsenic	NT	NT	25.6	10	0.045
				Benzo(a)anthracene	NT	NT	0.23	NS	0.092 *
				Benzo(b)livoranthene	NT	NT	0.22	NS	0.092
				bis(2-Ethylhexyl) phthalate	NT	NT	4.9 JB	NS	4.8
	Load Line 12	LL12mw-182	Unconsolidated	Dibenzo(a,h)anthracene	NT	NT	0.21	NS	0.0093
				Indeno(1,2,3-cd)pyrene	NT	NT	0.22	NS	0.092
				Iron	NT	NT	768 J	300	11000
				Manganese	NT	NT	43.7	50	880
				Arsenic	NT	МТ	29.8	10	0.045
	Load Line 12	LL12mw-183	Unconsolidated	Heptachior	NT	NT	0.027 J	0.4	0.015
				Iron	NT	NT	867	300	11000
				Arsenic	NT	NT	15.8	10	0.045
	Load Line 12	LL12mw-184	Unconsolidated	Iron	NT	NT	2300 J	300	11000
				Manganese	NT	NT	469	50	880
		11.40 405	Hannah Patrick	Manganese	NT	NT	1380	50	880
	Load Line 12	LL12mw-185	Unconsolidated	Nitrate-Nitrite	NT	NT	160 J	1	1
	Load Line 12	LL12mw-186	Unconsolidated	Manganese	NT	NT	275	50	880
	Lond Line 10	11 40 407	Honoralidated	Manganese	NT	NT	2020	50	880
	Load Line 12	LL12mw-187	Unconsolidated	Nitrate-Nitrite ¹	NT	NT	1400	1	1

	· · · · ·			1				
Area	Well Number	Monitored Zone	Analyte	Oct-09 Level (µg/L.)	Jan-10 Level (µg/L)	Jul-10 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)
Load Line 12	LL12mw-188	Unconso@dated	Heptachlor	NT	NT	0.017 J	0.4	0.015
	ECT2000	Unconso_dated	Manganese	NT	NT	433	50	880
			Aluminum	NT	NT	298	200	36000
Load Line 12	LL12mw-189	Unconsolidated	Arsenic	NT	NT	5.1	10	0.045
LOAU DHO 12	CE12/109	DISCONSULVATED	lron	NT	NT	1320 J	300	11000
			Manganese	NT	NT	310	50	880
			Arsenic	זא	NT	21.3	10	0.045
Load Line 12	LL12mw-242	Unconsolidated	Iron	NT	NT	833	300	11000
			Manganese	NT	NT	56	50	880
Lood Line 10	11.10040	tinggagetidated	Arsenic	NT	NT	6.5	10	0.045
Load Line 12	LL12/nw-243	Unconsolidated	Manganese	. NT	NT	281	50	880
			munimutA	NT	NT	33700	200	36000
			Arsenic	NT	NT	51.1	10	0.045
			Iron	NT	NT	78800 J	300	11000
Load Line 12	LL12mw-244	Unconsolidated	Lead	NT	NT	26	15	NS
			Manganese	NT	NT	955	50	880
	1		Vanadium	NT	NT	49	NS	36
			Arsenic	NT	NT	9.1	10	0.045
Load Line 12	LL12mw-245	Unconsolidated	Manganese	NT	NT	103	50	880
	1		Arsenic	NT	NT	29.7	10	0.045
Load Line 12	LL12mw-246	Unconsolidated	Iron	NT	NT	1190 J	300	11000
	ECTION ETV	ChookSpace	Manganese	NT	NT	74.5	50	880
			Arsenic	NT	NT	6.4	10	0.045
Load Line 2	LL2mw-059	Bedrock	Iron	NT	NT	7090	300	11000
Load Line L	LC21111-000	Detritor	Manganese	NT	NT	5530	50	880
· ·			Arsenic	NT	NT	11.2	10	0.045
Load Line 2	LL2mw-261	Bedrock	liton	NT	NT .	2290	300	11000
	LESUM-201	Deutocx		NT	NT	375	50	880
	11.0 000	Dadaati	Manganese				50	880
Load Line 2	LL2mw-262	Bedrock	Manganese	NT	NT	77.4	10	0.045
	11.0	Dudauta	Arsenic	NT	NT	15.4	 	
Load Line 2	LL2mw-263	Bedrock	lron	NT	NT	4670	300	11000 880
	-		Manganese	NT	NT	1450	50	
oad Line 2	LL2mw-265	Bedrock	[rón	NT	NT	614	300	11000
	-		Manganese	NT	NT	1430	50	880 -
			Aluminum	NT	NT	1050	200	36000
			Arsenic	NT	NT	5.6	10	0.045
Load Une 2	LL2mw-268	Bedrock	bis(2-Ethylhexyl) phthalate	NT	NT	5.8 JB	NS	4.8
			Iron	NT	NT	5080	300	11000
<u> </u>			Manganese	NT	NT	1390	50	880
	· · ·		Iron	NT	NT	1240	300	11000
Load Line 2	LL2mw-267	Bedrock	Manganese	NT	NT	622	50	880
			RDX	Nĩ	NT	1.1	NS	0.61
.oad Line 2	LL2mw-269	Bedrock	Iron	NT	NT	5990	300	-11000
			Manganese	NT	NT	1540	50	880
Load Line 2	LL2mw-270	Bedrock	Iron	NT	NT	1420	300	11000
	ceannerv	PAGINAN	Manganésé	NT	NT	384	50	880
Load Line 3	LL3mw-232	Bedrock	Arsenic	NT	NT	3.5 J	10	0.045
	LL08887204	DEVIVER	Manganese	NT	NT	308	50	880
Load Line 3	LL3mw-234	Bedrock	Iron	NT	NT	1210	300	11000
	LL3(1))-234	DOUIDOK	Manganese	NT	NT	2190 J	50	880
Load Line 3	LL3mw-236	Bedrock	Manganese	NT	NT	235	50	880

ĺ

Area	Well Number	Monitored Zone	Analyte	Oct-09 Level (ug/L)	Jan-10 Level (µg/L)	Jul-10 Level (µg/L)	MCL (µg/L)	Region 9 PRG (µg/L)
			bis(2-Ethylhexyl) phthalate	NT	NT	8.7 JB	NS	4.8
			Carbon tetrachloride	NT	NT	0.37 J	5	0.17
Load Line 3	LL3mw-239	Bedrock	Chloroform	NT	NT	0.52 J	NS	0.17
			Manganese	NT	NT	101	50	880
		1	RDX	NT	NT	1.7	NS	0.61
		1	bis(2-Ethylhexyl) phthalate	NT	NT	8.2 JB	NS	4.8
Load Line 4	LL4mw-196	Unconsolidated	Iron	NT	NT	393	300	11000
			Manganese	NT	NT	183	50	880

٠

.

Notes:

NS = no standard NT = not tested

All inorganics are filtered, all organics are not filtered

* There are no background levels for organic constituents

J = estimated result. Results have been qualified "J" For more details refer to Data Verification/Validation Reports in

in the FWGWMP October 2009 and January, and July 2010 Sampling Reports

B = organic or inorganic analysis when the analyte is found in the method blank or any of the field blanks

R = Rejected data

U = analyzed but not detected at or above the reporting limit

Bold = inorganic constituent detected above MCI or Region 9 PRG

1 = mg/l

Та	able 4-6. E	Exceedance	es of MCLs	and Region	9 PRGs for	the Sharon	Conglomer	ate vvei	IS
Area	Well Number	Analyte	April-09 Level (µg/L)	July-09 Level (µg/L)	Oct-09 Level (µg/L)	Jan-10 Level (µg/L)	Jul-10 Level (µg/L.)	MCL (µg/L)	Region 9 PRG (µg/L)
		Aluminum	100 U	100 U	1720	50 U	50 U	200	36000
Sharon	SCFmw-001	Arsenic	3.3 J	5 U	11.7	15.2	13.1	10	0.045
Conglomerate	3011111-001	Iron	6850 J	2960	4760	1320	814	300	11000
		Manganese	767 J	449 J	336	261	194	50	880
Sharon		Arsenic	12,2	17	18.6	20.6	12.5	10	0.045
Snaron Conglomerate	SCFmw-002	Iron	100 U	216	645	730	233	300	11000
		Manganese	82.1 J	102 J	92	96.3	67.3	50	880
Sharon		Arsenic	3.7 J	5 U	5 U	5 U	5 U	10	0.045
Conglomerate	SCFmw-003	lion	187 U	491	610	614	390	300	11000
v		Manganese	269 J	271 J	248	243	237	50	880
Sharon		Aluminum	100 U	100 U	203	100 U	50 U	200	36000
Conglomerate	SCFmw-004	Iron	100 U	100 U	316	100 U	50 U	300	11000
·		Manganese	697 J	626	646	681	624	50	880
Sharon		Arsenic	8.7	8.7	11.3	10	5 U	10	0.045
Conglomerate	SCFmw-005	Iron	2120 J	2120	2970	2610	4440	300	11000
J		Manganese	1660 J	1270 J	1360	1350	1750	50	880
Sharon		Arsenic	12.9	12.6	14.1	13.8	12.8	10	0.045
Conglomerate	SCFmw-006	lron	318	417	613	569	332	300	11000
J		Manganese	176 J	171	171	190	153	50	880

Table 4-6. Exceedances of MCLs and Region 9 PRGs for the Sharon Conglomerate Wells

Notes:

(.....

NS = no standard NT = not tested

All inorganics are filtered, all organics are not filtered

* There are no background levels for organic constituents

J = estimated result. Results have been qualified "J" For more details refer to Data Verification/Validation Reports

B = organic or inorganic analysis when the analyte is found in the method blank or any of the field blanks

R = Rejected data

U = analyzed but not detected at or above the reporting limit

Bold = inorganic constituent detected above the MCL or Region 9 PRG

APPENDIX E

Key Personnel Certification

Environmental Quality Management, Inc.

1800 Carillon Boulevard Cincinnati, Ohio 45240 (513) 825-7500 FAX (513) 825-7495 www.eqm.com

APPENDIX E: KEY PERSONNEL CERTIFICATIONS

Environmental Quality Management, Inc. follows all required Medical Surveillance protocols in accordance with 29CFR 1910.120(f), Hazardous Waste Operations and Emergency Response, for all appropriate employees. Specifically, the below listed employees have completed their annual Medical Surveillance, as noted, and are qualified.

<u>Name</u>	Date of Medical Surveillance
Scott Spesshardt	8/29/11
John Miller	8/31/11
Erik Corbin	8/10/11
Colleen Lear	scheduled – October 2011

If you have any questions please contact me at 513-742-7230.

Sincerely,

D. Leah Columbus Human Resources Manager

	ual refresher training course entitled Response (A HAZWOPER Regulations). he American Board of Industrial 6 Continuance of Certification Professionals	Signature of Instructor
John Miller	tisfactorily passed an exam and completed an 8-hour Supervisor annual refresher training course enti Hazardous Waste Operations and Emergency Response meeting the requirements identified in Title 29 CFR 1910.120 (OSHA HAZWOPER Regulations). his course has been awarded 1.34 Industrial Hygiene CM Points by the American Board of Industrial Hygiene-Approval Number 13334. This course is also eligible for .66 Continuance of Certification (COC) points from the Board of Certified Safety Professionals	Course Number 1002, Awarded 8 PDH's Florida Board of Professional Engineers CEU Provider Number 0004284 www.nationalenvironmentaltrainers.com
	 satisfactorily passed an exam and completed an 8-hour Supervisor annual refresher training course entitled Hazardous Waste Operations and Emergency Response meeting the requirements identified in Title 29 CFR 1910.120 (OSHA HAZWOPER Regulations). This course has been awarded 1.34 Industrial Hygiene CM Points by the American Board of Industrial Hygiene-Approval Number 13334. This course is also eligible for .66 Continuance of Certification (COC) points from the Board of Certified Safety Professionals 	NATIONAL NATIONAL RAVIADNMENTAL THAINERS, Inc. November 12, 2010

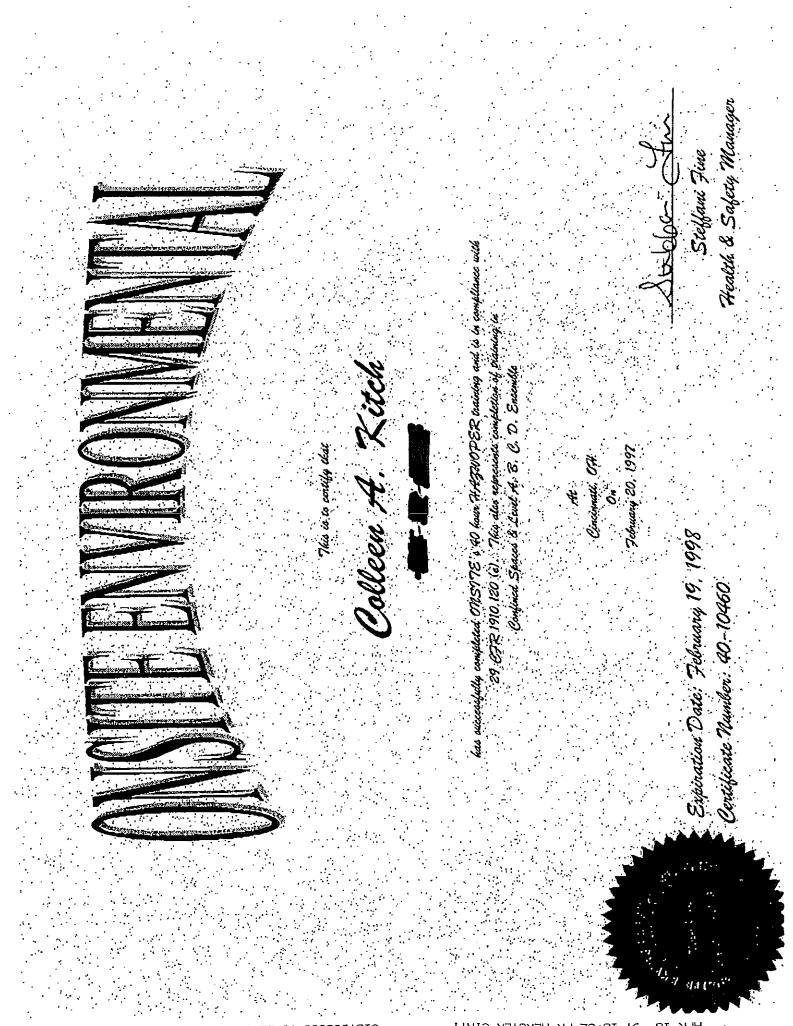
THE NATIONAL ENVIRONMENTAL TRAINERS

John F. Molie Director, Safety & Training John Miller has completed the OSHA 40-Hour Personnel Protection & Safety Course Certificate of Completion PEI Associates, Inc. This Certifies That Presented by 8 <u>May 18-21, 1989</u> Date

24

Heartsaver® First Aid CPR AED	John Miller John Miller This card certifies that the above individual has successfully completed the objectives and skills evaluations in accordance with the curriculum of the AHA Heartsaver First Aid CPR AED Program. Optional completed modules are those NOT marked out. Child CPR AED infant CPR Written test OF AED Program. Optional completed modules are those NOT marked out. Child CPR AED infant CPR Written test Issue Date 06/2011 Recommended Renewal Date
₩≝⊿&⊤ Hearts First A	This card certifies and skills evaluatic CPR AED Program Chi Ssue Date

•


KHARTSAVIIS FIRST 210 COR AND	Center Name NIKENS IVA 200	dfy. 我pemas, K	Course Location NKEMS	Instructor Name		© 2011 American Heart Association Tamparing with this card will alter its appoarance. 90-1515
82,58 82,58 2005	Cen Hait	6 륑		Nam	Hold Sign	© 201

.

•

.

	AINERS		fresher training course entitled Response R 1910.120.	he American Board of Industrial 6 Continuance of Certification rofessionals	Signature of Instructor		Clay A. Bednarz, MS, RPIH
THE NATIONAL	ENVIRONMENTAL TRAINERS	Colleen Lear	bassed an exam and completed an 8-hour annual refresher train. Hazardous Waste Operations and Emergency Response meeting the requirements identified in Title 29 CFR 1910.120.	a awarded 1.34 Industrial Hygiene CM Points by the American Board of Industrial Number 13334. This course is also eligible for .66 Continuance of Certification (COC) points from the Board of Certified Safety Professionals		Course Number 1001, Awarded 8 PDH's Florida Board of Professional Engineers CEU Provider Number 0004284	www.nationalenvironmentaltrainers.com
HL	ENVIRON		has satisfactorily passed an exam and completed an 8-hour annual refresher training course entitled Hazardous Waste Operations and Emergency Response meeting the requirements identified in Title 29 CFR 1910.120.	This course has been awarded 1.34 I Hygiene-Approval Number 13334. (COC) points fro		NATIONAL ENVIRONMENTAL TRAINERS, Inc.	June 15, 2011

P.02764

2734370863 10 852432

HPR 18 '97 16:02 FR REROTEK CINTI

			•••••
D A A A A A A A A A A A A A A A A A A A	American Heart Association	cessifully completed the objectives ultum of the AHA Heartsaver First Aid those NOT marked out: Written test OG/2013 Recommended Renewal Date	·
	Heartsaver® First Aid CPR AED	Collect Lear This card cartifies that the above individual has successfully completed the objectives and skills evaluations in accordance with the curriculum of the AtA Heartsaver First Ad CPN AED Frogram. Optional completed modules are those NOT marked out: Data CPR AED Infant CPR MIT Infant CPR MIT Infant test OS/2011 OS/2013 Issue Date For a Compandia Renewal Date	
	Hear First	This card cert and skills eva CPR AED Prog Issue Date	

					90-1815		
	511		Inst ID # \$21346-		Tempening with this card will alter its appearance.		
AID CPR TCID# KY1346	572,4		Inst ID # TCCKY1346		alter its a		
	859-572,4511	S	ğ		s card will		
NKEMS		NKEMS	==		ig with thi		
NKEMS	<u> </u>	P	Sand		Tamperir		
С Ц	$F_{M_{\rm T}}$ hoggas, KY 4107 $\underline{p}_{\rm F}$		Laura Randall		© 2011 American Heart Association		
a 0	Ţhọn		-Te		Heart Ass		
g Name	цт. Т	a u	ctor	r's ture	American		
REAK BOAVEN Training Center Name	<u>5 हा</u>	Course Location	Instructor Name	Holder's Signature	© 2011		
			-		•		
						·/ .	
						· · · ·	

L LAINERS		fresher training course entitled Response R 1910.120.	ne American Board of Industrial 5 Continuance of Certification rofessionals	Signature of Instructor	2	Clay A. Bednarz, MS, RPIH
THE NATIONAL ENVIRONMENTAL TRAINERS	Erik Corbin	has satisfactorily passed an exam and completed an 8-hour annual refresher training course entitled Hazardous Waste Operations and Emergency Response meeting the requirements identified in Title 29 CFR 1910.120.	n awarded 1.34 Industrial Hygiene CM Points by the American Board of Industrial l Number 13334. This course is also eligible for .66 Continuance of Certification (COC) points from the Board of Certified Safety Professionals		Course Number 1001, Awarded 8 PDH's Florida Board of Professional Engineers CEU Provider Number 0004284	www.nationalenvironmentaltrainers.com
ENVIRON		has satisfactorily passed an exam Hazardous V meeting the req	This course has been awarded 1.34 Hygiene-Approval Number 1333 (COC) points fi		NATIONAL ENVIRONMENTAL TRAINERS, Inc.	· May 11, 2011

Certificate of Achievement awarded by ENVIRONMENTAL RESOURCE TRAINING CENTER at THE UNIVERSITY OF FINDLAY THE UNIVERSITY OF FINDLAY to ERIK C. CORBIN	For Successful Completion. Of OSHA 40-HOUR SAFETY TRAINING WORKSHOP (FULFILLS THE REQUIREMENTS OF 29 CFR 1910-120 COVERING MASTE OPERATIONS) APRIL 23, 1994 APRIL 23, 1994 Director of Hazardous Materials Program Materials Program
---	---

maas q04:20 70 ° (

4194342303

Heartsaver® First Aid CPR AED	Erik Corbin This card certifies that the above individual has successfully completed the objectives and skills evaluations in accordance with the curriculum of the AHA Heartsaver First Aid CPR AED Program. Optional completed modules are those NOT marked out Child CPR AED Infaut CPR Written test OB/2011 OB/2013 Infaut CPR MED Infaut CPR Memory CPR AED Infaut CPR Memory CPR AED Infaut CPR Written test OB/2011 OB/2013 Infaut CPR Memory CPR AED Infaut AED INFaut CPR AED INFAUT AED	· ·	

1		ICIU# KY1346
Course Location	_{陆y,} 我gnas, KY 410 <u>7</u> ,5	859-572,4511
	NKEMS	S
Instructor Name	aura Randall	Inst. ID # TCCKY1346
Holder's Signature		
Contraction I fand Accordition	i –	Tampering with this card will alter its appearance. 90-1815

.

L	AINERS		fresher training course entitled Response R 1910.120.	he American Board of Industrial 6 Continuance of Certification Professionals	Signature of Instructor	2	Clay A. Bednarz, MS, RPIH
HE NATIONAL	ENVIRONMENTAL TRAINERS	Scott Spesshardt	bassed an exam and completed an 8-hour annual refresher train Hazardous Waste Operations and Emergency Response meeting the requirements identified in Title 29 CFR 1910.120.	his course has been awarded 1.34 Industrial Hygiene CM Points by the American Board of Industri Hygiene-Approval Number 13334. This course is also eligible for .66 Continuance of Certification (COC) points from the Board of Certified Safety Professionals		Course Number 1001, Awarded 8 PDH's Florida Board of Professional Engineers CEU Provider Number 0004284	www.nationalenvironmentaltrainers.com
HT	ENVIRON		has satisfactorily passed an exam and completed an 8-hour annual refresher training course entitled Hazardous Waste Operations and Emergency Response meeting the requirements identified in Title 29 CFR 1910.120.	This course has been awarded 1.34 Industrial Hygiene CM Points by the American Board of Industrial Hygiene-Approval Number 13334. This course is also eligible for .66 Continuance of Certification (COC) points from the Board of Certified Safety Professionals		NATIONAL ENVIRONMENTAL TRAINERS, Inc.	September 02, 2011

۰.

•

•

· .

tificate of Completion	This Certifies That	Scott A. Spesshardt	has completed the 40-hour Health and Safety training course in accordance with 29 CFR 1910.120.	Presented by:	PSARA Technologies, Inc.	na N. S.	TrainingDirector
Certific	This	Sco	has completed the 40-1 in accorda		Tecl	December 5-8, 1988	Date

• `

• .•