DRAFT FACILITY-WIDE GROUNDWATER MONITORING PROGRAM RVAAP-66 FACILITY-WIDE GROUNDWATER REPORT ON THE MAY 2014 SAMPLING EVENT

FORMER RAVENNA ARMY AMMUNITION PLANT PORTAGE AND TRUMBULL COUNTIES, OHIO

August 22, 2014

GSA Contract Number GS-10F-0293K Delivery Order W912QR-11-F-0266

Prepared for

U.S. Army Corps of Engineers 600 Martin Luther King Jr. Place Louisville, Kentucky 40202

Prepared by

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati, Ohio 45240

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

penalty for failing to comply with a collection of in PLEASE DO NOT RETURN YOUR FOI	formation if it does not display a currently val RM TO THE ABOVE ADDRESS.	lid OMB control numb	oer.	
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)
4. TITLE AND SUBTITLE		[5a. CON	I NTRACT NUMBER
		 -	5b. GR/	ANT NUMBER
		Ţ	5c. PRO	GRAM ELEMENT NUMBER
6. AUTHOR(S)		!	5d. PRC	JECT NUMBER
		<u> </u>	5e. TAS	SK NUMBER
			5f. WOI	RK UNIT NUMBER
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGEI	NCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION/AVAILABILITY ST	ATEMENT			
13. SUPPLEMENTARY NOTES				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:	17. LIMITATION OF ABSTRACT	18. NUMBER 1	I9a. NAI	ME OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. TH	IS PAGE ABSTRACT	PAGES	19b. TEL	EPHONE NUMBER (Include area code)

DISCLAIMER STATEMENT

This report is a work prepared for the United States Government by Environmental Quality Management, Inc. In no event shall either the United States Government or Environmental Quality Management, Inc. have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance on the information contained herein, nor does either warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof.

CONTRACTOR'S STATEMENT OF INDEPENDENT TECHNICAL REVIEW

Environmental Quality Management, Inc. (EQM) has completed the Draft Facility-Wide Groundwater Monitoring Program Report on the May 2014 Sampling Event. Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in this project. During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions, was verified. This included review of data quality objectives; technical assumptions, methods, procedures, and materials used; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing United States Corps of Engineers policy.

Cartil Day	8/18/14
Jackie Doan, CQM, CQA, CHMM, CEAC Director of Quality	Date
Director of Quarty	

John M. Miller, CHMM Senior Project Manager

-11 1

Colleen A. Lear CPG, LG

Geologist

DRAFT FACILITY-WIDE GROUNDWATER MONITORING PROGRAM RVAAP-66 FACILITY-WIDE GROUNDWATER REPORT ON THE MAY 2014 SAMPLING EVENT

FORMER RAVENNA ARMY AMMUNITION PLANT PORTAGE AND TRUMBULL COUNTIES, OHIO

August 22, 2014

GSA Contract Number GS-10F-0293K Delivery Order W912QR-11-F-0266

Prepared for

U.S. Army Corps of Engineers 600 Martin Luther King Jr. Place Louisville, Kentucky 40202

Prepared by

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati, Ohio 45240

Document Distribution for the Draft

FWGWMP May 2014 Sampling Event Report Former Ravenna Army Ammunition Plant

Name/Organization	Number of <u>Printed Copies</u>	Number of Electronic Copies
ARNG Cleanup Program, Brett Merkel	0	1
OHARNG – CRJMTC-ENV Env. Scientist, Katie Tait	0	1
ARNG Restoration Project Manager, Kevin Sedlak	1	0
Ohio EPA - NEDO, Project Coordinator, Kevin Palomb	oo 1	2
Ohio EPA – CO-DERR, Justin Burke	0	1
RVAAP Facility Archivist, Gail Harris	2	2
USACE Technical Manager, Mark Nichter	2	3
EQM Project Manager, John Miller	1	1

ARNG - Army National Guard

OHARNG – CRJMTC-ENV – Ohio Army National Guard Camp Ravenna Joint Military Training Center – Environmental

Ohio EPA - NEDO - Ohio Environmental Protection Agency - Northeast District Office Ohio EPA - CO-DERR - Ohio Environmental Protection Agency - Columbus - Division of

Environmental Response & Revitalization

RVAAP – Ravenna Army Ammunition Plant

USACE – U.S. Army Corps of Engineers

EQM – Environmental Quality Management, Inc.

1			TABLE OF CONTENTS	
2 3	Sec	ction		Page
4	<u>500</u>	201011		<u>r uge</u>
5				
6	Lis	t of G	eneral Acronyms	iii
7	Lis	t of A	rea of Concern Acronyms	v
8	Ex	ecutive	e Summary	v i
9	1	Intro	oduction	1
10		1.1	Facility Description	1
11		1.2	Project Description	1
12			1.2.1 Historical Monitoring	
13			1.2.2 Current Monitoring	
14		1.3	Scope of Work for the May 2014 Sampling Event	
15		1.4	Report Presentation	6
16	2	Proje	ect Activities	7
17		2.1	Groundwater Level Monitoring	7
18		2.2	Groundwater Sampling	7
19		2.3	Laboratory Analysis	9
20		2.4	Data Verification/Validation	
21		2.5	Investigation-Derived Waste	12
22	3	Sum	ımary	13
23		3.1	Groundwater Elevations	13
24		3.2	Summary of Analytical Results	13
25			3.2.1 Explosives and Propellants	
26			3.2.2 Inorganic Elements	
27			3.2.3 Volatile Organic Compounds (VOCs)	
28			3.2.4 Semivolatile Organic Compounds (SVOCs)	
29			3.2.5 Pesticides and Polychlorinated Biphenyls (PCBs)	
30		3.3	Data Verification/Validation	29
31	4	Refe	erences	33
32				
33				
34				
35				

1		TABLE OF CONTENTS	
2		(continued)	
3	Secti	<u>ion</u>	<u>Page</u>
4		LIST OF FIGURES	
5			
6	1-1	RVAAP General Location Map	2
7	1-2	RVAAP Facility Map	
8	2-1	Wells Monitored in May 2014	8
9		LIST OF TABLES	
10			
11	2-1	Analytical Suite of Chemicals	10
12	2-2	QA Table for May 2014 Sampling Event	
13	3-1	FWGWMP May 2014 Explosive and Propellant Analytical Results	
14	3-2	FWGWMP May 2014 Inorganic Analytical Results	
15	3-3	FWGWMP May 2014 VOC Analytical Results	
16	3-4	FWGWMP May 2014 SVOC Analytical Results	
17	3-5	FWGWMP May 2014 Pesticides and PCBs Analytical Results	27
18	3-6	Percent of Acceptable Data	
19		APPENDICES	
20			
21	A	Monitoring Wells Sampled During the May 2014 Groundwater Monitoring	Event.
22	В	Water-Level Measurements/Field Log Book/Calibration Records/Sample a	
23		Records/Daily Quality Control Reports	C
24	C	Data Verification Reports/Laboratory Data Sheets	
25		Sample Delivery Group 240-37114	
26	D	Investigation-Derived Waste Characterization and Disposal Plan	
27	E	Reporting Limits that Currently Do Not Meet the RVAAP QAPP Project A	ction
28		Requirements, MCLs, and/or RSLs	

1		LIST OF GENERAL ACRONYMS
2 3	ADR	Automated Data Review
4	amsl	above mean sea level
5	AOC	Area of Concern
6	ARNG	Army National Guard
7	° C	degree Celsius
8	CCV	continuing calibration verification
9	CRJMTC	Camp Ravenna Joint Military Training Center
10	CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
11	CLRCLA	Contract Laboratory Program
12	DDE	dichlorodiphenyldichloroethylene
13	DFFOs	Director's Final Findings and Orders
14	DoD	Department of Defense
15	EQM	Environmental Quality Management, Inc.
16	EPA	Environmental Protection Agency
17	ft	feet
18	FWGWMP	Facility-Wide Groundwater Monitoring Program
19	FWGWMPP	Facility-Wide Groundwater Monitoring Program Plan
20	FWSAP	Facility-Wide Sampling and Analysis Plan
21	GC	gas chromatograph
22	GOCO	Government-Owned, Contractor-Operated
23	GSA	Government Services Administration
24	>	greater than
25	GW	groundwater
26	HNO_3	nitric acid
27	HMX	Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
28	HPLC	high-performance liquid chromatography
29	H_2SO_4	sulfuric acid
30	IDW	Investigation-Derived Waste
31	IRP	Installation Restoration Program
32	LCS	laboratory control sample
33	<	less than
34	LS	Louisville District Quality Systems Manual Supplement
35	MCL	Maximum Contaminant Level
36	MDL	method detection limit
37	mg/L	milligram per liter
38	μg/L	microgram per liter
39	MMRP	Military Munitions Response Program
40	MRL	method reporting limit
41	MS	mass spectrometer
42	MS/MSD	matrix spike/matrix spike duplicate
43	mw	monitoring well
44	NaOH	sodium hydroxide
45	NEDO	Northeast District Office
46	N/A	not analyzed

1 2		LIST OF GENERAL ACRONYMS (continued)
3		(continued)
4	NM	not measured
5	NS	no standard
6	NTU	nephelometric turbidity unit
7	OHARNG	Ohio Army National Guard
8	%	percent
9	PBA	Performance Based Acquisition
10	pCi/L	picocuries per liter
11	PCB	polychlorinated biphenyl
12	PETN	pentaerythritol tetranitrate
13	QA	quality assurance
14	QAPP	Quality Assurance Project Plan
15	QC	quality control
16	QSM	Quality Services Manual
17	RCRA	Resource Conservation and Recovery Act
18	RBC	Risk-Based Cleanup
19	RDX	hexahydro-1,3,5-trinitro-1,3,5-triazine
20	RI	Remedial Investigation
21	RL	reporting limit
22	RSL	Regional Screening Level
23	RVAAP	Ravenna Army Ammunition Plant
24	SDG	sample delivery group
25	SRC	Site-Related Contaminant
26	SVOC	semivolatile organic compound
27	s.u.	standard units
28	TAL	target analyte list
29	TOC	top of casing
30	U.S.	United States
31	USACE	United States Army Corps of Engineers
32	USEPA	United States Environmental Protection Agency
33	USP&FO	United States Property and Fiscal Officer
34	UV	ultraviolet
35	VOC	volatile organic compound

1		LIST OF AREA OF CONCERN ACRONYMS
2		
3	ASY	Atlas Scrap Yard
4	B12	Building 1200
5	BKG	Background
6	CBL	C-Block
7	CBP	Central Burn Pits
8	CP	Cobbs Pond
9	DA2	Demolition Area #2
10	EBG	Erie Burning Grounds
11	FBQ	Fuze and Booster Quarry
12	FWG	Facility-Wide Groundwater
13	LNW	Landfill North of Winklepeck
14	LL	Load Line
15	MBS	Mustard Burial Site
16	NACA	National Advisory Committee for Aeronautics
17	NTA	NACA Test Area
18	RQL	Ramsdell Quarry Landfill
19	SCF	Sharon Conglomerate Formation
20	WBG	Winklepeck Burning Grounds

EXECUTIVE SUMMARY

Past Department of Defense (DoD) activities at the former Ravenna Army Ammunition Plant (RVAAP) in Ravenna, Ohio, date to 1940 and include the manufacturing, loading, handling, and storage of military explosives and ammunition. Residual contamination from these early activities at RVAAP has been identified in groundwater beneath the facility. Currently, the approximately 21,683-acre facility is primarily used for military training.

 The United States (U.S.) Army Corps of Engineers (USACE) is performing Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) closure at the former RVAAP under the Installation Restoration Program (IRP) and the Military Munitions Response Program (MMRP). The overall goal is to remediate the former RVAAP installation as all of the property has been transferred to the Army National Guard (ARNG) and is being used by the Ohio Army National Guard (OHARNG) as a military training site. One of the activities conducted under the IRP includes monitoring of an extensive network (now 284 wells) of groundwater monitoring wells at the former RVAAP facility. To date, 281 Facility-Wide Groundwater Monitoring Program (FWGWMP) wells of the 284 wells at the facility have been

In 2004, the U.S. Army and the Ohio Environmental Protection Agency (EPA) finalized the FWGWMP Plan, which detailed the requirements of the program for the 243 existing wells. The FWGWMP was initiated in 2005 with three consecutive quarters of FWGWMP well sampling. In addition, five Resource Conservation and Recovery Act (RCRA) wells located at Ramsdell Quarry Landfill (RQLmw-007, RQLmw-008, and RQLmw-009) and Demolition Area 2 (DETmw-003 and DETmw-004) are sampled on a semiannual basis.

The current wells to be sampled and the analytes to be analyzed from each well were approved in the FWGWMPP Addendum dated August 1, 2013. The monitoring wells sampled during the May 2014 groundwater monitoring event are presented in Appendix A. The list in Appendix A presents the list of the wells to be sampled. Note that the new wells are monitored quarterly until four data sets have been completed.

The following activities were conducted by Environmental Quality Management, Inc. (EQM) during the reporting period:

- Performed groundwater sampling on 6 wells identified in Appendix A.
- Gauged water levels/total depth and performed well inspections for 284 groundwater monitoring wells at the facility.
- Performed laboratory analysis of all the collected samples.

sampled and analyzed a minimum of four quarters.

- Verified, validated, and reduced the laboratory analytical data produced for the event (exclusive of the quality assurance samples analyzed by RTI Laboratories).
- Prepared the Investigation-Derived Waste (IDW) Characterization and Disposal Plan for the IDW collected during monitoring activities.
- Prepared and submitted the monitoring report for the sampling event.

3

4

During the May 2014 sampling event, several analytes were detected at levels at/or above their respective Maximum Contaminant Levels (MCLs) and/or United States Environmental Protection Agency (USEPA) Regional Screening Levels (RSLs). Note that the RSLs used in this report are the most recent available (May 2014). The summary is as follows.

5 6 7

8

Explosive and Propellant Compounds

As shown in Table 3-1, no explosives or propellants were detected at levels exceeding either their corresponding MCLs or RSLs (May 2014).

9 10 11

Inorganic Elements

Several inorganic compounds were detected at levels exceeding the method detection limit

(MDL) at all sampled areas. The detected compounds included arsenic, barium, calcium, cobalt,

iron, magnesium, manganese, nickel, potassium, sodium, and thallium. Several inorganic

compounds had detections exceeding MCLs and/or the RSLs (May 2014) [arsenic, cobalt,

manganese, and thallium] during the May 2014 sampling event.

17 18

Volatile Organic Compounds

The analytical results for VOCs are summarized in Table 3-3. There were no VOCs detected above the MDL for this sampling event.

202122

23

19

Semivolatile Organic Compounds

As shown in Table 3-4, no SVOCs were detected at levels exceeding either their corresponding MCLs or RSLs (May 2014).

242526

Pesticides and Polychlorinated Biphenyls (PCBs)

- 27 The analytical results for pesticides or PCBs are summarized in Table 3-5. There were no
- 28 pesticides or PCBs detected above the MDL for this sampling event, this includes the new well
- 29 (LL1mw-088) outside of the perimeter fence.

SECTION 1 INTRODUCTION

4 5

3

1.1 Facility Description

6 7 8

9

10

11 12

13 14

15

16

17

18

19

20

21

22

23

24

25

2627

28

29

30

31

32 33

34

35

Past Department of Defense (DoD) activities at the former Ravenna Army Ammunition Plant (RVAAP) date to 1940 and include the manufacturing, loading, handling, and storage of military explosives and ammunition. Until 1999, the former RVAAP was identified as a 21,419-acre installation. The property boundary was resurveyed by the Ohio Army National Guard (OHARNG) over a 2-year period from 2002 and 2003, and the actual total acreage of the property was found to be 21,683.289 acres. All of the former 21,683 acre RVAAP has been transferred to the United States Property and Fiscal Officer (USP&FO) for Ohio for use by the OHARNG. Administrative accountability for all property has been transferred to the Army National Guard (ARNG) with licensure to OHARNG for use as a military training site. The CRJMTC is in northeastern Ohio within Portage and Trumbull Counties, approximately 4.8 kilometers (3 miles) east-northeast of the city of Ravenna and approximately 1.6 kilometers (1 mile) northwest of the city of Newton Falls (Figure 1-1). The former RVAAP portions of the property are solely located within Portage County. The CRJMTC (inclusive of the former RVAAP) is a parcel of property approximately 17.7 kilometers (11 miles) long and 5.6 kilometers (3.5 miles) wide bounded by State Route 5, the Michael J. Kirwan Reservoir, and the CSX System Railroad on the south; Garret, McCormick, and Berry roads on the west; the Norfolk Southern Railroad on the north; and State Route 534 on the east. Figures 1-1 and 1-2 present the former RVAAP Site Location Map and former RVAAP Facility Map. The CRJMTC is surrounded by several communities: Windham on the north; Garrettsville 9.6 kilometers (6 miles) to the northwest; Newton Falls 1.6 kilometers (1 mile) to the southeast; Charlestown to the southwest; and Wayland 4.8 kilometers (3 miles) to the south. When the former RVAAP was operational CRJMTC did not exist and the entire 21,683-acre parcel was a governmentowned, contractor-operated (GOCO) industrial facility. The RVAAP Installation Restoration Program (IRP) encompasses investigation and cleanup of past activities over the entire 21,683 acres of the former RVAAP, and, therefore, references to the former RVAAP in this document are considered to be inclusive of the historical extent of the former RVAAP, which is inclusive of the combined acreages of the current CRJMTC and former RVAAP, unless otherwise specifically stated.

3637

1.2 Project Description

38 39 40

1.2.1 Historical Monitoring

41 42

43

44

In 2004, the United States (U.S.) Army and the Ohio Environmental Protection Agency (EPA) finalized the Facility-Wide Groundwater Monitoring Program (FWGWMP) Plan, which details the requirements of the program. The FWGWMP was initiated in 2005 with three consecutive quarters of FWGWMP well sampling. Quarterly sampling has continued through the current

Figure 1-1. Former RVAAP General Location Map

Figure 1-2. Former RVAAP Facility Map

monitoring event. The initial FWGWMP wells identified for monitoring were sampled once every quarter, with the exception of the five Resource Conservation and Recovery Act (RCRA) wells that include three Ramsdell Quarry Landfill (RQL) wells (RQLmw-007, -008, and -009) and two Demolition Area 2 (DA2) wells (DETmw-003 and DETmw-004). The RQL and DA2 wells are sampled semiannually.

As detailed in the original FWGWMP Plan (FWGWMPP; September 2004), the initial monitoring program consisted of the sampling of 36 wells specified in Table 4-1 of the FWGWMPP. Fourteen of these wells are "Background Wells," and the remaining wells are situated at various Areas of Concern (AOCs) at RVAAP. The first sampling event for this project was conducted in April 2005. The results of the previous FWGWMP sampling events are presented in Section 5 of this report. The final assessment monitoring event for the initial well sampling and analysis was completed in October 2007.

On October 22, 2007, the U.S. Army Corps of Engineers (USACE) submitted to the Ohio EPA the *Preliminary Draft Proposal to Update the Facility-Wide Ground Water Monitoring Program* (USACE, October 2007) at the former Ravenna Army Ammunition Plant. This proposal presented recommendations for modifications to the FWGWMP, the Director's Final Findings and Orders (DFFOs), and the Conceptual Plan in Appendix E of the Findings and Orders as presented below.

Section 3.1.2.2 of the original FWGWMPP (September 2004) establishes a protocol for adding and removing wells from the FWGWMP: "Future wells installed as part of individual AOC investigations conducted under the ongoing Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process at RVAAP will be evaluated for incorporation into the FWGWMP upon completion of at least four quarterly groundwater sampling events to be conducted as part of the Remedial Investigation (RI) phase at each AOC. The frequency of the initial sampling events may be other than quarterly if agreed upon by the Army and Ohio EPA." Based on this protocol the USACE notified the Ohio EPA on December 12, 2007 that the wells to be sampled would be changed effective with the January 2008 monitoring event. The Ohio EPA provided concurrence with this change in an email dated January 8, 2008. The Ohio EPA was notified of an additional change on February 27, 2008, increasing the number of wells to be sampled for the April 2008 event. The Ohio EPA was notified on March 21, 2008, that the number of FWGWMP wells to be sampled in April 2008 (and the July 2008, October 2008, and January 2009 events) would be increased to 132 plus the five RCRA wells sampled semiannually (in order to complete four quarters of sampling for each of the 132 wells).

Beginning with the April 2009 sampling event, the remaining wells on the list contained in the *Draft Proposal to Update the Facility-Wide Ground Water Monitoring Program* (USACE, October 2007) were sampled.

A revised list of wells to be sampled during 2010-2011 was submitted to the Ohio EPA in early 2010. The list of wells to be sampled, as well as scheduling issues, were discussed with the Ohio EPA in a telephone conference and verified in a subsequent email on May 26, 2010.

- 1 Revisions to the list of wells to be sampled and the analytes to be analyzed from each well were
- 2 discussed with the Ohio EPA in email correspondences in July 2011. For the groundwater
- 3 monitoring event, it was agreed to monitor the wells and analytes presented in the Draft 2010
- 4 Addendum to the Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-
- 5 Wide Groundwater (USACE, 2010). (Note that this document was withdrawn as a submittal to
- 6 the Ohio EPA; however, the information presented in that document is still relevant and useful.)

1.2.2 May 2014 Event Monitoring

9 10

- One of the activities conducted under the IRP includes monitoring of an extensive network (now
- 11 284 wells) of groundwater monitoring wells at the RVAAP facility. To date, 281 current
- FWGWMP wells, of the 284 wells at the facility have been sampled and analyzed a minimum of four quarters.

14

- 15 Details of the current program design and requirements are contained in the *Final Facility-Wide*
- 16 Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater Semiannual
- 17 Monitoring Addendum dated August 1, 2013. Additionally, this document supplements the Final
- 18 Facility-Wide Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater
- 19 Addendum (FWGWMPP Addendum; EQM, January 2012), which includes three parts that
- 20 pertain to the proposed work: Part I- Environmental Investigation Services Addendum, Part II-
- Quality Assurance Project Plan (QAPP) Addendum, and Part III- Site Safety and Health Plan
- Quanty Assurance Project Fran (QAPP) Addendum, and Part III- Site Safety and Health Fran
- 22 (SSHP) Addendum. Additional details pertaining to performance of field and laboratory
- 23 activities are contained in the Final Facility-Wide Sampling and Analysis Plan for
- 24 Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio (FWSAP;
- 25 SAIC, 2011).

26

- 27 With the exception of three wells installed in December 2013 the current wells to be sampled and
- 28 the analytes to be analyzed from each well were approved in the FWGWMPP Addendum dated
- 29 August 1, 2013. In December 2013 three wells were installed under the Facility-Wide
- 30 Groundwater Monitoring Program Plan RVAAP-66 Facility-Wide Groundwater Additional Well
- 31 Installation Addendum (September 2013). The purpose of the new wells was to evaluate
- 32 potential groundwater impacts outside of the perimeter fence area of the former RVAAP.

33 34

- The current Monitoring Well Schedule is presented in Appendix A. This appendix presents the
- 35 list of wells sampled during the May 2014 event. Note that the new wells are monitored
- 36 quarterly until four data sets have been completed.

3738

1.3 Scope of Work for the May 2014 Sampling Event

- 41 The USACE, under a Government Services Administration (GSA) Performance Based
- 42 Acquisition (PBA) contract, retained Environmental Quality Management, Inc. (EQM) (Contract
- No. GS-10F-0293K Delivery Order W912QR-11-F-0266) to obtain a signed Record of
- 44 Decision (ROD) for the facility-wide groundwater (RVAAP-66) at the former RVAAP. One
- 45 objective of this project is to continue monitoring under the RVAAP Facility-Wide Groundwater
- 46 Monitoring Program. The following tasks were performed during the May 2014 sampling event

in accordance with specifications contained in the Semiannual Addendum, FWGWMPP Addendum, the FWSAP, and the Scope of Work written by the USACE:

- Performed groundwater sampling on 6 wells identified in Appendix A.
- Gauged water levels/total depth and performed well inspections for 284 groundwater monitoring wells at the facility.
- Performed laboratory analysis of all the collected samples.
- Verified, validated, and reduced the laboratory analytical data produced for the event (exclusive of the quality assurance samples analyzed by RTI Laboratories).
- Prepared the Investigation-Derived Waste (IDW) Characterization and Disposal Plan for the IDW collected during monitoring activities.
- Prepared and submitted the monitoring report for the sampling event.

1.4 Report Presentation

This report presents the results of the May 2014 sampling event. The report is structured in the following way:

- Section 1.0 Introduction.
- Section 2.0 Description of Project Activities. This section describes project-specific details not contained in the FWSAP, FWGWMPP Addendum, and Semiannual Addendum. Additionally, details are provided on how the tasks described above were performed.
- Section 3.0 Summary. The results of the sampling event are summarized, including groundwater elevation measurements, analytical results, and data verification/validation information.
- Section 4.0 References.

- Appendix A Monitoring Wells Sampled During the May 2014 Groundwater Monitoring Event
- Appendix B –Water-Level Measurements/Field Log Book/Calibration Records/Sample and Purge Records/Daily Quality Control Reports
- Appendix C Data Verification Reports/Laboratory Data Sheets
- Appendix D Investigation-Derived Waste Characterization and Disposal Plan
- Appendix E Reporting Limits that Currently Do Not Meet the RVAAP QAPP Project Action Requirements, MCLs, and/or USEPA RSLs

SECTION 2 PROJECT ACTIVITIES

2.1 Groundwater Level Monitoring

Depth to water from the top of the inner casing was measured in 284 FWGWMP wells during May 6-8, 2014. Water-level measurements were taken with a Herron Dipper-T or Enviro Inspector electronic water-level indicator. The depth to the bottom of the well from the top of the inner casing was also measured with the electronic water-level indicator. The annual inspection of all the wells was also conducted at that time (the results of the inspections and potentiometric maps will be updated and discussed in the 2014 Annual Report). Potentiometric maps resulting from the water level measurements will be included in the Jul 2014 semiannual report.

 Results of the groundwater level monitoring for all the RVAAP wells sampled during this monitoring event are presented in Section 3.1 and Appendix B. The monitoring well location map, identified as Figure 2-1 Eastern Portion RVAAP Map, is included with this report.

2.2 Groundwater Sampling

All identified monitoring wells were sampled from May 7-8, 2014. Wells were sampled using micropurge techniques in accordance with the specifications contained in the approved addendum. The wells were micropurged until certain groundwater parameters (i.e., temperature, specific conductivity, pH, and dissolved oxygen) had stabilized and turbidity readings were less than (<) or equal to 10 nephelometric turbidity units (NTU) or had three consecutive readings within 10 percent (%). The groundwater parameters were measured using a Horiba U-22/U-52 with flow cell. Groundwater parameter measurements obtained during micropurging are presented in Appendix B.

A groundwater pH value of more than 9 standard units (s.u.) has been noted historically at FWGmw-002. EQM is monitoring the pH at this well to evaluate it as a potential groundwater contamination or anomaly. In May 2014, the pH was stabilized to 8.07 s.u.during purging activities. EQM will continue to monitor the pH in this well during the next event.

EQM continued purging after the normal stabilization parameters had stabilized (turbidity is not a stabilization parameter) in an attempt to reach turbidity values that were within 10 percent (%) of each other. Additionally, the groundwater samples for metals analysis were filtered as part of the FWGWMP sampling, thereby reducing the effect of suspended particles in the groundwater.

- 41 Groundwater samples were collected using a bladder pump and micropurge sampling techniques.
- The pump was decontaminated, and the used bladder was discarded and replaced with a new
- bladder between sample locations. Equipment and sampling details are contained in Appendix B.
- 44 Groundwater samples were collected in laboratory-supplied containers and stored in iced coolers
- for shipment in accordance with the specifications presented in the FWSAP, Semiannual
- 46 Addendum, and FWGWMPP.

During the May 2014 sampling, all coolers were received by the laboratory at temperatures within the prescribed tolerance limits. Filtered metals samples were collected through the bladder pump using an inline 0.45-micron filter emptying directly into pre-preserved sample bottles containing nitric acid. All sampling procedures for the filtered metals were conducted in accordance with the FWSAP.

2.3 Laboratory Analysis

Laboratory analyses on all primary samples and associated quality control (QC) samples were performed by Test America Laboratories. Table 2-1 presents the analytical methods used to analyze the groundwater samples.

Note that for this event, wells were sampled for specific analytes as identified in the FWGWMPP Addendum. The three new wells were sampled for the full RVAAP analytical suite. The May 2014 groundwater samples were analyzed for the following parameters depending upon the well requirements, as presented in Appendix A: explosives, propellants (nitrocellulose and nitroguanidine), cyanide, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), target analyte list (TAL) metals (filtered), pesticides, and polychlorinated biphenyls (PCBs).

Quality control samples, including duplicates and matrix spike/matrix spike duplicates (MS/MSD) were collected from the following wells:

LL3mw-246 – Duplicate Sample LL2mw-271 – MS/MSD

All samples were picked up from the facility and delivered to the laboratory in a cooler (with wet ice) by a Test America courier under proper chain-of-custody procedures (FWSAP). Laboratory analyses on all quality assurance (QA) samples (i.e., split samples) were performed by RTI Laboratories in Livonia, Michigan. One QA sample set was collected from the same well where the duplicate sample was collected. The QA samples were shipped in coolers (with wet ice) via overnight delivery service under proper chain-of-custody procedures. Table 2-2 presents, in tabular form, all analyses and associated QA/QC for the May 2014 monitoring event. The Daily Quality Control Reports are presented in Appendix B.

Laboratory results are summarized in Section 3.2. Laboratory data sheets, including chain-of-custodies and QA/QC information, are contained in Appendix C.

Analytical Suite of Chemicals Table 2-1.

Constituents	Method ¹	Preservation
PCBs	Gas Chromatograph (GC) – (8082)	Cool, 4° C ³
Pesticides	GC – (8081A)	Cool, 4° C
SVOCs	GC/Mass Spectrograph (MS) SVOCs (8270C)	Cool, 4° C
VOCs	GC/MS VOCs (8260B)	HCl, Cool, 4° C
Nitroguanidine	Organic compounds by UV/HPLC	Cool, 4° C
(Propellant)	(8330 modified)	
Nitroaromatics & Nitramines	GC SVOCs Explosives (8330)	Cool, 4° C
(Explosives)		
Nitrocellulose as N	General Chemistry (WS-WC-0050)	Cool, 4° C
(Propellant)		
Nitrate/Nitrites	General Chemistry (353.2) ²	H ₂ SO ₄ , Cool, 4° C
Cyanide (Total)	General Chemistry (9012A)	NaOh to pH $>$ 12, Cool, 4° C
Metals (Magnesium,	Inductively Coupled Plasma (6010B)	$0.45\mu m$ filter, HNO ₃ , to pH < 2,
Manganese, Barium, Nickel,		Cool, 4° C
Potassium, Silver, Sodium,		
Vanadium, Chromium,		
Calcium, Cobalt, Copper,		
Arsenic, Lead, Selenium)		
Metals (Antimony, Iron,	Inductively Coupled Plasma Mass	$0.45\mu m$ filter, HNO ₃ , to pH < 2,
Beryllium, Thallium, Zinc,	Spectrometry (6020)	Cool, 4° C
Cadmium, Aluminum)		
Mercury	Liquid Waste Cold Vapor Technique	$0.45\mu m$ filter, HNO ₃ , to pH < 2,
	(7470A)	Cool, 4° C
Hexavalent Chromium	Method 218.6 ²	0.45µm filter, Buffer solution,
		Cool, 4° C
Perchlorate	Method 6860	0.2μm filter, with prefilter,
		Cool, 4° C

^{1 =} USEPA SW846

^{2 =} EPA Methods for Chemical Analysis of Water and Waste 3 = degree Celsius

Table 2-2. QA Table for May 2014 Sampling Event

		Government Laborato	ry	Re	eques	sted	Lab	orato	ry An	alysis						
Sample Locations	Primary Lab Sample ID	Date	Sample Type	Assoc. QC Dup Number	Assoc. QC Rinsate Number	Assoc. QC Trip Blank Number	MS/MSD	QA Lab Sample ID	Assoc. QC Trip Blank Number	VOCs	SVOCs 1	SVOCs 4	Pesticides	PCBs Explosives &	ats	Cyanide Filtered Metals
LL1mw-064	FWGLL1mw-064C-0436-GW/GF	5/7/2014	GW		EQUIPRinse1-0443	FWGTeam3-Trip					1		1		1	1
LL1mw-088	FWGLL1mw-088-0437-GW/GF	5/8/2014	GW		EQUIPRinse2-0444	FWGTeam3-Trip				1		1	1	1	1	1 1
LL2mw-271	FWGLL2mw-271-0438-GW/GF	5/7/2014	GW		EQUIPRinse1-0443	FWGTeam3-Trip	Υ			1		1	1	1	1	1 1
LL3mw-246	FWGLL3mw-246-0439-GW/GF	5/7/2014	GW	DUP1-0442	EQUIPRinse1-0443	FWGTeam3-Trip		FWGLL3mw-246-0441s-GW/GF	TRIPBLANK	1		1	1	1	1	1 1
SCFmw-004	FWGSCFmw-004-0440-GW/GF	5/7/2014	GW		EQUIPRinse1-0443	FWGTeam2-Trip					1		1		1	1

SVOCs (1=Phthalates, and 4=Full RVAAP RCRA suite)

2.4 Data Verification/Validation

Data from Test America was verified in accordance with project specifications by EQM chemists Ms. Angye Dragotta and Mr. Eric Corbin using the Automated Data Review (ADR) software. Data validation/verification is summarized in Section 3.3. The Data Verification/Validation Summary Reports are presented in Appendix C.

2.5 Investigation-Derived Waste

An IDW Report was prepared for the sampling and water-level measurement activities discussed in Section 3. Purge water was collected at each well location in 5-gallon buckets and transferred to 55-gallon drums located inside Building 1036. No more than 5 gallons were purged from any well. Instruments and equipment were decontaminated after purging and sampling each monitoring well. Decontamination fluids were collected in a separate 55-gallon drum stored inside Building 1036. Pending analysis of the monitoring well samples, IDW fluids were stored in the 55-gallon drums until the IDW Report was approved by the Ohio EPA. The IDW was then disposed of in accordance with the FWSAP, FWGWMPP Addendum, and Semiannual Addendum requirements. The IDW Report is presented in Appendix D. The approval letter from the Ohio EPA for disposal of the IDW is included in Appendix D. Note that the purge water from the May event was disposed of at the same time as the frac tank purge water on August 12, 2014.

SECTION 3 SUMMARY

3.1 Groundwater Elevations

Groundwater elevations were measured in 6 RVAAP monitoring wells during May 6-8, 2014. The locations of the 6 monitoring wells sampled are shown on Figure 2-1. The water-level measurement field sheets are presented in Appendix B. Additionally, groundwater elevation measurements are also obtained each time a groundwater sample is collected as part of the FWGWMP, although the measurements from the quarterly sampling events are not used to produce the potentiometric maps. Potentiometric maps resulting from the water level measurements will be included in the Jul 2014 semiannual report.

Water-level measurements were measured in accordance with procedures in Section 4.3.3.1 of the *Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio* (SAIC, February 2011). Water-level measurements were made from the top of the inner casing to the top of the groundwater surface using an electronic measuring tape. The depth to the bottom of the well from the top of the inner casing also was measured with the electronic measuring tape.

3.2 Summary of Analytical Results

Summaries of laboratory analytical results are presented in Tables 3-1, 3-2, 3-3, 3-4, and 3-5. Appendix C presents the Laboratory Data Sheets. A brief summary of the detected compounds and elements are presented in the following sub-sections. The data presented in the tables are the validated and verified data. Data verification and validation is discussed in Section 3.3 and Appendix C.

Additionally, please note the following:

• As discussed in Section 3.3 under the data validation process, data are qualified by EQM's validator following the guidelines and qualifier requirements set forth by the FWSAP, QAPP, and U.S. DoD Quality Services Manual (QSM) for Environmental Laboratories, Version 4.1, and the USACE, Louisville District, Quality Systems Manual Supplement (LS). As a result, the flags designated by EQM sometimes differ from those in the laboratory data sheets. The flags designated by the validator override any flagging of the data by the laboratory. For a complete explanation of the data qualifiers used for each constituent refer to Section 3.3 and the Data Verification Summary Reports found in Appendix C.

 Several analytical methods used to analyze a number of explosives, VOCs, SVOCs, metals, PCBs, and pesticides have reporting limits that currently do not meet the RVAAP QAPP project action requirements, Maximum Contaminant Levels (MCLs) or USEPA

Regional Screening Levels (RSLs). Note that the RSLs used in this report are the most recent available (May 2014). The laboratory did not meet the requirements due to the following: 1) the detection limit is a statistically derived number that varies based on analytical method and instrumentation; 2) the RSL is independent from analytical method detection limits and is calculated from EPA toxicity values and exposure information. Tables listing the reporting limits that currently do not meet the RVAAP QAPP Project Action Requirements, MCLs, and/or RSLs (May 2014) are presented in Appendix E.

3.2.1 Explosives and Propellants

Explosive and propellant compound analytical results are summarized in Table 3-1. The following compounds were detected at concentrations above the method detection limit (MDL)s.

• 2-Amino-4,6-dinitrotoluene in LL3mw-246 (0.36 μg/L). There is no MCL for 2-amino-4,6-dinitrotoluene. The RSL (May 2014) is 39 μg/L.

• 4-Amino-2,6-dinitrotoluene in LL3mw-246 (0.35 μ g/L). There is no MCL for 4-amino-2,6-dinitrotoluene. The RSL (May 2014) is 39 μ g/L.

• HMX in LL3mw-246 (0.039 μ g/L J). There is no MCL for HMX. The RSL (May 2014) is 1000 mg/L.

• RDX in LL3mw-246 (0.18 μ g/L). There is no MCL for RDX. The RSL (May 2014) is 0.70 μ g/L.

As shown in Table 3-1, no explosives or propellants were detected at levels exceeding either their corresponding MCLs or RSLs (May 2014).

Table 3-1. FWGWMP May 2014 Explosive and Propellant Analytical Results

Station ID				LL1mw-064	LL1mw-088	LL2mw-271	LL3mw-246	SCFmw-004
			USEPA	FWGLL1mw-	FWGLL1mw-088-	FWGLL2mw-271-	FWGLL3mw-246-	FWGSCFmw-
Sample ID		MCL	RSL	064C-0436-GW	0437-GW	0438-GW	0439-GW	004-0440-GW
Date Collected				5/7/2014	5/8/2014	5/7/2014	5/7/2014	5/7/2014
Sample Type				Grab	Grab	Grab	Grab	Grab
Analyte	Units							
1,3,5-Trinitrobenzene	μg/L	NS	590	0.052 U	0.053 U	0.051 U	0.051 U	0.051 U
1,3-Dinitrobenzene	μg/L	NS	2	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U
2,4,6-Trinitrotoluene	μg/L	NS	2.5	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U
2,4-Dinitrotoluene	μg/L	NS	0.24	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U
2,6-Dinitrotoluene	μg/L	NS	0.048	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U
2-Amino-4,6-dinitrotoluene	μg/L	NS	39	0.10 U	0.11 U	0.10 U	0.36	0.10 U
2-Nitrotoluene	μg/L	NS	0.31	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U
3-Nitrotoluene	μg/L	NS	1.7	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U
4-Amino-2,6-Dinitrotoluene	μg/L	NS	39	0.10 U	0.11 U	0.10 U	0.35	0.10 U
4-Nitrotoluene	μg/L	NS	4.2	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U
HMX	μg/L	NS	1000	0.052 U	0.053 U	0.051 U	0.039 J	0.051 U
Nitrobenzene	μg/L	NS	0.14	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U
Nitrocellulose	mg/L	NS	6.0E+07	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Nitroglycerin	μg/L	NS	2	0.52 U	0.53 U	0.51 U	0.51 U	0.51 U
Nitroguanidine	μg/L	NS	2000	6.0 U	6.0 U	6.0 U	6.0 U	6.0 U
PETN	μg/L	NS	19	0.52 U	0.53 U	0.51 U	0.51 U	0.51 U
RDX	μg/L	NS	0.7	0.052 U	0.053 U	0.051 U	0.18	0.051 U
Tetryl	μg/L	NS	39	0.10 U	0.11 U	0.10 U	0.10 U	0.10 U

Notes:

μg/L = microgram per liter

mg/L = milligram per liter

NS = no standard

N/A = Not Analyzed

Bold = detected compound above the MDL

RSL = USEPA Regional Screening Level, May 2014

MCL = Maximum Contaminant Level

Table 3-1. FWGWMP May 2014 Explosive and Propellant Analytical Results 2 3 **Data Qualifiers** 4 Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes 5 appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a 6 complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix C. 8 9 U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit. 10 The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be 11 J outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include: 12 - Results detected above the laboratory MDL but less than the laboratory reporting limit. 13 - MS/MSD percent recoveries outside the acceptance criteria. 14 - Laboratory control sample (LCS) percent recoveries outside acceptance criteria. 15 16 17 Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it R cannot be determined if the analyte is present or absent from the sample [e.g., the method reporting limit (MRL) verification 18 standard was below quality control guidelines; associated sample results that were non-detect are unusable]. 19 20 21 UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated reporting limit (RL). 22 23 24 В The B flag is used for when the analyte is found in the method blank or any of the field blanks. This designation overrides the

25

Contract Laboratory Program (CLP) "B" designation when used by the laboratory as an estimated value for inorganics.

3.2.2 Inorganic Elements

The analytical results for inorganic elements are presented in Table 3-2. The inorganics detected in the samples included: arsenic, barium, calcium, cobalt, iron, magnesium, manganese, nickel, potassium, sodium, and thallium. The inorganic elements that were detected were compared against elements that are considered as essential nutrients to determine if they are to be considered as Site-Related Contaminants (SRCs). Calcium, magnesium, iron, potassium, and sodium were eliminated as potential SRCs because they are considered essential nutrients.

The following compounds were detected at concentrations above the MDLs.

Arsenic

 • LL1mw-064 (4.5 μg/L J), LL1mw-088 (18 μg/L), and LL2mw-271 (5.5 μg/L J). The MCL for arsenic is 10 μg /L. The RSL (May 2014) is 0.052 μg/L.

Barium

 • LL1mw-064 (48 μg/L), LL1mw-088 (44 μg/L), LL2mw-271 (3.4 μg/L J), LL3mw-246 (16 μg/L), and SCFmw-004 (76 μg/L). The MCL for barium is 2000 μg/L. The RSL (May 2014) is 3800 μg/L.

Cobalt

• LL2mw-271 (9.2 μ g/L). There is no MCL for cobalt. The RSL (May 2014) is 6 μ g/L.

Manganese

LL1mw-064 (120 μg/L), LL1mw-088 (86 μg/L), LL2mw-271 (520 μg/L), LL3mw-246 (300 μg/L), and SCFmw-004 (720 μg/L). The MCL for manganese is 50 μg/L. The RSL (May 2014) is 430 μg/L.

Nickel

 • LL1mw-064 (2.5 μg/L J), LL2mw-271 (37 μg/L), and LL3mw-246 (5.3 μg/L). There is no MCL for nickel. The RSL (May 2014) is 390 μg/L.

Thallium

• LL2mw-271 (0.83 $\mu g/L$ J). The MCL for thallium is 2 $\mu g/L$. The RSL (May 2014) is 0.2 $\mu g/L$

 As shown above and on Table 3-2, several of the inorganics (arsenic, cobalt, manganese, and thallium) were detected at levels above their corresponding MCLs or RSLs (May 2014) during the May 2014 sampling event.

The facility-wide groundwater conditions are currently being evaluated under the remedial investigation/feasibility study. This will include an evaluation of aluminum, manganese, arsenic, cyanide, cobalt, iron, and thallium related to exceedances of MCLs/RSLs (May 2014). To date there have been no elevated concentrations of the inorganic analytes found in the groundwater that would pose an immediate threat to human health or the environment.

Table 3-2. FWGWMP May 2014 Inorganics Analytical Results

Station ID				LL1mw-064	LL1mw-088	LL2mw-271	LL3mw-246	SCFmw-004
Sample ID		MCL	USEPA RSL	FWGLL1mw- 064C-0436-GF	FWGLL1mw-088- 0437-GF	FWGLL2mw-271- 0438-GF	FWGLL3mw-246- 0439-GF	FWGSCFmw-004- 0440-GF
Date Collected				5/7/2014	5/8/2014	5/7/2014	5/7/2014	5/7/2014
Sample Type				Grab	Grab	Grab	Grab	Grab
Analyte	Units							
Aluminum	μg/L	200	20000	60 U	60 U	60 U	60 U	60 U
Antimony	μg/L	6.0	7.8	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Arsenic	μg/L	10	0.052	4.5 J	18	5.5 J	10 U	10 U
Barium	μg/L	2000	3800	48	44	3.4 J	16	76
Beryllium	μg/L	4.0	25	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Cadmium	μg/L	5.0	9.2	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Calcium	μg/L	NS	NS	58000	84000	56000	22000	150000
Chromium	μg/L	100	22000	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Cobalt	μg/L	NS	6	4.0 U	4.0 U	9.2	4.0 U	4.0 U
Copper	μg/L	1300	800	10 U	10 U	10 U	10 U	10 U
Cyanide	mg/L	0.20	0.0015	N/A	0.0050 UJ	0.0050 UJ	0.0050 UJ	N/A
Iron	μg/L	300	11000	760	550	4400	1800	100 U
Lead	μg/L	15	NS	5.0 U	2.0 B	5.0 U	5.0 U	5.0 U
Magnesium	μg/L	NS	NS	9800	39000	19000	7400	59000
Manganese	μg/L	50	430	120	86	520	300	720
Mercury	μg/L	2.0	0.63	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	μg/L	NS	390	2.5 J	5.0 U	37	5.3	5.0 U
Potassium	μg/L	NS	NS	800 J	3400	1000	1600	2800
Selenium	μg/L	50	100	10 U	10 U	10 U	10 U	10 U
Silver	μg/L	100	94	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Sodium	μg/L	NS	NS	5000	24000	4300	3900	10000
Thallium	μg/L	2.0	0.20	1.5 U	1.5 U	0.83 J	1.5 U	1.5 U
Vanadium	μg/L	NS	86	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Zinc	μg/L	5000	6000	50 U	50 U	50 U	50 U	50 U

Notes:

Bold = detected compound above the MDL

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, May 2014

N/A = not analyzed

NS = no standard

μg/L = microgram per liter

mg/L = milligram per liter

Table 3-2. FWGWMP May 2014 Inorganics Analytical Results

Data Qualifiers

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix C.

U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.

- J The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:
 - Results detected above the laboratory MDL but less than the laboratory reporting limit.
 - MS/MSD percent recoveries outside the acceptance criteria.
 - LCS percent recoveries outside acceptance criteria.

R Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample [e.g., the MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable].

UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated RL.

B The B flag is used for when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.

3.2.3 Volatile Organic Compounds

The analytical results for VOCs are summarized in Table 3-3. There were no VOCs detected above the MDL, for this sampling event.

2 3

3.2.4 Semivolatile Organic Compounds

The analytical results for SVOCs are summarized in Table 3-4. The following SVOCs were detected above the MDL for this sampling event.

• Diethyl phthalate – LL2mw-271 (0.64 μ g/L B). There is no MCL for diethyl phthalate. The RSL (May 2014) is 15,000 μ g/L.

• Naphthalene – LL1mw-088 (0.15 μg/L B) and LL3mw-246 (0.10 μg/L J). There is no MCL for naphthalene. The RSL (May 2014) is 0.17 μg/L.

• Phenanthrene – LL1mw-088 (0.10 μ g/L). There is no MCL or RSL for phenanthrene. The RSL (May 2014) is 0.17 μ g/L.

• Pyrene – LL1mw-088 (0.10 μ g/L). There is no MCL for pyrene. The RSL (May 2014) is 120 μ g/L.

As shown in Table 3-4 and above, no SVOCs were detected at levels exceeding either their corresponding MCLs or RSLs (May 2014).

3.2.5 Pesticides and Polychlorinated Biphenyls

The analytical results for pesticides and PCBs are summarized in Table 3-5. There were no pesticides and PCBs were detected above the MDL, for this sampling event.

Table 3-3. FWGWMP May 2014 VOC Analytical Results

Station ID				LL1mw-088	LL2mw-271	LL3mw-246
Sample ID		MCL	USEPA RSL	FWGLL1mw-088- 0437-GW	FWGLL2mw-271- 0438-GW	FWGLL3mw-246- 0439-GW
Sample ID		IVICL	KOL			
Date Collected				5/8/2014	5/7/2014	5/7/2014
Sample Type				Grab	Grab	Grab
Analyte	Units			-		
1,1,1-Trichloroethane	μg/L	200	8000	0.25 U	0.25 U	0.25 U
1,1,2,2-Tetrachloroethane	μg/L	NS	0.076	0.25 U	0.25 U	0.25 U
1,1,2-Trichloroethane	μg/L	5.0	0.28	0.50 U	0.50 U	0.50 U
1,1-Dichloroethane	μg/L	NS	2.7	0.25 U	0.25 U	0.25 U
1,1-Dichloroethene (total)	μg/L	7.0	280	0.25 U	0.25 U	0.25 U
1,2-Dibromoethane	μg/L	NS	0.0075	0.25 U	0.25 U	0.25 U
1,2-Dichloroethane	μg/L	5.0	0.17	0.25 U	0.25 U	0.25 U
1,2-Dichloroethene (total)	μg/L	NS	NS	0.25 U	0.25 U	0.25 U
1,2-Dichloropropane	μg/L	5.0	0.44	0.25 U	0.25 U	0.25 U
2-Butanone	μg/L	NS	5600	0.57 UJ	0.57 UJ	0.57 UJ
2-Hexanone	μg/L	NS	38	0.50 UJ	0.50 UJ	0.50 UJ
4-Methyl-2-pentanone	μg/L	NS	1200	0.50 UJ	0.50 UJ	0.50 UJ
Acetone	μg/L	NS	14000	1.1 U	1.1 U	1.1 U
Benzene	μg/L	5.0	0.45	0.25 U	0.25 U	0.25 U
Bromochloromethane	μg/L	NS	83	0.50 U	0.50 U	0.50 U
Bromodichloromethane	μg/L	80	0.13	0.25 UJ	0.25 UJ	0.25 UJ
Bromoform	μg/L	80	9.2	0.64 UJ	0.64 UJ	0.64 UJ
Bromomethane	μg/L	NS	7.5	0.50 U	0.50 U	0.50 U
Carbon disulfide	μg/L	NS	810	0.25 UJ	0.25 UJ	0.25 UJ
Carbon tetrachloride	μg/L	5.0	0.45	0.25 UJ	0.25 UJ	0.25 UJ
Chlorobenzene	μg/L	100	78	0.25 U	0.25 U	0.25 U
Chloroethane	μg/L	NS	21000	0.50 U	0.50 U	0.50 U
Chloroform	μg/L	80	0.22	0.25 U	0.25 U	0.25 U
Chloromethane	μg/L	NS	190	0.50 U	0.50 U	0.50 U
cis-1,2-dichloroethene	μg/L	70	36	0.25 U	0.25 U	0.25 U
cis-1,3-Dichloropropene	μg/L	NS	0.47	0.25 U	0.25 U	0.25 U
Dibromochloromethane	μg/L	NS	0.17	0.25 U	0.25 U	0.25 U
Ethylbenzene	μg/L	700	1.5	0.25 U	0.25 U	0.25 U
m&p-xylenes	μg/L	NS	190	0.50 U	0.50 U	0.50 U
Methylene chloride	μg/L	5.0	11	0.50 U	0.50 U	0.50 U
o-xylene	μg/L	NS	190	0.25 U	0.25 U	0.25 U
Styrene	μg/L	100	1200	0.25 U	0.25 U	0.25 U
Tetrachloroethene	μg/L	5.0	11	0.50 U	0.50 U	0.50 U
Toluene	μg/L	1000	1100	0.25 U	0.25 U	0.25 U
trans-1,2-dichloroethene	μg/L	100	360	0.25 U	0.25 U	0.25 U
trans-1,3-Dichloropropene	μg/L	NS	0.47	0.25 U	0.25 U	0.25 U
Trichloroethene	μg/L	5.0	0.49	0.25 U	0.25 U	0.25 U
Vinyl chloride	μg/L	2.0	0.019	0.25 U	0.25 U	0.25 U
Total Xylenes	μg/L	10000	190	0.25 U	0.25 U	0.25 U

Notes:

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, May 2014

Bold = detected compound above the MDL

mg/L = milligram per liter

μg/L = microgram per liter

NS = no standard

Table 3-3. FWGWMP May 2014 VOC Analytical Results

23 Data Qualifiers

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix C.

U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.

J

- The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:
 - Results detected above the laboratory MDL but less than the laboratory reporting limit.
 - MS/MSD percent recoveries outside the acceptance criteria.
 - LCS percent recoveries outside acceptance criteria.

R Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample [e.g., the MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable].

UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated RL.

B The B flag is used for when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.

Table 3-4. FWGWMP May 2014 SVOC Analytical Results

Station ID				LL1mw-064	SCFmw-004
			USEPA	FWGLL1mw-	FWGSCFmw-
Sample ID		MCL	RSL	064C-0436-GW	004-0440-GW
Date Collected				5/7/2014	5/7/2014
Sample Type				Grab	Grab
Analyte	Units				
bis(2-Ethylhexyl)phthalate	μg/L	6.0	5.6	4.8 U	4.8 U
Butyl benzyl phthalate	μg/L	NS	16	0.48 U	0.48 U
Diethyl phthalate	μg/L	NS	15000	0.95 U	0.95 U
Dimethyl phthalate	μg/L	NS	NS	0.48 U	0.48 U
Di-n-butyl phthalate	μg/L	NS	900	4.8 U	4.8 U
Di-n-octyl phthalate	μg/L	NS	200	0.48 U	0.48 U

Notes:

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, May 2014

μg/L = microgram per liter

NS = no standard

N/A = Not Analyzed

Bold = detected compound above the MDL

Table 3-4. FWGWMP May 2014 SVOC Analytical Results

Station ID				LL1mw-088	LL2mw-271	LL3mw-246
				FWGLL1mw-088-	FWGLL2mw-271	FWGLL3mw-246
Sample ID		MCL	USEPA RSL	0437-GW	0438-GW	0439-GW
Date Collected				5/8/2014	5/7/2014	5/7/2014
Sample Type	1.1-26-			Grab	Grab	Grab
Analyte	Units					
1,2,4-Trichlorobenzene	μg/L	70	1.1	0.51 U	0.48 U	0.48 U
1,2-Dichlorobenzene	μg/L	600	300	0.51 U	0.48 U	0.48 U
1,3-Dichlorobenzene	μg/L	NS	NS	0.51 U	0.48 U	0.48 U
1,4-Dichlorobenzene	μg/L	75	0.48	0.51 U	0.48 U	0.48 U
2,2-oxybis (1-chloropropane)	μg/L	NS	0.36	0.51 U	0.48 U	0.48 U
2,4,5-Trichlorophenol	μg/L	NS	1200	0.51 U	0.48 U	0.48 U
2,4,6-Trichlorophenol	μg/L	NS	4	0.51 U	0.48 U	0.48 U
2,4-Dichlorophenol	μg/L	NS	46	0.51 U	0.48 U	0.48 U
2,4-Dimethylphenol	μg/L	NS	360	0.51 U	0.48 U	0.48 U
2,4-Dinitrophenol	μg/L	NS	39	1.0 U	0.95 U	0.95 U
2-Chloronaphthalene	μg/L	NS	750	0.51 U	0.48 U	0.48 U
2-Chlorophenol	μg/L	NS	91	0.51 U	0.48 U	0.48 U
2-Methylnaphthalene	μg/L	NS	36	0.10 U	0.095 U	0.095 U
2-Methylphenol	μg/L	NS	930	0.51 U	0.48 U	0.48 U
2-Nitroaniline	μg/L	NS	190	0.51 U	0.48 U	0.48 U
2-Nitrophenol	μg/L	NS	NS	0.51 U	0.48 U	0.48 U
3,3'-Dichlorobenzidine	μg/L	NS	0.12	1.0 U	0.95 U	0.95 U
3- and 4-Methylphenol	μg/L	NS	930	1.0 U	0.95 U	0.95 U
3-Nitroaniline	μg/L	NS	NS	0.51 U	0.48 U	0.48 U
4,6-Dinitro-2-methylphenol	μg/L	NS	1.5	4.0 U	3.8 U	3.8 U
4-Bromophenyl phenyl ether	μg/L	NS	NS	0.51 U	0.48 U	0.48 U
4-Chloro-3-methylphenol	μg/L	NS	1400	0.51 U	0.48 U	0.48 U
4-Chloroaniline	μg/L	NS	0.36	0.51 U	0.48 U	0.48 U
4-Chlorophenyl phenyl ether	μg/L	NS	NS	0.51 U	0.48 U	0.48 U
4-Nitroanaline	μg/L	NS	38	0.51 U	0.48 U	0.48 U
4-Nitrophenol	μg/L	NS	NS	4.0 U	3.8 U	3.8 U
Acenaphthene	μg/L	NS	530	0.10 U	0.095 U	0.095 U
Acenaphthylene	μg/L	NS	NS	0.10 U	0.095 U	0.095 U
Anthracene	μg/L	NS	1800	0.10 U	0.095 U	0.095 U
Benzo(a)anthracene	μg/L	NS	0.034	0.10 U	0.095 U	0.095 U
Benzo(a)pyrene	μg/L	0.2	0.0034	0.10 U	0.095 U	0.095 U
Benzo(b)fluoranthene	μg/L	NS	0.034	0.10 U	0.095 U	0.095 U
Benzo(g,h,i)perylene	μg/L	NS	NS	0.10 U	0.095 U	0.095 U
Benzo(k)fluoranthene	μg/L	NS	0.34	0.10 U	0.095 U	0.095 U
Benzoic acid	μg/L	NS	75000	20 U	19 U	19 U
Benzyl alcohol	μg/L	NS	2000	0.51 U	0.48 U	0.48 U
bis(2-Chloroethoxy)methane	μg/L	NS	59	0.51 U	0.48 U	0.48 U
bis(2-Chloroethyl)ether	μg/L	NS	0.014	0.10 U	0.095 U	0.095 U
bis(2-Ethylhexyl)phthalate	μg/L	6.0	5.6	5.1 U	4.8 U	4.8 U
Butyl benzyl phthalate		NS	16	0.51 U	0.48 U	0.48 U
Dutyi belizyi pililialate	μg/L	INO	10	0.51 0	0.46 U	0.46 U

Table 3-4. FWGWMP May 2014 SVOC Analytical Results

Station ID				LL1mw-088	LL2mw-271	LL3mw-246
				FWGLL1mw-088-	FWGLL2mw-271-	FWGLL3mw-246-
Sample ID		MCL	USEPA RSL	0437-GW	0438-GW	0439-GW
Date Collected				5/8/2014	5/7/2014	5/7/2014
Sample Type				Grab	Grab	Grab
Analyte	Units					
Carbazole	μg/L	NS	NS	0.51 U	0.48 U	0.48 U
Chrysene	μg/L	NS	3.4	0.10 U	0.095 U	0.095 U
Dibenzo(a,h)anthracene	μg/L	NS	0.0065	0.10 U	0.095 U	0.095 U
Dibenzofuran	μg/L	NS	7.9	0.10 U	0.095 U	0.095 U
Diethyl phthalate	μg/L	NS	15000	1.0 U	0.64 B	0.95 U
Dimethyl phthalate	μg/L	NS	NS	0.51 U	0.48 U	0.48 U
Di-n-butyl phthalate	μg/L	NS	900	5.1 U	4.8 U	4.8 U
Di-n-octyl phthalate	μg/L	NS	200	0.51 U	0.48 U	0.48 U
Fluoranthene	μg/L	NS	800	0.10 U	0.095 U	0.095 U
Fluorene	μg/L	NS	290	0.10 U	0.095 U	0.095 U
Hexachlorobenzene	μg/L	1.0	0.049	0.10 U	0.095 U	0.095 U
Hexachlorobutadiene	μg/L	NS	0.3	0.51 U	0.48 U	0.48 U
Hexachlorocyclopentadiene	μg/L	50	31	0.51 UJ	0.48 U	0.48 UJ
Hexachloroethane	μg/L	NS	0.90	0.51 U	0.48 U	0.48 U
Indeno(1,2,3-cd)pyrene	μg/L	NS	0.034	0.10 U	0.095 U	0.095 U
Isophorone	μg/L	NS	78	0.51 U	0.48 U	0.48 U
Naphthalene	μg/L	NS	0.17	0.15 B	0.095 U	0.10 J
N-Nitroso-di-n-propylamine	μg/L	NS	0.011	0.51 U	0.48 U	0.48 U
N-Nitrosodiphenylamine	μg/L	NS	12	0.51 U	0.48 U	0.48 U
Pentachlorophenol	μg/L	1.0	0.04	1.0 U	0.95 U	0.95 U
Phenanthrene	μg/L	NS	NS	0.10	0.095 U	0.095 U
Phenol	μg/L	NS	5800	1.0 U	0.95 U	0.95 U
Pyrene	μg/L	NS	120	0.10	0.095 U	0.095 U

Notes:

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, May 2014

μg/L = microgram per liter

NS = no standard

N/A = Not Analyzed

Bold = detected compound above the MDL

Table 3-4. FWGWMP May 2014 SVOC Analytical Results

Data Qualifiers

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix C.

U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.

- J The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:
 - Results detected above the laboratory MDL but less than the laboratory reporting limit.
 - MS/MSD percent recoveries outside the acceptance criteria.
 - LCS percent recoveries outside acceptance criteria.

R Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample [e.g., the MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable].

UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated RL.

B The B flag is used for when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.

Table 3-5. FWGWMP May 2014 Pesticides and PCBs Analytical Results

Station ID				LL1mw-064	LL1mw-088	LL2mw-271	LL3mw-246	SCFmw-004
			USEPA	FWGLL1mw-	FWGLL1mw-	FWGLL2mw-	FWGLL3mw-	FWGSCFmw-
Sample ID		MCL	RSL	064C-0436-GW	088-0437-GW	271-0438-GW	246-0439-GW	004-0440-GW
Date Collected				5/7/2014	5/8/2014	5/7/2014	5/7/2014	5/7/2014
Sample Type				Grab	Grab	Grab	Grab	Grab
Analyte	Units							
4,4'-DDD	μg/L	NS	0.031	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
4,4'-DDE	μg/L	NS	0.23	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
4,4'-DDT	μg/L	NS	0.23	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
Aldrin	μg/L	NS	0.0046	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
alpha-BHC	μg/L	NS	0.0071	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
alpha-Chordane	μg/L	NS	NS	0.019 U	0.019 UJ	0.020 UJ	0.019 U	0.095 U
beta-BHC	μg/L	NS	0.025	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
delta-BHC	μg/L	NS	NS	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
Dieldrin	μg/L	NS	0.0017	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
Endosulfan I	μg/L	NS	100	0.019 U	0.019 UJ	0.020 UJ	0.019 U	0.095 U
Endosulfan II	μg/L	NS	100	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
Endosulfan sulfate	μg/L	NS	NS	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
Endrin	μg/L	2.0	2.3	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
Endrin aldehyde	μg/L	NS	NS	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
Endrin ketone	μg/L	NS	NS	0.019 U	0.019 UJ	0.020 UJ	0.019 U	0.095 U
gamma-BHC	μg/L	0.20	0.041	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
gamma-Chlordane	μg/L	NS	NS	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
Heptachlor	μg/L	0.40	0.002	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
Heptachlor epoxide	μg/L	0.20	0.0038	0.019 U	0.019 UJ	0.020 U	0.019 U	0.095 U
Methoxychlor	μg/L	40	37	0.048 U	0.048 UJ	0.050 U	0.048 U	0.24 U
Toxaphene	μg/L	3.0	0.015	0.76 U	0.76 UJ	0.79 U	0.76 U	3.8 U
PCB- 1016	μg/L	0.50	1.1	N/A	0.19 UJ	0.20 U	0.19 U	N/A
PCB- 1221	μg/L	0.50	0.0046	N/A	0.19 UJ	0.20 U	0.19 U	N/A
PCB- 1232	μg/L	0.50	0.0046	N/A	0.19 UJ	0.20 U	0.19 U	N/A
PCB- 1242	μg/L	0.50	0.039	N/A	0.38 UJ	0.40 U	0.38 U	N/A
PCB- 1248	μg/L	0.50	0.039	N/A	0.19 UJ	0.20 U	0.19 U	N/A
PCB- 1254	μg/L	0.50	0.039	N/A	0.19 UJ	0.20 U	0.19 U	N/A
PCB- 1260	μg/L	0.50	0.039	N/A	0.19 UJ	0.20 U	0.19 U	N/A

Notes:

MCL = Maximum Contaminant Level

RSL = USEPA Regional Screening Level, May 2014

N/A = not analyzed NS = no standard

Bold = detected compound above the MDL

μg/L = microgram per liter

Table 3-5. FWGWMP May 2014 Pesticides and PCBs Analytical Results

Data Qualifiers

2 3

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the USACE Louisville Chemistry Guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix C.

U The analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.

- J The identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:
 - Results detected above the laboratory MDL but less than the laboratory reporting limit.
 - MS/MSD percent recoveries outside the acceptance criteria.
 - LCS percent recoveries outside acceptance criteria.

R Data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample [e.g., the MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable].

UJ This flag is a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated RL.

B The B flag is used for when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.

3.3 Data Verification/Validation

As discussed in Sections 2.4 and 3.3, all primary chemical data were generated by Test America. RTI conducted the independent QA analysis; however, EQM is not required to verify RTI data. A multi-step process is conducted, which involves the lab, the ADR software, and a data validator performing the data verification and validation of the data. During the first step each lab analyzes the data and assigns a qualifier as necessary in full accordance with DoD OSM and LS guidelines.

Analytical data was then reviewed by qualified EQM personnel, and a report was generated according to Step 2 of the LS and the DoD QSM, with any deviations/outliers noted in the summary report. The USACE-supplied ADR software assigns qualifiers to the data, as necessary, consistent with the programmed criteria of the ADR software. Additionally, the data validator uses professional judgment to check the validity of the qualified data and either accepts, rejects, or re-

qualifies the ADR results following strict DoD QSM and LS guidelines.

After this multi-step process has been completed, the resulting final ADR qualifiers may not match the original lab qualifiers that are presented on the laboratory data sheets. As a result of the data validation process, one or more of four possibilities may occur:

1. The lab assigns a B, J, or E qualifier to the data, and the ADR software and/or the data validator changes the qualifier to a J, UJ, U, B, or R.

- 2. The lab assigns no qualifier to the data, and the ADR software and/or the data validator assigns a J, UJ, U, B, or R qualifier to the data.
- 3. The lab assigns a B, J, or E qualifier to the data, and the ADR software and/or the data validator assigns no qualifier to the data.
- 4. The lab assigns a J qualifier or uses no qualifier, and the ADR software and/or the data validator accepts the lab designation.

For the May 2014 Sampling Event Report, the laboratory data, with laboratory-derived qualifiers that follow DoD QSM and LS criteria, are presented in Appendix C. The verification reports for the data are also presented in Appendix C, which includes the definitions of the ADR qualifiers. The data presented in Tables 3-1, 3-2, 3-3, 3-4, and 3-5 are the result of the data that has been subjected to the multi-step process of verification and validation. These tables display the final assigned data qualifier in accordance with DoD QSM and LS criteria.

Data qualifier flags are used in an effort to describe the quality of each piece of data for each constituent. These flags are letter codes appended to the numerical data. The following data qualifiers are specified in the guidelines. For a complete explanation of qualifiers used for each constituent please refer to the Data Verification Summaries in Appendix C.

- U = the analyte was analyzed for but not detected. The numerical value preceding the U is the associated reporting limit.
- J = the identification of the analyte is acceptable, but the quality assurance criteria indicate that the quantitative values may be outside the normal expected range of precision (i.e., the quantitative value is estimated). Examples include:

- Results detected above the laboratory MDL but less than the laboratory reporting limit.
- MS/N
 - MS/MSD percent recoveries outside the acceptance criteria.LCS percent recoveries outside acceptance criteria.

• R = data are considered to be rejected and shall not be used. This flag denotes the failure of quality control criteria such that it cannot be determined if the analyte is present or absent from the sample (e.g., MRL verification standard was below quality control guidelines; associated sample results that were non-detect are unusable).

• UJ = a combination of the U and J qualifiers, which indicate that the analyte is not present. The reported value is considered to be an estimated reporting limit.

• B = used for organic and inorganic analyses when the analyte is found in the method blank or any of the field blanks. This designation overrides the CLP "B" designation when used by the laboratory as an estimated value for inorganics.

Six wells were sampled during a 2-day sampling event from May 7-8, 2014. During the event, three trip blanks were submitted to Test America for VOCs analysis.

One field duplicate was collected during the sampling event in order to assess the quality and consistency of sample collection. Project requirements of 10% field duplicates were met for this sampling event. In addition, one laboratory split was collected and analyzed in order to assess the quality and consistency of the laboratory analysis. The project requirements of taking 10% laboratory splits were met for this sampling event. One equipment rinsate blank was collected during each day of monitoring well sampling; a total of two equipment rinsate blanks were collected.

For the May 2014 sampling event, the following laboratory or field contamination was identified at detections greater than ½ MRL for the field QA/QC samples.

SDG 240-37114

33 Trip Blank

Chloroform was detected in FWGTEAM3-Trip050814 at 0.35 μ g/L, FWGTEAM3-Trip at 0.29 μ g/L and at 0.34 μ g/L in sample FWGTEAM2-Trip. There were no detected chloroform concentrations reported for the associated field samples, so no qualifications were required for trip blank contamination.

37 blank contaminati38 Equipment Rinse

- FWGEQUIPRinse2-0444-GW had acetone detected at 14 μg/L, carbon disulfide at 0.69 μg/L, 2-butanone at 3.6 μg/L and toluene at 0.22 μg/L.
- FWGEQUIPRinse1-0443-GW had acetone detected at 12 μ g/L, 2-butanone at 1.5 μ g/L and toluene at 0.20 μ g/L.

There were no detected concentrations reported for the associated field samples, so no qualifications were made for the acetone, carbon disulfide, 2-butanone or toluene contamination.

• FWGEQUIPRinse2-0444-GW had diethylphthalate detected at 2.7 μg/L, naphthalene at 0.14 μg/L and phenol at 0.73 μg/L.

- FWGEQUIPRinse1-0443-GW had diethylphthalate detected at 3.2 μg/L.
- The naphthalene result for sample FWGLL1mw-088-0437-GW and the diethyl phthalate result for sample FWGLL2mw-271-0438-GW were qualified, "B", as the reported concentrations were less than 5x the associated equipment rinse contamination.
 - FWGEQUIPRinse2-0444-GW had lead detected at 1.7 μg/L.
- The lead result for sample FWGLL1mw-088-0437-GF was qualified, "B", as the reported concentration was less than five times the equipment rinse contamination.

9 Method Blank

1

5

8

21 22

23

24

2526

27

28

3233

- Vanadium was detected in the method blank at 1.37 μg/L. No qualifications were made as there were no detected vanadium concentrations reported for the associated field samples.
- 12 13 For a discussion of method blank contamination please review the Data Verification Reports and 14 the Laboratory Case Narrative in Appendix C. Laboratory analyses were performed in analytical 15 batches of ≤ 20 in order to maximize efficiency and group quality control requirements. Method 16 blanks and laboratory control samples were analyzed at a frequency of 1:20 (5%) samples or per 17 analytical batch, whichever was greater. Sufficient volume was provided to the laboratory in order 18 to assess matrix spike analysis on project samples at a frequency of 1:10 (10%) samples. Matrix 19 spike/matrix spike duplicate analysis was performed by the laboratory as batch quality control at a 20 frequency of 1:20 (5%).
 - Field quality control and laboratory quality control results were evaluated as part of the verification assessment provided in Appendix C. Project requirements were met for the frequency and quality of these samples.
 - Table 3-6 presents the percent, by analytical method, of data that were acceptable (based on data not rejected) for use.
- All qualified data are discussed in the Data Verification Reports contained in Appendix C. All other data meet the requirements specified in the DoD QSM, LS criteria, and the QAPP associated with this site.

1 Table 3-6. Percent of Acceptable Data

Analytical Method	Total Number	Number of	Percent
122029 02002 11200220 02	of Analytes	Rejects	Completeness
6010B	112	0	100.0
6020	64	0	100.0
7470A	8	0	100.0
8081A	168	0	100.0
8082	42	0	100.0
8260B	351	0	100.0
8270C -SVOC1	12	0	100.0
8270C-SVOC4	378	0	100.0
8330	128	0	100.0
9012A	6	0	100.0
SW8330 Modified	8	0	100.0
WS-WC-0050	8	0	100.0
TOTAL	1285	0	100.0

1 2 **SECTION 4** 3 REFERENCES 4 5 6 Portage Environmental, 2004. RVAAP Facility-Wide Groundwater Monitoring Program Plan. 7 8 SAIC. 2001. RVAAP Facility-Wide Sampling and Analysis Plan/Quality Assurance Project Plan. 9 10 SAIC. 2001b. Phase II Remedial Investigation Report for the Winklepeck Burning Grounds at 11 Ravenna Army Ammunition Plant, Ravenna, Ohio. 12 13 SAIC/REIMS. 2005. Table of Reported Construction Depths from REIMS Information. 14 15 SpecPro, Inc. 2005a. Facility-Wide Groundwater Monitoring Program Report on the April 2005 16 Sampling Event, Ravenna Training and Logistics Site/Ravenna Army Ammunition Plant, Ravenna, 17 Ohio. 18 19 SpecPro, Inc. 2005b. Facility-Wide Groundwater Monitoring Program, Report on the July 2005 20 Sampling Event, Ravenna Training and Logistics Site/Ravenna Army Ammunition Plant, Ravenna, 21 Ohio 22 23 SpecPro, Inc. 2006a. Facility-Wide Groundwater Monitoring Program, Annual Report for 2005, 24 Ravenna Training and Logistics Site/Ravenna Army Ammunition Plant, Ravenna, Ohio 25 26 SpecPro, Inc. 2006b. Facility-Wide Groundwater Monitoring Program, Report on the March 2006 27 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio 28 29 SpecPro, Inc. 2006c. Facility-Wide Groundwater Monitoring Program, Report on the May 2006 30 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio 31 32 SpecPro, Inc. 2006d. (Draft) Facility-Wide Groundwater Monitoring Program, Annual Report for 33 2006, Ravenna Army Ammunition Plant, Ravenna, Ohio 34 35 SpecPro, Inc. 2007a. Facility-Wide Groundwater Monitoring Program, Report on the July 2006 36 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio 37 38 SpecPro, Inc. 2007b. Facility-Wide Groundwater Monitoring Program, Report on the October 39 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio 40 41 SpecPro, Inc. 2007c. Facility-Wide Groundwater Monitoring Program, Report on the January 42 2006 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio. 43 44 Environmental Quality Management, Inc. 2007d. Facility-Wide Groundwater Monitoring 45 Program, Report on the April 2007 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, 46 Ohio.

- 1 Environmental Quality Management, Inc. 2007e. Facility-Wide Groundwater Monitoring
- 2 Program, Report on the July 2007 Sampling Event, Ravenna Army Ammunition Plant, Ravenna,
- 3 Ohio.

4

- 5 Environmental Quality Management, Inc. 2007f. Facility-Wide Groundwater Monitoring
- 6 Program, Report on the October 2007 Sampling Event, Ravenna Army Ammunition Plant, Ravenna,
 - Ohio.

7 8

- 9 Environmental Quality Management, Inc. 2008a, Facility-Wide Groundwater Monitoring Program,
- 10 Report on the January 2008 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

11

- 12 Environmental Quality Management, Inc. 2008b. Facility-Wide Groundwater Monitoring
- 13 Program, Report on the April 2008 Sampling Event, Ravenna Army Ammunition Plant, Ravenna,
- 14 Ohio.

15

- 16 Environmental Quality Management, Inc. 2008c. Facility-Wide Groundwater Monitoring
- 17 Program, Report on the July 2008 Sampling Event, Ravenna Army Ammunition Plant, Ravenna,
- 18 Ohio.

19

- 20 Environmental Quality Management, Inc. 2008d. Facility-Wide Groundwater Monitoring
- 21 Program, Report on the October 2008 Sampling Event, Ravenna Army Ammunition Plant, Ravenna,
- 22 Ohio.

23

- 24 Environmental Quality Management, Inc. 2009a. Facility-Wide Groundwater Monitoring
- 25 Program, Report on the January 2009 Sampling Event, Ravenna Army Ammunition Plant, Ravenna,
- 26 *Ohio*.

27

- 28 Environmental Quality Management, Inc. 2009b. Facility-Wide Groundwater Monitoring
- 29 Program, Report on the April 2009 Sampling Event, Ravenna Army Ammunition Plant, Ravenna,
- 30 Ohio.

31

- 32 Environmental Quality Management, Inc. 2009c. Facility-Wide Groundwater Monitoring
- 33 Program, Report on the July 2009 Sampling Event, Ravenna Army Ammunition Plant, Ravenna,
- 34 *Ohio*.

35

- 36 Environmental Quality Management, Inc. 2009c. Facility-Wide Groundwater Monitoring
- 37 Program, Report on the October 2009 Sampling Event, Ravenna Army Ammunition Plant, Ravenna,
- 38 Ohio.

39

- 40 Environmental Quality Management, Inc. 2010. Facility-Wide Groundwater Monitoring Program,
- 41 Report on the January 2010 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

42

- 43 Environmental Quality Management, Inc. 2010. Facility-Wide Groundwater Monitoring Program,
- 44 Report on the July 2010 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.

45

- Environmental Quality Management, Inc. 2010. Facility-Wide Groundwater Monitoring Program, Report on the October 2010 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.
- 4 Environmental Quality Management, Inc. 2011. Facility-Wide Groundwater Monitoring Program,
- 5 Report on the January 2011 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.
- 7 Environmental Quality Management, Inc. 2011. Facility-Wide Groundwater Monitoring Program,
- 8 Report on the April 2011 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.
- Environmental Quality Management, Inc. 2011. Facility-Wide Groundwater Monitoring Program, Report on the July 2011 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.
- 12 Environmental Quality Management, Inc. 2011. Facility-Wide Groundwater Monitoring Program,
 14 Report on the October 2011 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.
- 16 Environmental Quality Management, Inc. 2012. Facility-Wide Groundwater Monitoring Program, 17 Report on the January 2012 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.
- 19 Environmental Quality Management, Inc. 2012. Facility-Wide Groundwater Monitoring Program, 20 Report on the April 2012 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.
- Environmental Quality Management, Inc. 2012. Final Facility-Wide Groundwater Monitoring
 Program Plan RVAAP-66 Facility-Wide Groundwater Semiannual Monitoring Addendum.
- Environmental Quality Management, Inc. 2013. Facility-Wide Groundwater Monitoring Program,
 Report on the July 2012 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.
- Environmental Quality Management, Inc. 2013. Facility-Wide Groundwater Monitoring Program,
 Report on the October 2012 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.
- Environmental Quality Management, Inc. 2013. Facility-Wide Groundwater Monitoring Program, Report on the January 2013 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.
- Environmental Quality Management, Inc. 2013. Final Facility-Wide Groundwater Monitoring
 Program Plan RVAAP-66 Facility-Wide Groundwater Semiannual Monitoring Addendum.
- Environmental Quality Management, Inc. 2014. Facility-Wide Groundwater Monitoring Program, Report on the August 2013 Sampling Event, Ravenna Army Ammunition Plant, Ravenna, Ohio.
- SAIC. 2011. Final Facility-Wide Sampling and Analysis Plan for Environmental Investigations at the Ravenna Army Ammunition Plant, Ravenna, Ohio.
- USACE. 2010. 2010 Addendum to the Facility-Wide Groundwater Monitoring Program Plan
 RVAAP-66 Facility-Wide Groundwater.

3

6

9

15

18

21

30

33

36

39

42

Former RVAAP Facility-Wide Groundwater Monitoring Program May 2014 Sampling Event Report
APPENDIX A
MONITODING WELL CRANDLED DUDING THE MAY 2014 CDOUNDWATED
MONITORING WELLS SAMPLED DURING THE MAY 2014 GROUNDWATER
MONITORING EVENT

May 2014 Well Sampling List

Well ID Number	RVAAP Location	Sampling Rationale
FWGmw-002	Facility-Wide wells	Monitoring Well for pH
LL1mw-064	Load Line 1	Semiannual Well, frozen in January
LL1mw-088	Load Line 1	New well, four events needed
LL2mw-271	Load Line 2	New well, four events needed
LL3mw-246	Load Line 3	New well, four events needed
SCFmw-004	Sharon Conglomerate Formation	Semiannual Well, frozen in January

Former RVAAP Facility-Wide Groundwater Monitoring Program May 2014 Sampling Event Report
APPENDIX B
WATER-LEVEL MEASUREMENTS/FIELD LOG BOOK/CALIBRATION RECORDS/
SAMPLE AND PURGE RECORDS/DAILY QUALITY CONTROL REPORTS

May 2014 FWGWMP Monitoring Well Event Field Personnel Abbreviations and Signatures Page

Field Personnel

Name	Affiliation	Initials
Bryan Deskins	EQM	BD
Angela S. Dragotta	EQM	AD/ASD
Colleen A. Lear	EQM	CL/CAL
John Miller	EQM	JM
Stephen Stuergon	EQM	SS
Scott A. Spesshardt	EQM	SAS

Project and Field Leads

Name, Title, Affiliation

_ / //		Dull -	
Signature:	1/1/2	Mo	

Colleen A. Lear, Field Manager / QC Check, EQM

John Miller, Project Manager / QC Check, EQM

Signature:

Erik Corbin, Sample Manager, EQM

Signature: Lik Corlini

Logbook

Static Water Level Measurements

EQM MONITOR WELL STATIC WATER LEVEL FORM

PROJECT NAME: RVAAP PROJECT NUMBER: 030174.0016.001

FIELD BOOK#: 2 DATE: <u>5/7/2014</u>

Monitor Well Number	Location	Total Well Depth (ft)	Water Level Indicator	Sampler	Time	Depth to Static Water Level (ft)	Sounding	PID Reading (above bkgrnd)
FWGmw-002	Facilitywide	69.6	qed ms6000	CAL	10:40	22.66		0
	Cmt:Good, PURGE	ONLY: intake	64, black suspended solids, cleaned c	out by 1130, gray s	ed at bottom m	ed to soft	•	
LL1mw-064	Loadline 1	21.1	05767	AD	15:23	0.7		0
	Cmt:Good, water lea	aking from wee	phole at .5 L per Min.	-		1		·
LL2mw-271	Loadline 2	27.8	05767	AD	12:10	9.29		0
	Cmt:Good,				+	+	•	-
LL3mw-246	Loadline 3	45.61	05767	AD	9:04	19.1		0
	Cmt:Good,	1		1	1			1
SCFmw-004	Sharon Con	112.5	qed ms6000	CAL	8:50	-0.2		0
	Cmt:Good, hard bot	tom, artesian fl	ow, intake depth 107, needs new tubi	ng	-	+		

EQM MONITOR WELL STATIC WATER LEVEL FORM

PROJECT NAME: RVAAP PROJECT NUMBER: 030174.0016.001

FIELD BOOK#: 2 DATE: 5/8/2014

Monitor Well		Total Well Depth	Water Level		Tr'	Depth to Static Water Level	G I	PID Reading (above
Number	Location	(ft)	Indicator	Sampler	Time	(ft)	Sounding	bkgrnd)
LL1mw-088	Loadline 1	27.37	05767	AD	8:30	4.02		0

Cmt:Good, start @ 50 10/5 drawn too fast. Changed cycles per min(CPM) to 2 @ 0840. @0845 changed to 1 CPM. After 0853 reading dumped flow thru & changed 2 CPM. After 0858 read changed to 1 CPM.

CALIBRATION REFERENCE TABLES

Summary of Field Instruments and Calibration/Performance Requirements for RVAAP AOC-Specific Investigations

Instrument and Use	Calibration	Performance
Water level meter used to determine static water level	Calibrated by manufacturer	±0.01 ft
Water quality instrument used to determine groundwater pH	Two points using pH 4.0 and 7.0 standard solutions on a daily basis	±0.1 units
Water quality instrument used to determine groundwater conductivity	One point using 0.01 m KCl or equivalent standard solution on a daily basis. Standard solutions should be close to the range of groundwater sampled	±0.1 μmhos/cm
Water quality instrument used to determine groundwater turbidity	One point using a 0.0 NTU or equivalent standard solution on a daily basis	0.1 NTU
Water quality instrument used to determine dissolved oxygen	One point using standard solution or manufacturer's DO chart	10%
Thermometer used to determine groundwater temperature	Calibration by manufacturer	±1°C
Photoionization detector used to determine organic vapor concentrations emitted from subsurface material	One point using 100-ppm isobutylene calibration gas on a daily basis	±0.1 ppm

AOC = Area of concern KCl = Potassium chloride (solution) ppm = Parts per million RVAAP = Ravenna Army Ammunition Plant

MODEL 3682 ZOBELL SOLUTION INSTRUCTIONS

ORP CHART

486 L			
(Married	@ TEMPERATURE in °C	Ag/Agcl (4H Kcl) in millivolts	CALOMEL in millivolts
	-5	270.0	234.2
	0	263.5	226.0
	0 5	257.0	217.8
	10	250.5	209.6
	15	244.0	201.4
	20	237.5	193.2
	25	231.0	185.0
	30	224.5	176.8
	35	218.0	168.6
	40	211.5	160.4
	45	205.0	152.2
	50	198.5	144.0

DO CHART

The ISI 3682 Zobell Solution is not for food or drug use and can be harmful if swallowed. It will react with acids to form harmful by-products, including hydro-

Amounts of saturated dissolved oxygen in water at various temperatures (salinity=0.0%)

JIS K0101

Temp.	DO	Temp.	DO	Temp.	DO	Temp.	DO
(°C)	(mg/L)	(°C)	(mg/L)	(°C)	(mg/L)	(°C)	(mg/L)
0	14.16						
1	13.77	11	10.67	21	8.68	31	7.42
2	13.40	12	10.43	22	8.53	32	7.32
3	13.04	13	10.20	23	8.39	33	7.22
4	12.70	14	9.97	24	8.25	34	7.13
5	12.37	15	9.76	25	8.11	35	7.04
6	12.06	16	9.56	26	7.99	36	6.94
7	11.75	17	9.37	27	7.87	37	6.86
8	11.47	18	9.18	28	7.75	38	6.76
9	11.19	19	9.01	. 29	7.64	39	6.68
10	10.92	20	8.84	30	7.53	40	6.59

S. Comment	222	3.99		0.0	ts 6.49		16.00	18,54	363	ts	1		ts	ts			7	ts			ts	ts			_/	/			
Units	pH units	pH units	mS/cm	NTU	pH units	pH units	. ا _° د	mg/L	μV	pH units	mS/cm	NTU	pH units	pH units	. د	mg/L	lmV	pH units	mS/cm	NTO	pH units	pH units	ာ့	_mg/L	mV	mon	100m	- (5) (A)	- L
Meter Reading		3.99	844	0.0	7,00	80.01	13:98	10,01	150	3.99	4.51	0,0	7,00	10,02	13,42	8 99	250									102	0	101	0
Std Concentra	4	4	4.49	O	7	10				4	4.49	0	7	10				4	4.49	O	7	10		1					
Standard	Hd	Hd	Cond	Turb	Hd	pH	Temp	DO	ORP	þH	Cond	Turb	Hd	Hd	Temp	DO	ORP	pH	Cond	Turb	Hd	[pH	Temp	00	ORP	tylene	Ž	Z	40
CalibrationType	Autocal	Autocal	Autocal	Autocal	Calibration	Calibration	Temp Check	Calibration-Chart	Calibration-Chart	Autocal	Autocal	Autocal	Calibration	Calibration	Temp Check	Calibration-Chart	Calibration-Chart	Autocal	Autocal	Autocal	Calibration /	Calibration / /	Temp Check	Calibration-Chart	Calibration-Chart	Bump - iso Bictylene	-3000AR	Briano	
ne Calibrator	11:00 EC	1300 CAL							- <i>i</i>	5 10°C							2								-	<u>2</u>		9	
Date Time	06-Oct-08 11	02-MM-14 13			ERROR				\rightarrow \right	07-1014 OT-15							_)									1351 PI URINIZO		COMPULIA OUNO	
instrument (ID	3074008	706025				and a live			→	704025		A COLUMN TO THE PARTY OF THE PA					->			1		,					-		
Instrument Model	EXAMPLE: Horiba U22	-1/22							₂)	122 Z	A second	pja@fail*				~	->			,	The second secon	W-1				12/PID	7	->	and the second
	EXAMPLE	H06/04/1/20								古らを			***************************************					/						[:	1.32d11	文 文	,		

ලිගිකිකිඩෙර				-																								
<u>Unites</u>	pH units	pH units	mS/cm	NTU	pH units	pH units	ပ	mg/1." /	mV	pH units	mS/cm	NTU	pH units	pH units	ာ့	mg/L	mV	pH units	mS/cm	NTU	pH units	pH units	ာ့	mg/L	mV	 		
			4.80	0,0	7.03	10.30	19.80	119.8904m371"	245	50.4	4.50	0,0	7.02	10.04	. 1	883	- 1	3,99	4.49	0.0	6.93		15:09	9.69	340	 		
Sta Sta	4	4	4.49	O	7	10		919		4	4,49	0	7	10				4	4.49	0	7	10						
Standard	рН	pH	Cond	Turb	hd	Hd	Temp	00	ORP	hd	Cond	Turb	Hd	рН	Temp	DO	ORP	bH	Cond	Turb	hd	Hd	Temp	00	ORP			
Galibrator Calibrationilype Standard Concentra Reading	Autocal	Autocal	Autocai	Autocal	Calibration	Calibration	Temp Check	Calibration-Chart	Calibration-Chart	Autocal	Autocal	Autocal	Calibration	Calibration	Temp Check	Calibration-Chart	Calibration-Chart	Autocal	Autocal	Autocal	Calibration	Calibration	Temp Check	Calibration-Chart	Calibration-Chart			
Galibrator	EC 1/	7							7	(3)									\$						7			
Time	11:00	1310							J	80								_2	3						1		_	
Date	06-Oct-08	02-18/8-14							1	07-may-14								\\ \tag{\tau}	19-14-14	b			-	.,				
Instrument ID		6900161							7	79100109	<u> </u>)						 	Particular and the second seco		
Instrument Wodel	EXAMPLE: Horiba U22	SCH ABLOCA	1						-	140,04 W75							eg ulliment)						7			

Purge/Sample Records

EQM MONITOR WELL PURGING FORM

PROJECT NAME:	RVAAP			PROJECT NU	JMBER:	030174	.0016.	001
LOCATION: FACILI	ITYWIDE		DATE:	5/7/2014	START	TIME:	10:	40
WELL ID: FWGmw	-002	INITIAL V	VATER LEV	/EL: 22.66	TOTAL F	URGED	(L)	5.8
WELL DEPTH:	69.6	11(111111111111111111111111111111111111	VIII DIC DD	<u> 22.00</u>	_ 101121	CITOLL	(_)	
WELL DIAMETER	2 in.		APPROXI	MATE SCREE	EN INTERV	AL:	60 - 7	0
PUMP/PURGING DE	VICE: BP - BL	ADDER PUMP	APPROXI	MATE PUMP	INTAKE DI	EPTH <u>:</u>	65	
PUMP READINGS:	Throttle (ft.)	Rec	charge: 10.5	i I	Discharge: 4	1.5		
COMMENTS PURGE	ONLY: intake 64. I	black suspended so	olids, cleaned	out by 1130, gra	v sed at botto	m med to s	soft	

TIME	WATER LEVEL (btoc)	PURGE RATE (L/min)	VOLUME PURGED (L)	TEMP. (°C)	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
10:55	22.71	0.125	0.2						
11:07	23.12	0.125	1.5	10.92	0.461	1.16	8.22	669	-223
11:12	23.28	0.1	0.5	10.93	0.46	0.68	8.09	611	-225
11:17	23.20	0.1	0.5	11	0.457	0.22	8.05	479	-221
11:20	23.18	0.1	0.3	10.93	0.456	0.04	8.02	355	-226
11:23	23.19	0.1	0.3	10.87	0.455	0.02	8.02	291	-228
11:26	23.18	0.1	0.3	10.81	0.455	0.02	8.03	251	-232
11:30	23.18	0.1	0.4	10.8	0.452	0.04	8.03	179	-233
11:33	23.18	0.1	0.3	10.72	0.452	0.02	8.03	161	-236
11:36	23.18	0.1	0.3	10.75	0.451	0.02	8.04	151	-238
11:39	23.17	0.1	0.3	10.76	0.451	0.03	8.04	148	-239
11:42	23.17	0.1	0.3	10.78	0.452	0.04	8.05	136	-239
11:45	23.17	0.1	0.3	10.81	0.452	0.02	8.06	133	-239
11:48	23.16	0.1	0.3	10.84	0.452	0.02	8.07	129	-238

Note: Condition of the well:	See STATIC WATER LEVEL FORM, Note: All depths in feet BTOC.
Field Personnel: CAL	•

Intentionally Blank Page

EQM MONITOR WELL PURGING FORM

PROJECT NAME:	RVAAP			PROJEC	T NUMBER:	030174	1.0016.0	01
LOCATION: LOADI	LINE 1		DATE:	5/7/20	14 STA	ART TIME:	15:2	23
WELL ID: LL1mw-0)64	INTERNAL M	WATED LEV) 7 TOT.	AL DUDCED	ν(T.) 1	0.7
WELL DEPTH:	21.1	INITIAL V	VATER LEV	EL: ().7 TOTA	AL PURGED	(L) 1	8.2
WELL DIAMETER _	2 in.		APPROXI	MATE SO	CREEN INTE	ERVAL:	11 - 21	<u> </u>
PUMP/PURGING DE	VICE: BP - BI	ADDER PUMP	APPROXI	MATE PU	JMP INTAK	E DEPTH <u>:</u>	15.5	
PUMP READINGS:	Throttle (ft.)	Rec	charge: 10		Discharg	e: 5		
COMMENTS Color Cl	ear Odor·None w	ater leaking from we	eenhole at 5 l	ner Min				

TIME	WATER LEVEL (btoc)	PURGE RATE (L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pН	Turb (NTU)	ORP (mV)
15:33	0.60	0.3	0.5						
15:36	0.60	0.3	0.9	10.56	0.583	7.73	7.1	324	-127
15:39	0.60	0.3	0.9	10.49	99.9	0	7.24	317	-133
15:42	0.60	0.3	0.9	10.5	99.9	0	7.29	322	-135
15:47	0.60	0.3	1.5	10.5	41.4	5.46	7.44	112	-139
15:52	0.60	0.3	1.5	10.58	0.9	5.67	7.54	71.5	-142
15:57	0.60	0.3	1.5	10.56	0.9	5.84	7.56	70.2	-144
16:02	0.60	0.3	1.5	10.62	0.652	5.54	7.61	52	-144
16:07	0.60	0.3	1.5	10.63	0.544	5.53	7.63	48.4	-145
16:12	0.60	0.3	1.5	10.55	0.46	5.44	7.66	72.3	-147
16:17	0.60	0.3	1.5	10.42	0.445	5.42	7.68	54.4	-147
16:22	0.60	0.3	1.5	10.43	0.441	5.33	7.69	49.1	-148
16:27	0.60	0.3	1.5	10.39	0.438	5.32	7.66	45.1	-149
16:32	0.60	0.3	1.5	10.38	0.434	5.27	7.7	44.7	-150

Note: Condition of the well: <u>See STATIC WATER LEVEL FORM</u>, Note: All depths in feet BTOC.

Field Personnel: AD

EQM FIELD SAMPLING REPORT

PROJECT: RVAAP	LOCATION:	LOADLINE 1	PROJECT	Γ NO.: 030174.0016.001								
	SAMPL	E INFORMATION										
WELL: <u>LL1mw-064</u> Sampl	eID: FWGLL1mw-(064C-0436-GW	Dup ID:									
SplitID: RinseID:												
MATRIX: WG - Ground Water SAMPLING METHOD: BP - Bladder Pump MS/MSD: N												
GRAB: Y COMPOSITE: N DATE: 5/7/2014 TIME: 16:37												
FIELD READINGS / OBSERVATIONS												
Turb (NTU): 44.9 Color: Clear												
	ORP (mV):	-150	Odor:	None								
pH: 7.71 Temperature (°C): <u>10.32</u> D	O (mg/L): <u>5.23</u>	Specific Con	nductivity (mS/cm): 0.438								
	GENERAL	INFORMATION										
SUN/OVERCAST Overcast	PERCIPITATION:	N WIND DIREC	ΓΙΟΝ: <u>NE</u>	AMBIENT TEMP (°F): 60	<u> </u>							
SHIPPED VIA: Lab Pickup												
SHIPPED TO: Testamerica	SHIPPED TO: Testamerica											
SAMPLER: AD Cmt:	SAMPLER: AD Cmt:											
CONTAINER												

CONTAINE	1	PRESERVATIVE	ANALVEICAL METHOD	ANIAI WOLG
SIZE/TYPE	NUMBER	FRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
250ml/Poly	1	NaOH	9012	Cyanide
40ml/Vial	3	HCI	8260	VOC
1L/Amber	2	4C	8270	SVOC
1L/Amber	2	4C	8081	Pest
1L/Amber	2	4C	8082	PCB
1L/Amber	2	4C	353.2/8330	Propellants
500ml/Poly	1	HNO3	6010/6020/7470	Metals, filtered
1L/Amber	1	4C	8330	Explo

EQM MONITOR WELL PURGING FORM

PROJECT NAME: _	RVAAP		I	PROJECT N	UMBER:	030174	.0016.001	L
LOCATION: LOAD	LINE 1		DATE:	5/8/2014	START	TIME:	8:30	
WELL ID: LL1mw-	088		AMED LEVE	EI 402	TOTALE	NIDCED	(T.) 11	1
WELL DEPTH:	27.37	INITIAL V	VATER LEVI	EL: 4.02	_ TOTAL P	UKGED	(L) <u>11.</u>	.1
WELL DIAMETER	2 in.		APPROXIM	IATE SCRE	EN INTERV	AL:1	7.5 - 27.5	<u> </u>
PUMP/PURGING DE	EVICE: BP - BLA	DDER PUMP	APPROXIM	MATE PUMP	INTAKE DI	EPTH:	22	
PUMP READINGS:	Throttle (ft.)	Rec	harge: 40		Discharge: 2	20		
COMMENTS Color: C	,			0)				
changed	to 1 CPM. After 08	53 reading dumpe	ed flow thru & c	hanged 2 CPN	Л. After 0858 re	ead chang	ed to 1CPN	VI.

TIME	WATER LEVEL (btoc)	PURGE RATE (L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pН	Turb (NTU)	ORP (mV)
8:35	3.77	0.2	0						
8:40	4.34	0.2	1	10.41	0.999	7.15	7.1	9999	-32
8:45	4.74	0.1	0.5	10.32	0.999	6.98	7.1	9999	-29
8:50	4.69	0.1	0.5	10.72	0.97	6.35	7.19	9999	-30
8:53	4.69	0.1	0.3	10.81	0.999	6.29	7.15	9999	-34
8:58	4.80	0.1	0.5	10.47	0.93	7.5	7.25	9999	-30
9:01	4.71	0.1	0.3	10.54	0.953	6.32	7.26	9999	-39
9:04	4.62	0.1	0.3	10.6	0.941	6.1	7.27	9999	-40
9:07	4.68	0.1	0.3	10.62	0.937	5.97	7.27	9999	-41
9:10	4.58	0.1	0.3	10.66	0.961	5.84	7.28	9999	-43
9:13	4.60	0.1	0.3	10.69	0.934	5.74	7.27	9999	-44
9:16	4.59	0.1	0.3	10.77	0.935	5.7	7.28	9999	-44
9:19	4.65	0.1	0.3	10.84	0.928	5.6	7.29	9999	-46
9:22	4.65	0.1	0.3	10.94	0.932	5.59	7.29	9999	-47
9:25	4.66	0.1	0.3	11.06	0.921	5.55	7.29	928	-49
9:28	4.69	0.1	0.3	11.17	0.918	5.5	7.3	891	-50
9:31	4.71	0.1	0.3	11.16	0.919	5.51	7.3	772	-50
9:34	4.70	0.1	0.3	11.18	0.928	5.55	7.3	680	-52
9:37	4.71	0.1	0.3	11.29	0.913	5.52	7.29	600	-52
9:40	4.60	0.1	0.3	11.29	0.918	5.57	7.3	531	-53
9:43	4.69	0.1	0.3	11.37	0.915	5.61	7.31	474	-54
9:46	4.62	0.1	0.3	11.34	0.915	5.64	7.31	438	-54
9:49	4.68	0.1	0.3	11.41	0.921	5.68	7.31	372	-55
9:51	4.61	0.1	0.2	11.53	0.913	5.65	7.31	389	-55

Note: Condition of the well: See STATIC WATER LEVEL FORM, Note: All depths in feet BTOC.

Field Personnel: AD

EQM MONITOR WELL PURGING FORM

PROJECT NAME: _	RVAAP		I	PROJECT N	UMBER:	030174	1.0016.0	01
LOCATION: LOAD	LINE 1		DATE:	5/8/2014	START	TIME:	8:3	0
WELL ID: LL1mw-	088				TOTAL F	NID GED	. (7.) 1	
WELL DEPTH:	27.37	INITIAL V	VATER LEVI	EL: 4.02	_ TOTAL F	URGEL	(L) _1	1.1
WELL DIAMETER	2 in.		APPROXIM	IATE SCREI	EN INTERV	AL:	17.5 - 27	1.5
PUMP/PURGING DE	EVICE: BP - BLA	DDER PUMP	APPROXIM	IATE PUMP	INTAKE DI	EPTH:	22	
PUMP READINGS:	Throttle (ft.)	Rec	charge: 40]	Discharge: 2	20		
COMMENTS Color: C	loudy, Odor:None,sta	ırt @ 50 10/5 dra	wn too fast. Ch	anged cycles p	per min(CPM)	to 2 @ 08	340. @08	345
changed	changed to 1 CPM. After 0853 reading dumped flow thru & changed 2 CPM. After 0858 read changed to 1CPM.							

TIME	WATER LEVEL (btoc)	PURGE RATE (L/min)	VOLUME PURGED (L)	TEMP. (°C)	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pН	Turb (NTU)	ORP (mV)
9:54	4.65	0.1	0.3	11.57	0.912	5.68	7.3	368	-55
9:57	4.66	0.1	0.3	11.56	0.917	5.63	7.32	330	-56
10:00	4.64	0.1	0.3	11.64	0.913	5.66	7.32	336	-57
10:03	4.68	0.1	0.3	11.86	0.914	5.62	7.32	470	-57
10:06	4.60	0.1	0.3	11.97	0.922	5.63	7.32	342	-59
10:09	4.70	0.1	0.3	12.09	0.925	5.62	7.32	318	-59
10:12	4.60	0.1	0.3	12.06	0.912	5.6	7.32	303	-60
10:15	4.65	0.1	0.3	12.08	0.935	5.59	7.33	287	-61
10:18	4.70	0.1	0.3	12	0.917	5.62	7.33	276	-60
10:21	4.65	0.1	0.3	11.98	0.922	5.62	7.33	276	-61

Note: Condition of the well: See STATIC WATER LEVEL FORM, Note: All depths in feet BTOC.

Field Personnel: AD

EQM FIELD SAMPLING REPORT

PROJECT: RVAAP	LOCATION: LOA	ADLINE 1	PROJEC	T NO.: <u>030</u> 1	174.0016.001				
SAMPLE INFORMATION									
WELL: LL1mw-088 SampleID: FWGLL1mw-088-0437-GW/GF Dup ID:									
SplitID: RinseID: FWGEQUIPRinse2-0444-GW									
MATRIX: WG - Ground Water SAMPLING METHOD: BP - Bladder Pump MS/MSD: N									
GRAB: Y COMPOSIT	E: <u>N</u>	DATE:	5/8/2014	TIME:	10:29				
FIELD READINGS / OBSERVATIONS									
	Turb (NTU):	270	Color:	Cle	oudy				
	ORP (mV):	-61	Odor:	N	one				
pH: 7.33 Temperature (°C	nductivity (m	S/cm): 0.13							
	GENERAL INFO	ORMATION							
SUN/OVERCAST <u>Sunny</u> PERCIPITATION: <u>N</u> WIND DIRECTION: <u>SE</u> AMBIENT TEMP (°F): <u>65</u>									
SHIPPED VIA: Lab Pickup									
SHIPPED TO: Testamerica									
SAMPLER: AD Cmt: Rinse @1300									
CONTAINER									

CONTAINER		DDEGEDIA WILE					
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS			
40ml/Vial	3	HCI	8260	VOC			
1L/Amber	2	4C	8270	SVOC			
1L/Amber	2	4C	8081	Pest			
1L/Amber	2	4C	8082	PCB			
1L/Amber	1	4C	8330	Explo			
1L/Amber	2	4C	353.2/8330	Propellants			
250ml/Poly	1	NaOH	9012	Cyanide			
500ml/Poly	1	HNO3	6010/6020/7470	Metals, filtered			

Intentionally Blank Page

EQM MONITOR WELL PURGING FORM

PROJECT NAME:	RVAAP			PROJE	ECT NU	MBER:	030174	4.0016	.001
LOCATION: LOADL	INE 2		DATE:	5/7/	2014	START	TIME:	12	:10
WELL ID: LL2mw-271 INITIAL WATER LEVEL: 9.29 TOTAL PURGED (L) 8.9							0.0		
WELL DEPTH:	27.8	INITIAL W	ATER LEV	'EL: _	9.29	IOTALI	PURGEL) (L) _	8.9
WELL DIAMETER _	2 in.		APPROXIM	MATE	SCREE	N INTERV	AL:	17.5 - 2	27.5
PUMP/PURGING DEV	VICE: BP - BLA	ADDER PUMP	APPROXI	MATE	PUMP I	NTAKE D	EPTH:	22.	5
PUMP READINGS:	Throttle (ft.)	Rec	harge: 10		D	ischarge: 5	5		
COMMENTS Color: Pale Yellow transparent tint, Odor:None,									

TIME	WATER LEVEL (btoc)	PURGE RATE (L/min)	VOLUME PURGED (L)	TEMP. (°C)	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	рН	Turb (NTU)	ORP (mV)
12:13	9.32	0.2	0						
12:16	9.35	0.2	0.5	11.38	0.561	7.38	6.55	9999	-3
12:19	9.44	0.2	0.6	10.68	0.569	6.32	6.64	875	-6
12:22	9.38	0.2	0.6	10.67	0.635	8.93	6.66	891	-12
12:25	9.43	0.2	0.6	10.54	0.72	6.31	6.67	671	-9
12:28	9.39	0.2	0.6	10.22	0.565	6.4	6.68	462	-8
12:31	9.44	0.2	0.6	10.1	0.544	6.29	6.69	468	-8
12:34	9.44	0.2	0.6	10.1	0.541	6.28	6.7	416	-11
12:37	9.44	0.2	0.6	10.02	0.541	6.21	6.71	375	-13
12:40	9.44	0.2	0.6	9.95	0.539	5.99	6.72	346	-14
12:43	9.46	0.2	0.6	9.89	0.538	5.84	6.73	300	-14
12:46	9.45	0.2	0.6	9.91	0.534	5.79	6.73	266	-14
12:49	9.40	0.2	0.6	9.93	0.532	5.71	6.74	239	-14
12:52	9.39	0.2	0.6	10.06	0.529	5.67	6.75	214	-14
12:55	9.44	0.2	0.6	10.05	0.529	5.69	6.67	210	-14
12:58	9.44	0.2	0.6	10.04	0.528	5.7	6.77	205	-14

Note: Condition of the well: <u>See STATIC WATER LEVEL FORM</u>, Note: All depths in feet BTOC.

Field Personnel: <u>AD</u>

EQM FIELD SAMPLING REPORT

PROJECT: RVAAP LOCATION: LOADLINE 2 PROJECT NO.: 030174.0016.001								
	SAMPLE	INFORMATION						
WELL: <u>LL2mw-271</u> Samp	oleID: FWGLL2-mw-02	71-0438-GW	Dup ID:					
SplitID: RinseID:								
MATRIX: WG - Ground Water SAMPLING METHOD: BP - Bladder Pump MS/MSD:								
GRAB: Y COMPOSIT	E: N	DATE:	5/7/2014	TIME:	12:59			
FIELD READINGS / OBSERVATIONS								
Turb (NTU): 200 Color: Pale Yellow transparent tint								
	ORP (mV):	-14	Odor:	N	one			
pH: 6.77 Temperature (°C	C): 10.02 DO	(mg/L): <u>5.73</u>	Specific Co	onductivity (ms	S/cm): 0.527			
	GENERAL IN	NFORMATION						
SUN/OVERCAST Overcast	PERCIPITATION: N	WIND DIRE	CTION: NE_	AMBIENT	TEMP (°F): <u>52</u>			
SHIPPED VIA: Lab Pickup								
SHIPPED TO: Testamerica								
SAMPLER: AD Cmt: Two 1 L toxaphene sent								
CONTAINER								

CONTAIN	ER			
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
250ml/Poly	3	NaOH	9012	Cyanide
1L/Amber	8	4C	8081	Pest
40ml/Vial	9	HCI	8260	VOC
1L/Amber	6	4C	8270	SVOC
1L/Amber	6	4C	353.2/8330	Propellants
500ml/Poly	3	HNO3	6010/6020/7470	Metals, filtered
1L/Amber	3	4C	8330	Explo
1L/Amber	6	4C	8082	PCB

EQM MONITOR WELL PURGING FORM

PROJECT NAME:	RVAAP			PROJECT NU	MBER:	030174	.0016.0	01
LOCATION: LOADI	LINE 3		DATE:	5/7/2014	START	TIME:	9:0	4
WELL ID: LL3mw-2	246		AED LE	VEI 10.1	TOTALI		(I)	<i>.</i> 5
WELL DEPTH:	45.61	INITIAL V	VATER LEV	/EL: <u>19.1</u>	TOTAL I	PURGED	(L)	6.5
WELL DIAMETER _	2 in.		APPROXI	MATE SCREE	N INTERV	AL:3	35.5 - 45	5.5
PUMP/PURGING DE	VICE: BP - BL	ADDER PUMP	APPROXI	MATE PUMP I	NTAKE D	EPTH <u>:</u>	40.5	
PUMP READINGS:	Throttle (ft.)	Rec	harge: 10	D	ischarge: 5	5		
COMMENTS Color: Cl	oar Odor:Nono							

TIME	WATER LEVEL (btoc)	PURGE RATE (L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pН	Turb (NTU)	ORP (mV)
9:08	19.19	0.2	0						
9:11	19.21	0.2	0.5	9.56	0.293	7.86	6.55	59.8	126
9:14	19.21	0.2	0.6	9.54	0.297	7.41	6.34	39.9	124
9:17	19.21	0.2	0.6	9.57	0.296	6.88	6.31	31.8	128
9:20	19.22	0.2	0.6	9.59	0.287	6.57	6.27	22.2	133
9:23	19.24	0.2	0.6	9.59	0.282	6.31	6.26	20.9	139
9:26	19.25	0.2	0.6	9.64	0.27	6.17	6.23	16.6	145
9:29	19.25	0.2	0.6	9.65	0.265	6.15	6.21	17.9	148
9:31	19.25	0.2	0.4	9.65	0.262	6.08	6.22	16.1	152
9:34	19.25	0.2	0.6	9.65	0.259	6.04	6.22	18.1	154
9:37	19.25	0.2	0.6	9.63	0.259	6.04	6.21	18.4	158
9:41	19.25	0.2	0.8	9.63	0.256	6.02	6.19	19.1	159

Note: Condition of the well: <u>See STATIC WATER LEVEL FORM</u>, Note: All depths in feet BTOC.

Field Personnel: AD

EQM FIELD SAMPLING REPORT

PROJECT: RVAAP LOCATION: LOADLINE 3 PROJECT NO.: 030174.0016.001								
	SAMPL	E INFORMATIO	N					
WELL: <u>LL3mw-246</u> Sampl	eID: FWGLL3mw-2	246-0439-GW	Dup ID: FW	GLL3mw-DU	JP1-0442-GW			
SplitID: FWGLL3mw-246-0441s-GW RinseID:								
MATRIX: WG - Ground Water SAMPLING METHOD: BP - Bladder Pump MS/MSD: N								
GRAB: <u>Y</u> COMPOSITE: <u>N</u> DATE: <u>5/7/2014</u> TIME: <u>9:43</u>								
FIELD READINGS / OBSERVATIONS								
Turb (NTU): 20.3 Color: Clear								
	ORP (mV):	160	Odor:	N	Vone			
pH: 6.19 Temperature (°C): <u>9.64</u> D	OO (mg/L): 6	Specific Co	onductivity (m	S/cm): 0.257			
	GENERAL	INFORMATION						
SUN/OVERCAST Overcast	PERCIPITATION:	N WIND DIR	RECTION: NE_	AMBIENT	Γ TEMP (°F): <u>41</u>			
SHIPPED VIA: Lab PU/FedEx								
SHIPPED TO: Testamerica								
SAMPLER: AD Cmt:								

CONTAIN	ER			
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
1L/Amber	3	4C	8330	Explo
40ml/Vial	9	HCI	8260	VOC
1L/Amber	5	4C	8270	SVOC
1L/Amber	5	4C	8082	PCB
1L/Amber	7	4C	353.2/8330	Propellants
250ml/Poly	3	NaOH	9012	Cyanide
500ml/Poly	3	HNO3	6010/6020/7470	Metals, filtered
1L/Amber	5	4C	8081	Pest

EQM MONITOR WELL PURGING FORM

PROJECT NAME:	RVAAP			PROJECT	NUMBER:	030174	4.0016.0)01
LOCATION: SHARO	ERATE	DATE:	5/7/2014	TIME:	8:5	0		
WELL ID: SCFmw-0		INITIAL V	WATER LEV	/EL: -0.:	2 TOTAL I	PURGED) (L) 1	10.8
WELL DEPTH:	112.5			-				
WELL DIAMETER	2 in.		APPROXI	MATE SCR	EEN INTERV	AL: _10	02.5 - 1	12.5
PUMP/PURGING DE	VICE: BP - BL	ADDER PUMP	APPROXI	MATE PUN	MP INTAKE D	EPTH:	107.5	5
PUMP READINGS:	Throttle (ft.)	Rec	charge: 30		Discharge: 3	30		
ONAMENTES Color: Clear Odor: sulfer hard bottom, artesian flow, intake denth 107, peeds new tuhing								

TIME	WATER LEVEL (btoc)	PURGE RATE (L/min)	VOLUME PURGED (L)	TEMP.	SPECIFIC CONDUCT. (mS/cm)	DO (mg/L)	pН	Turb (NTU)	ORP (mV)
8:53	-0.20	0.3	0						
8:55	-0.20	0.28	1	10.74	1.23	7.53	6.53	0.2	-132
9:00	-0.20	0.28	1.4	10.74	1.23	6.77	6.6	0	-133
9:04	-0.20	0.28	1.12	10.78	1.2	6.21	6.69	0	-149
9:08	-0.20	0.28	1.12	10.79	1.18	5.98	6.74	0	-169
9:12	-0.20	0.28	1.12	10.83	1.17	5.82	6.76	0.2	-175
9:16	-0.20	0.28	0.84	10.76	1.16	6.44	6.77	0.9	-178
9:19	-0.20	0.28	0.84	10.84	1.16	5.75	6.78	0.4	-184
9:22	-0.20	0.28	0.84	10.83	1.16	5.61	6.79	0.2	-185
9:25	-0.20	0.28	0.84	10.86	1.15	5.43	6.78	0.6	-187
9:28	-0.20	0.28	0.84	10.86	1.15	5.22	6.79	0.8	-188
9:31	-0.20	0.28	0.84	10.85	1.15	5.13	6.79	0.9	-187

Note: Condition of the well:	See STATIC WATER LEVEL FORM, Note: All depths in feet BTOC.	
Field Personnel: CAL	•	

EQM FIELD SAMPLING REPORT

PROJECT: RVAAP	LOCATION:	SHARON CONGLO	<u>I</u> PROJEC	T NO.: <u>03017</u>	74.0016.001			
	SAMPLI	E INFORMATION						
WELL: SCFmw-004 Samp	leID: FWGSCFmw-00	04-0440-GW/GF	Dup ID:					
SplitID: RinseID: <u>FWGEQUIPRinse1-0443-GW</u>								
MATRIX: WG - Ground Water SAMPLING METHOD: BP - Bladder Pump MS/MSD: N								
GRAB: <u>Y</u> COMPOSITE: <u>N</u> DATE: <u>5/7/2014</u> TIME: <u>9:32</u>								
FIELD READINGS / OBSERVATIONS								
	Turb (NTU):	0.9	Color:	Cle	ear			
	ORP (mV):	-190	Odor:	sul	fer			
pH: 6.79 Temperature (°C	C): 10.84 DC	O (mg/L): 5	Specific Co	nductivity (mS/	/cm): 1.14			
	GENERAL 1	INFORMATION						
SUN/OVERCAST Overcast	PERCIPITATION: 1	N WIND DIRECT	TION: <u>NE</u>	AMBIENT '	ΓΕΜΡ (°F): <u>40</u>			
SHIPPED VIA: Lab Pickup								
SHIPPED TO: Testamerica								
SAMPLER: CAL Cmt: Rinse @ 1342								
CONTAINER								

CONTAIN	ER			
SIZE/TYPE	NUMBER	PRESERVATIVE	ANALYTICAL METHOD	ANALYSIS
1L/Amber	2	4C	8270	SVOC
500ml/Poly	1	HNO3	6010/6020/7470	Metals, filtered
1L/Amber	2	4C	353.2/8330	Propellants
1L/Amber	1	4C	8330	Explo
1L/Amber	2	4C	8081	Pest

Daily QC Records

Date: 6-May							
			Χ				
	S	Μ	Т	W	Т	F	S

Rain Snow

Over-Cast

Clear

Bright Sun

Weather

DAILY QUALITY **CONTROL REPORT**

COE Pro	ject Manager	G	len Beckha	m	- Wodinor	х				
Project _	Ravenna Army A	Ammunition Pla	ant Groundy	water Monitoring	Temp	To 32	32-50 x	50-70 x	70-85	85 up
Job No.		030174.00	16.001		Wind	Still	Moder x	High	Repoi	rt No.
<u>-</u>		ct Number GS	-10F-0293K	(Humidity	Dry		Humid	050	614
SUB-CONTRA	ACTORS ON SITE	:								
Environmenta	Quality Managem	ent, Inc.								
EQUIPMENT										
Water level m	eters, two water qu	ality meters (F	Horiba-U22/	U52); One multig	as detector	(MSA	A); two	o blad	der	ļ
pumps w/ ass	ociated controllers	and compress	ors and one			`				
WORK PERF	ORMED (INCLUDI	NG SAMPLIN	G):							
Arrive at Build	ing 1036, unload/lo	and organi	ze eguinme	nt Partial equipm	ent drop of	f on F	5-5-1/	l Eve	ant ws	eter
level collection	_	au and Organi	ze equipine	int. i artial equipir	ient drop oi	1 011 0)-0-14	r. Lve	,IIL WC	iloi
	llection and inspec									:
	KG, CBL, CBP, CP .L12, NTA, RQL, pa		rwG, parti	ai FBQ, LL1, LL2	, partiai LL3), LL4	throu	ign LL	.10,	
										ļ

Project	Ravenna Army Ammunition Plant Groundwater Monitoring	Report No.	050614									
Job No.	030174.0016.001	Date:	5/6/2014									
QUALIT	Y CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS)	:										
correct for	-											
	Multigas detector calibrated with Zero Air Standard and 100 ppm Isobutylene. All field equipment was within calibration criteria.											
	I AND SAFETY LEVELS AND ACTIVITIES:											
H&S brie shoes, s	efing conducted prior to mobilizing to the field. All personnel to do afety glasses, & nitrile gloves). First Aid kits were included in each eyewash station locations.		•									
Each tea	Each team was equipped with a cellular phone. Personnel were instructed to hydrate frequently and watch for signs of heat stress. Personnel were also instructed to be alert for storms, poisonous plants, stinging insect, ticks, and roaming deer/turkey (and hunters) in addition to signs of bear/coyotes.											
	MS ENCOUNTERED/CORRECTIVE ACTION (S) TAKEN:											
Certain a	areas soft due to poor drainage.											
	L NOTES:											
	ount discussion at tailgate briefing. Use of mutiple teams to help were	vith stuck vehicl	es.									
TOMOR	ROWS EXPECTATIONS:											
	tions for tomorrow are to safely and correctly collect majority of th ample at a minimum of 4 wells while continuing water level collect	•	ter levels in additiona to									

Da	ate: 7-May							
	S	М	Т	X W	Т	F	S	

Weather Sun Clear Cast Rain Snow

DAILY QUALITY CONTROL REPORT

COE Project ManagerGlen Becknam				Х	Х	Х
Project Ravenna Army Ammunition Plant Groundwater Monitoring	Temp	To 32	32-50 x	50-70 x	70-85	85 up
Job No. 030174.0016.001	Wind	Still x	Moder x	High	Repo	ort No.
GSA Contract Number GS-10F-0293K Contract No. Delivery Order W912QR-11-F-0266	Humidity	Dry		Humid x	050	714
Donitory Grade World Co.		——— ——				<u></u>
SUB-CONTRACTORS ON SITE:						
Environmental Quality Management, Inc.						
EQUIPMENT ON SITE:						
Water level meters, two water quality meters (Horiba-U22/U52); One multigas	detector	(MS/	71. two	n hlad	der	
pumps w/ associated controllers and compressors and one deep well bladder:		(IVIO,	1),	Joiaa	uci	
WORK PERFORMED (INCLUDING SAMPLING):						
Arrive at Building 1036, unload/load and organize equipment. Event water leve	el collecti	ons s	simult	aneou	s with	n
Purge sample work . Continue purge and sample work at the wells.		- 4		0		
Samples were collected at the following locations: SCFmw-004, LL3mw-246, L Water level collection and inspection completed at the following areas: partial I						
LNW, LL11, partial LL3, patial SCF, MBS, and WBG. All well inspections according to the content of the content			Ζ, μαι	liaii	/v C,	
Elitable Barrier and CA and Barrier and Canada and Company CAC. Fortune and			U4_	1.6		
Field duplicate and QA split samples were collected from LL3mw-246. Extra v 271 to be designated for matrix spike/matrix spike duplicate analysis at the lab						
was collected by Team # 2.	oratory.	, taait	iorian	y, a 110)IG 111	louto

Project	Ravenna Army Ammunition Plant Groundwater Monitoring	Report No.	050714									
Job No.	030174.0016.001	Date:	5/7/2014									
	Y CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS):											
correct f values a 0 NTU; p Multigas	All field equipment was calibrated prior to mobilizing to the field. Water level meter devices were checked for correct footage. Water quality meters were calibrated with AutoCal Solution and standards checks - certified values are: ORP checked okay (per chart), DO checked okay (per chart), Conductivity - 4.49 mS/cm; Turbidity - 0 NTU; pH - 4.0 and 7.0 su. Multigas detector calibrated with Zero Air Standard and 100 ppm Isobutylene. All field equipment was within calibration criteria. HEALTH AND SAFETY LEVELS AND ACTIVITIES:											
H&S brid shoes, s aware of Each tea signs of ticks, an	HEALTH AND SAFETY LEVELS AND ACTIVITIES: H&S briefing conducted prior to mobilizing to the field. All personnel to don modified Level 4 PPE (i.e. steel-toed shoes, safety glasses, & nitrile gloves). First Aid kits were included in each vehicle, & personnel were made aware of eyewash station locations. Each team was equipped with a cellular phone. Personnel were instructed to hydrate frequently and watch for signs of heat stress. Personnel were also instructed to be alert for storms, poisonous plants, stinging insect, ticks, and roaming deer/turkey (and hunters) in addition to signs of bear/coyotes. PROBLEMS ENCOUNTERED/CORRECTIVE ACTION (S) TAKEN:											
	-004 needs new tubing next time.											
	L NOTES:											
TÕMOR	ng and Evacuation Routes at tailgate briefing. ROWS EXPECTATIONS:	o minimum - f	O wello and continue									
	tions for tomorrow are to safely and correctly collect samples from vel collections.	ı a miniminum Ol	a wells and continue									

Da	te:	_	8	8-N	Mε	ıy	
						Х	
	S	Μ	Т	W	Т	F	S

Rain Snow

Bright Sun

Weather

Clear

Cast

DAILY QUALITY **CONTROL REPORT**

COE Pro	ject Manager	GI	len Beckham		Wodinor	х				Х
Project _	Ravenna Army	Ammunition Pla	ent Groundwate	er Monitoring	Temp	To 32	32-50	50-70 x	70-85 x	85 up
Job No.		030174.00	16.001		Wind	Still x	Moder x	High	Repoi	rt No.
_		ct Number GS-			Humidity	Dry	Moder x	Humid x	050	814
SUB-CONTRA	ACTORS ON SITE	:								
	I Quality Managem	nent, Inc.								
EQUIPMENT	ON SITE:									
	eters, two water qu ociated controllers	•); One multigas	detector	(MSA	4); two	blad	der	
	ORMED (INCLUDI									
	ing 1036, unload/lo							arateri	zatior	٦.
	e and sample worl DW sampling colle							d Buil	dina	
1036. Demobi			4		,				9	
A field rinsate	was collected by T	Геат #3.								
	,									

Project	Ravenna Army Ammunition Plant Groundwater Monitoring	Report No.	050814									
Job No.	030174.0016.001	Date:	5/8/2014									
QUALIT'	Y CONTROL ACTIVITIES (INCLUDING FIELD CALIBRATIONS):											
correct for values a 0 NTU; p Multigas	All field equipment was calibrated prior to mobilizing to the field. Water level meter devices were checked for correct footage. Water quality meters were calibrated with AutoCal Solution and standards checks - certified values are: ORP checked okay (per chart), DO checked okay (per chart), Conductivity - 4.49 mS/cm; Turbidity - 0 NTU; pH - 4.0 and 7.0 su. Multigas detector calibrated with Zero Air Standard and 100 ppm Isobutylene. All field equipment was within calibration criteria. HEALTH AND SAFETY LEVELS AND ACTIVITIES:											
H&S brieshoes, saware of Each teasigns of ticks, and	HEALTH AND SAFETY LEVELS AND ACTIVITIES: H&S briefing conducted prior to mobilizing to the field. All personnel to don modified Level 4 PPE (i.e. steel-toed shoes, safety glasses, & nitrile gloves). First Aid kits were included in each vehicle, & personnel were made aware of eyewash station locations. Each team was equipped with a cellular phone. Personnel were instructed to hydrate frequently and watch for signs of heat stress. Personnel were also instructed to be alert for storms, poisonous plants, stinging insect, ticks, and roaming deer/turkey (and hunters) in addition to signs of bear/coyotes. PROBLEMS ENCOUNTERED/CORRECTIVE ACTION (S) TAKEN:											
IN/A	ENGLING ENGOGNIENED/CONNECTIVE ACTION (G) PAREN.											
	L NOTES:											
	ess discussion at tailgate briefing. Confirmed wells = finalized even	ent.										
TOMOR	ROWS EXPECTATIONS:											

APPENDIX C

DATA VERIFICATION REPORTS/ LABORATORY DATA SHEETS

Site: Ravenna Army Ammunition Plant

Sampling Event: May 2014 Date: August 18, 2014

Sample Delivery Group: 240-37114 Revision: 1

Data Reviewer: Angela Dragotta /Environmental Quality Management, Inc. (EQM, Inc.)

QA/QC Summary

On May 7-8th, 2014 the following samples were collected from groundwater-monitoring wells at Ravenna Army Ammunition Plant and analyzed as part of SDG 240-37114. Sample analysis was performed by Test America. Test America-North Canton performed all analyses with the exception of the analytical for methods 8330, M8330, TALSOPWS-WC-0050 and 6860. Methods 8330, M8330 and TALSOPWS-WC-0050 were performed by Test America, West Sacramento and method 6860 was performed by Test America-Denver.

		0			81		by 30]	Meta	als ⁴
Sample ID	VOC by SW846 8260	SVOC 4 by SW846 8270	SVOC 1 and 2 by SW846 8270	SVOC 1 by SW846 8270	Pesticides by SW846 8081	PCBs/ SW846 8082	Explosives/Propellants by SW846 8330, Mod. 8330 and TALSOP WS-WC-0050	Cyanide SW846 9012	Perchlorate by SW846 6860	NO2/NO3, EPA 353.2	SW846 6010B	SW846 6020	Mercury by SW846 7470A
FWGSCFmw-004-0440-GW/GF				X	X		X				X	X	X
FWGEQUIPRINSE1-0443-GW	X	X			X	X	X	X			X	X	X
FWGLL3MW-246-0439-GW/GF	X	X			X	X	X	X			X	X	X
FWGLL3MW-DUP1-0442-GW/GF	X	X			X	X	X	X			X	X	X
FWGLL2MW-271-0438-GW/GF	X	X			X	X	X	X			X	X	X
FWGLL1MW-064C-0436-GW/GF				X	X		X				X	X	X
FWGLL1MW-088-0437-GW/GF	X	X			X	X	X	X			X	X	X
FWGEQUIPRINSE2-0444-GW	X	X			X	X	X	X			X	X	X

Notes:

- 1) All metals samples with the exception of FWGEQUIPRINSE1-0443-GW and FWGEQUIPRINSE2-0444-GW were field filtered (GF).
- 2) SVOC 1= Nitroaromatics and phthalates, SVOC4=Full RVAAP SVOC list
- 3) EPA 6020 metals include aluminum, antimony, beryllium, cadmium, iron, sodium, thallium and zinc. EPA 6010B metals include arsenic, chromium, cobalt, lead, selenium, silver, vanadium, barium, calcium, copper, magnesium, manganese, nickel and potassium.
- 4) FWGTEAM2-TRIP and FWGTEAM3-TRIP were collected on 5/7/14. FWGTEAM3-TRIP050814 was collected on 5/8/14. All trip blanks were analyzed for VOC by EPA 8260B.

The data presented in this report were evaluated according to the Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January, 2012. The following documents were used as needed to supplement the project documentation: The United States Department of Defense (DoD) Quality Services Manual (QSM) for Environmental Laboratories, Version 4.1, and the United States Army Corps of Engineers (USACE), Louisville District Quality Systems Manual Supplement (LS), EPA National Functional Guidelines (NFG) for Organic Data Review, EPA-540/R-08-01, June 2008, NFG for Inorganic Data Review, EPA-540/R-04-004, October 2004, Analytical Methods, and Laboratory Standard Operating Procedures. The QC criteria provided in the reference documents represent accuracy and precision performance goals for each analytical method. QC criteria reviewed for each method are listed below, along with any outliers.

All analytical results have been verified against compliance requirements specified in the project QAPP, QSM, LS, associated analytical methods and/or SOPs, as appropriate, and reported by the laboratory as directed by the DoD QSM.

240-37114 DVSR rev1 Page 1 of 1

Site: Ravenna Army Ammunition Plant

Sampling Event: May 2014 Date: August 18, 2014

Sample Delivery Group: 240-37114 Revision: 1

Per the DoD QSM, the laboratory data is reported as follows: Non detected results were reported at the LOD with a "U" flag. Detected results between the DL and LOQ were reported as estimated, qualified with a "J" flag.

LOD - An estimate of the minimum amount of a substance that an analytical process can reliably detect.

LOQ - The lowest concentration that produces a quantitative result within specified limits of precision and bias.

DL- The smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence.

Checklists used in review of the data have been presented in Appendix 1. Outliers have been noted below and results requiring qualification have been summarized in Appendix 2.

The completeness objective for the project was 90%. The completeness objective was met for this SDG, at 99.7%. Limitations, if any, on the data are indicated with qualifiers detailed below.

VOC-8260

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV/CCV criteria
- Internal standard area counts and retention times
- LOD and MRL verification criteria
- Method /field blank criteria
- Surrogate recoveries
- Field duplicate RPD criteria
- Laboratory Control Sample criteria
- Matrix Spike Recovery Criteria and RPD

MRL Recoveries

- The opening MRL analyzed 5/19/14 @ 1005 recovered above control limits of 70-130% for vinyl chloride at 137%.
- The closing MRL analyzed 5/19/14 @ 1529 recovered above control limits of 70-130% for bromomethane at 138% and below control limits of 70-130% for 2-hexanone at 67%, bromoform at 69%, carbon disulfide at 55%, carbon tetrachloride at 63%, 2-butanone at 66% and MIBK at 67%. A verification check sample was analyzed following the closing MRL with detected results for the outlier analytes.

The 2-hexanone, bromoform, carbon disulfide, carbon tetrachloride, 2-butanone and MIBK results for samples FWGTEAM3-TRIP050814, FWGLL1MW-088-0437-GW, FWGEQUIPRINSE2-0444-GW, FWGTEAM3-TRIP, FWGLL3MW-246-0439-GW, FWGLL3MW-DUP1-0442-GW, FWGLL2MW-271-0438-GW, FWGTEAM2-TRIP and FWGEQUIPRINSE1-0443-GW were qualified as estimated, "J/ UJ". No qualifications were required for the bromomethane or vinyl chloride outliers as there were no detected concentrations of bromomethane or vinyl chloride reported for the bracketed field samples.

Blank Criteria

- Chloroform was detected in FWGTEAM3-Trip050814 at $0.35\mu g/L$, FWGTEAM3-Trip at $0.29\mu g/L$ and at $0.34\mu g/L$ in sample FWGTEAM2-Trip.
- FWGEQUIPRINSE2-0444-GW had acetone detected at 14μg/L, carbon disulfide at 0.69μg/L, 2-butanone at 3.6μg/L and toluene at 0.22μg/L. FWGEQUIPRINSE1-0443-GW had acetone detected at 12μg/L, 2-butanone at 1.5μg/L and toluene at 0.20μg/L.

There were no detected acetone, chloroform, carbon disulfide, 2-butanone or toluene concentrations reported for the associated field samples, so no qualifications were required.

240-37114 DVSR rev1 Page 2 of 2

Site: Ravenna Army Ammunition Plant

Sampling Event: May 2014 Date: August 18, 2014

Sample Delivery Group: 240-37114 Revision: 1

SVOCs-8270C

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Tuning criteria
- Initial Calibration Criteria including SPCC and CCC compounds
- ICV/CCV criteria
- Internal standard area counts and retention times
- LOD and MRL verification criteria
- Method /field blank criteria
- Surrogate recoveries
- Field duplicate RPD criteria
- Laboratory Control Sample criteria
- Matrix Spike Recovery Criteria and RPD

Blanks

- FWGEQUIPRINSE2-0444-GW had diethylphthalate detected at 2.7 μ g/L, naphthalene at 0.14 μ g/L and phenol at 0.73 μ g/L.
- FWGEQUIPRINSE1-0443-GW had diethylphthalate detected at 3.2 µg/L.

The naphthalene result for sample FWGLL1mw-088-0437-GW and the diethyl phthalate result for sample FWGLL2mw-271-0438-GW were qualified, "B", as the reported concentrations were less than 5x the associated equipment rinse contamination.

LCS

Hexachlorocyclopentadiene recovered below control limits of 10-115% in LCS 240-130172 at 9%. The hexachlorocyclopentadiene results for the associated samples (FWGLl1mw-088-0437-GW, FWGLL3mw-246-0439-GW and FWGLL3mw-DUP1-0442-GW) were qualified as estimated, "UJ".

Field Duplicate

The field duplicate analyzed on sample FWGLL3mw-246-0439-GW, had an RPD above control limits of 50% for naphthalene at 200%. The naphthalene result for sample FWGLL3mw-246-0439-GW was qualified as estimated, "J".

Pesticides-8081A

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation, holding time and sample handling
- Initial Calibration criteria
- DDT and Endrin breakdown criteria
- Retention time criteria
- ICV criteria
- CCV Criteria
- Method /field blank criteria
- LCS Recoveries
- Field Duplicate Criteria
- LOD and MRL verification criteria
- Matrix Spike Recovery Criteria and RPD
- Surrogate Recoveries
- Second Column confirmation criteria

LCS Recovery

Endosulfan I recovered below control limits of 50-110% at 46% in the LCS. The endosulfan I result for FWGEQUIPRINSE1-0443-GW was qualified as estimated, "UJ".

240-37114 DVSR rev1 Page 3 of 3

Site: Ravenna Army Ammunition Plant

Sampling Event: May 2014 Date: August 18, 2014

Sample Delivery Group: 240-37114 Revision: 1

Matrix Spike Criteria

The matrix spike analysis performed on sample FWGLL2mw-271-0438-GW recovered below control limits of 65-125% for alpha-chlordane in both the MS and MSD at 62% and 53%, respectively. The MSD recovered below control limits of 50-110% for endosulfan I at 40% and for endrin ketone at 68% (control limits 75-125%). The alpha-chlordane, endrin ketone and endosulfan I results for sample FWGLL2mw-271-0438-GW were qualified as estimated, "UJ".

Surrogate Recovery

The surrogate, DCB, recovered below control limits of 30-135% in sample FWGLL1mw-088-0437-GW at 21%. The results for sample FWGLL1mw-088-0437-GW were qualified as estimated, "UJ".

Second Column Confirmation

Second column confirmation was not required as there were no detected concentrations reported for the field samples.

PCB-8082

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Preservation, holding time and sample handling
- Initial Calibration criteria
- Retention time criteria
- ICV criteria
- CCV Criteria
- Method /field blank criteria
- LCS Recoveries
- Field Duplicate Criteria
- LOD and MRL verification criteria
- Matrix Spike Recovery Criteria and RPD
- Surrogate Recoveries
- Second Column confirmation criteria

Holding Time

Samples FWGEQUIPRINSE1-0443-GW was extracted outside of hold but within two times hold. The aroclor results for samples FWGEQUIPRINSE1-0443-GW was qualified as estimated, "UJ".

MRL Recovery

The MRL analyzed 1/31/14@1434 recovered above limits of 70-130% for aroclor 1016 @ 132%. No qualifications were made as there were no detected concentrations reported for the bracketed field samples.

Matrix Spike Analysis

The matrix spike and spike duplicate analyzed on sample FWGLL2mw-271-0438-GW had an MS/MSD RPD above control limits of 30% for aroclor 1260 at 53%. No qualification of the data was required as there were no detected aroclor 1260 results reported for sample FWGLL2mw-271-0438-GW.

Surrogate Recovery

The surrogate, DCB, recovered below control limits of 40-140% for sample FWGLL1mw-088-437-GW at 21%. The aroclor results for sample FWGLL1mw-088-437-GW were qualified as estimated, "UJ".

Second Column Confirmation

No detected concentrations were reported that required confirmation.

240-37114 DVSR rev1 Page 4 of 4

Site: Ravenna Army Ammunition Plant

Sampling Event: May 2014 Date: August 18, 2014

Sample Delivery Group: 240-37114 Revision: 1

Metals - 6010B

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method /field blank criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Lab and Field duplicate RPD criteria

Blanks

The CCB analyzed 5/15/14 @ 1059 had vanadium detected at 2.66 µg/L. No qualifications were made as there were no detected vanadium concentrations reported for the associated environmental samples.

Vanadium was detected in the method blank at $1.37 \,\mu\text{g/L}$. No qualifications were made as there were no detected vanadium concentrations reported for the associated field samples.

Lead was detected in FWGEQUIPRINSE2-0444-GW at $1.7 \,\mu\text{g/L}$. The lead result for sample FWGLL1mw-088-0437-GF was qualified, "B" as the detected concentration was less than five times the equipment rinse contamination.

Metals - 6020

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Tuning Criteria
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method /field blank criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Lab and Field Duplicate RPD Criteria

No QC outliers were noted.

Mercury - 7470A

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method /field blank criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Lab and Field duplicate RPD criteria

No QC outliers were noted.

240-37114 DVSR rev1 Page 5 of 5

Site: Ravenna Army Ammunition Plant

Sampling Event: May 2014 Date: August 18, 2014

Sample Delivery Group: 240-37114 Revision: 1

Cyanide – 9012A

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- ICV and CCV criteria
- ICB /CCBs criteria
- Method/Field blank criteria
- LOD and MRL verification criteria
- LCS percent recovery criteria
- Matrix Spike Recovery
- Field duplicate RPD criteria

MRL Recovery Criteria

No closing MRL check was analyzed on 5/20/14. Opening MRL checks recovered within control limits. The cyanide results for samples FWGLL1MW-088-0437-GW, FWGEQUIPRINSE2-0444-GW, FWGLL3MW-246-0439-GW, FWGLL3MW-DUP1-0442-GW, FWGLL2MW-271-0438-GW and FWGEQUIPRINSE1-0443-GW were qualified as estimated, "UJ".

Explosives-8330

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration Criteria
- ICV and CCV criteria
- Retention time criteria
- LOD and MRL verification criteria
- Surrogate recovery criteria
- Method /field blank criteria
- LCS/LCD Recovery and RPD Criteria
- Matrix spike and spike duplicate recovery criteria
- Second column confirmation

No OC Outliers were noted.

Nitroguanidine- 8330M

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Initial Calibration criteria
- Retention time criteria
- LOD and MRL verification criteria
- ICV and CCV criteria
- Method /field blank criteria
- LCS/LCSD percent recoveries and RPD value criteria
- Matrix spike recovery criteria
- Second column confirmation

No QC outliers were noted.

240-37114 DVSR rev1 Page 6 of 6

Site: Ravenna Army Ammunition Plant

Sampling Event: May 2014 Date: August 18, 2014

Sample Delivery Group: 240-37114 Revision: 1

$\underline{Nitrocellulose-WS\text{-}WC\text{-}0050}$

The following QC criteria were reviewed and determined to be acceptable, except as noted below:

- Holding times, preservation, sample handling
- Sample preparation criteria
- Initial Calibration criteria
- ICV and CCV criteria
- Method /field blank criteria
- LOD and MRL verification criteria
- ICB and CCBs were free from contamination
- LCS/LCSD percent recoveries and RPD value criteria
- MS/MSD percent recoveries

No QC outliers were noted.

240-37114 DVSR rev1 Page 7 of 7

Sample Summary

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-37114-1	FWGTEAM3-TRIP050814	Water	05/08/14 08:00	05/08/14 14:50
240-37114-2	FWGLL1MW-088-0437-GW	Water	05/08/14 10:29	05/08/14 14:50
240-37114-3	FWGLL1MW-088-0437-GF	Water	05/08/14 10:29	05/08/14 14:50
240-37114-4	FWGEQUIPRINSE2-0444-GW	Water	05/08/14 13:00	05/08/14 14:50
240-37114-5	FWGTEAM3-TRIP	Water	05/07/14 07:30	05/08/14 14:50
240-37114-6	FWGLL3MW-246-0439-GW	Water	05/07/14 09:43	05/08/14 14:50
240-37114-7	FWGLL3MW-246-0439-GF	Water	05/07/14 09:43	05/08/14 14:50
240-37114-8	FWGLL3MW-DUP1-0442-GW	Water	05/07/14 10:43	05/08/14 14:50
240-37114-9	FWGLL3MW-DUP1-0442-GF	Water	05/07/14 10:43	05/08/14 14:50
240-37114-10	FWGLL2MW-271-0438-GW	Water	05/07/14 12:59	05/08/14 14:50
240-37114-11	FWGLL2MW-271-0438-GF	Water	05/07/14 12:59	05/08/14 14:50
240-37114-12	FWGLL1MW-064C-0436-GW	Water	05/07/14 16:34	05/08/14 14:50
240-37114-13	FWGLL1MW-064C-0436-GF	Water	05/07/14 16:37	05/08/14 14:50
240-37114-14	FWGTEAM2-TRIP	Water	05/07/14 07:30	05/08/14 14:50
240-37114-15	FWGSCFMW-004-0440-GW	Water	05/07/14 09:32	05/08/14 14:50
240-37114-16	FWGSCFMW-004-0440-GF	Water	05/07/14 09:32	05/08/14 14:50
240-37114-17	FWGEQUIPRINSE1-0443-GW	Water	05/07/14 13:42	05/08/14 14:50

41

Method Summary

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

lethod	Method Description	Protocol	Laboratory
260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
270C	Semivolatile Organic Compounds (GC/MS)	SW846	TAL CAN
081A	Organochlorine Pesticides (GC)	SW846	TAL CAN
082	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL CAN
330 Modified	Nitroguanidine (HPLC)	SW846	TAL SAC
330A	Nitroaromatics and Nitramines	SW846	TAL SAC
010B	Metals (ICP)	SW846	TAL CAN
020	Metals (ICP/MS)	SW846	TAL CAN
470A	Mercury (CVAA)	SW846	TAL CAN
012A	Cyanide, Total and/or Amenable	SW846	TAL CAN
VS-WC-0050	Nitrocellulose	TAL-SAC	TAL SAC

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-SAC = TestAmerica Laboratories, West Sacramento, Facility Standard Operating Procedure.

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

Job ID: 240-37114-1

Laboratory: TestAmerica Canton

Narrative

CASE NARRATIVE REVISED

Client: Environmental Quality Mgt., Inc.

Project: RVAAP (OH)

Report Number: 240-37114-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

The 353.2 Nitrocellulose, 8330 Nitroguanidine and 8330A Explosives analysis were performed at the TestAmerica Sacramento Laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

TestAmerica utilizes USEPA approved methods and DOD QSM, where applicable, in all analytical work. The samples presented in this report were analyzed for the parameter(s) listed on the analytical methods summary page in accordance with the method(s) indicated. A summary of QC data for these analyses is included at the back of the report.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the applicable methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

All parameters for which TestAmerica North Canton has certification were evaluated to the limit of detection (LOD) and include qualified results where applicable. Parameters not certified under QSM, if any, were evaluated to the detection limit (DL) and include qualified results where applicable.

REVISION 1: The case narrative has been revised to remove comments that were not applicable for this job. A pesticide CCV comment was not applicable as data was not reported from that analytical sequence. A Metals sample dup RPD comment was also not applicable to this job.

The sample(s) that contain constituents flagged with U are undetected. The result associated with this flag is the limit of detection (LOD).

RECEIPT

The samples were received on 5/8/2014 2:50 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 12 coolers at receipt time were 2.4° C, 3.2° C, 3.4° C, 3.4° C, 3.4° C, 3.8° C, 4.0° C, 4.1° C, 4.8° C, 5.2° C, 5.6° C and 5.8° C.

7

10

12

13

14

15

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

Job ID: 240-37114-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

Except:

The following sample(s) was submitted for analysis; however, it was not listed on the Chain-of-Custody (COC): Received #17 not listed on COC and did not receive preserved bottles for 353.2.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWGTEAM3-TRIP050814 (240-37114-1), FWGLL1MW-088-0437-GW (240-37114-2), FWGEQUIPRINSE2-0444-GW (240-37114-4), FWGTEAM3-TRIP (240-37114-5), FWGLL3MW-246-0439-GW (240-37114-6), FWGLL3MW-DUP1-0442-GW (240-37114-8), FWGLL2MW-271-0438-GW (240-37114-10), FWGTEAM2-TRIP (240-37114-14) and FWGEQUIPRINSE1-0443-GW (240-37114-17) were analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B DoD. The samples were analyzed on 05/19/2014.

2-Butanone (MEK), 2-Hexanone, 4-Methyl-2-pentanone (MIBK), Bromodichloromethane, Bromoform, Carbon disulfide and Carbon tetrachloride failed the recovery criteria low for MRL 240-131127/18. Bromomethane failed the recovery criteria high. Vinyl chloride failed the recovery criteria high for MRL 240-131127/4. Refer to the QC report for details.

No other difficulties were encountered during the VOCs analysis. All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWGLL1MW-088-0437-GW (240-37114-2), FWGEQUIPRINSE2-0444-GW (240-37114-4), FWGLL3MW-246-0439-GW (240-37114-6), FWGLL3MW-DUP1-0442-GW (240-37114-8), FWGLL2MW-271-0438-GW (240-37114-10), FWGLL1MW-064C-0436-GW (240-37114-12), FWGSCFMW-004-0440-GW (240-37114-15) and FWGEQUIPRINSE1-0443-GW (240-37114-17) were analyzed for semivolatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8270C. The samples were prepared on 05/12/2014 and analyzed on 05/16/2014 and 05/30/2014.

Surrogates are added during the extraction process prior to dilution. When the sample is diluted, surrogate recoveries are diluted out and no corrective action is required.

Hexachlorocyclopentadiene failed the recovery criteria low for LCS 240-130172/24-A. No corrective action was taken due to the length of time elapsed since sampling; therefore, the data have been reported.

No other difficulties were encountered during the SVOCs analysis. All other quality control parameters were within the acceptance limits.

NITROGUANIDINE (HPLC)

Samples FWGLL1MW-088-0437-GW (240-37114-2), FWGEQUIPRINSE2-0444-GW (240-37114-4), FWGLL3MW-246-0439-GW (240-37114-6), FWGLL3MW-DUP1-0442-GW (240-37114-8), FWGLL2MW-271-0438-GW (240-37114-10), FWGLL1MW-064C-0436-GW (240-37114-12), FWGSCFMW-004-0440-GW (240-37114-15) and FWGEQUIPRINSE1-0443-GW (240-37114-17) were analyzed for nitroguanidine (HPLC) in accordance with EPA SW-846 Method 8330_Ngu. The samples were prepared on 05/12/2014 and 05/15/2014 and analyzed on 05/13/2014 and 05/19/2014.

No difficulties were encountered during the explosives analysis. All quality control parameters were within the acceptance limits.

CHLORINATED PESTICIDES

Samples FWGLL1MW-088-0437-GW (240-37114-2), FWGEQUIPRINSE2-0444-GW (240-37114-4), FWGLL3MW-246-0439-GW (240-37114-6), FWGLL3MW-DUP1-0442-GW (240-37114-8), FWGLL2MW-271-0438-GW (240-37114-10), FWGLL1MW-064C-0436-GW (240-37114-12), FWGSCFMW-004-0440-GW (240-37114-15) and FWGEQUIPRINSE1-0443-GW (240-37114-17) were analyzed for chlorinated pesticides in accordance with EPA SW-846 Method 8081A DoD. The samples were prepared on 05/10/2014 and 05/14/2014 and analyzed on 05/16/2014 and 05/20/2014.

DCB Decachlorobiphenyl failed the surrogate recovery criteria low for FWGLL1MW-088-0437-GW (240-37114-2) and FWGLL2MW-271-0438-GWMS (240-37114-10MS). surrogate (DCB) failed low but above 10%. Data reportable as per PM.

Endosulfan I failed the recovery criteria low for LCS 240-130591/3-A. Refer to the QC report for details.

4

5

O

Ω

11

40

14

15

Page 6 of 130

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

Job ID: 240-37114-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

alpha-Chlordane failed the recovery criteria low for the MS of sample FWGLL2MW-271-0438-GWMS (240-37114-10) in batch 240-130948.

alpha-Chlordane, Endosulfan I and Endrin ketone failed the recovery criteria low for the MSD of sample FWGLL2MW-271-0438-GWMSD (240-37114-10) in batch 240-130948.

Sample FWGSCFMW-004-0440-GW (240-37114-15)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

The opening MRL failed low on confirmation column for 4,4'-DDD and 4,4'-DDT. These compounds passed on primary column. Since all samples are ND, the data is considered reportable.

The MRL was high on the confirmation column for 4,4'-DDD, but passed on the primary column. The samples were ND for the compound and data is reported.

The LCS failed low for Endosulfan I on both columns and Endosulfan II on the confirmation column. The sample was re-extracted but was outside the 2 times hold time window. Only the original data is reported.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 130591.

No other difficulties were encountered during the pesticides analysis. All other quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS (PCBS)

Samples FWGLL1MW-088-0437-GW (240-37114-2), FWGEQUIPRINSE2-0444-GW (240-37114-4), FWGLL3MW-246-0439-GW (240-37114-6), FWGLL3MW-DUP1-0442-GW (240-37114-8), FWGLL2MW-271-0438-GW (240-37114-10) and FWGEQUIPRINSE1-0443-GW (240-37114-17) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082 DoD. The samples were prepared on 05/10/2014 and 05/20/2014 and analyzed on 05/13/2014 and 05/22/2014.

Surrogates are added during the extraction process prior to dilution. When the sample dilution is 5X or greater, surrogate recoveries are diluted out and no corrective action is required. All of the samples in this data set analyzed for PCBs were subjected to the sulfuric acid cleanup procedure before instrumental analysis, per EPA Method 3665A.

DCB Decachlorobiphenyl failed the surrogate recovery criteria low for FWGLL1MW-088-0437-GW (240-37114-2) and FWGLL2MW-271-0438-GWMS (240-37114-10MS).

Aroclor-1260 exceeded the RPD limit for the MSD of sample FWGLL2MW-271-0438-GWMSD (240-37114-10) in batch 240-130494.

Two surrogates are used for this analysis. The laboratory's SOP allows one of these surrogates to be outside acceptance criteria without performing re-extraction. The following sample(s) contained an allowable number of surrogate compounds outside limits but above 10% and were re-analyzed to confirm: FWGLL1MW-088-0437-GW (240-37114-2), FWGLL2MW-271-0438-GW (240-37114-10 MS). These results have been reported and qualified per client.

Reanalysis of the following sample was performed outside of the analytical holding time due to suspicious hit in the original extract. Only the re-extract data being reported only: FWGEQUIPRINSE1-0443-GW (240-37114-17).

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 130590, 8082.

No other difficulties were encountered during the PCBs analysis. All other quality control parameters were within the acceptance limits.

EXPLOSIVES

Samples FWGLL1MW-088-0437-GW (240-37114-2), FWGEQUIPRINSE2-0444-GW (240-37114-4), FWGLL3MW-246-0439-GW (240-37114-6), FWGLL3MW-DUP1-0442-GW (240-37114-8), FWGLL2MW-271-0438-GW (240-37114-10), FWGLL1MW-064C-0436-GW (240-37114-12), FWGSCFMW-004-0440-GW (240-37114-15) and FWGEQUIPRINSE1-0443-GW (240-37114-17) were analyzed for

2

3

_

5

7

8

11

4.6

14

15

Project/Site: RVAAP (OH)

Job ID: 240-37114-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

explosives in accordance with EPA SW-846 Method 8330A. The samples were prepared on 05/12/2014 and 05/13/2014 and analyzed on 05/16/2014, 05/17/2014, 05/19/2014 and 05/21/2014.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 42254.

No other difficulties were encountered during the explosives analysis. All quality control parameters were within the acceptance limits.

TOTAL RECOVERABLE METALS (ICP)

Samples FWGLL1MW-088-0437-GF (240-37114-3), FWGEQUIPRINSE2-0444-GW (240-37114-4), FWGLL3MW-246-0439-GF (240-37114-7), FWGLL3MW-DUP1-0442-GF (240-37114-9), FWGLL2MW-271-0438-GF (240-37114-11), FWGLL1MW-064C-0436-GF (240-37114-13), FWGSCFMW-004-0440-GF (240-37114-16) and FWGEQUIPRINSE1-0443-GW (240-37114-17) were analyzed for total recoverable metals (ICP) in accordance with EPA SW-846 Method 6010B DoD. The samples were prepared on 05/14/2014 and analyzed on 05/15/2014.

ICB, CCB, and ICSA samples are evaluated using the lowest LOD and DL criteria in LIMS. Using this criteria, an individual element may occasionally be flagged as out of control. If the element has a higher LOD or DL, the data is evaluated to the higher limit and determined to be acceptable.

Vanadium was detected in method blank MB 240-130550/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

No other difficulties were encountered during the metals analysis. All other quality control parameters were within the acceptance limits.

TOTAL RECOVERABLE METALS (ICPMS)

Samples FWGLL1MW-088-0437-GF (240-37114-3), FWGEQUIPRINSE2-0444-GW (240-37114-4), FWGLL3MW-246-0439-GF (240-37114-7), FWGLL3MW-DUP1-0442-GF (240-37114-9), FWGLL2MW-271-0438-GF (240-37114-11), FWGLL1MW-064C-0436-GF (240-37114-13), FWGSCFMW-004-0440-GF (240-37114-16) and FWGEQUIPRINSE1-0443-GW (240-37114-17) were analyzed for total recoverable metals (ICPMS) in accordance with EPA SW-846 Method 6020 DoD. The samples were prepared on 05/14/2014 and analyzed on 05/21/2014.

ICB, CCB, and ICSA samples are evaluated using the lowest LOD and DL criteria in LIMS. Using this criteria, an individual element may occasionally be flagged as out of control. If the element has a higher LOD or DL, the data is evaluated to the higher limit and determined to be acceptable.

No difficulties were encountered during the metals analysis. All quality control parameters were within the acceptance limits.

TOTAL MERCURY

Samples FWGLL1MW-088-0437-GF (240-37114-3), FWGEQUIPRINSE2-0444-GW (240-37114-4), FWGLL3MW-246-0439-GF (240-37114-7), FWGLL3MW-DUP1-0442-GF (240-37114-9), FWGLL2MW-271-0438-GF (240-37114-11), FWGLL1MW-064C-0436-GF (240-37114-13), FWGSCFMW-004-0440-GF (240-37114-16) and FWGEQUIPRINSE1-0443-GW (240-37114-17) were analyzed for total mercury in accordance with EPA SW-846 Method 7470A. The samples were prepared on 05/14/2014 and analyzed on 05/15/2014.

No difficulties were encountered during the mercury analysis. All quality control parameters were within the acceptance limits.

NITROCELLULOSE

Samples FWGLL1MW-088-0437-GW (240-37114-2), FWGEQUIPRINSE2-0444-GW (240-37114-4), FWGLL3MW-246-0439-GW (240-37114-6), FWGLL3MW-DUP1-0442-GW (240-37114-8), FWGLL2MW-271-0438-GW (240-37114-10), FWGLL1MW-064C-0436-GW (240-37114-12), FWGSCFMW-004-0440-GW (240-37114-15) and FWGEQUIPRINSE1-0443-GW (240-37114-17) were analyzed for Nitrocellulose in accordance with EPA Method 353.2. The samples were prepared on 05/14/2014 and analyzed on 05/15/2014.

No difficulties were encountered during the Nitrocellulose analysis. All quality control parameters were within the acceptance limits.

TOTAL CYANIDE

_

9

10

12

13

15

TestAmerica Job ID: 240-37114-1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Job ID: 240-37114-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

Samples FWGLL1MW-088-0437-GW (240-37114-2), FWGEQUIPRINSE2-0444-GW (240-37114-4), FWGLL3MW-246-0439-GW (240-37114-6), FWGLL3MW-DUP1-0442-GW (240-37114-8), FWGLL2MW-271-0438-GW (240-37114-10) and FWGEQUIPRINSE1-0443-GW (240-37114-17) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012A DoD. The samples were prepared and analyzed on 05/20/2014.

No difficulties were encountered during the cyanide analysis. All quality control parameters were within the acceptance limits.

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGTEAM3-TRIP050814 Lab Sample ID: 240-37114-1

Date Collected: 05/08/14 08:00 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 10:51	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 10:51	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	05/19/14 10:51	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	05/19/14 10:51	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	05/19/14 10:51	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 10:51	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	05/19/14 10:51	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 10:51	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	05/19/14 10:51	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 10:51	1
Acetone	1.1	U	10	1.1	1.1	ug/L	05/19/14 10:51	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 10:51	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	05/19/14 10:51	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	05/19/14 10:51	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 10:51	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 10:51	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	05/19/14 10:51	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 10:51	1
Chloroform	0.35	J	1.0	0.25	0.16	ug/L	05/19/14 10:51	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	05/19/14 10:51	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L	05/19/14 10:51	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	05/19/14 10:51	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	05/19/14 10:51	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	05/19/14 10:51	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L	05/19/14 10:51	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	05/19/14 10:51	1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	05/19/14 10:51	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	05/19/14 10:51	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L	05/19/14 10:51	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	05/19/14 10:51	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L	05/19/14 10:51	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 10:51	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 10:51	1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	05/19/14 10:51	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L	05/19/14 10:51	1
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L	05/19/14 10:51	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 10:51	1
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L	05/19/14 10:51	1
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 10:51	1
Surrogate	%Recovery Qu	ialifiar	Limits			Prepared	Analvzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		70 - 120		05/19/14 10:51	1
4-Bromofluorobenzene (Surr)	94		75 - 120		05/19/14 10:51	1
Toluene-d8 (Surr)	104		85 - 120		05/19/14 10:51	1
Dibromofluoromethane (Surr)	90		85 - 115		05/19/14 10:51	1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

Client Sample ID: FWGLL1MW-088-0437-GW

Lab Sample ID: 240-37114-2 Date Collected: 05/08/14 10:29 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 11:16	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 11:16	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	05/19/14 11:16	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	05/19/14 11:16	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	05/19/14 11:16	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 11:16	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	05/19/14 11:16	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 11:16	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	05/19/14 11:16	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 11:16	1
Acetone	1.1	U	10	1.1	1.1	ug/L	05/19/14 11:16	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 11:16	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	05/19/14 11:16	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	05/19/14 11:16	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 11:16	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 11:16	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	05/19/14 11:16	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 11:16	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	05/19/14 11:16	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	05/19/14 11:16	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L	05/19/14 11:16	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	05/19/14 11:16	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	05/19/14 11:16	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	05/19/14 11:16	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L	05/19/14 11:16	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	05/19/14 11:16	1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	05/19/14 11:16	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	05/19/14 11:16	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L	05/19/14 11:16	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	05/19/14 11:16	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L	05/19/14 11:16	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 11:16	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 11:16	1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	05/19/14 11:16	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L	05/19/14 11:16	1
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L	05/19/14 11:16	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 11:16	1
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L	05/19/14 11:16	1
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 11:16	1
Surrogate	%Recovery Qu	ialifiar	Limits			Prepared	Analvzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 120	_		05/19/14 11:16	1
4-Bromofluorobenzene (Surr)	98		75 - 120			05/19/14 11:16	1
Toluene-d8 (Surr)	103		85 - 120			05/19/14 11:16	1
Dibromofluoromethane (Surr)	93		85 - 115			05/19/14 11:16	1

Mathadi 00700	Comissolatile	Ormania Com	marinala i	COMMON
Method: 8270C -	Seminoname	Organic Com	poulius	GC/IVIS)

monious ozivo commonante organie	o o i i i po a i i a i	(00/1110)							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.10	U	0.20	0.10	0.045	ug/L		05/30/14 10:08	1
Acenaphthylene	0.10	U	0.20	0.10	0.049	ug/L		05/30/14 10:08	1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Lab Sample ID: 240-37114-2

TestAmerica Job ID: 240-37114-1

Client Sample ID: FWGLL1MW-088-0437-GW

Date Collected: 05/08/14 10:29

Date Received: 05/08/14 14:50

Matrix: Water

Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Anthracene	0.10	U	0.20	0.10	0.089	ug/L		05/30/14 10:08	
Benzo[a]anthracene	0.10	U	0.20	0.10	0.030	ug/L		05/30/14 10:08	
Benzo[a]pyrene	0.10	U	0.20	0.10	0.052	ug/L		05/30/14 10:08	
Benzo[b]fluoranthene	0.10	U	0.20	0.10	0.040	ug/L		05/30/14 10:08	
Benzo[g,h,i]perylene	0.10	U	0.20	0.10	0.047	ug/L		05/30/14 10:08	
Benzoic acid	20	U	25	20	10	ug/L		05/30/14 10:08	
Benzo[k]fluoranthene	0.10	U	0.20	0.10	0.045	ug/L		05/30/14 10:08	
Benzyl alcohol	0.51	U	5.1	0.51	0.38	ug/L		05/30/14 10:08	
Bis(2-chloroethoxy)methane	0.51	U	1.0	0.51	0.32	ug/L		05/30/14 10:08	
Bis(2-chloroethyl)ether	0.10	U	1.0	0.10	0.10	ug/L		05/30/14 10:08	
Bis(2-ethylhexyl) phthalate	5.1	U	5.1	5.1	1.7	ug/L		05/30/14 10:08	
4-Bromophenyl phenyl ether	0.51	U	2.0	0.51	0.22	ug/L		05/30/14 10:08	
Butyl benzyl phthalate	0.51	U	5.1	0.51	0.26	ug/L		05/30/14 10:08	
Carbazole	0.51	U	1.0	0.51	0.28	ug/L		05/30/14 10:08	
4-Chloroaniline	0.51	U	2.0	0.51	0.21	ug/L		05/30/14 10:08	
4-Chloro-3-methylphenol	0.51	U	2.0	0.51	0.21	ug/L		05/30/14 10:08	
2-Chloronaphthalene	0.51	U	1.0	0.51	0.10	ug/L		05/30/14 10:08	
2-Chlorophenol	0.51	U	1.0	0.51	0.29	ug/L		05/30/14 10:08	
4-Chlorophenyl phenyl ether	0.51	U	2.0	0.51	0.30	ug/L		05/30/14 10:08	
Chrysene	0.10	U	0.20	0.10	0.051	ug/L		05/30/14 10:08	
Dibenz(a,h)anthracene	0.10	U	0.20	0.10	0.045	ug/L		05/30/14 10:08	
Dibenzofuran	0.10	U	1.0	0.10	0.020	ug/L		05/30/14 10:08	
1,2-Dichlorobenzene	0.51	U	1.0	0.51	0.29	ug/L		05/30/14 10:08	
1,3-Dichlorobenzene	0.51	U	1.0	0.51	0.23	ug/L		05/30/14 10:08	
1,4-Dichlorobenzene	0.51	U	1.0	0.51	0.34	ug/L		05/30/14 10:08	
3,3'-Dichlorobenzidine	1.0	U	5.1	1.0	0.37			05/30/14 10:08	
2,4-Dichlorophenol	0.51	U	2.0	0.51	0.19	ug/L		05/30/14 10:08	
Diethyl phthalate	1.0	U	2.0	1.0	0.61	_		05/30/14 10:08	
2,4-Dimethylphenol	0.51	U	2.0	0.51	0.25	ug/L		05/30/14 10:08	
Dimethyl phthalate	0.51	U	2.0	0.51	0.29	ug/L		05/30/14 10:08	
Di-n-butyl phthalate	5.1	U	5.1	5.1	1.7	ug/L		05/30/14 10:08	
4,6-Dinitro-2-methylphenol	4.0	U	5.1	4.0		ug/L		05/30/14 10:08	
2,4-Dinitrophenol	1.0	U	5.1	1.0	0.32	-		05/30/14 10:08	
Di-n-octyl phthalate	0.51	U	2.0	0.51	0.23			05/30/14 10:08	
Fluoranthene	0.10	U	0.20	0.10	0.045			05/30/14 10:08	
Fluorene	0.10	U	0.20	0.10	0.041	-		05/30/14 10:08	
Hexachlorobenzene	0.10		0.20	0.10	0.086			05/30/14 10:08	
Hexachlorobutadiene	0.51		1.0	0.51	0.27			05/30/14 10:08	
Hexachlorocyclopentadiene	0.51		10	0.51	0.24			05/30/14 10:08	
Hexachloroethane	0.51		1.0	0.51	0.19			05/30/14 10:08	
Indeno[1,2,3-cd]pyrene	0.10		0.20	0.10	0.044			05/30/14 10:08	
Isophorone	0.51		1.0	0.51	0.27	-		05/30/14 10:08	
2-Methylnaphthalene	0.10		0.20	0.10	0.091	_		05/30/14 10:08	
2-Methylphenol	0.51		1.0	0.51	0.17			05/30/14 10:08	
3 & 4 Methylphenol	1.0		2.0	1.0	0.81			05/30/14 10:08	
Naphthalene	0.15		0.20	0.10	0.063			05/30/14 10:08	
2-Nitroaniline	0.13		2.0	0.10	0.003			05/30/14 10:08	
3-Nitroaniline	0.51		2.0	0.51	0.21			05/30/14 10:08	
3-Nitroaniline 4-Nitroaniline	0.51		2.0	0.51	0.28			05/30/14 10:08	

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL1MW-088-0437-GW

Lab Sample ID: 240-37114-2 Date Collected: 05/08/14 10:29 Matrix: Water

Date Received: 05/08/14 14:50

		t Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
-Nitrophenol	0.5	1 U	2.0	0.51	0.28	ug/L	05/30/14 10:08	1
-Nitrophenol	4.0) U	5.1	4.0	0.29	ug/L	05/30/14 10:08	1
-Nitrosodi-n-propylamine	0.5	1 U	1.0	0.51	0.24	ug/L	05/30/14 10:08	1
-Nitrosodiphenylamine	0.5	1 U	1.0	0.51	0.31	ug/L	05/30/14 10:08	1
2'-oxybis[1-chloropropane]	0.5	1 U	1.0	0.51	0.40	ug/L	05/30/14 10:08	1
entachlorophenol	1.0	U	5.1	1.0	0.27	ug/L	05/30/14 10:08	1
henanthrene	0.10) J	0.20	0.10	0.063	ug/L	05/30/14 10:08	1
henol	1.0) U	1.0	1.0	0.61	ug/L	05/30/14 10:08	1
yrene	0.10) J	0.20	0.10	0.042	ug/L	05/30/14 10:08	1
2,4-Trichlorobenzene	0.5	1 U	1.0	0.51	0.28	ug/L	05/30/14 10:08	1
4,5-Trichlorophenol	0.5	1 U	5.1	0.51	0.30	ug/L	05/30/14 10:08	1
4,6-Trichlorophenol	0.5	1 U	5.1	0.51	0.24	ug/L	05/30/14 10:08	1
urrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
-Fluorobiphenyl (Surr)	72		50 - 110			05/12/14 07:34	05/30/14 10:08	1
-Fluorophenol (Surr)	75		20 - 110			05/12/14 07:34	05/30/14 10:08	1
itrobenzene-d5 (Surr)	73		40 - 110			05/12/14 07:34	05/30/14 10:08	1
henol-d5 (Surr)	78		10 - 115			05/12/14 07:34	05/30/14 10:08	1
erphenyl-d14 (Surr)	86		50 - 135			05/12/14 07:34	05/30/14 10:08	1
4,6-Tribromophenol (Surr)	89		40 - 125			05/12/14 07:34	05/30/14 10:08	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L		05/16/14 15:08	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		05/16/14 15:08	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		05/16/14 15:08	1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		05/16/14 15:08	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		05/16/14 15:08	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		05/16/14 15:08	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L		05/16/14 15:08	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		05/16/14 15:08	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		05/16/14 15:08	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		05/16/14 15:08	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		05/16/14 15:08	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		05/16/14 15:08	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		05/16/14 15:08	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		05/16/14 15:08	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		05/16/14 15:08	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		05/16/14 15:08	1
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		05/16/14 15:08	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		05/16/14 15:08	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		05/16/14 15:08	
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		05/16/14 15:08	1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		05/16/14 15:08	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	21	Q	30 - 135	05/10/14 10:23	05/16/14 15:08	1
DCB Decachlorobiphenyl	21	Q	30 - 135	05/10/14 10:23	05/16/14 15:08	1
Tetrachloro-m-xylene	81		25 - 140	05/10/14 10:23	05/16/14 15:08	1
Tetrachloro-m-xylene	80		25 - 140	05/10/14 10:23	05/16/14 15:08	1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL1MW-088-0437-GW

Lab Sample ID: 240-37114-2 Date Collected: 05/08/14 10:29 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aroclor-1016	0.19	U	0.48	0.19	0.16	ug/L		05/13/14 14:33	
Aroclor-1221	0.19	U	0.48	0.19	0.12	ug/L		05/13/14 14:33	
Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L		05/13/14 14:33	
Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L		05/13/14 14:33	
Aroclor-1248	0.19	U	0.48	0.19	0.095	ug/L		05/13/14 14:33	
Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L		05/13/14 14:33	
Aroclor-1260	0.19	U	0.48	0.19	0.16	ug/L		05/13/14 14:33	
Surrogate	%Recovery Qu	ualifier	Limits			Prepar	ed	Analyzed	Dil Fa
Tetrachloro-m-xylene	92		40 - 140			05/10/14	10:20	05/13/14 14:33	
Tetrachloro-m-xylene	99		40 - 140			05/10/14	10:20	05/13/14 14:33	
DCB Decachlorobiphenyl	21 Q		40 _ 135			05/10/14	10:20	05/13/14 14:33	
DCB Decachlorobiphenyl	21 Q		40 - 135			05/10/14	10:20	05/13/14 14:33	
Method: 8330 Modified - Nitro	oquanidine (HPLC)								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		05/13/14 15:05	
Method: 8330A - Nitroaromat	ics and Nitramines								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
1,3,5-Trinitrobenzene	0.053	U	0.16	0.053	0.033	ug/L		05/19/14 22:47	
1,3-Dinitrobenzene	0.11	U	0.16	0.11	0.053	-		05/19/14 22:47	
2,4,6-Trinitrotoluene	0.11	UM	0.16	0.11	0.053	ug/L		05/19/14 22:47	
2,4-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		05/19/14 22:47	
2,6-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		05/19/14 22:47	
2-Amino-4,6-dinitrotoluene	0.11	U	0.16	0.11	0.016	ug/L		05/19/14 22:47	
2-Nitrotoluene	0.11	UM	0.53	0.11	0.094	ug/L		05/19/14 22:47	
3-Nitrotoluene	0.11	U	0.53	0.11	0.061	ug/L		05/19/14 22:47	
4-Nitrotoluene	0.11	U	0.53	0.11	0.094	ug/L		05/19/14 22:47	
4-Amino-2,6-dinitrotoluene	0.11	U	0.16	0.11	0.053	ug/L		05/19/14 22:47	
HMX	0.053	UM	0.16	0.053	0.038	ug/L		05/19/14 22:47	
RDX	0.053	UM	0.16	0.053	0.038	ug/L		05/19/14 22:47	
Nitrobenzene	0.11	UM	0.16	0.11	0.053	ug/L		05/19/14 22:47	
Tetryl	0.11	UM	0.16	0.11	0.053	ug/L		05/19/14 22:47	
Nitroglycerin	0.53	U	0.69	0.53		ug/L		05/19/14 22:47	
PETN	0.53	U	0.69	0.53	0.32			05/19/14 22:47	
Surrogate	%Recovery Qu	ualifier	Limits			Prepar	ed	Analyzed	Dil Fa
3,4-Dinitrotoluene	100		79 - 111			05/12/14		05/17/14 07:08	
3,4-Dinitrotoluene	95 M		79 - 111			05/12/14	14:49	05/19/14 22:47	
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
•									
Cyanide, Total	0.0050	U	0.010	0.0050	0.0032	mg/L		05/20/14 10:30	

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL1MW-088-0437-GF

Lab Sample ID: 240-37114-3 Date Collected: 05/08/14 10:29 Matrix: Water

Date Received: 05/08/14 14:50

Hg

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	18		10	10	3.3	ug/L		05/15/14 09:56	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		05/15/14 09:56	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		05/15/14 09:56	1
Lead	2.0	J	10	5.0	1.7	ug/L		05/15/14 09:56	1
Selenium	10	U	15	10	4.0	ug/L		05/15/14 09:56	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		05/15/14 09:56	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		05/15/14 09:56	1
Barium	44	J	200	5.0	2.8	ug/L		05/15/14 09:56	1
Calcium	84000		5000	1000	630	ug/L		05/15/14 09:56	1
Copper	10	U	25	10	4.4	ug/L		05/15/14 09:56	1
Magnesium	39000		5000	300	120	ug/L		05/15/14 09:56	1
Manganese	86		15	5.0	1.8	ug/L		05/15/14 09:56	1
Nickel	5.0	U	40	5.0	2.2	ug/L		05/15/14 09:56	1
Potassium	3400	J	5000	900	300	ug/L		05/15/14 09:56	1
Method: 6020 - Metals (ICP/MS) - Total	Recoverab	le							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		05/21/14 14:26	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		05/21/14 14:26	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		05/21/14 14:26	
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		05/21/14 14:26	1
Iron	550		150	100	44	ug/L		05/21/14 14:26	4
Sodium	24000		1000	400	160	ug/L		05/21/14 14:26	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		05/21/14 14:26	1
Zinc	50	U	50	50	27	ug/L		05/21/14 14:26	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa

0.20

0.20

0.12 ug/L

0.20 U

05/15/14 15:05

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

Client Sample ID: FWGEQUIPRINSE2-0444-GW

Lab Sample ID: 240-37114-4 Date Collected: 05/08/14 13:00 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	L	oq	LOD	DL	Unit I	O Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U		1.0	0.25	0.22	ug/L	05/19/14 12:02	
1,1,2,2-Tetrachloroethane	0.25	U		1.0	0.25	0.18	ug/L	05/19/14 12:02	
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.27	ug/L	05/19/14 12:02	
1,1-Dichloroethane	0.25	U		1.0	0.25	0.15	ug/L	05/19/14 12:02	1
1,1-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	05/19/14 12:02	1
1,2-Dichloroethane	0.25	U		1.0	0.25	0.22	ug/L	05/19/14 12:02	1
1,2-Dichloroethene, Total	0.25	U		2.0	0.25	0.17	ug/L	05/19/14 12:02	1
1,2-Dichloropropane	0.25	U		1.0	0.25	0.18	ug/L	05/19/14 12:02	1
2-Hexanone	0.50	U		10	0.50	0.41	ug/L	05/19/14 12:02	1
Bromochloromethane	0.50	U		1.0	0.50	0.29	ug/L	05/19/14 12:02	1
Acetone	14			10	1.1	1.1	ug/L	05/19/14 12:02	1
Benzene	0.25	U		1.0	0.25	0.13	ug/L	05/19/14 12:02	1
Bromoform	0.64	U		1.0	0.64	0.64	ug/L	05/19/14 12:02	1
Bromomethane	0.50	U		1.0	0.50	0.41	ug/L	05/19/14 12:02	1
Carbon disulfide	0.69	J M		1.0	0.25	0.13	ug/L	05/19/14 12:02	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.13	ug/L	05/19/14 12:02	1
Chlorobenzene	0.25	U		1.0	0.25	0.15	ug/L	05/19/14 12:02	1
Chloroethane	0.50	U		1.0	0.50	0.29	ug/L	05/19/14 12:02	
Chloroform	0.25	U		1.0	0.25	0.16	ug/L	05/19/14 12:02	1
Chloromethane	0.50	U		1.0	0.50	0.30	ug/L	05/19/14 12:02	1
cis-1,2-Dichloroethene	0.25	U		1.0	0.25	0.17	ug/L	05/19/14 12:02	1
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.14	ug/L	05/19/14 12:02	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L	05/19/14 12:02	1
Ethylbenzene	0.25	U		1.0	0.25	0.17	ug/L	05/19/14 12:02	
1,2-Dibromoethane	0.25	U		1.0	0.25	0.24	ug/L	05/19/14 12:02	
m-Xylene & p-Xylene	0.50	U		2.0	0.50	0.24	ug/L	05/19/14 12:02	1
2-Butanone (MEK)	3.6	J		10	0.57	0.57	ug/L	05/19/14 12:02	1
4-Methyl-2-pentanone (MIBK)	0.50	U		10	0.50	0.32	ug/L	05/19/14 12:02	1
Methylene Chloride	0.50	U		1.0	0.50	0.33	ug/L	05/19/14 12:02	
o-Xylene	0.25	U		1.0	0.25	0.14	ug/L	05/19/14 12:02	1
Styrene	0.25	U		1.0	0.25	0.11	ug/L	05/19/14 12:02	1
Tetrachloroethene	0.50	U		1.0	0.50	0.29	ug/L	05/19/14 12:02	1
Toluene	0.22	J		1.0	0.25	0.13		05/19/14 12:02	4
trans-1,2-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	05/19/14 12:02	1
trans-1,3-Dichloropropene	0.25	U		1.0	0.25		ug/L	05/19/14 12:02	1
Trichloroethene	0.25	U		1.0	0.25	0.17	ug/L	05/19/14 12:02	1
Vinyl chloride	0.25	U		1.0	0.25		ug/L	05/19/14 12:02	
Xylenes, Total	0.25			2.0	0.25	0.14	ug/L	05/19/14 12:02	-
Dibromochloromethane	0.25			1.0	0.25	0.18	ug/L	05/19/14 12:02	•
Surrogate	%Recovery Qu	ualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	87		70 - 120					05/19/14 12:02	
4-Bromofluorobenzene (Surr)	92		75 120					05/19/14 12:02	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		70 - 120	_		05/19/14 12:02	1
4-Bromofluorobenzene (Surr)	92		75 - 120			05/19/14 12:02	1
Toluene-d8 (Surr)	99		85 - 120			05/19/14 12:02	1
Dibromofluoromethane (Surr)	90		85 - 115			05/19/14 12:02	1

Method: 827	70C - Semivolatil	e Organic Com	pounds (GC/MS)
MICHIOU. 02	100 - Schilly Glatif	e Organic Com	poullus (GC/IVIS)

Analyte	Result Qu	ualifier LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095 U	0.19	0.095	0.042	ug/L		05/30/14 10:33	1
Acenaphthylene	0.095 U	0.19	0.095	0.046	ug/L		05/30/14 10:33	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGEQUIPRINSE2-0444-GW

Lab Sample ID: 240-37114-4 Date Collected: 05/08/14 13:00 Matrix: Water

Date Received: 05/08/14 14:50

Method: 8270C - Semivolatile Org	Result	Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil F
nthracene	0.095	U	0.19	0.095	0.084	ug/L		05/30/14 10:33	
Senzo[a]anthracene	0.095	U	0.19	0.095	0.028	ug/L		05/30/14 10:33	
Benzo[a]pyrene	0.095	U	0.19	0.095	0.049	ug/L		05/30/14 10:33	
senzo[b]fluoranthene	0.095	U	0.19	0.095	0.038	ug/L		05/30/14 10:33	
enzo[g,h,i]perylene	0.095	U	0.19	0.095	0.044	ug/L		05/30/14 10:33	
senzoic acid	19	U	24	19	9.5	ug/L		05/30/14 10:33	
enzo[k]fluoranthene	0.095	U	0.19	0.095	0.043	ug/L		05/30/14 10:33	
enzyl alcohol	0.48	U	4.8	0.48	0.36	ug/L		05/30/14 10:33	
sis(2-chloroethoxy)methane	0.48	U	0.95	0.48	0.30	ug/L		05/30/14 10:33	
sis(2-chloroethyl)ether	0.095	U	0.95	0.095	0.095	ug/L		05/30/14 10:33	
sis(2-ethylhexyl) phthalate	4.8	U	4.8	4.8	1.6	ug/L		05/30/14 10:33	
-Bromophenyl phenyl ether	0.48	U	1.9	0.48	0.21	ug/L		05/30/14 10:33	
Butyl benzyl phthalate	0.48	U	4.8	0.48	0.25	ug/L		05/30/14 10:33	
Carbazole	0.48	U	0.95	0.48	0.27	ug/L		05/30/14 10:33	
-Chloroaniline	0.48	U	1.9	0.48	0.20	ug/L		05/30/14 10:33	
-Chloro-3-methylphenol	0.48	U	1.9	0.48	0.20	ug/L		05/30/14 10:33	
-Chloronaphthalene	0.48	U	0.95	0.48	0.095	ug/L		05/30/14 10:33	
-Chlorophenol	0.48	U	0.95	0.48	0.28	ug/L		05/30/14 10:33	
-Chlorophenyl phenyl ether	0.48	U	1.9	0.48	0.29	ug/L		05/30/14 10:33	
Chrysene	0.095	U	0.19	0.095	0.048			05/30/14 10:33	
Dibenz(a,h)anthracene	0.095		0.19	0.095	0.042			05/30/14 10:33	
Dibenzofuran	0.095		0.95	0.095	0.019			05/30/14 10:33	
,2-Dichlorobenzene	0.48		0.95	0.48		ug/L		05/30/14 10:33	
,3-Dichlorobenzene	0.48		0.95	0.48		ug/L		05/30/14 10:33	
,4-Dichlorobenzene	0.48		0.95	0.48		ug/L		05/30/14 10:33	
,3'-Dichlorobenzidine	0.95		4.8	0.95		ug/L		05/30/14 10:33	
,4-Dichlorophenol	0.48		1.9	0.48		ug/L		05/30/14 10:33	
Diethyl phthalate	2.7	0	1.9	0.95		ug/L		05/30/14 10:33	
,4-Dimethylphenol	0.48		1.9	0.48		ug/L		05/30/14 10:33	
Dimethyl phthalate	0.48		1.9	0.48		ug/L		05/30/14 10:33	
Di-n-butyl phthalate			4.8	4.8		ug/L		05/30/14 10:33	
,6-Dinitro-2-methylphenol		U	4.8	3.8		ug/L		05/30/14 10:33	
• •	0.95		4.8	0.95		ug/L		05/30/14 10:33	
,4-Dinitrophenol						-			
i-n-octyl phthalate	0.48		1.9	0.48		ug/L		05/30/14 10:33	
luoranthene	0.095		0.19	0.095	0.042	_		05/30/14 10:33	
luorene	0.095		0.19	0.095	0.039			05/30/14 10:33	
lexachlorobenzene	0.095		0.19	0.095	0.081			05/30/14 10:33	
lexachlorobutadiene	0.48		0.95	0.48		ug/L		05/30/14 10:33	
lexachlorocyclopentadiene	0.48		9.5	0.48		ug/L		05/30/14 10:33	
lexachloroethane	0.48		0.95	0.48		ug/L		05/30/14 10:33	
ndeno[1,2,3-cd]pyrene	0.095		0.19	0.095	0.041	-		05/30/14 10:33	
sophorone	0.48		0.95	0.48		ug/L		05/30/14 10:33	
-Methylnaphthalene	0.095		0.19	0.095	0.086			05/30/14 10:33	
-Methylphenol	0.48		0.95	0.48		ug/L		05/30/14 10:33	
& 4 Methylphenol	0.95	U	1.9	0.95	0.76	ug/L		05/30/14 10:33	
laphthalene	0.14	J	0.19	0.095	0.060	ug/L		05/30/14 10:33	
-Nitroaniline	0.48	U	1.9	0.48	0.20	ug/L		05/30/14 10:33	
-Nitroaniline	0.48	U	1.9	0.48	0.27	ug/L		05/30/14 10:33	

TestAmerica Canton

TestAmerica Job ID: 240-37114-1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGEQUIPRINSE2-0444-GW

Lab Sample ID: 240-37114-4 Date Collected: 05/08/14 13:00 Matrix: Water

Date Received: 05/08/14 14:50								
Method: 8270C - Semivolatile			-					
Analyte		Qualifier	LOQ	LOD		Unit D	,	Dil Fac
2-Nitrophenol	0.48	U	1.9	0.48	0.27	ug/L	05/30/14 10:33	1
4-Nitrophenol	3.8	U	4.8	3.8	0.28	ug/L	05/30/14 10:33	1
N-Nitrosodi-n-propylamine	0.48	U	0.95	0.48	0.23	ug/L	05/30/14 10:33	1
N-Nitrosodiphenylamine	0.48	U	0.95	0.48	0.30	ug/L	05/30/14 10:33	1
2,2'-oxybis[1-chloropropane]	0.48	U	0.95	0.48	0.38	ug/L	05/30/14 10:33	1
Pentachlorophenol	0.95	U	4.8	0.95	0.26	ug/L	05/30/14 10:33	1
Phenanthrene	0.095	U	0.19	0.095	0.059	ug/L	05/30/14 10:33	1
Phenol	0.73	J	0.95	0.95	0.57	ug/L	05/30/14 10:33	1
Pyrene	0.095	U	0.19	0.095	0.040	ug/L	05/30/14 10:33	1
1,2,4-Trichlorobenzene	0.48	U	0.95	0.48	0.27	ug/L	05/30/14 10:33	1
2,4,5-Trichlorophenol	0.48	U	4.8	0.48	0.29	ug/L	05/30/14 10:33	1
2,4,6-Trichlorophenol	0.48	U	4.8	0.48	0.23	ug/L	05/30/14 10:33	1
Surrogate	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	71		50 - 110			05/12/14 07:34	05/30/14 10:33	1
2-Fluorophenol (Surr)	75		20 - 110			05/12/14 07:34	05/30/14 10:33	1
Nitrobenzene-d5 (Surr)	72		40 - 110			05/12/14 07:34	05/30/14 10:33	1
Phenol-d5 (Surr)	75		10 - 115			05/12/14 07:34	05/30/14 10:33	1
Terphenyl-d14 (Surr)	93		50 - 135			05/12/14 07:34	05/30/14 10:33	1
2,4,6-Tribromophenol (Surr)	77		40 - 125			05/12/14 07:34	05/30/14 10:33	1
_ Method: 8081A - Organochlor	rine Pesticides (GC)							
Analyte		Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0092	ug/L	05/16/14 15:30	1
4,4'-DDE	0.019	U	0.048	0.019	0.0093	ug/L	05/16/14 15:30	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L	05/16/14 15:30	1
Aldrin	0.010		0.020	0.010	0.0070		05/16/14 15:30	1

Method: 8081A - Organochlorine Pesticides (GC)								
Analyte R	esult	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD (.019	U	0.048	0.019	0.0092	ug/L		05/16/14 15:30	1
4,4'-DDE	.019	U	0.048	0.019	0.0093	ug/L		05/16/14 15:30	1
4,4'-DDT	.019	U	0.048	0.019	0.015	ug/L		05/16/14 15:30	1
Aldrin (.019	U	0.029	0.019	0.0079	ug/L		05/16/14 15:30	1
alpha-BHC (0.019	U	0.029	0.019	0.0067	ug/L		05/16/14 15:30	1
alpha-Chlordane (0.019	U	0.048	0.019	0.013	ug/L		05/16/14 15:30	1
beta-BHC (.019	U	0.048	0.019	0.0081	ug/L		05/16/14 15:30	1
delta-BHC (0.019	U	0.048	0.019	0.0084	ug/L		05/16/14 15:30	1
Dieldrin	0.019	U	0.029	0.019	0.0072	ug/L		05/16/14 15:30	1
Endosulfan I	0.019	U	0.048	0.019	0.013	ug/L		05/16/14 15:30	1
Endosulfan II	0.019	U	0.048	0.019	0.012	ug/L		05/16/14 15:30	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.011	ug/L		05/16/14 15:30	1
Endrin (0.019	U	0.048	0.019	0.011	ug/L		05/16/14 15:30	1
Endrin aldehyde	0.019	U	0.048	0.019	0.011	ug/L		05/16/14 15:30	1
Endrin ketone	0.019	U	0.048	0.019	0.0075	ug/L		05/16/14 15:30	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0062	ug/L		05/16/14 15:30	1
gamma-Chlordane (0.019	U	0.048	0.019	0.012	ug/L		05/16/14 15:30	1
Heptachlor (0.019	U	0.029	0.019	0.0077	ug/L		05/16/14 15:30	1
Heptachlor epoxide	.019	U	0.029	0.019	0.0068	ug/L		05/16/14 15:30	1
Methoxychlor (.048	U	0.096	0.048	0.031	ug/L		05/16/14 15:30	1
Toxaphene	0.77	U	1.9	0.77	0.31	ug/L		05/16/14 15:30	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	84	30 - 135	05/10/14 10:23	05/16/14 15:30	1
DCB Decachlorobiphenyl	77	30 - 135	05/10/14 10:23	05/16/14 15:30	1
Tetrachloro-m-xylene	84	25 - 140	05/10/14 10:23	05/16/14 15:30	1
Tetrachloro-m-xylene	80	25 - 140	05/10/14 10:23	05/16/14 15:30	1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGEQUIPRINSE2-0444-GW

Lab Sample ID: 240-37114-4 Date Collected: 05/08/14 13:00 Matrix: Water

Method: 8082 - Polychlorinated	Biphenyls (PCBs)	by Gas Chro	matography						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aroclor-1016	0.19	U	0.48	0.19	0.16	ug/L		05/13/14 14:49	1
Aroclor-1221	0.19	U	0.48	0.19	0.13	ug/L		05/13/14 14:49	1
Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L		05/13/14 14:49	1
Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L		05/13/14 14:49	1
Aroclor-1248	0.19	U	0.48	0.19	0.096	ug/L		05/13/14 14:49	1
Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L		05/13/14 14:49	1
Aroclor-1260	0.19	U	0.48	0.19	0.16	ug/L		05/13/14 14:49	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	88		40 - 140	-	05/10/14 10:20	05/13/14 14:49	1
Tetrachloro-m-xylene	94		40 - 140		05/10/14 10:20	05/13/14 14:49	1
DCB Decachlorobiphenyl	83		40 _ 135		05/10/14 10:20	05/13/14 14:49	1
DCB Decachlorobiphenyl	80		40 - 135		05/10/14 10:20	05/13/14 14:49	1

Method: 8330 Modified - Nitroguanidine (HPLC)

Analyte	Result Qualifier	LOQ	LOD	DL Unit	D	Analyzed	Dil Fac
Nitroguanidine	6.0 U	20	6.0	2.4 ug/L		05/13/14 15:23	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.055	U	0.16	0.055	0.034	ug/L		05/21/14 06:50	1
1,3-Dinitrobenzene	0.11	U	0.16	0.11	0.055	ug/L		05/21/14 06:50	1
2,4,6-Trinitrotoluene	0.11	U	0.16	0.11	0.055	ug/L		05/21/14 06:50	1
2,4-Dinitrotoluene	0.11	UM	0.14	0.11	0.055	ug/L		05/21/14 06:50	1
2,6-Dinitrotoluene	0.11	UM	0.14	0.11	0.055	ug/L		05/21/14 06:50	1
2-Amino-4,6-dinitrotoluene	0.11	U	0.16	0.11	0.016	ug/L		05/21/14 06:50	1
2-Nitrotoluene	0.11	U	0.55	0.11	0.096	ug/L		05/21/14 06:50	1
3-Nitrotoluene	0.11	U	0.55	0.11	0.062	ug/L		05/21/14 06:50	1
4-Nitrotoluene	0.11	U	0.55	0.11	0.096	ug/L		05/21/14 06:50	1
4-Amino-2,6-dinitrotoluene	0.11	U	0.16	0.11	0.055	ug/L		05/21/14 06:50	1
HMX	0.055	UM	0.16	0.055	0.039	ug/L		05/21/14 06:50	1
RDX	0.055	U	0.16	0.055	0.039	ug/L		05/21/14 06:50	1
Nitrobenzene	0.11	U	0.16	0.11	0.055	ug/L		05/21/14 06:50	1
Tetryl	0.11	U	0.16	0.11	0.055	ug/L		05/21/14 06:50	1
Nitroglycerin	0.55	U	0.71	0.55	0.36	ug/L		05/21/14 06:50	1
PETN	0.55	U	0.71	0.55	0.33	ug/L		05/21/14 06:50	1

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	100	79 _ 111	05/12/14 14:49	05/17/14 08:14	1
3,4-Dinitrotoluene	95	79 - 111	05/12/14 14:49	05/21/14 06:50	1

Method: 6010B - Metals (ICP) - Total Recoverable

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		05/15/14 10:08	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		05/15/14 10:08	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		05/15/14 10:08	1
Lead	1.7	J	10	5.0	1.7	ug/L		05/15/14 10:08	1
Selenium	10	U	15	10	4.0	ug/L		05/15/14 10:08	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		05/15/14 10:08	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		05/15/14 10:08	1
Barium	5.0	U	200	5.0	2.8	ug/L		05/15/14 10:08	1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGTEAM3-TRIP050814 Lab Sample ID: 240-37114-1

Date Collected: 05/08/14 08:00 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 10:51	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 10:51	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	05/19/14 10:51	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	05/19/14 10:51	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	05/19/14 10:51	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 10:51	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	05/19/14 10:51	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 10:51	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	05/19/14 10:51	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 10:51	1
Acetone	1.1	U	10	1.1	1.1	ug/L	05/19/14 10:51	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 10:51	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	05/19/14 10:51	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	05/19/14 10:51	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 10:51	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 10:51	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	05/19/14 10:51	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 10:51	1
Chloroform	0.35	J	1.0	0.25	0.16	ug/L	05/19/14 10:51	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	05/19/14 10:51	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L	05/19/14 10:51	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	05/19/14 10:51	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	05/19/14 10:51	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	05/19/14 10:51	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L	05/19/14 10:51	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	05/19/14 10:51	1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	05/19/14 10:51	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	05/19/14 10:51	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L	05/19/14 10:51	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	05/19/14 10:51	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L	05/19/14 10:51	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 10:51	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 10:51	1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	05/19/14 10:51	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L	05/19/14 10:51	1
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L	05/19/14 10:51	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 10:51	1
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L	05/19/14 10:51	1
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 10:51	1
Surrogate	%Recovery Qu	ialifiar	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		70 - 120		05/19/14 10:51	1
4-Bromofluorobenzene (Surr)	94		75 - 120		05/19/14 10:51	1
Toluene-d8 (Surr)	104		85 - 120		05/19/14 10:51	1
Dibromofluoromethane (Surr)	90		85 - 115		05/19/14 10:51	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

Client Sample ID: FWGLL1MW-088-0437-GW

Lab Sample ID: 240-37114-2 Date Collected: 05/08/14 10:29 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 11:16	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 11:16	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	05/19/14 11:16	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	05/19/14 11:16	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	05/19/14 11:16	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 11:16	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	05/19/14 11:16	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 11:16	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	05/19/14 11:16	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 11:16	1
Acetone	1.1	U	10	1.1	1.1	ug/L	05/19/14 11:16	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 11:16	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	05/19/14 11:16	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	05/19/14 11:16	1
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 11:16	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 11:16	1
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	05/19/14 11:16	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 11:16	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	05/19/14 11:16	1
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	05/19/14 11:16	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L	05/19/14 11:16	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	05/19/14 11:16	1
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L	05/19/14 11:16	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	05/19/14 11:16	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L	05/19/14 11:16	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	05/19/14 11:16	1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	05/19/14 11:16	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	05/19/14 11:16	1
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L	05/19/14 11:16	1
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	05/19/14 11:16	1
Styrene	0.25	U	1.0	0.25	0.11	ug/L	05/19/14 11:16	1
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 11:16	1
Toluene	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 11:16	1
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	05/19/14 11:16	1
trans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	ug/L	05/19/14 11:16	1
Trichloroethene	0.25	U	1.0	0.25	0.17	ug/L	05/19/14 11:16	1
Vinyl chloride	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 11:16	1
Xylenes, Total	0.25	U	2.0	0.25	0.14	ug/L	05/19/14 11:16	1
Dibromochloromethane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 11:16	1
Surrogate	%Recovery Qu	ialifiar	Limits			Prepared	Analvzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 120	_		05/19/14 11:16	1
4-Bromofluorobenzene (Surr)	98		75 - 120			05/19/14 11:16	1
Toluene-d8 (Surr)	103		85 - 120			05/19/14 11:16	1
Dibromofluoromethane (Surr)	93		85 - 115			05/19/14 11:16	1

Mathadi 00700	Comissolatile	Ormania Com	marinala i	COMMON
Method: 8270C -	Seminoname	Organic Com	poulius	GC/IVIS)

monious ozivo commonante organie	o o i i i po a i i a i	(00/1110)							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.10	U	0.20	0.10	0.045	ug/L		05/30/14 10:08	1
Acenaphthylene	0.10	U	0.20	0.10	0.049	ug/L		05/30/14 10:08	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL1MW-088-0437-GW Lab Sample ID: 240-37114-2

Date Collected: 05/08/14 10:29

Date Received: 05/08/14 14:50

Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Anthracene	0.10	U	0.20	0.10	0.089	ug/L		05/30/14 10:08	
Benzo[a]anthracene	0.10	U	0.20	0.10	0.030	ug/L		05/30/14 10:08	
Benzo[a]pyrene	0.10	U	0.20	0.10	0.052	ug/L		05/30/14 10:08	
Benzo[b]fluoranthene	0.10	U	0.20	0.10	0.040	ug/L		05/30/14 10:08	
Benzo[g,h,i]perylene	0.10	U	0.20	0.10	0.047	ug/L		05/30/14 10:08	
Benzoic acid	20	U	25	20	10	ug/L		05/30/14 10:08	
Benzo[k]fluoranthene	0.10	U	0.20	0.10	0.045	ug/L		05/30/14 10:08	
Benzyl alcohol	0.51	U	5.1	0.51	0.38	ug/L		05/30/14 10:08	
Bis(2-chloroethoxy)methane	0.51	U	1.0	0.51		ug/L		05/30/14 10:08	
Bis(2-chloroethyl)ether	0.10	U	1.0	0.10		ug/L		05/30/14 10:08	
Bis(2-ethylhexyl) phthalate	5.1	U	5.1	5.1		ug/L		05/30/14 10:08	
4-Bromophenyl phenyl ether	0.51	U	2.0	0.51	0.22	-		05/30/14 10:08	
Butyl benzyl phthalate	0.51	U	5.1	0.51		ug/L		05/30/14 10:08	
Carbazole	0.51	U	1.0	0.51	0.28			05/30/14 10:08	
4-Chloroaniline	0.51	U	2.0	0.51	0.21			05/30/14 10:08	
4-Chloro-3-methylphenol	0.51	U	2.0	0.51		ug/L		05/30/14 10:08	
2-Chloronaphthalene	0.51		1.0	0.51	0.10			05/30/14 10:08	
2-Chlorophenol	0.51		1.0	0.51	0.29	ug/L		05/30/14 10:08	
4-Chlorophenyl phenyl ether	0.51		2.0	0.51	0.30	ug/L		05/30/14 10:08	
Chrysene	0.10		0.20	0.10	0.051			05/30/14 10:08	
Dibenz(a,h)anthracene	0.10		0.20	0.10	0.045	ug/L		05/30/14 10:08	
Dibenzofuran	0.10		1.0	0.10	0.020	ug/L		05/30/14 10:08	
1,2-Dichlorobenzene	0.51		1.0	0.51	0.29	ug/L		05/30/14 10:08	
1,3-Dichlorobenzene	0.51		1.0	0.51	0.23	ug/L		05/30/14 10:08	
1,4-Dichlorobenzene	0.51		1.0	0.51	0.34	-		05/30/14 10:08	
3.3'-Dichlorobenzidine	1.0	U	5.1	1.0	0.37			05/30/14 10:08	
2,4-Dichlorophenol	0.51		2.0	0.51	0.19	ug/L		05/30/14 10:08	
Diethyl phthalate	1.0		2.0	1.0		ug/L		05/30/14 10:08	
2,4-Dimethylphenol	0.51		2.0	0.51	0.25			05/30/14 10:08	
Dimethyl phthalate	0.51		2.0	0.51	0.29			05/30/14 10:08	
Di-n-butyl phthalate	5.1	U	5.1	5.1		ug/L		05/30/14 10:08	
4,6-Dinitro-2-methylphenol	4.0		5.1	4.0		ug/L		05/30/14 10:08	
2,4-Dinitrophenol	1.0		5.1	1.0	0.32			05/30/14 10:08	
Di-n-octyl phthalate	0.51		2.0	0.51		ug/L		05/30/14 10:08	
Fluoranthene	0.10		0.20	0.10	0.045			05/30/14 10:08	
Fluorene	0.10		0.20	0.10	0.043			05/30/14 10:08	
Hexachlorobenzene	0.10		0.20	0.10	0.086	-		05/30/14 10:08	
Hexachlorobutadiene	0.10		1.0	0.10	0.030			05/30/14 10:08	
	0.51		10	0.51					
Hexachlorocyclopentadiene Hexachloroethane	0.51		1.0	0.51		ug/L		05/30/14 10:08 05/30/14 10:08	
			0.20	0.10		ug/L		05/30/14 10:08	
ndeno[1,2,3-cd]pyrene	0.10				0.044	-			
sophorone 2 Methylpophthalone	0.51		1.0	0.51		ug/L		05/30/14 10:08	
2-Methylnaphthalene	0.10		0.20	0.10	0.091			05/30/14 10:08	
2-Methylphenol	0.51		1.0	0.51	0.17			05/30/14 10:08	
3 & 4 Methylphenol	1.0		2.0	1.0		ug/L		05/30/14 10:08	
Naphthalene	0.15		0.20	0.10	0.063			05/30/14 10:08	
2-Nitroaniline	0.51		2.0	0.51		ug/L		05/30/14 10:08	
3-Nitroaniline 4-Nitroaniline	0.51 0.51		2.0	0.51 0.51		ug/L ug/L		05/30/14 10:08 05/30/14 10:08	

TestAmerica Canton

TestAmerica Job ID: 240-37114-1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL1MW-088-0437-GW

Lab Sample ID: 240-37114-2 Date Collected: 05/08/14 10:29 Matrix: Water

Date Received: 05/08/14 14:50

Method: 8270C - Semivolatile Analyte		Qualifier	LOQ	LOD	DL	Unit [) Analyzed	Dil Fac
2-Nitrophenol	0.51	U	2.0	0.51	0.28	ug/L	05/30/14 10:08	1
4-Nitrophenol	4.0	U	5.1	4.0	0.29	ug/L	05/30/14 10:08	1
N-Nitrosodi-n-propylamine	0.51	U	1.0	0.51	0.24	ug/L	05/30/14 10:08	1
N-Nitrosodiphenylamine	0.51	U	1.0	0.51	0.31	ug/L	05/30/14 10:08	1
2,2'-oxybis[1-chloropropane]	0.51	U	1.0	0.51	0.40	ug/L	05/30/14 10:08	1
Pentachlorophenol	1.0	U	5.1	1.0	0.27	ug/L	05/30/14 10:08	1
Phenanthrene	0.10	J	0.20	0.10	0.063	ug/L	05/30/14 10:08	1
Phenol	1.0	U	1.0	1.0	0.61	ug/L	05/30/14 10:08	1
Pyrene	0.10	J	0.20	0.10	0.042	ug/L	05/30/14 10:08	1
1,2,4-Trichlorobenzene	0.51	U	1.0	0.51	0.28	ug/L	05/30/14 10:08	1
2,4,5-Trichlorophenol	0.51	U	5.1	0.51	0.30	ug/L	05/30/14 10:08	1
2,4,6-Trichlorophenol	0.51	U	5.1	0.51	0.24	ug/L	05/30/14 10:08	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	72		50 - 110			05/12/14 07:34	05/30/14 10:08	1
2-Fluorophenol (Surr)	75		20 - 110			05/12/14 07:34	05/30/14 10:08	1
Nitrobenzene-d5 (Surr)	73		40 - 110			05/12/14 07:34	05/30/14 10:08	1
Phenol-d5 (Surr)	78		10 - 115			05/12/14 07:34	05/30/14 10:08	1
Terphenyl-d14 (Surr)	86		50 - 135			05/12/14 07:34	05/30/14 10:08	1
2,4,6-Tribromophenol (Surr)	89		40 - 125			05/12/14 07:34	05/30/14 10:08	1
Method: 8081A - Organochlor	rine Pesticides (GC)							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit I	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L	05/16/14 15:08	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L		05/16/14 15:08	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		05/16/14 15:08	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		05/16/14 15:08	1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		05/16/14 15:08	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		05/16/14 15:08	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		05/16/14 15:08	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L		05/16/14 15:08	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		05/16/14 15:08	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		05/16/14 15:08	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		05/16/14 15:08	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		05/16/14 15:08	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		05/16/14 15:08	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		05/16/14 15:08	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		05/16/14 15:08	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		05/16/14 15:08	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		05/16/14 15:08	1
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		05/16/14 15:08	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		05/16/14 15:08	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		05/16/14 15:08	
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		05/16/14 15:08	1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		05/16/14 15:08	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	21	Q	30 - 135	05/10/14 10:23	05/16/14 15:08	1
DCB Decachlorobiphenyl	21	Q	30 - 135	05/10/14 10:23	05/16/14 15:08	1
Tetrachloro-m-xylene	81		25 - 140	05/10/14 10:23	05/16/14 15:08	1
Tetrachloro-m-xylene	80		25 - 140	05/10/14 10:23	05/16/14 15:08	1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL1MW-088-0437-GW

Lab Sample ID: 240-37114-2 Date Collected: 05/08/14 10:29 Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aroclor-1016	0.19	U	0.48	0.19	0.16	ug/L		05/13/14 14:33	
Aroclor-1221	0.19	U	0.48	0.19	0.12	ug/L		05/13/14 14:33	
Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L		05/13/14 14:33	
Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L		05/13/14 14:33	
Aroclor-1248	0.19	U	0.48	0.19	0.095	ug/L		05/13/14 14:33	
Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L		05/13/14 14:33	
Aroclor-1260	0.19	U	0.48	0.19	0.16	ug/L		05/13/14 14:33	
Surrogate	%Recovery Qu	ualifier	Limits			Prepar	ed	Analyzed	Dil Fa
Tetrachloro-m-xylene	92		40 - 140			05/10/14	10:20	05/13/14 14:33	
Tetrachloro-m-xylene	99		40 - 140			05/10/14	10:20	05/13/14 14:33	
DCB Decachlorobiphenyl	21 Q		40 _ 135			05/10/14	10:20	05/13/14 14:33	
DCB Decachlorobiphenyl	21 Q		40 - 135			05/10/14	10:20	05/13/14 14:33	
Method: 8330 Modified - Nitro	oquanidine (HPLC)								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		05/13/14 15:05	
Method: 8330A - Nitroaromat	ics and Nitramines								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
1,3,5-Trinitrobenzene	0.053	U	0.16	0.053	0.033	ug/L		05/19/14 22:47	
1,3-Dinitrobenzene	0.11	U	0.16	0.11	0.053	-		05/19/14 22:47	
2,4,6-Trinitrotoluene	0.11	UM	0.16	0.11	0.053	ug/L		05/19/14 22:47	
2,4-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		05/19/14 22:47	
2,6-Dinitrotoluene	0.11	U	0.14	0.11	0.053	ug/L		05/19/14 22:47	
2-Amino-4,6-dinitrotoluene	0.11	U	0.16	0.11	0.016	ug/L		05/19/14 22:47	
2-Nitrotoluene	0.11	UM	0.53	0.11	0.094	ug/L		05/19/14 22:47	
3-Nitrotoluene	0.11	U	0.53	0.11	0.061	ug/L		05/19/14 22:47	
4-Nitrotoluene	0.11	U	0.53	0.11	0.094	ug/L		05/19/14 22:47	
4-Amino-2,6-dinitrotoluene	0.11	U	0.16	0.11	0.053	ug/L		05/19/14 22:47	
HMX	0.053	UM	0.16	0.053	0.038	ug/L		05/19/14 22:47	
RDX	0.053	UM	0.16	0.053	0.038	ug/L		05/19/14 22:47	
Nitrobenzene	0.11	UM	0.16	0.11	0.053	ug/L		05/19/14 22:47	
Tetryl	0.11	UM	0.16	0.11	0.053	ug/L		05/19/14 22:47	
Nitroglycerin	0.53	U	0.69	0.53		ug/L		05/19/14 22:47	
PETN	0.53	U	0.69	0.53	0.32			05/19/14 22:47	
Surrogate	%Recovery Qu	ualifier	Limits			Prepar	ed	Analyzed	Dil Fa
3,4-Dinitrotoluene	100		79 - 111			05/12/14		05/17/14 07:08	
3,4-Dinitrotoluene	95 M		79 - 111			05/12/14	14:49	05/19/14 22:47	
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
•									
Cyanide, Total	0.0050	U	0.010	0.0050	0.0032	mg/L		05/20/14 10:30	

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL1MW-088-0437-GF

Lab Sample ID: 240-37114-3 Date Collected: 05/08/14 10:29 Matrix: Water

Date Received: 05/08/14 14:50

Hg

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	18		10	10	3.3	ug/L		05/15/14 09:56	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		05/15/14 09:56	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		05/15/14 09:56	1
Lead	2.0	J	10	5.0	1.7	ug/L		05/15/14 09:56	1
Selenium	10	U	15	10	4.0	ug/L		05/15/14 09:56	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		05/15/14 09:56	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		05/15/14 09:56	1
Barium	44	J	200	5.0	2.8	ug/L		05/15/14 09:56	1
Calcium	84000		5000	1000	630	ug/L		05/15/14 09:56	1
Copper	10	U	25	10	4.4	ug/L		05/15/14 09:56	1
Magnesium	39000		5000	300	120	ug/L		05/15/14 09:56	1
Manganese	86		15	5.0	1.8	ug/L		05/15/14 09:56	1
Nickel	5.0	U	40	5.0	2.2	ug/L		05/15/14 09:56	1
Potassium	3400	J	5000	900	300	ug/L		05/15/14 09:56	1
Method: 6020 - Metals (ICP/MS) - Total	Recoverable	le							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		05/21/14 14:26	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		05/21/14 14:26	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		05/21/14 14:26	
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		05/21/14 14:26	1
Iron	550		150	100	44	ug/L		05/21/14 14:26	1
Sodium	24000		1000	400	160	ug/L		05/21/14 14:26	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		05/21/14 14:26	1
Zinc	50	U	50	50	27	ug/L		05/21/14 14:26	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa

0.20

0.20

0.12 ug/L

0.20 U

05/15/14 15:05

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

Client Sample ID: FWGEQUIPRINSE2-0444-GW

Lab Sample ID: 240-37114-4 Date Collected: 05/08/14 13:00 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	L	oq	LOD	DL	Unit I	O Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U		1.0	0.25	0.22	ug/L	05/19/14 12:02	
1,1,2,2-Tetrachloroethane	0.25	U		1.0	0.25	0.18	ug/L	05/19/14 12:02	
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.27	ug/L	05/19/14 12:02	
1,1-Dichloroethane	0.25	U		1.0	0.25	0.15	ug/L	05/19/14 12:02	1
1,1-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	05/19/14 12:02	1
1,2-Dichloroethane	0.25	U		1.0	0.25	0.22	ug/L	05/19/14 12:02	1
1,2-Dichloroethene, Total	0.25	U		2.0	0.25	0.17	ug/L	05/19/14 12:02	1
1,2-Dichloropropane	0.25	U		1.0	0.25	0.18	ug/L	05/19/14 12:02	1
2-Hexanone	0.50	U		10	0.50	0.41	ug/L	05/19/14 12:02	1
Bromochloromethane	0.50	U		1.0	0.50	0.29	ug/L	05/19/14 12:02	1
Acetone	14			10	1.1	1.1	ug/L	05/19/14 12:02	1
Benzene	0.25	U		1.0	0.25	0.13	ug/L	05/19/14 12:02	1
Bromoform	0.64	U		1.0	0.64	0.64	ug/L	05/19/14 12:02	1
Bromomethane	0.50	U		1.0	0.50	0.41	ug/L	05/19/14 12:02	1
Carbon disulfide	0.69	J M		1.0	0.25	0.13	ug/L	05/19/14 12:02	1
Carbon tetrachloride	0.25	U		1.0	0.25	0.13	ug/L	05/19/14 12:02	1
Chlorobenzene	0.25	U		1.0	0.25	0.15	ug/L	05/19/14 12:02	1
Chloroethane	0.50	U		1.0	0.50	0.29	ug/L	05/19/14 12:02	
Chloroform	0.25	U		1.0	0.25	0.16	ug/L	05/19/14 12:02	1
Chloromethane	0.50	U		1.0	0.50	0.30	ug/L	05/19/14 12:02	1
cis-1,2-Dichloroethene	0.25	U		1.0	0.25	0.17	ug/L	05/19/14 12:02	1
cis-1,3-Dichloropropene	0.25	U		1.0	0.25	0.14	ug/L	05/19/14 12:02	1
Bromodichloromethane	0.25	U		1.0	0.25	0.15	ug/L	05/19/14 12:02	1
Ethylbenzene	0.25	U		1.0	0.25	0.17	ug/L	05/19/14 12:02	
1,2-Dibromoethane	0.25	U		1.0	0.25	0.24	ug/L	05/19/14 12:02	
m-Xylene & p-Xylene	0.50	U		2.0	0.50	0.24	ug/L	05/19/14 12:02	1
2-Butanone (MEK)	3.6	J		10	0.57	0.57	ug/L	05/19/14 12:02	1
4-Methyl-2-pentanone (MIBK)	0.50	U		10	0.50	0.32	ug/L	05/19/14 12:02	1
Methylene Chloride	0.50	U		1.0	0.50	0.33	ug/L	05/19/14 12:02	
o-Xylene	0.25	U		1.0	0.25	0.14	ug/L	05/19/14 12:02	1
Styrene	0.25	U		1.0	0.25	0.11	ug/L	05/19/14 12:02	1
Tetrachloroethene	0.50	U		1.0	0.50	0.29	ug/L	05/19/14 12:02	1
Toluene	0.22	J		1.0	0.25	0.13		05/19/14 12:02	4
trans-1,2-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	05/19/14 12:02	1
trans-1,3-Dichloropropene	0.25	U		1.0	0.25		ug/L	05/19/14 12:02	1
Trichloroethene	0.25	U		1.0	0.25	0.17	ug/L	05/19/14 12:02	1
Vinyl chloride	0.25	U		1.0	0.25		ug/L	05/19/14 12:02	
Xylenes, Total	0.25			2.0	0.25	0.14	ug/L	05/19/14 12:02	-
Dibromochloromethane	0.25			1.0	0.25	0.18	ug/L	05/19/14 12:02	•
Surrogate	%Recovery Qu	ualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	87		70 - 120					05/19/14 12:02	
4-Bromofluorobenzene (Surr)	92		75 120					05/19/14 12:02	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		70 - 120	_		05/19/14 12:02	1
4-Bromofluorobenzene (Surr)	92		75 - 120			05/19/14 12:02	1
Toluene-d8 (Surr)	99		85 - 120			05/19/14 12:02	1
Dibromofluoromethane (Surr)	90		85 - 115			05/19/14 12:02	1

Method: 827	70C - Semivolatil	e Organic Com	pounds (GC/MS)
MICHIOU. 02	100 - Schilly Glatif	e Organic Com	poullus (GC/IVIS)

Analyte	Result Qu	ualifier LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095 U	0.19	0.095	0.042	ug/L		05/30/14 10:33	1
Acenaphthylene	0.095 U	0.19	0.095	0.046	ug/L		05/30/14 10:33	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGEQUIPRINSE2-0444-GW

Lab Sample ID: 240-37114-4 Date Collected: 05/08/14 13:00 Matrix: Water

Date Received: 05/08/14 14:50

Method: 8270C - Semivolatile Org	Result	Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil F
nthracene	0.095	U	0.19	0.095	0.084	ug/L		05/30/14 10:33	
Senzo[a]anthracene	0.095	U	0.19	0.095	0.028	ug/L		05/30/14 10:33	
Benzo[a]pyrene	0.095	U	0.19	0.095	0.049	ug/L		05/30/14 10:33	
senzo[b]fluoranthene	0.095	U	0.19	0.095	0.038	ug/L		05/30/14 10:33	
enzo[g,h,i]perylene	0.095	U	0.19	0.095	0.044	ug/L		05/30/14 10:33	
senzoic acid	19	U	24	19	9.5	ug/L		05/30/14 10:33	
enzo[k]fluoranthene	0.095	U	0.19	0.095	0.043	ug/L		05/30/14 10:33	
enzyl alcohol	0.48	U	4.8	0.48	0.36	ug/L		05/30/14 10:33	
sis(2-chloroethoxy)methane	0.48	U	0.95	0.48	0.30	ug/L		05/30/14 10:33	
sis(2-chloroethyl)ether	0.095	U	0.95	0.095	0.095	ug/L		05/30/14 10:33	
sis(2-ethylhexyl) phthalate	4.8	U	4.8	4.8	1.6	ug/L		05/30/14 10:33	
-Bromophenyl phenyl ether	0.48	U	1.9	0.48	0.21	ug/L		05/30/14 10:33	
Butyl benzyl phthalate	0.48	U	4.8	0.48	0.25	ug/L		05/30/14 10:33	
Carbazole	0.48	U	0.95	0.48	0.27	ug/L		05/30/14 10:33	
-Chloroaniline	0.48	U	1.9	0.48	0.20	ug/L		05/30/14 10:33	
-Chloro-3-methylphenol	0.48	U	1.9	0.48	0.20	ug/L		05/30/14 10:33	
-Chloronaphthalene	0.48	U	0.95	0.48	0.095	ug/L		05/30/14 10:33	
-Chlorophenol	0.48	U	0.95	0.48	0.28	ug/L		05/30/14 10:33	
-Chlorophenyl phenyl ether	0.48	U	1.9	0.48	0.29	ug/L		05/30/14 10:33	
Chrysene	0.095	U	0.19	0.095	0.048			05/30/14 10:33	
Dibenz(a,h)anthracene	0.095		0.19	0.095	0.042			05/30/14 10:33	
Dibenzofuran	0.095		0.95	0.095	0.019			05/30/14 10:33	
,2-Dichlorobenzene	0.48		0.95	0.48		ug/L		05/30/14 10:33	
,3-Dichlorobenzene	0.48		0.95	0.48		ug/L		05/30/14 10:33	
,4-Dichlorobenzene	0.48		0.95	0.48		ug/L		05/30/14 10:33	
,3'-Dichlorobenzidine	0.95		4.8	0.95		ug/L		05/30/14 10:33	
,4-Dichlorophenol	0.48		1.9	0.48		ug/L		05/30/14 10:33	
Diethyl phthalate	2.7	0	1.9	0.95		ug/L		05/30/14 10:33	
,4-Dimethylphenol	0.48		1.9	0.48		ug/L		05/30/14 10:33	
Dimethyl phthalate	0.48		1.9	0.48		ug/L		05/30/14 10:33	
Di-n-butyl phthalate			4.8	4.8		ug/L		05/30/14 10:33	
,6-Dinitro-2-methylphenol		U	4.8	3.8		ug/L		05/30/14 10:33	
• •	0.95		4.8	0.95		ug/L		05/30/14 10:33	
,4-Dinitrophenol						-			
i-n-octyl phthalate	0.48		1.9	0.48		ug/L		05/30/14 10:33	
luoranthene	0.095		0.19	0.095	0.042	_		05/30/14 10:33	
luorene	0.095		0.19	0.095	0.039			05/30/14 10:33	
lexachlorobenzene	0.095		0.19	0.095	0.081			05/30/14 10:33	
lexachlorobutadiene	0.48		0.95	0.48		ug/L		05/30/14 10:33	
lexachlorocyclopentadiene	0.48		9.5	0.48		ug/L		05/30/14 10:33	
lexachloroethane	0.48		0.95	0.48		ug/L		05/30/14 10:33	
ndeno[1,2,3-cd]pyrene	0.095		0.19	0.095	0.041	-		05/30/14 10:33	
sophorone	0.48		0.95	0.48		ug/L		05/30/14 10:33	
-Methylnaphthalene	0.095		0.19	0.095	0.086			05/30/14 10:33	
-Methylphenol	0.48		0.95	0.48		ug/L		05/30/14 10:33	
& 4 Methylphenol	0.95	U	1.9	0.95	0.76	ug/L		05/30/14 10:33	
laphthalene	0.14	J	0.19	0.095	0.060	ug/L		05/30/14 10:33	
-Nitroaniline	0.48	U	1.9	0.48	0.20	ug/L		05/30/14 10:33	
-Nitroaniline	0.48	U	1.9	0.48	0.27	ug/L		05/30/14 10:33	

TestAmerica Canton

TestAmerica Job ID: 240-37114-1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGEQUIPRINSE2-0444-GW

Lab Sample ID: 240-37114-4 Date Collected: 05/08/14 13:00 Matrix: Water

Date Received: 05/08/14 14:50								
Method: 8270C - Semivolatile			-					
Analyte		Qualifier	LOQ	LOD		Unit D	,	Dil Fac
2-Nitrophenol	0.48	U	1.9	0.48	0.27	ug/L	05/30/14 10:33	1
4-Nitrophenol	3.8	U	4.8	3.8	0.28	ug/L	05/30/14 10:33	1
N-Nitrosodi-n-propylamine	0.48	U	0.95	0.48	0.23	ug/L	05/30/14 10:33	1
N-Nitrosodiphenylamine	0.48	U	0.95	0.48	0.30	ug/L	05/30/14 10:33	1
2,2'-oxybis[1-chloropropane]	0.48	U	0.95	0.48	0.38	ug/L	05/30/14 10:33	1
Pentachlorophenol	0.95	U	4.8	0.95	0.26	ug/L	05/30/14 10:33	1
Phenanthrene	0.095	U	0.19	0.095	0.059	ug/L	05/30/14 10:33	1
Phenol	0.73	J	0.95	0.95	0.57	ug/L	05/30/14 10:33	1
Pyrene	0.095	U	0.19	0.095	0.040	ug/L	05/30/14 10:33	1
1,2,4-Trichlorobenzene	0.48	U	0.95	0.48	0.27	ug/L	05/30/14 10:33	1
2,4,5-Trichlorophenol	0.48	U	4.8	0.48	0.29	ug/L	05/30/14 10:33	1
2,4,6-Trichlorophenol	0.48	U	4.8	0.48	0.23	ug/L	05/30/14 10:33	1
Surrogate	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	71		50 - 110			05/12/14 07:34	05/30/14 10:33	1
2-Fluorophenol (Surr)	75		20 - 110			05/12/14 07:34	05/30/14 10:33	1
Nitrobenzene-d5 (Surr)	72		40 - 110			05/12/14 07:34	05/30/14 10:33	1
Phenol-d5 (Surr)	75		10 - 115			05/12/14 07:34	05/30/14 10:33	1
Terphenyl-d14 (Surr)	93		50 - 135			05/12/14 07:34	05/30/14 10:33	1
2,4,6-Tribromophenol (Surr)	77		40 - 125			05/12/14 07:34	05/30/14 10:33	1
_ Method: 8081A - Organochlor	rine Pesticides (GC)							
Analyte		Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0092	ug/L	05/16/14 15:30	1
4,4'-DDE	0.019	U	0.048	0.019	0.0093	ug/L	05/16/14 15:30	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L	05/16/14 15:30	1
Aldrin	0.010		0.020	0.010	0.0070		05/16/14 15:30	1

Method: 8081A - Organochlorine Pesticides (GC)								
Analyte R	esult	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD (.019	U	0.048	0.019	0.0092	ug/L		05/16/14 15:30	1
4,4'-DDE	.019	U	0.048	0.019	0.0093	ug/L		05/16/14 15:30	1
4,4'-DDT	.019	U	0.048	0.019	0.015	ug/L		05/16/14 15:30	1
Aldrin (.019	U	0.029	0.019	0.0079	ug/L		05/16/14 15:30	1
alpha-BHC (0.019	U	0.029	0.019	0.0067	ug/L		05/16/14 15:30	1
alpha-Chlordane (0.019	U	0.048	0.019	0.013	ug/L		05/16/14 15:30	1
beta-BHC (.019	U	0.048	0.019	0.0081	ug/L		05/16/14 15:30	1
delta-BHC (0.019	U	0.048	0.019	0.0084	ug/L		05/16/14 15:30	1
Dieldrin	0.019	U	0.029	0.019	0.0072	ug/L		05/16/14 15:30	1
Endosulfan I	0.019	U	0.048	0.019	0.013	ug/L		05/16/14 15:30	1
Endosulfan II	0.019	U	0.048	0.019	0.012	ug/L		05/16/14 15:30	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.011	ug/L		05/16/14 15:30	1
Endrin (0.019	U	0.048	0.019	0.011	ug/L		05/16/14 15:30	1
Endrin aldehyde	0.019	U	0.048	0.019	0.011	ug/L		05/16/14 15:30	1
Endrin ketone	0.019	U	0.048	0.019	0.0075	ug/L		05/16/14 15:30	1
gamma-BHC (Lindane)	.019	U	0.048	0.019	0.0062	ug/L		05/16/14 15:30	1
gamma-Chlordane (0.019	U	0.048	0.019	0.012	ug/L		05/16/14 15:30	1
Heptachlor (0.019	U	0.029	0.019	0.0077	ug/L		05/16/14 15:30	1
Heptachlor epoxide	.019	U	0.029	0.019	0.0068	ug/L		05/16/14 15:30	1
Methoxychlor (.048	U	0.096	0.048	0.031	ug/L		05/16/14 15:30	1
Toxaphene	0.77	U	1.9	0.77	0.31	ug/L		05/16/14 15:30	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	84	30 - 135	05/10/14 10:23	05/16/14 15:30	1
DCB Decachlorobiphenyl	77	30 - 135	05/10/14 10:23	05/16/14 15:30	1
Tetrachloro-m-xylene	84	25 - 140	05/10/14 10:23	05/16/14 15:30	1
Tetrachloro-m-xylene	80	25 - 140	05/10/14 10:23	05/16/14 15:30	1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGEQUIPRINSE2-0444-GW

Lab Sample ID: 240-37114-4 Date Collected: 05/08/14 13:00 Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Calcium	1000	U	5000	1000	630	ug/L		05/15/14 10:08	1
Copper	10	U	25	10	4.4	ug/L		05/15/14 10:08	1
Magnesium	300	U	5000	300	120	ug/L		05/15/14 10:08	1
Manganese	5.0	U	15	5.0	1.8	ug/L		05/15/14 10:08	1
Nickel	5.0	U	40	5.0	2.2	ug/L		05/15/14 10:08	1
Potassium	900	U	5000	900	300	ug/L		05/15/14 10:08	1
Method: 6020 - Metals (ICP/MS) - Total	Recoverab	le							
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		05/21/14 14:33	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		05/21/14 14:33	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		05/21/14 14:33	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		05/21/14 14:33	1
Iron	100	U	150	100	44	ug/L		05/21/14 14:33	1
Sodium	400	U	1000	400	160	ug/L		05/21/14 14:33	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		05/21/14 14:33	1
Zinc	50	U	50	50	27	ug/L		05/21/14 14:33	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.12	ug/L		05/15/14 15:07	1
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.0050	U	0.010	0.0050	0.0032	mg/L		05/20/14 10:30	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		05/15/14 16:39	1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGEQUIPRINSE2-0444-GW

Lab Sample ID: 240-37114-4 Date Collected: 05/08/14 13:00 Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Calcium	1000	U	5000	1000	630	ug/L		05/15/14 10:08	1
Copper	10	U	25	10	4.4	ug/L		05/15/14 10:08	1
Magnesium	300	U	5000	300	120	ug/L		05/15/14 10:08	1
Manganese	5.0	U	15	5.0	1.8	ug/L		05/15/14 10:08	1
Nickel	5.0	U	40	5.0	2.2	ug/L		05/15/14 10:08	1
Potassium	900	U	5000	900	300	ug/L		05/15/14 10:08	1
Method: 6020 - Metals (ICP/MS) - Total	Recoverab	le							
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		05/21/14 14:33	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		05/21/14 14:33	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		05/21/14 14:33	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		05/21/14 14:33	1
Iron	100	U	150	100	44	ug/L		05/21/14 14:33	1
Sodium	400	U	1000	400	160	ug/L		05/21/14 14:33	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		05/21/14 14:33	1
Zinc	50	U	50	50	27	ug/L		05/21/14 14:33	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.12	ug/L		05/15/14 15:07	1
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.0050	U	0.010	0.0050	0.0032	mg/L		05/20/14 10:30	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		05/15/14 16:39	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Dibromochloromethane

Trichloroethene

Vinyl chloride

Xvlenes, Total

Matrix: Water

TestAmerica Job ID: 240-37114-1

Lab Sample ID: 240-37114-5

Client Sample ID: FWGTEAM3-TRIP

Date Collected: 05/07/14 07:30 Date Received: 05/08/14 14:50

Method: 8260B - Volatile Organic Compounds (GC/MS) Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac 0.25 1,1,1-Trichloroethane 0.25 U 1.0 0.22 ug/L 05/19/14 13:34 1,1,2,2-Tetrachloroethane 0.25 U 1.0 0.25 0.18 ug/L 05/19/14 13:34 1,1,2-Trichloroethane 0.50 U 1.0 0.50 0.27 ug/L 05/19/14 13:34 1 1,1-Dichloroethane 0.25 U 1.0 0.25 0.15 ug/L 05/19/14 13:34 1,1-Dichloroethene 0.25 U 1.0 0.25 0.19 ug/L 05/19/14 13:34 1.2-Dichloroethane 0.25 05/19/14 13:34 0.25 U 1.0 0.22 ug/L 1,2-Dichloroethene, Total 0.25 U 2.0 0.25 05/19/14 13:34 ug/L 0.25 1,2-Dichloropropane 0.25 U 1.0 05/19/14 13:34 1 0.18 ug/L 2-Hexanone 0.50 U 10 0.50 0.41 ug/L 05/19/14 13:34 Bromochloromethane 0.50 U 1.0 0.50 0.29 ug/L 05/19/14 13:34 Acetone 1.1 U 10 1.1 1.1 ug/L 05/19/14 13:34 Benzene 0.25 U 1.0 0.25 0.13 ug/L 05/19/14 13:34 0.64 U 0.64 Bromoform 1.0 0.64 ug/L 05/19/14 13:34 Bromomethane 0.50 U 1.0 0.50 0.41 05/19/14 13:34 ug/L Carbon disulfide 0.25 0.25 U 1.0 0.13 ug/L 05/19/14 13:34 Carbon tetrachloride 0.25 U 1.0 0.25 0.13 ug/L 05/19/14 13:34 Chlorobenzene 0.25 U 0.25 05/19/14 13:34 1.0 0.15 ug/L Chloroethane 0.50 05/19/14 13:34 0.50 U 1.0 0.29 ug/L 1.0 0.25 0.16 ug/L 05/19/14 13:34 Chloroform 0.29 J 0.50 U 0.50 05/19/14 13:34 Chloromethane 1.0 0.30 ug/L 0.25 cis-1,2-Dichloroethene 0.25 U 05/19/14 13:34 1.0 0.17 ug/L cis-1,3-Dichloropropene 0.25 U 1.0 0.25 ug/L 05/19/14 13:34 0.25 U 0.25 0.15 05/19/14 13:34 Bromodichloromethane 1.0 ug/L Ethylbenzene 0.25 U 1.0 0.25 0.17 ug/L 05/19/14 13:34 1,2-Dibromoethane 0.25 U 1.0 0.25 05/19/14 13:34 0.24 ug/L m-Xylene & p-Xylene 0.50 U 2.0 0.50 0.24 ug/L 05/19/14 13:34 2-Butanone (MEK) 0.57 U 10 0.57 0.57 ug/L 05/19/14 13:34 0.50 U 4-Methyl-2-pentanone (MIBK) 10 0.50 0.32 05/19/14 13:34 ug/L 0.50 U 0.50 05/19/14 13:34 Methylene Chloride 1.0 0.33 ug/L 0.25 U 0.25 o-Xylene 1.0 0.14 ug/L 05/19/14 13:34 Styrene 0.25 U 1.0 0.25 0.11 ug/L 05/19/14 13:34 0.50 Tetrachloroethene 0.50 U 1.0 0.29 ug/L 05/19/14 13:34 0.25 U 1.0 0.25 0.13 ug/L 05/19/14 13:34

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	70 - 120		05/19/14 13:34	1
4-Bromofluorobenzene (Surr)	95	75 - 120		05/19/14 13:34	1
Toluene-d8 (Surr)	102	85 - 120		05/19/14 13:34	1
Dibromofluoromethane (Surr)	92	85 - 115		05/19/14 13:34	1

1.0

1.0

1.0

1.0

2.0

1.0

0.25

0.25

0.25

0.25

0.25

0.25

0.19

0.22 ug/L

0.14 ug/L

0.19 ug/L

0.17 ug/L

0.18 ug/L

ug/L

0.25 U

0.25 U

0.25 U

0.25 U

0.25 U

0.25 U

05/19/14 13:34

05/19/14 13:34

05/19/14 13:34

05/19/14 13:34

05/19/14 13:34

05/19/14 13:34

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

Client Sample ID: FWGLL3MW-246-0439-GW

Lab Sample ID: 240-37114-6 Date Collected: 05/07/14 09:43 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 13:57	
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 13:57	
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	05/19/14 13:57	
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	05/19/14 13:57	
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	05/19/14 13:57	
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 13:57	,
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	05/19/14 13:57	
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 13:57	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	05/19/14 13:57	•
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 13:57	
Acetone	1.1	U	10	1.1	1.1	ug/L	05/19/14 13:57	•
Benzene	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 13:57	•
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	05/19/14 13:57	
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	05/19/14 13:57	
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 13:57	
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 13:57	
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L	05/19/14 13:57	
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 13:57	
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	05/19/14 13:57	
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L	05/19/14 13:57	
sis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L	05/19/14 13:57	
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L	05/19/14 13:57	
Bromodichloromethane	0.25	U	1.0	0.25	0.15		05/19/14 13:57	
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L	05/19/14 13:57	
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L	05/19/14 13:57	
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L	05/19/14 13:57	
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L	05/19/14 13:57	1
4-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L	05/19/14 13:57	
Methylene Chloride	0.50	U	1.0	0.50	0.33		05/19/14 13:57	•
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L	05/19/14 13:57	•
Styrene	0.25	U	1.0	0.25	0.11		05/19/14 13:57	
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 13:57	
Toluene	0.25	U	1.0	0.25	0.13		05/19/14 13:57	
trans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19		05/19/14 13:57	,
rans-1,3-Dichloropropene	0.25	U	1.0	0.25	0.19	-	05/19/14 13:57	
Trichloroethene	0.25		1.0	0.25	0.17	_	05/19/14 13:57	
Vinyl chloride	0.25		1.0	0.25	0.22		05/19/14 13:57	
Xylenes, Total	0.25		2.0	0.25	0.14	-	05/19/14 13:57	
Dibromochloromethane	0.25		1.0	0.25	0.18	_	05/19/14 13:57	

Surrogate	%Recovery	Qualifier	Limits	Pre	pared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 120			05/19/14 13:57	1
4-Bromofluorobenzene (Surr)	96		75 - 120			05/19/14 13:57	1
Toluene-d8 (Surr)	105		85 - 120			05/19/14 13:57	1
Dibromofluoromethane (Surr)	94		85 - 115			05/19/14 13:57	1

Method: 827	70C - Semivolatil	e Organic Com	pounds (GC/MS)
MICHIOU. 02	100 - Schilly Glatif	e Organic Com	poullus (GC/IVIS)

meaned care comments or game	. compound	(00,)							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095	U	0.19	0.095	0.042	ug/L		05/30/14 10:58	1
Acenaphthylene	0.095	U	0.19	0.095	0.046	ug/L		05/30/14 10:58	1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL3MW-246-0439-GW

Lab Sample ID: 240-37114-6 Date Collected: 05/07/14 09:43 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil F
Anthracene	0.095	U	0.19	0.095	0.084	ug/L	05/30/14 10:58	
Benzo[a]anthracene	0.095	U	0.19	0.095	0.028	ug/L	05/30/14 10:58	
Benzo[a]pyrene	0.095	U	0.19	0.095	0.049	ug/L	05/30/14 10:58	
Benzo[b]fluoranthene	0.095	U	0.19	0.095	0.038	ug/L	05/30/14 10:58	
Benzo[g,h,i]perylene	0.095	U	0.19	0.095	0.044	ug/L	05/30/14 10:58	
Benzoic acid	19	U	24	19	9.5	ug/L	05/30/14 10:58	
Benzo[k]fluoranthene	0.095	U	0.19	0.095	0.043	ug/L	05/30/14 10:58	
Benzyl alcohol	0.48	U	4.8	0.48	0.36	ug/L	05/30/14 10:58	
Bis(2-chloroethoxy)methane	0.48	U	0.95	0.48	0.30	ug/L	05/30/14 10:58	
Bis(2-chloroethyl)ether	0.095	U	0.95	0.095	0.095	ug/L	05/30/14 10:58	
Bis(2-ethylhexyl) phthalate	4.8	U	4.8	4.8	1.6	ug/L	05/30/14 10:58	
4-Bromophenyl phenyl ether	0.48	U	1.9	0.48	0.21	ug/L	05/30/14 10:58	
Butyl benzyl phthalate	0.48	U	4.8	0.48	0.25	ug/L	05/30/14 10:58	
Carbazole	0.48	U	0.95	0.48	0.27	ug/L	05/30/14 10:58	
4-Chloroaniline	0.48	U	1.9	0.48	0.20	ug/L	05/30/14 10:58	
4-Chloro-3-methylphenol	0.48	U	1.9	0.48	0.20	ug/L	05/30/14 10:58	
2-Chloronaphthalene	0.48	U	0.95	0.48	0.095	ug/L	05/30/14 10:58	
2-Chlorophenol	0.48	U	0.95	0.48		ug/L	05/30/14 10:58	
4-Chlorophenyl phenyl ether	0.48	U	1.9	0.48		ug/L	05/30/14 10:58	
Chrysene	0.095	U	0.19	0.095	0.048		05/30/14 10:58	
Dibenz(a,h)anthracene	0.095		0.19	0.095	0.042	-	05/30/14 10:58	
Dibenzofuran	0.095		0.95	0.095	0.019	-	05/30/14 10:58	
1,2-Dichlorobenzene	0.48		0.95	0.48		ug/L	05/30/14 10:58	
1,3-Dichlorobenzene	0.48		0.95	0.48	0.22	ug/L	05/30/14 10:58	
1,4-Dichlorobenzene	0.48		0.95	0.48		ug/L	05/30/14 10:58	
3,3'-Dichlorobenzidine	0.95		4.8	0.95	0.35	ug/L	05/30/14 10:58	
2,4-Dichlorophenol	0.48		1.9	0.48	0.18	ug/L	05/30/14 10:58	
Diethyl phthalate	0.95		1.9	0.95	0.57	ug/L	05/30/14 10:58	
2,4-Dimethylphenol	0.48		1.9	0.48	0.24	ug/L	05/30/14 10:58	
Dimethyl phthalate	0.48		1.9	0.48	0.28	ug/L	05/30/14 10:58	
Di-n-butyl phthalate	4.8		4.8	4.8		ug/L	05/30/14 10:58	
4,6-Dinitro-2-methylphenol	3.8		4.8	3.8		ug/L	05/30/14 10:58	
2,4-Dinitrophenol	0.95		4.8	0.95		ug/L	05/30/14 10:58	
Di-n-octyl phthalate	0.48		1.9	0.48			05/30/14 10:58	
Fluoranthene	0.095		0.19	0.095	0.042		05/30/14 10:58	
Fluorene	0.095		0.19	0.095	0.039	-	05/30/14 10:58	
Hexachlorobenzene	0.095		0.19	0.095	0.033	_	05/30/14 10:58	
Hexachlorobutadiene	0.48		0.19	0.093		ug/L	05/30/14 10:58	
Hexachlorocyclopentadiene	0.48		9.5	0.48		ug/L	05/30/14 10:58	
Hexachloroethane	0.48		0.95	0.48		ug/L		
							05/30/14 10:58	
ndeno[1,2,3-cd]pyrene	0.095		0.19	0.095	0.041	-	05/30/14 10:58	
sophorone 2 Methylpaphthalana	0.48		0.95	0.48		ug/L	05/30/14 10:58	
2-Methylnaphthalene	0.095		0.19	0.095	0.086		05/30/14 10:58	
2-Methylphenol	0.48		0.95	0.48		ug/L	05/30/14 10:58	
3 & 4 Methylphenol	0.95		1.9	0.95		ug/L	05/30/14 10:58	
Naphthalene	0.10		0.19	0.095	0.060		05/30/14 10:58	
2-Nitroaniline	0.48		1.9	0.48		ug/L	05/30/14 10:58	
3-Nitroaniline 4-Nitroaniline	0.48 0.48		1.9 1.9	0.48		ug/L ug/L	05/30/14 10:58	

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL3MW-246-0439-GW

Lab Sample ID: 240-37114-6 Date Collected: 05/07/14 09:43 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U	1.9	0.48	0.27	ug/L	05/30/14 10:58	1
4-Nitrophenol	3.8	U	4.8	3.8	0.28	ug/L	05/30/14 10:58	1
N-Nitrosodi-n-propylamine	0.48	U	0.95	0.48	0.23	ug/L	05/30/14 10:58	1
N-Nitrosodiphenylamine	0.48	U	0.95	0.48	0.30	ug/L	05/30/14 10:58	1
2,2'-oxybis[1-chloropropane]	0.48	U	0.95	0.48	0.38	ug/L	05/30/14 10:58	1
Pentachlorophenol	0.95	U	4.8	0.95	0.26	ug/L	05/30/14 10:58	1
Phenanthrene	0.095	U	0.19	0.095	0.059	ug/L	05/30/14 10:58	1
Phenol	0.95	U	0.95	0.95	0.57	ug/L	05/30/14 10:58	1
Pyrene	0.095	U	0.19	0.095	0.040	ug/L	05/30/14 10:58	1
1,2,4-Trichlorobenzene	0.48	U	0.95	0.48	0.27	ug/L	05/30/14 10:58	1
2,4,5-Trichlorophenol	0.48	U	4.8	0.48	0.29	ug/L	05/30/14 10:58	1
2,4,6-Trichlorophenol	0.48	U	4.8	0.48	0.23	ug/L	05/30/14 10:58	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	68		50 - 110			05/12/14 07:34	05/30/14 10:58	1
2-Fluorophenol (Surr)	71		20 - 110			05/12/14 07:34	05/30/14 10:58	1
Nitrobenzene-d5 (Surr)	71		40 - 110			05/12/14 07:34	05/30/14 10:58	1
Phenol-d5 (Surr)	74		10 - 115			05/12/14 07:34	05/30/14 10:58	1
Terphenyl-d14 (Surr)	85		50 - 135			05/12/14 07:34	05/30/14 10:58	1
2,4,6-Tribromophenol (Surr)	80		40 - 125			05/12/14 07:34	05/30/14 10:58	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L		05/16/14 15:52	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		05/16/14 15:52	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		05/16/14 15:52	1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		05/16/14 15:52	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		05/16/14 15:52	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		05/16/14 15:52	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L		05/16/14 15:52	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		05/16/14 15:52	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		05/16/14 15:52	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		05/16/14 15:52	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		05/16/14 15:52	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		05/16/14 15:52	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		05/16/14 15:52	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		05/16/14 15:52	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		05/16/14 15:52	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		05/16/14 15:52	1
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		05/16/14 15:52	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		05/16/14 15:52	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		05/16/14 15:52	
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		05/16/14 15:52	1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		05/16/14 15:52	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	86		30 - 135	05/10/14 10:23	05/16/14 15:52	1
DCB Decachlorobiphenyl	74		30 - 135	05/10/14 10:23	05/16/14 15:52	1
Tetrachloro-m-xylene	85		25 - 140	05/10/14 10:23	05/16/14 15:52	1
Tetrachloro-m-xylene	86		25 - 140	05/10/14 10:23	05/16/14 15:52	1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL3MW-246-0439-GW

Lab Sample ID: 240-37114-6 Date Collected: 05/07/14 09:43 Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Aroclor-1016	0.19	U	0.48	0.19	0.16	ug/L		05/13/14 15:06	
Aroclor-1221	0.19	U	0.48	0.19	0.12	ug/L		05/13/14 15:06	
Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L		05/13/14 15:06	
Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L		05/13/14 15:06	
Aroclor-1248	0.19	U	0.48	0.19	0.095	ug/L		05/13/14 15:06	
Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L		05/13/14 15:06	
Aroclor-1260	0.19	U	0.48	0.19	0.16	ug/L		05/13/14 15:06	
Surrogate	%Recovery Qu	ualifier	Limits			Pr	repared	Analyzed	Dil Fa
Tetrachloro-m-xylene	102		40 - 140			05/10	0/14 10:20	05/13/14 15:06	
Tetrachloro-m-xylene	109		40 - 140			05/10	0/14 10:20	05/13/14 15:06	
DCB Decachlorobiphenyl	85		40 _ 135			05/10	0/14 10:20	05/13/14 15:06	
DCB Decachlorobiphenyl	84		40 - 135			05/10	0/14 10:20	05/13/14 15:06	
Method: 8330 Modified - Nitrog	guanidine (HPLC)								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L		05/13/14 15:41	
Method: 8330A - Nitroaromatio	es and Nitramines								
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
1,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.032	ug/L		05/19/14 16:58	
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		05/19/14 16:58	
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051			05/19/14 16:58	
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.051			05/19/14 16:58	
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		05/19/14 16:58	
2-Amino-4,6-dinitrotoluene	0.36		0.15	0.10	0.015	ug/L		05/19/14 16:58	
2-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		05/19/14 16:58	
3-Nitrotoluene	0.10	U	0.51	0.10	0.058	ug/L		05/19/14 16:58	
4-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		05/19/14 16:58	
4-Amino-2,6-dinitrotoluene	0.35		0.15	0.10	0.051	ug/L		05/19/14 16:58	
HMX	0.039	J M	0.15	0.051	0.037	ug/L		05/19/14 16:58	
RDX	0.18	M	0.15	0.051	0.037	ug/L		05/19/14 16:58	
Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		05/19/14 16:58	
Tetryl	0.10	U	0.15	0.10	0.051	-		05/19/14 16:58	
Nitroglycerin	0.51	U	0.66	0.51	0.34			05/19/14 16:58	
PETN	0.51	U	0.66	0.51	0.31			05/19/14 16:58	
Surrogate	%Recovery Qu	ualifier	Limits			Pr	repared	Analyzed	Dil Fa
3,4-Dinitrotoluene	99		79 - 111				2/14 13:43	05/17/14 00:35	
3,4-Dinitrotoluene	92		79 - 111				2/14 13:43	05/19/14 16:58	
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
						2		,	
Cyanide, Total	0.0050	U	0.010	0.0050	0.0032	ma/l		05/20/14 10:30	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

Lab Sample ID: 240-37114-7 Date Collected: 05/07/14 09:43 Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		05/15/14 10:12	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		05/15/14 10:12	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		05/15/14 10:12	1
Lead	5.0	U	10	5.0	1.7	ug/L		05/15/14 10:12	1
Selenium	10	U	15	10	4.0	ug/L		05/15/14 10:12	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		05/15/14 10:12	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		05/15/14 10:12	1
Barium	16	J	200	5.0	2.8	ug/L		05/15/14 10:12	1
Calcium	22000		5000	1000	630	ug/L		05/15/14 10:12	1
Copper	10	U	25	10	4.4	ug/L		05/15/14 10:12	1
Magnesium	7400		5000	300	120	ug/L		05/15/14 10:12	1
Manganese	300		15	5.0	1.8	ug/L		05/15/14 10:12	1
Nickel	5.3	J	40	5.0	2.2	ug/L		05/15/14 10:12	1
Potassium	1600	J	5000	900	300	ug/L		05/15/14 10:12	1
Method: 6020 - Metals (ICP/I	MS) - Total Recoverab	le							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60		20	ug/L		05/21/14 14:40	
	00		60	60	20	ug, L		00/21/11/11/10	1
Antimony	1.0	U	2.0	1.0				05/21/14 14:40	
,						ug/L			1
Beryllium	1.0	U	2.0	1.0	0.33	ug/L ug/L		05/21/14 14:40	1
Antimony Beryllium Cadmium Iron	1.0 1.0	U	2.0 1.0	1.0 1.0	0.33 0.50 0.40	ug/L ug/L		05/21/14 14:40 05/21/14 14:40	1 1 1
Beryllium Cadmium Iron	1.0 1.0 1.0	U	2.0 1.0 2.0	1.0 1.0 1.0	0.33 0.50 0.40 44	ug/L ug/L ug/L ug/L		05/21/14 14:40 05/21/14 14:40 05/21/14 14:40	1 1 1
Beryllium Cadmium Iron Sodium	1.0 1.0 1.0 1800	U U	2.0 1.0 2.0 150	1.0 1.0 1.0 100	0.33 0.50 0.40 44 160	ug/L ug/L ug/L ug/L		05/21/14 14:40 05/21/14 14:40 05/21/14 14:40 05/21/14 14:40	1 1 1 1
Beryllium Cadmium Iron Sodium Thallium	1.0 1.0 1.0 1800 3900	U U	2.0 1.0 2.0 150 1000	1.0 1.0 1.0 100 400	0.33 0.50 0.40 44 160 0.79	ug/L ug/L ug/L ug/L ug/L		05/21/14 14:40 05/21/14 14:40 05/21/14 14:40 05/21/14 14:40 05/21/14 14:40	1 1 1 1
Cadmium Iron	1.0 1.0 1.0 1800 3900 1.5	U	2.0 1.0 2.0 150 1000 2.0	1.0 1.0 1.0 100 400 1.5	0.33 0.50 0.40 44 160 0.79	ug/L ug/L ug/L ug/L ug/L		05/21/14 14:40 05/21/14 14:40 05/21/14 14:40 05/21/14 14:40 05/21/14 14:40 05/21/14 14:40	1 1 1 1 1 1 1
Beryllium Cadmium Iron Sodium Thallium Zinc	1.0 1.0 1.0 1800 3900 1.5 50	U	2.0 1.0 2.0 150 1000 2.0	1.0 1.0 1.0 100 400 1.5	0.33 0.50 0.40 44 160 0.79 27	ug/L ug/L ug/L ug/L ug/L	D	05/21/14 14:40 05/21/14 14:40 05/21/14 14:40 05/21/14 14:40 05/21/14 14:40 05/21/14 14:40	1 1 1 1 1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

Client Sample ID: FWGLL3MW-DUP1-0442-GW

Lab Sample ID: 240-37114-8 Date Collected: 05/07/14 10:43 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fac
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 14:20	1
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 14:20	1
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L	05/19/14 14:20	1
1,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L	05/19/14 14:20	1
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L	05/19/14 14:20	1
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L	05/19/14 14:20	1
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L	05/19/14 14:20	1
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L	05/19/14 14:20	1
2-Hexanone	0.50	U	10	0.50	0.41	ug/L	05/19/14 14:20	1
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 14:20	1
Acetone	1.1	U	10	1.1	1.1	ug/L	05/19/14 14:20	1
Benzene	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 14:20	1
Bromoform	0.64	U	1.0	0.64	0.64	ug/L	05/19/14 14:20	1
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L	05/19/14 14:20	1
Carbon disulfide	0.25	U	1.0	0.25	0.13		05/19/14 14:20	1
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L	05/19/14 14:20	1
Chlorobenzene	0.25	U	1.0	0.25	0.15		05/19/14 14:20	1
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L	05/19/14 14:20	1
Chloroform	0.25	U	1.0	0.25	0.16	ug/L	05/19/14 14:20	1
Chloromethane	0.50	U	1.0	0.50	0.30		05/19/14 14:20	1
cis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	_	05/19/14 14:20	1
cis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14		05/19/14 14:20	
Bromodichloromethane	0.25		1.0	0.25	0.15		05/19/14 14:20	1
Ethylbenzene	0.25	U	1.0	0.25	0.17	-	05/19/14 14:20	1
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24		05/19/14 14:20	1
m-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	_	05/19/14 14:20	1
2-Butanone (MEK)	0.57	U	10	0.57	0.57	_	05/19/14 14:20	1
1-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32		05/19/14 14:20	1
Methylene Chloride	0.50	U	1.0	0.50	0.33		05/19/14 14:20	1
o-Xylene	0.25		1.0	0.25	0.14	-	05/19/14 14:20	1
Styrene	0.25		1.0	0.25	0.11		05/19/14 14:20	1
Tetrachloroethene	0.50		1.0	0.50	0.29		05/19/14 14:20	1
Toluene	0.25		1.0	0.25	0.13	_	05/19/14 14:20	1
trans-1,2-Dichloroethene	0.25		1.0	0.25	0.19		05/19/14 14:20	
rans-1,3-Dichloropropene	0.25		1.0	0.25	0.19	-	05/19/14 14:20	1
Trichloroethene	0.25		1.0	0.25	0.17	-	05/19/14 14:20	1
Vinyl chloride	0.25		1.0	0.25	0.22		05/19/14 14:20	
Kylenes, Total	0.25		2.0	0.25	0.14		05/19/14 14:20	1
Dibromochloromethane	0.25		1.0	0.25	0.14	-	05/19/14 14:20	1

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	70 - 120		05/19/14 14:20	1
4-Bromofluorobenzene (Surr)	94	75 - 120		05/19/14 14:20	1
Toluene-d8 (Surr)	103	85 - 120		05/19/14 14:20	1
Dibromofluoromethane (Surr)	91	85 - 115		05/19/14 14:20	1

Method: 8270C	. Semivolatile	Organic Com	nounds	(GC/MS)
MICHIOU. 02/00	· Sellill v Olatile	Organic Com	poullus	CONTRICT

monious ozivo commonante organie	oompounds ((00,)							
Analyte	Result C	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095 U	J	0.19	0.095	0.042	ug/L		05/30/14 11:23	1
Acenaphthylene	0.095 U	J	0.19	0.095	0.046	ug/L		05/30/14 11:23	1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL3MW-DUP1-0442-GW

Lab Sample ID: 240-37114-8 Date Collected: 05/07/14 10:43 Matrix: Water

Date Received: 05/08/14 14:50

Analyte		Qualifier	LOQ	LOD		Unit	D Analyzed	Dil Fa
Anthracene	0.095	U	0.19	0.095	0.084		05/30/14 11:23	
Benzo[a]anthracene	0.095	U	0.19	0.095	0.028	ug/L	05/30/14 11:23	
Benzo[a]pyrene	0.095	U	0.19	0.095	0.049	ug/L	05/30/14 11:23	
Benzo[b]fluoranthene	0.095	U	0.19	0.095	0.038	ug/L	05/30/14 11:23	
Benzo[g,h,i]perylene	0.095	U	0.19	0.095	0.044	ug/L	05/30/14 11:23	
Benzoic acid	19	U	24	19	9.5	ug/L	05/30/14 11:23	
Benzo[k]fluoranthene	0.095	U	0.19	0.095	0.043	ug/L	05/30/14 11:23	
Benzyl alcohol	0.48	U	4.8	0.48	0.36	ug/L	05/30/14 11:23	
Bis(2-chloroethoxy)methane	0.48	U	0.95	0.48	0.30	ug/L	05/30/14 11:23	
Bis(2-chloroethyl)ether	0.095	U	0.95	0.095	0.095	ug/L	05/30/14 11:23	
Bis(2-ethylhexyl) phthalate	4.8	U	4.8	4.8	1.6	ug/L	05/30/14 11:23	
l-Bromophenyl phenyl ether	0.48	U	1.9	0.48	0.21	ug/L	05/30/14 11:23	
Butyl benzyl phthalate	0.48	U	4.8	0.48	0.25	ug/L	05/30/14 11:23	
Carbazole	0.48	U	0.95	0.48	0.27	ug/L	05/30/14 11:23	
l-Chloroaniline	0.48	U	1.9	0.48	0.20	ug/L	05/30/14 11:23	
I-Chloro-3-methylphenol	0.48	U	1.9	0.48	0.20	ug/L	05/30/14 11:23	
2-Chloronaphthalene	0.48	U	0.95	0.48	0.095		05/30/14 11:23	
2-Chlorophenol	0.48	U	0.95	0.48	0.28	ug/L	05/30/14 11:23	
l-Chlorophenyl phenyl ether	0.48	U	1.9	0.48		ug/L	05/30/14 11:23	
Chrysene	0.095	U	0.19	0.095	0.048		05/30/14 11:23	
Dibenz(a,h)anthracene	0.095		0.19	0.095	0.042	-	05/30/14 11:23	
Dibenzofuran	0.095		0.95	0.095	0.019	-	05/30/14 11:23	
,2-Dichlorobenzene	0.48		0.95	0.48		ug/L	05/30/14 11:23	
,3-Dichlorobenzene	0.48		0.95	0.48	0.22		05/30/14 11:23	
,4-Dichlorobenzene	0.48		0.95	0.48		ug/L	05/30/14 11:23	
3,3'-Dichlorobenzidine	0.95		4.8	0.95		ug/L	05/30/14 11:23	
2,4-Dichlorophenol	0.48		1.9	0.48	0.33	-	05/30/14 11:23	
Diethyl phthalate	0.95		1.9	0.46		ug/L	05/30/14 11:23	
2,4-Dimethylphenol	0.48		1.9	0.48		ug/L	05/30/14 11:23	
	0.48		1.9	0.48		_	05/30/14 11:23	
Dimethyl phthalate						ug/L		
Di-n-butyl phthalate	4.8		4.8	4.8		ug/L	05/30/14 11:23	
I,6-Dinitro-2-methylphenol	3.8		4.8	3.8		ug/L	05/30/14 11:23	
2,4-Dinitrophenol	0.95		4.8	0.95	0.30	ug/L	05/30/14 11:23	
Di-n-octyl phthalate	0.48		1.9	0.48	0.22	ug/L	05/30/14 11:23	
Fluoranthene 	0.095		0.19	0.095	0.042		05/30/14 11:23	
Fluorene	0.095		0.19	0.095	0.039		05/30/14 11:23	
dexachlorobenzene	0.095		0.19	0.095	0.081		05/30/14 11:23	
Hexachlorobutadiene	0.48		0.95	0.48	0.26		05/30/14 11:23	
Hexachlorocyclopentadiene	0.48		9.5	0.48	0.23	_	05/30/14 11:23	
Hexachloroethane	0.48		0.95	0.48	0.18	ug/L	05/30/14 11:23	
ndeno[1,2,3-cd]pyrene	0.095	U	0.19	0.095	0.041	ug/L	05/30/14 11:23	
sophorone	0.48		0.95	0.48	0.26	-	05/30/14 11:23	
2-Methylnaphthalene	0.095	U	0.19	0.095	0.086	ug/L	05/30/14 11:23	
2-Methylphenol	0.48	U	0.95	0.48	0.16	ug/L	05/30/14 11:23	
3 & 4 Methylphenol	0.95	U	1.9	0.95	0.76	ug/L	05/30/14 11:23	
Naphthalene	0.095	U	0.19	0.095	0.060	ug/L	05/30/14 11:23	
2-Nitroaniline	0.48	U	1.9	0.48	0.20	ug/L	05/30/14 11:23	
3-Nitroaniline	0.48	U	1.9	0.48	0.27	ug/L	05/30/14 11:23	

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL3MW-DUP1-0442-GW

Lab Sample ID: 240-37114-8 Date Collected: 05/07/14 10:43 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	LOC) L	OD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U	1.9	9 0	.48	0.27	ug/L	05/30/14 11:23	1
4-Nitrophenol	3.8	U	4.8	3	3.8	0.28	ug/L	05/30/14 11:23	1
N-Nitrosodi-n-propylamine	0.48	U	0.95	5 0	.48	0.23	ug/L	05/30/14 11:23	1
N-Nitrosodiphenylamine	0.48	U	0.95	5 0	.48	0.30	ug/L	05/30/14 11:23	1
2,2'-oxybis[1-chloropropane]	0.48	U	0.95	5 0	.48	0.38	ug/L	05/30/14 11:23	1
Pentachlorophenol	0.95	U	4.8	3 0	.95	0.26	ug/L	05/30/14 11:23	1
Phenanthrene	0.095	U	0.19	0.0	095	0.059	ug/L	05/30/14 11:23	1
Phenol	0.95	U	0.95	5 0	.95	0.57	ug/L	05/30/14 11:23	1
Pyrene	0.095	U	0.19	0.0	095	0.040	ug/L	05/30/14 11:23	1
1,2,4-Trichlorobenzene	0.48	U	0.95	5 0	.48	0.27	ug/L	05/30/14 11:23	1
2,4,5-Trichlorophenol	0.48	U	4.8	3 0	.48	0.29	ug/L	05/30/14 11:23	1
2,4,6-Trichlorophenol	0.48	U	4.8	3 0	.48	0.23	ug/L	05/30/14 11:23	1
Surrogate	%Recovery Qu	ıalifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	69		50 - 110				05/12/14 07:34	05/30/14 11:23	1
2-Fluorophenol (Surr)	74		20 - 110				05/12/14 07:34	05/30/14 11:23	1
Nitrobenzene-d5 (Surr)	72		40 - 110				05/12/14 07:34	05/30/14 11:23	1
Phenol-d5 (Surr)	76		10 - 115				05/12/14 07:34	05/30/14 11:23	1
Terphenyl-d14 (Surr)	90		50 - 135				05/12/14 07:34	05/30/14 11:23	1
2,4,6-Tribromophenol (Surr)	86		40 - 125				05/12/14 07:34	05/30/14 11:23	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L		05/16/14 16:14	1
4,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L		05/16/14 16:14	1
4,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L		05/16/14 16:14	1
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L		05/16/14 16:14	1
alpha-BHC	0.019	U	0.029	0.019	0.0067	ug/L		05/16/14 16:14	1
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L		05/16/14 16:14	1
beta-BHC	0.019	U	0.048	0.019	0.0080	ug/L		05/16/14 16:14	1
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L		05/16/14 16:14	1
Dieldrin	0.019	U	0.029	0.019	0.0071	ug/L		05/16/14 16:14	1
Endosulfan I	0.019	U	0.048	0.019	0.012	ug/L		05/16/14 16:14	1
Endosulfan II	0.019	U	0.048	0.019	0.011	ug/L		05/16/14 16:14	1
Endosulfan sulfate	0.019	U	0.048	0.019	0.010	ug/L		05/16/14 16:14	1
Endrin	0.019	U	0.048	0.019	0.010	ug/L		05/16/14 16:14	1
Endrin aldehyde	0.019	U	0.048	0.019	0.010	ug/L		05/16/14 16:14	1
Endrin ketone	0.019	U	0.048	0.019	0.0074	ug/L		05/16/14 16:14	1
gamma-BHC (Lindane)	0.019	U	0.048	0.019	0.0061	ug/L		05/16/14 16:14	1
gamma-Chlordane	0.019	U	0.048	0.019	0.011	ug/L		05/16/14 16:14	1
Heptachlor	0.019	U	0.029	0.019	0.0076	ug/L		05/16/14 16:14	1
Heptachlor epoxide	0.019	U	0.029	0.019	0.0068	ug/L		05/16/14 16:14	1
Methoxychlor	0.048	U	0.095	0.048	0.030	ug/L		05/16/14 16:14	1
Toxaphene	0.76	U	1.9	0.76	0.30	ug/L		05/16/14 16:14	1

%Recovery Qualifier Surrogate Limits Dil Fac Prepared Analyzed DCB Decachlorobiphenyl 63 30 - 135 05/10/14 10:23 05/16/14 16:14 DCB Decachlorobiphenyl 57 30 - 135 05/10/14 10:23 05/16/14 16:14 1 Tetrachloro-m-xylene 81 25 - 140 05/10/14 10:23 05/16/14 16:14 Tetrachloro-m-xylene 81 25 - 140 05/10/14 10:23 05/16/14 16:14

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL3MW-DUP1-0442-GW

Lab Sample ID: 240-37114-8 Date Collected: 05/07/14 10:43 Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fa
Aroclor-1016	0.19	U	0.48	0.19	0.16	ug/L	05/13/14 15:22	
Aroclor-1221	0.19	U	0.48	0.19	0.12	ug/L	05/13/14 15:22	
Aroclor-1232	0.19	U	0.48	0.19	0.15	ug/L	05/13/14 15:22	
Aroclor-1242	0.38	U	0.48	0.38	0.21	ug/L	05/13/14 15:22	
Aroclor-1248	0.19	U	0.48	0.19	0.095	ug/L	05/13/14 15:22	
Aroclor-1254	0.19	U	0.48	0.19	0.15	ug/L	05/13/14 15:22	
Aroclor-1260	0.19	U	0.48	0.19	0.16	ug/L	05/13/14 15:22	
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	91		40 - 140			05/10/14 10:20	05/13/14 15:22	
Tetrachloro-m-xylene	101		40 - 140			05/10/14 10:20	05/13/14 15:22	
DCB Decachlorobiphenyl	66		40 _ 135			05/10/14 10:20	05/13/14 15:22	
DCB Decachlorobiphenyl	66		40 - 135			05/10/14 10:20	05/13/14 15:22	
Method: 8330 Modified - Nitro								
Analyte		Qualifier	LOQ	LOD		Unit D		Dil Fa
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L	05/13/14 15:58	
Method: 8330A - Nitroaromati	cs and Nitramines							
Analyte		Qualifier	LOQ	LOD		Unit D		Dil Fa
1,3,5-Trinitrobenzene	0.050	U	0.15	0.050	0.031	ug/L	05/19/14 17:42	
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.050	ug/L	05/19/14 17:42	
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.050	ug/L	05/19/14 17:42	
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.050	ug/L	05/19/14 17:42	
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.050	ug/L	05/19/14 17:42	
2-Amino-4,6-dinitrotoluene	0.35		0.15	0.10	0.015	ug/L	05/19/14 17:42	
2-Nitrotoluene	0.10	U	0.50	0.10	0.088	ug/L	05/19/14 17:42	
3-Nitrotoluene	0.10	U	0.50	0.10	0.057	ug/L	05/19/14 17:42	
4-Nitrotoluene	0.10	UM	0.50	0.10	0.088	ug/L	05/19/14 17:42	
4-Amino-2,6-dinitrotoluene	0.33		0.15	0.10	0.050	ug/L	05/19/14 17:42	
HMX	0.036	J M	0.15	0.050	0.036	ug/L	05/19/14 17:42	
RDX	0.20	M	0.15	0.050	0.036	ug/L	05/19/14 17:42	
Nitrobenzene	0.10	U	0.15	0.10	0.050	ug/L	05/19/14 17:42	
Tetryl	0.10	U	0.15	0.10	0.050	ug/L	05/19/14 17:42	
Nitroglycerin	0.50	U	0.65	0.50	0.33	ug/L	05/19/14 17:42	
PETN	0.50	U	0.65	0.50	0.30	ug/L	05/19/14 17:42	
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fa
3,4-Dinitrotoluene	99		79 _ 111			05/12/14 13:43	05/17/14 01:40	
3,4-Dinitrotoluene	92		79 - 111			05/12/14 13:43	05/19/14 17:42	
General Chemistry								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fa
Cyanide, Total	0.0050	U	0.010	0.0050	0.0032	mg/L	05/20/14 10:30	
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L	05/15/14 16:43	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

Lab Sample ID: 240-37114-9 Date Collected: 05/07/14 10:43 Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		05/15/14 10:16	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		05/15/14 10:16	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		05/15/14 10:16	1
Lead	5.0	U	10	5.0	1.7	ug/L		05/15/14 10:16	1
Selenium	10	U	15	10	4.0	ug/L		05/15/14 10:16	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		05/15/14 10:16	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		05/15/14 10:16	1
Barium	16	J	200	5.0	2.8	ug/L		05/15/14 10:16	1
Calcium	22000		5000	1000	630	ug/L		05/15/14 10:16	1
Copper	10	U	25	10	4.4	ug/L		05/15/14 10:16	1
Magnesium	7600		5000	300	120	ug/L		05/15/14 10:16	1
Manganese	310		15	5.0	1.8	ug/L		05/15/14 10:16	1
Nickel	5.6	J	40	5.0	2.2	ug/L		05/15/14 10:16	1
Potassium	1600	J	5000	900	300	ug/L		05/15/14 10:16	1
i de la companya de									
Method: 6020 - Metals (ICP/N	//S) - Total Recoverab	le .							
-	-	le Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Analyte	-		LOQ	LOD 60	DL 20	Unit ug/L	D	Analyzed 05/21/14 14:47	Dil Fac
Analyte Aluminum	Result	Qualifier U			100,000	ug/L	D	0.00.41.00.00.00.00.00.00.00.00.00.00.00.00.00	1
Method: 6020 - Metals (ICP/N Analyte Aluminum Antimony Beryllium	Result 60	Qualifier U J	60	60	20	ug/L ug/L	D	05/21/14 14:47	1
Analyte Aluminum Antimony	Result 60 0.35	Qualifier U J U	60	60 1.0	20 0.33	ug/L ug/L ug/L	D	05/21/14 14:47 05/21/14 14:47	1
Analyte Aluminum Antimony Beryllium Cadmium	Result 60 0.35 1.0	Qualifier U J U	60 2.0 1.0	60 1.0 1.0	20 0.33 0.50 0.40	ug/L ug/L ug/L	D	05/21/14 14:47 05/21/14 14:47 05/21/14 14:47	1 1 1 1
Analyte Aluminum Antimony Beryllium	Result 60 0.35 1.0	Qualifier U J U	60 2.0 1.0 2.0	60 1.0 1.0 1.0	20 0.33 0.50 0.40 44	ug/L ug/L ug/L ug/L	D	05/21/14 14:47 05/21/14 14:47 05/21/14 14:47 05/21/14 14:47	1 1 1 1
Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium	Result 60 0.35 1.0 1.0 1900 4000	Qualifier U J U	60 2.0 1.0 2.0 150	60 1.0 1.0 1.0	20 0.33 0.50 0.40 44 160	ug/L ug/L ug/L ug/L ug/L	D	05/21/14 14:47 05/21/14 14:47 05/21/14 14:47 05/21/14 14:47 05/21/14 14:47	1 1 1 1 1 1
Analyte Aluminum Antimony Beryllium Cadmium Iron	Result 60 0.35 1.0 1.0 1900 4000	Qualifier U J U	60 2.0 1.0 2.0 150 1000	60 1.0 1.0 1.0 100 400	20 0.33 0.50 0.40 44 160 0.79	ug/L ug/L ug/L ug/L ug/L	D	05/21/14 14:47 05/21/14 14:47 05/21/14 14:47 05/21/14 14:47 05/21/14 14:47 05/21/14 14:47	1 1 1 1 1 1
Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium	Result 60 0.35 1.0 1.0 1900 4000 1.5 50	Qualifier U J U U	60 2.0 1.0 2.0 150 1000 2.0	60 1.0 1.0 1.0 100 400 1.5	20 0.33 0.50 0.40 44 160 0.79	ug/L ug/L ug/L ug/L ug/L ug/L	D	05/21/14 14:47 05/21/14 14:47 05/21/14 14:47 05/21/14 14:47 05/21/14 14:47 05/21/14 14:47 05/21/14 14:47	1 1 1
Analyte Aluminum Antimony Beryllium Cadmium Iron Sodium Thallium Zinc	Result 60 0.35 1.0 1.0 1900 4000 1.5 50	Qualifier U J U U	60 2.0 1.0 2.0 150 1000 2.0	60 1.0 1.0 1.0 100 400 1.5	20 0.33 0.50 0.40 44 160 0.79 27	ug/L ug/L ug/L ug/L ug/L ug/L	D	05/21/14 14:47 05/21/14 14:47 05/21/14 14:47 05/21/14 14:47 05/21/14 14:47 05/21/14 14:47 05/21/14 14:47	1 1 1 1 1 1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

Matrix: Water

Lab Sample ID: 240-37114-10

Client Sample ID: FWGLL2MW-271-0438-GW Date Collected: 05/07/14 12:59

Date Received: 05/08/14 14:50

Method: 8260B - Volatile Organic Compounds (GC/MS) Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac 0.25 1,1,1-Trichloroethane 0.25 U 1.0 0.22 ug/L 05/19/14 11:39 1,1,2,2-Tetrachloroethane 0.25 U 1.0 0.25 0.18 ug/L 05/19/14 11:39 1,1,2-Trichloroethane 0.50 U 1.0 0.50 0.27 ug/L 05/19/14 11:39 0.25 1,1-Dichloroethane 0.25 U 1.0 0.15 ug/L 05/19/14 11:39 1,1-Dichloroethene 0.25 U 1.0 0.25 0.19 ug/L 05/19/14 11:39 1.2-Dichloroethane 0.25 U 0.25 0.22 05/19/14 11:39 1.0 ug/L 1,2-Dichloroethene, Total 0.25 U 2.0 0.25 05/19/14 11:39 ug/L 0.25 1,2-Dichloropropane 0.25 U 1.0 05/19/14 11:39 1 0.18 ug/L 2-Hexanone 0.50 U 10 0.50 0.41 ug/L 05/19/14 11:39 Bromochloromethane 0.50 U 1.0 0.50 0.29 ug/L 05/19/14 11:39 Acetone 1.1 U 10 1.1 1.1 ug/L 05/19/14 11:39 Benzene 0.25 U 1.0 0.25 0.13 ug/L 05/19/14 11:39 0.64 U 0.64 Bromoform 1.0 0.64 ug/L 05/19/14 11:39 Bromomethane 0.50 U 1.0 0.50 0.41 05/19/14 11:39 ug/L Carbon disulfide 0.25 0.25 U 1.0 0.13 ug/L 05/19/14 11:39 Carbon tetrachloride 0.25 U 1.0 0.25 0.13 ug/L 05/19/14 11:39 Chlorobenzene 0.25 LI 0.25 1.0 0.15 ug/L 05/19/14 11:39 Chloroethane 0.50 U 0.50 05/19/14 11:39 1.0 0.29 ug/L Chloroform 0.25 U 1.0 0.25 0.16 ug/L 05/19/14 11:39 0.50 U 0.50 05/19/14 11:39 Chloromethane 1.0 0.30 ug/L 0.25 cis-1,2-Dichloroethene 0.25 U 1.0 0.17 ug/L 05/19/14 11:39 cis-1,3-Dichloropropene 0.25 U 1.0 0.25 ug/L 05/19/14 11:39 0.25 U 0.25 0.15 05/19/14 11:39 Bromodichloromethane 1.0 ug/L Ethylbenzene 0.25 U 1.0 0.25 0.17 ug/L 05/19/14 11:39 1,2-Dibromoethane 0.25 U 1.0 0.25 0.24 05/19/14 11:39 ua/L m-Xylene & p-Xylene 0.50 U 2.0 0.50 0.24 ug/L 05/19/14 11:39 2-Butanone (MEK) 0.57 U 10 0.57 0.57 ug/L 05/19/14 11:39 0.50 U 0.50 4-Methyl-2-pentanone (MIBK) 10 0.32 05/19/14 11:39 ug/L 0.50 U 0.50 Methylene Chloride 1.0 0.33 ug/L 05/19/14 11:39 0.25 U 0.25 o-Xylene 1.0 0.14 ug/L 05/19/14 11:39 Styrene 0.25 U 1.0 0.25 0.11 ug/L 05/19/14 11:39 0.50 Tetrachloroethene 0.50 U 1.0 0.29 ug/L 05/19/14 11:39 Toluene 0.25 U 1.0 0.25 0.13 ug/L 05/19/14 11:39 trans-1,2-Dichloroethene 0.25 U 1.0 0.25 0.19 ug/L 05/19/14 11:39 trans-1,3-Dichloropropene 0.25 U 1.0 0.25 0.19 ug/L 05/19/14 11:39 Trichloroethene 0.25 U 0.25 05/19/14 11:39 1.0 0.17 ug/L Vinyl chloride 0.25 U 1.0 0.25 0.22 ug/L 05/19/14 11:39 Xylenes, Total 0.25 U 2.0 0.25 0.14 ug/L 05/19/14 11:39

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	;
1,2-Dichloroethane-d4 (Surr)	89		70 - 120	_		05/19/14 11:39	1	
4-Bromofluorobenzene (Surr)	94		75 - 120			05/19/14 11:39	1	
Toluene-d8 (Surr)	104		85 - 120			05/19/14 11:39	1	
Dibromofluoromethane (Surr)	88		85 - 115			05/19/14 11:39	1	

1.0

0.25

0.18 ug/L

0.25 U

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Dibromochloromethane

		(
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095	U	0.19	0.095	0.042	ug/L		05/16/14 14:34	1
Acenaphthylene	0.095	U	0.19	0.095	0.046	ug/L		05/16/14 14:34	1

TestAmerica Canton

05/19/14 11:39

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL2MW-271-0438-GW

Lab Sample ID: 240-37114-10 Date Collected: 05/07/14 12:59 Matrix: Water

Date Received: 05/08/14 14:50

Analyte		Qualifier	LOQ	LOD		Unit	D Analyzed	Dil Fa
Anthracene	0.095		0.19	0.095	0.084		05/16/14 14:34	
Benzo[a]anthracene	0.095	U	0.19	0.095	0.028	ug/L	05/16/14 14:34	
Benzo[a]pyrene	0.095	U	0.19	0.095	0.049	-	05/16/14 14:34	
Benzo[b]fluoranthene	0.095	U	0.19	0.095	0.038	ug/L	05/16/14 14:34	
Benzo[g,h,i]perylene	0.095	U	0.19	0.095	0.044	ug/L	05/16/14 14:34	
Benzoic acid	19	U	24	19	9.5	ug/L	05/16/14 14:34	
Benzo[k]fluoranthene	0.095	U	0.19	0.095	0.043	ug/L	05/16/14 14:34	
Benzyl alcohol	0.48	U	4.8	0.48	0.36	ug/L	05/16/14 14:34	
Bis(2-chloroethoxy)methane	0.48	U	0.95	0.48	0.30	ug/L	05/16/14 14:34	
Bis(2-chloroethyl)ether	0.095	U	0.95	0.095	0.095	ug/L	05/16/14 14:34	
Bis(2-ethylhexyl) phthalate	4.8	U	4.8	4.8	1.6	ug/L	05/16/14 14:34	
4-Bromophenyl phenyl ether	0.48	U	1.9	0.48	0.21	ug/L	05/16/14 14:34	
Butyl benzyl phthalate	0.48	U	4.8	0.48	0.25	ug/L	05/16/14 14:34	
Carbazole	0.48	U	0.95	0.48	0.27	ug/L	05/16/14 14:34	
4-Chloroaniline	0.48	U	1.9	0.48	0.20	ug/L	05/16/14 14:34	
4-Chloro-3-methylphenol	0.48	U	1.9	0.48	0.20	ug/L	05/16/14 14:34	
2-Chloronaphthalene	0.48	U	0.95	0.48	0.095	ug/L	05/16/14 14:34	
2-Chlorophenol	0.48	U	0.95	0.48	0.28	ug/L	05/16/14 14:34	
4-Chlorophenyl phenyl ether	0.48	U	1.9	0.48	0.29	ug/L	05/16/14 14:34	
Chrysene	0.095	U	0.19	0.095	0.048	ug/L	05/16/14 14:34	
Dibenz(a,h)anthracene	0.095	U	0.19	0.095	0.042	-	05/16/14 14:34	
Dibenzofuran	0.095	U	0.95	0.095	0.019	-	05/16/14 14:34	
1,2-Dichlorobenzene	0.48		0.95	0.48	0.28		05/16/14 14:34	
1,3-Dichlorobenzene	0.48		0.95	0.48	0.22		05/16/14 14:34	
1,4-Dichlorobenzene	0.48		0.95	0.48	0.32	-	05/16/14 14:34	
3,3'-Dichlorobenzidine	0.95		4.8	0.95		ug/L	05/16/14 14:34	
2,4-Dichlorophenol	0.48		1.9	0.48	0.18	-	05/16/14 14:34	
Diethyl phthalate	0.64		1.9	0.95	0.57	-	05/16/14 14:34	
2,4-Dimethylphenol	0.48		1.9	0.48	0.24		05/16/14 14:34	
Dimethyl phthalate	0.48		1.9	0.48		ug/L	05/16/14 14:34	
Di-n-butyl phthalate	4.8		4.8	4.8		ug/L	05/16/14 14:34	
4,6-Dinitro-2-methylphenol	3.8		4.8	3.8		ug/L	05/16/14 14:34	
2,4-Dinitrophenol	0.95		4.8	0.95	0.30	ug/L	05/16/14 14:34	
Di-n-octyl phthalate	0.48		1.9	0.48	0.22	ug/L	05/16/14 14:34	
Fluoranthene	0.095		0.19	0.095	0.042		05/16/14 14:34	
Fluorene	0.095		0.19	0.095		-	05/16/14 14:34	
					0.039			
Hexachlorobenzene	0.095		0.19	0.095	0.081		05/16/14 14:34	
Hexachlorobutadiene	0.48		0.95	0.48	0.26		05/16/14 14:34	
Hexachlorocyclopentadiene	0.48		9.5	0.48	0.23		05/16/14 14:34	
Hexachloroethane	0.48		0.95	0.48	0.18		05/16/14 14:34	
Indeno[1,2,3-cd]pyrene	0.095		0.19	0.095	0.041	-	05/16/14 14:34	
sophorone	0.48		0.95	0.48	0.26	-	05/16/14 14:34	
2-Methylnaphthalene	0.095		0.19	0.095	0.086		05/16/14 14:34	
2-Methylphenol	0.48		0.95	0.48	0.16		05/16/14 14:34	
3 & 4 Methylphenol	0.95		1.9	0.95	0.76		05/16/14 14:34	
Naphthalene	0.095		0.19	0.095	0.060		05/16/14 14:34	
2-Nitroaniline	0.48		1.9	0.48	0.20		05/16/14 14:34	
3-Nitroaniline	0.48	U	1.9	0.48	0.27	ug/L	05/16/14 14:34	

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL2MW-271-0438-GW

Lab Sample ID: 240-37114-10 Date Collected: 05/07/14 12:59 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	LOC	2	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U	1.9	9	0.48	0.27	ug/L	05/16/14 14:34	1
4-Nitrophenol	3.8	U	4.8	8	3.8	0.28	ug/L	05/16/14 14:34	1
N-Nitrosodi-n-propylamine	0.48	U	0.95	5	0.48	0.23	ug/L	05/16/14 14:34	1
N-Nitrosodiphenylamine	0.48	U	0.98	5	0.48	0.30	ug/L	05/16/14 14:34	1
2,2'-oxybis[1-chloropropane]	0.48	U	0.98	5	0.48	0.38	ug/L	05/16/14 14:34	1
Pentachlorophenol	0.95	U	4.8	8	0.95	0.26	ug/L	05/16/14 14:34	1
Phenanthrene	0.095	U	0.19	9 0	.095	0.059	ug/L	05/16/14 14:34	1
Phenol	0.95	U	0.98	5	0.95	0.57	ug/L	05/16/14 14:34	1
Pyrene	0.095	U	0.19	9 0	.095	0.040	ug/L	05/16/14 14:34	1
1,2,4-Trichlorobenzene	0.48	U	0.95	5	0.48	0.27	ug/L	05/16/14 14:34	1
2,4,5-Trichlorophenol	0.48	U	4.8	8	0.48	0.29	ug/L	05/16/14 14:34	1
2,4,6-Trichlorophenol	0.48	U	4.8	8	0.48	0.23	ug/L	05/16/14 14:34	1
Surrogate	%Recovery Qu	ıalifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	75		50 - 110				05/12/14 07:40	05/16/14 14:34	1
2-Fluorophenol (Surr)	71		20 - 110				05/12/14 07:40	05/16/14 14:34	1
Nitrobenzene-d5 (Surr)	71		40 - 110				05/12/14 07:40	05/16/14 14:34	1
Phenol-d5 (Surr)	78		10 - 115				05/12/14 07:40	05/16/14 14:34	1
Terphenyl-d14 (Surr)	96		50 - 135				05/12/14 07:40	05/16/14 14:34	1
2,4,6-Tribromophenol (Surr)	84		40 - 125				05/12/14 07:40	05/16/14 14:34	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
4,4'-DDD	0.020	U	0.050	0.020	0.0095	ug/L		05/16/14 16:35	1
4,4'-DDE	0.020	U	0.050	0.020	0.0096	ug/L		05/16/14 16:35	1
4,4'-DDT	0.020	U	0.050	0.020	0.016	ug/L		05/16/14 16:35	1
Aldrin	0.020	U	0.030	0.020	0.0081	ug/L		05/16/14 16:35	1
alpha-BHC	0.020	U	0.030	0.020	0.0069	ug/L		05/16/14 16:35	1
alpha-Chlordane	0.020	UJ	0.050	0.020	0.014	ug/L		05/16/14 16:35	1
beta-BHC	0.020	U	0.050	0.020	0.0083	ug/L		05/16/14 16:35	1
delta-BHC	0.020	U	0.050	0.020	0.0086	ug/L		05/16/14 16:35	1
Dieldrin	0.020	U	0.030	0.020	0.0074	ug/L		05/16/14 16:35	1
Endosulfan I	0.020	UJ	0.050	0.020	0.013	ug/L		05/16/14 16:35	1
Endosulfan II	0.020	U	0.050	0.020	0.012	ug/L		05/16/14 16:35	1
Endosulfan sulfate	0.020	U	0.050	0.020	0.011	ug/L		05/16/14 16:35	1
Endrin	0.020	U	0.050	0.020	0.011	ug/L		05/16/14 16:35	1
Endrin aldehyde	0.020	U	0.050	0.020	0.011	ug/L		05/16/14 16:35	1
Endrin ketone	0.020	UJ	0.050	0.020	0.0077	ug/L		05/16/14 16:35	1
gamma-BHC (Lindane)	0.020	U	0.050	0.020	0.0063	ug/L		05/16/14 16:35	1
gamma-Chlordane	0.020	U	0.050	0.020	0.012	ug/L		05/16/14 16:35	1
Heptachlor	0.020	U	0.030	0.020	0.0079	ug/L		05/16/14 16:35	1
Heptachlor epoxide	0.020	U	0.030	0.020	0.0070	ug/L		05/16/14 16:35	1
Methoxychlor	0.050	U	0.099	0.050	0.032	ug/L		05/16/14 16:35	1
Toxaphene	0.79	U	2.0	0.79	0.32	ug/L		05/16/14 16:35	1

%Recovery Qualifier Surrogate Limits Dil Fac Prepared Analyzed DCB Decachlorobiphenyl 45 30 - 135 05/10/14 10:23 05/16/14 16:35 DCB Decachlorobiphenyl 43 30 - 135 05/10/14 10:23 05/16/14 16:35 1 Tetrachloro-m-xylene 81 25 - 140 05/10/14 10:23 05/16/14 16:35 Tetrachloro-m-xylene 79 25 - 140 05/10/14 10:23 05/16/14 16:35

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGLL2MW-271-0438-GW

Lab Sample ID: 240-37114-10 Date Collected: 05/07/14 12:59 Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fa
Aroclor-1016	0.20	U	0.50	0.20	0.17	ug/L	05/13/14 15:39	
Aroclor-1221	0.20	U	0.50	0.20	0.13	ug/L	05/13/14 15:39	
Aroclor-1232	0.20	U	0.50	0.20	0.16	ug/L	05/13/14 15:39	
Aroclor-1242	0.40	U	0.50	0.40	0.22	ug/L	05/13/14 15:39	
Aroclor-1248	0.20	U	0.50	0.20	0.099	ug/L	05/13/14 15:39	
Aroclor-1254	0.20	U	0.50	0.20	0.16	ug/L	05/13/14 15:39	
Aroclor-1260	0.20	UJ	0.50	0.20	0.17	ug/L	05/13/14 15:39	
Surrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	89		40 - 140			05/10/14 10:20	05/13/14 15:39	
Tetrachloro-m-xylene	97		40 _ 140			05/10/14 10:20	05/13/14 15:39	
DCB Decachlorobiphenyl	48		40 _ 135			05/10/14 10:20	05/13/14 15:39	
DCB Decachlorobiphenyl	49		40 - 135			05/10/14 10:20	05/13/14 15:39	
Method: 8330 Modified - Nitro								
Analyte		Qualifier	LOQ	LOD		Unit D		Dil Fa
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L	05/13/14 16:16	
Method: 8330A - Nitroaromat		0	100				A11	
Analyte	0.051	Qualifier	LOQ	0.051		Unit D	Analyzed 05/19/14 18:25	Dil F
1,3,5-Trinitrobenzene	0.051		0.15		0.031		05/19/14 18:25	
1,3-Dinitrobenzene	0.10		0.15	0.10 0.10	0.051		05/19/14 18:25	
2,4,6-Trinitrotoluene 2,4-Dinitrotoluene	0.10		0.13	0.10	0.051 0.051	.	05/19/14 18:25	
2,4-Dinitrotoluene	0.10		0.13	0.10		-	05/19/14 18:25	
	0.10		0.13	0.10	0.051			
2-Amino-4,6-dinitrotoluene 2-Nitrotoluene	0.10		0.13		0.015		05/19/14 18:25 05/19/14 18:25	
3-Nitrotoluene	0.10		0.51	0.10 0.10	0.089 0.058	ug/L	05/19/14 18:25	
4-Nitrotoluene	0.10		0.51	0.10	0.038	ug/L ug/L	05/19/14 18:25	
4-Amino-2,6-dinitrotoluene	0.10		0.15	0.10	0.051		05/19/14 18:25	
HMX	0.051		0.15	0.051	0.037		05/19/14 18:25	
RDX	0.051		0.15	0.051	0.037	Ü	05/19/14 18:25	
Nitrobenzene	0.10		0.15	0.10	0.051		05/19/14 18:25	
Tetryl	0.10		0.15	0.10	0.051	_	05/19/14 18:25	
Nitroglycerin	0.10		0.15	0.10	0.031	ug/L	05/19/14 18:25	
PETN	0.51		0.66	0.51	0.30	ug/L	05/19/14 18:25	
Surrogate	%Recovery Qu	ualifier	Limits			Prepared	Analyzed	Dil F
3,4-Dinitrotoluene	95 M		79 - 111			05/12/14 13:43	05/19/14 18:25	
General Chemistry		0						
Analyte		Qualifier	LOQ	LOD		Unit D		Dil Fa
Cyanide, Total	0.0050		0.010	0.0050	0.0032		05/20/14 10:24	
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L	05/15/14 16:45	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

Client Sample ID: FWGLL2MW-271-0438-GF Lab Sample ID: 240-37114-11

Date Collected: 05/07/14 12:59 Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	5.5	J	10	10	3.3	ug/L		05/15/14 09:36	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		05/15/14 09:36	1
Cobalt	9.2		7.0	4.0	1.5	ug/L		05/15/14 09:36	1
Lead	5.0	U	10	5.0	1.7	ug/L		05/15/14 09:36	1
Selenium	10	U	15	10	4.0	ug/L		05/15/14 09:36	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		05/15/14 09:36	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		05/15/14 09:36	1
Barium	3.4	J	200	5.0	2.8	ug/L		05/15/14 09:36	1
Calcium	56000		5000	1000	630	ug/L		05/15/14 09:36	1
Copper	10	U	25	10	4.4	ug/L		05/15/14 09:36	1
Magnesium	19000		5000	300	120	ug/L		05/15/14 09:36	1
Manganese	520		15	5.0	1.8	ug/L		05/15/14 09:36	1
Nickel	37	J	40	5.0	2.2	ug/L		05/15/14 09:36	1
Potassium	1000	J	5000	900	300	ug/L		05/15/14 09:36	1
Method: 6020 - Metals (ICP/MS) - Tota	l Recoverab	le							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		05/21/14 13:36	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		05/21/14 13:36	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		05/21/14 13:36	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		05/21/14 13:36	1
Iron	4400		150	100	44	ug/L		05/21/14 13:36	1
Sodium	4300		1000	400	160	ug/L		05/21/14 13:36	1
Thallium	0.83	J	2.0	1.5	0.79	ug/L		05/21/14 13:36	1
Zinc	50	U	50	50	27	ug/L		05/21/14 13:36	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
		U	0.20	0.20	0.12	ug/L		05/15/14 14:56	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Nitroguanidine

TestAmerica Job ID: 240-37114-1

Client Sample ID: FWGLL1MW-064C-0436-GW	Lab Sample ID: 240-37114-12
Date Collected: 05/07/14 16:34	Matrix: Water

Date	Received:	05/08/14	14:50

Method: 8270C - Semivolatile				10000000	2500	122/0220	200000000000000000000000000000000000000	2000
Analyte		Qualifier	LOQ	LOD		Unit D	Analyzed	Dil Fa
Bis(2-ethylhexyl) phthalate		U	4.8	4.8		ug/L	05/16/14 16:18	
Butyl benzyl phthalate	0.48		4.8	0.48		ug/L	05/16/14 16:18	
Diethyl phthalate	0.95		1.9	0.95		ug/L	05/16/14 16:18	
Dimethyl phthalate	0.48	U	1.9	0.48	0.28	ug/L	05/16/14 16:18	
Di-n-butyl phthalate		U	4.8	4.8	1.6	ug/L	05/16/14 16:18	
Di-n-octyl phthalate	0.48	U	1.9	0.48	0.22	ug/L	05/16/14 16:18	
Surrogate	%Recovery Qu	alifier	Limits			Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	81		50 _ 110			05/12/14 07:40	05/16/14 16:18	
2-Fluorophenol (Surr)	72		20 _ 110			05/12/14 07:40	05/16/14 16:18	
Nitrobenzene-d5 (Surr)	79		40 - 110			05/12/14 07:40	05/16/14 16:18	
Phenol-d5 (Surr)	81		10 - 115			05/12/14 07:40	05/16/14 16:18	
Terphenyl-d14 (Surr)	107		50 - 135			05/12/14 07:40	05/16/14 16:18	
2,4,6-Tribromophenol (Surr)	83		40 - 125			05/12/14 07:40	05/16/14 16:18	
Method: 8081A - Organochlor	ine Pesticides (GC)							
Analyte	, ,	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fa
1,4'-DDD	0.019	U	0.048	0.019	0.0091	ug/L	05/16/14 18:24	-
1,4'-DDE	0.019	U	0.048	0.019	0.0092	ug/L	05/16/14 18:24	
1,4'-DDT	0.019	U	0.048	0.019	0.015	ug/L	05/16/14 18:24	
Aldrin	0.019	U	0.029	0.019	0.0078	ug/L	05/16/14 18:24	· · · · · · .
alpha-BHC	0.019	U	0.029	0.019	0.0067		05/16/14 18:24	
alpha-Chlordane	0.019	U	0.048	0.019	0.013	ug/L	05/16/14 18:24	
peta-BHC	0.019	U	0.048	0.019	0.0080		05/16/14 18:24	
delta-BHC	0.019	U	0.048	0.019	0.0083	ug/L	05/16/14 18:24	
Dieldrin	0.019		0.029	0.019	0.0071	ug/L	05/16/14 18:24	
Endosulfan I	0.019		0.048	0.019	0.012	.	05/16/14 18:24	
Endosulfan II	0.019		0.048	0.019	0.011	-	05/16/14 18:24	
Endosulfan sulfate	0.019		0.048	0.019	0.010	-	05/16/14 18:24	
Indrin	0.019		0.048	0.019	0.010		05/16/14 18:24	
Endrin aldehyde	0.019		0.048	0.019	0.010		05/16/14 18:24	
Endrin ketone	0.019		0.048	0.019	0.0074		05/16/14 18:24	
gamma-BHC (Lindane)	0.019		0.048	0.019	0.0061	ug/L	05/16/14 18:24	
	0.019		0.048	0.019	0.0001		05/16/14 18:24	
gamma-Chlordane Heptachlor	0.019		0.048	0.019	0.011		05/16/14 18:24	
	0.019		0.029	0.019	0.0076		05/16/14 18:24	
Heptachlor epoxide					0.008	-		
Methoxychlor Toxaphene	0.048 0.76		0.095 1.9	0.048 0.76		ug/L ug/L	05/16/14 18:24 05/16/14 18:24	
•	0/Panaum 2:-	alifiar	Limite				Angleman	Dil 5-
Surrogate CCR Decachlerabinhanyl	%Recovery Qu	anner	Limits			Prepared 05/10/14 10:23	Analyzed	Dil Fa
DCB Decachlorobiphenyl			30 _ 135				05/16/14 18:24	
DCB Decachlorobiphenyl	68		30 _ 135			05/10/14 10:23	05/16/14 18:24	
Tetrachloro-m-xylene	92		25 - 140			05/10/14 10:23	05/16/14 18:24	
Tetrachloro-m-xylene	85		25 - 140			05/10/14 10:23	05/16/14 18:24	
Method: 8330 Modified - Nitro	guanidine (HPLC)							
Analyte	Result	Qualifier	LOQ	LOD	DI	Unit D	Analyzed	Dil Fa

05/13/14 17:27

20

6.0

2.4 ug/L

6.0 U

05/15/14 16:51

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Nitrocellulose

Client Sample ID: FWGLL1MW-064C-0436-GW

Lab Sample ID: 240-37114-12 Date Collected: 05/07/14 16:34 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.052	U	0.15	0.052	0.032	ug/L	05/19/14 21:20	1
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.052	ug/L	05/19/14 21:20	1
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.052	ug/L	05/19/14 21:20	1
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.052	ug/L	05/19/14 21:20	1
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.052	ug/L	05/19/14 21:20	1
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L	05/19/14 21:20	1
2-Nitrotoluene	0.10	U	0.52	0.10	0.091	ug/L	05/19/14 21:20	1
3-Nitrotoluene	0.10	U	0.52	0.10	0.059	ug/L	05/19/14 21:20	1
4-Nitrotoluene	0.10	U	0.52	0.10	0.091	ug/L	05/19/14 21:20	1
4-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.052	ug/L	05/19/14 21:20	1
HMX	0.052	UM	0.15	0.052	0.037	ug/L	05/19/14 21:20	1
RDX	0.052	U	0.15	0.052	0.037	ug/L	05/19/14 21:20	1
Nitrobenzene	0.10	U	0.15	0.10	0.052	ug/L	05/19/14 21:20	1
Tetryl	0.10	U	0.15	0.10	0.052	ug/L	05/19/14 21:20	1
Nitroglycerin	0.52	U	0.67	0.52	0.34	ug/L	05/19/14 21:20	1
PETN	0.52	U	0.67	0.52	0.31	ug/L	05/19/14 21:20	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
3,4-Dinitrotoluene	96		79 - 111			05/12/14 13:43	05/19/14 21:20	1
General Chemistry								
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit D	Analyzed	Dil Fac

2.0

1.0

0.48 mg/L

1.0 U

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Date Received: 05/08/14 14:50

Client Sample ID: FWGLL1MW-064C-0436-GF

Date Collected: 05/07/14 16:37

TestAmerica Job ID: 240-37114-1

Lab Sample ID: 240-37114-13

Matrix: Water

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	4.5	J	10	10	3.3	ug/L		05/15/14 10:20	1
Chromium	4.0	U	7.0	4.0	1.4	ug/L		05/15/14 10:20	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		05/15/14 10:20	1
Lead	5.0	U	10	5.0	1.7	ug/L		05/15/14 10:20	1
Selenium	10	U	15	10	4.0	ug/L		05/15/14 10:20	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		05/15/14 10:20	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		05/15/14 10:20	1
Barium	48	J	200	5.0	2.8	ug/L		05/15/14 10:20	1
Calcium	58000		5000	1000	630	ug/L		05/15/14 10:20	1
Copper	10	U	25	10	4.4	ug/L		05/15/14 10:20	1
Magnesium	9800		5000	300	120	ug/L		05/15/14 10:20	1
Manganese	120		15	5.0	1.8	ug/L		05/15/14 10:20	1
Nickel	2.5	J	40	5.0	2.2	ug/L		05/15/14 10:20	1
Potassium	800	J	5000	900	300	ug/L		05/15/14 10:20	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		05/21/14 14:54	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		05/21/14 14:54	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		05/21/14 14:54	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		05/21/14 14:54	1
Iron	760		150	100	44	ug/L		05/21/14 14:54	1
Sodium	5000		1000	400	160	ug/L		05/21/14 14:54	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		05/21/14 14:54	1
Zinc	50	U	50	50	27	ug/L		05/21/14 14:54	1

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.12	ug/L		05/15/14 15:15	1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGTEAM2-TRIP Lab Sample ID: 240-37114-14

Date Collected: 05/07/14 07:30 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
1,1,1-Trichloroethane	0.25	U	1.0	0.25	0.22	ug/L		05/19/14 14:43	
1,1,2,2-Tetrachloroethane	0.25	U	1.0	0.25	0.18	ug/L		05/19/14 14:43	
1,1,2-Trichloroethane	0.50	U	1.0	0.50	0.27	ug/L		05/19/14 14:43	
I,1-Dichloroethane	0.25	U	1.0	0.25	0.15	ug/L		05/19/14 14:43	
1,1-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		05/19/14 14:43	
1,2-Dichloroethane	0.25	U	1.0	0.25	0.22	ug/L		05/19/14 14:43	
1,2-Dichloroethene, Total	0.25	U	2.0	0.25	0.17	ug/L		05/19/14 14:43	
1,2-Dichloropropane	0.25	U	1.0	0.25	0.18	ug/L		05/19/14 14:43	
2-Hexanone	0.50	U	10	0.50	0.41	ug/L		05/19/14 14:43	
Bromochloromethane	0.50	U	1.0	0.50	0.29	ug/L		05/19/14 14:43	
Acetone	1.1	U	10	1.1	1.1	ug/L		05/19/14 14:43	
Benzene	0.25	U	1.0	0.25	0.13	ug/L		05/19/14 14:43	
Bromoform	0.64	U	1.0	0.64	0.64	ug/L		05/19/14 14:43	
Bromomethane	0.50	U	1.0	0.50	0.41	ug/L		05/19/14 14:43	
Carbon disulfide	0.25	U	1.0	0.25	0.13	ug/L		05/19/14 14:43	
Carbon tetrachloride	0.25	U	1.0	0.25	0.13	ug/L		05/19/14 14:43	
Chlorobenzene	0.25	U	1.0	0.25	0.15	ug/L		05/19/14 14:43	
Chloroethane	0.50	U	1.0	0.50	0.29	ug/L		05/19/14 14:43	
Chloroform	0.34	J	1.0	0.25	0.16	ug/L		05/19/14 14:43	
Chloromethane	0.50	U	1.0	0.50	0.30	ug/L		05/19/14 14:43	
sis-1,2-Dichloroethene	0.25	U	1.0	0.25	0.17	ug/L		05/19/14 14:43	
sis-1,3-Dichloropropene	0.25	U	1.0	0.25	0.14	ug/L		05/19/14 14:43	
Bromodichloromethane	0.25	U	1.0	0.25	0.15	ug/L		05/19/14 14:43	
Ethylbenzene	0.25	U	1.0	0.25	0.17	ug/L		05/19/14 14:43	
1,2-Dibromoethane	0.25	U	1.0	0.25	0.24	ug/L		05/19/14 14:43	
n-Xylene & p-Xylene	0.50	U	2.0	0.50	0.24	ug/L		05/19/14 14:43	
2-Butanone (MEK)	0.57	U	10	0.57	0.57	ug/L		05/19/14 14:43	
1-Methyl-2-pentanone (MIBK)	0.50	U	10	0.50	0.32	ug/L		05/19/14 14:43	
Methylene Chloride	0.50	U	1.0	0.50	0.33	ug/L		05/19/14 14:43	
o-Xylene	0.25	U	1.0	0.25	0.14	ug/L		05/19/14 14:43	
Styrene	0.25	U	1.0	0.25	0.11	ug/L		05/19/14 14:43	
Tetrachloroethene	0.50	U	1.0	0.50	0.29	ug/L		05/19/14 14:43	
Γoluene	0.25	U	1.0	0.25	0.13	ug/L		05/19/14 14:43	
rans-1,2-Dichloroethene	0.25	U	1.0	0.25	0.19	ug/L		05/19/14 14:43	
rans-1,3-Dichloropropene	0.25	U	1.0	0.25		ug/L		05/19/14 14:43	
Frichloroethene	0.25	U	1.0	0.25	0.17			05/19/14 14:43	
/inyl chloride	0.25	U	1.0	0.25	0.22			05/19/14 14:43	
Kylenes, Total	0.25	U	2.0	0.25	0.14			05/19/14 14:43	
Dibromochloromethane	0.25	U	1.0	0.25		ug/L		05/19/14 14:43	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		70 - 120		05/19/14 14:43	1
4-Bromofluorobenzene (Surr)	92		75 - 120		05/19/14 14:43	1
Toluene-d8 (Surr)	103		85 - 120		05/19/14 14:43	1
Dibromofluoromethane (Surr)	92		85 - 115		05/19/14 14:43	1

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Nitroguanidine

TestAmerica Job ID: 240-37114-1

Client Sample ID: FWGSCFMW-004-0440-GW Lab Sample ID: 240-37114-15

Date Collected: 05/07/14 09:32 Matrix: Water

Date	Received:	05/08/14	14:50

	rganic Compounds									
Analyte	Result			LOQ	LOD		Unit	D	Analyzed	Dil Fa
3is(2-ethylhexyl) phthalate	4.8 (U		4.8	4.8	1.6	ug/L		05/16/14 16:44	ři.
Butyl benzyl phthalate	0.48 \	U		4.8	0.48	0.25	ug/L		05/16/14 16:44	
Diethyl phthalate	0.95	U		1.9	0.95	0.57	ug/L		05/16/14 16:44	
Dimethyl phthalate	0.48 \	J		1.9	0.48	0.28	ug/L		05/16/14 16:44	
Di-n-butyl phthalate	4.8 U	U		4.8	4.8	1.6	ug/L		05/16/14 16:44	
Di-n-octyl phthalate	0.48 \	U		1.9	0.48	0.22	ug/L		05/16/14 16:44	
Surrogate	%Recovery Qua	lifier	Limits				Prepared		Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	65		50 _ 110	_			05/12/14 07:	40	05/16/14 16:44	
2-Fluorophenol (Surr)	62		20 _ 110				05/12/14 07:	40	05/16/14 16:44	
Nitrobenzene-d5 (Surr)	60		40 _ 110				05/12/14 07:	40	05/16/14 16:44	
Phenol-d5 (Surr)	69		10 - 115				05/12/14 07:	40	05/16/14 16:44	
Terphenyl-d14 (Surr)	100		50 - 135				05/12/14 07:	40	05/16/14 16:44	
2,4,6-Tribromophenol (Surr)	78		40 - 125				05/12/14 07:	40	05/16/14 16:44	
Method: 8081A - Organochlorin	ne Pesticides (GC)									
Analyte	Result (Qualifier	1	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
4,4'-DDD	0.095	U		0.24	0.095	0.046	ug/L		05/16/14 19:07	
4,4'-DDE	0.095 (U		0.24	0.095	0.046	ug/L		05/16/14 19:07	
1,4'-DDT	0.095 (U		0.24	0.095	0.076	ug/L		05/16/14 19:07	
Aldrin	0.095 \	U		0.14	0.095	0.039	ug/L		05/16/14 19:07	
alpha-BHC	0.095 \	IJ		0.14	0.095	0.033	ug/L		05/16/14 19:07	
alpha-Chlordane	0.095 \	U		0.24	0.095	0.067	ug/L		05/16/14 19:07	
peta-BHC	0.095 (U		0.24	0.095	0.040	ug/L		05/16/14 19:07	
delta-BHC	0.095 (U		0.24	0.095	0.041	ug/L		05/16/14 19:07	
Dieldrin	0.095 (U		0.14	0.095	0.036	ug/L		05/16/14 19:07	
Endosulfan I	0.095 (J		0.24	0.095	0.062			05/16/14 19:07	
Endosulfan II	0.095 (0.24	0.095	0.057	-		05/16/14 19:07	
Endosulfan sulfate	0.095 (U		0.24	0.095	0.052	-		05/16/14 19:07	
Endrin	0.095 (0.24	0.095	0.052			05/16/14 19:07	
Endrin aldehyde	0.095 (0.24	0.095	0.052	_		05/16/14 19:07	
Endrin ketone	0.095			0.24	0.095	0.037			05/16/14 19:07	Ì
gamma-BHC (Lindane)	0.095 (0.24	0.095	0.030			05/16/14 19:07	
gamma-Chlordane	0.095			0.24	0.095	0.057	_		05/16/14 19:07	
Heptachlor	0.095			0.14	0.095	0.038			05/16/14 19:07	
, . , . , . ,	0.095 (0.034			05/16/14 19:07	
Heptachlor epoxide	0.24 (0.14 0.48	0.095 0.24	0.15			05/16/14 19:07	
Methoxychlor							ug/L ug/L			
Toxaphene	3.8 (U		9.5	3.8	1.5	ug/L		05/16/14 19:07	
Surrogate	%Recovery Qua	lifier	Limits	20			Prepared	22	Analyzed	Dil Fa
DCB Decachlorobiphenyl			30 - 135				05/10/14 10:		05/16/14 19:07	
DCB Decachlorobiphenyl	90		30 - 135				05/10/14 10:		05/16/14 19:07	
Tetrachloro-m-xylene	89		25 _ 140				05/10/14 10:		05/16/14 19:07	
Tetrachloro-m-xylene	83		25 - 140				05/10/14 10:	23	05/16/14 19:07	
Method: 8330 Modified - Nitrog				LOQ	LOD		Unit			Dil Fac
Analyte	Result (D	Analyzed	

05/13/14 17:45

6.0

2.4 ug/L

6.0 U

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

Client Sample ID: FWGSCFMW-004-0440-GW Lab Sample ID: 240-37114-15

Date Collected: 05/07/14 09:32 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
1,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.032	ug/L		05/19/14 22:04	1
1,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		05/19/14 22:04	1
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		05/19/14 22:04	1
2,4-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		05/19/14 22:04	1
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L		05/19/14 22:04	1
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L		05/19/14 22:04	1
2-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		05/19/14 22:04	1
3-Nitrotoluene	0.10	U	0.51	0.10	0.058	ug/L		05/19/14 22:04	1
4-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L		05/19/14 22:04	1
4-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L		05/19/14 22:04	1
HMX	0.051	U	0.15	0.051	0.037	ug/L		05/19/14 22:04	1
RDX	0.051	U	0.15	0.051	0.037	ug/L		05/19/14 22:04	1
Nitrobenzene	0.10	U	0.15	0.10	0.051	ug/L		05/19/14 22:04	1
Tetryl	0.10	U	0.15	0.10	0.051	ug/L		05/19/14 22:04	1
Nitroglycerin	0.51	U	0.66	0.51	0.34	ug/L		05/19/14 22:04	1
PETN	0.51	U	0.66	0.51	0.31	ug/L		05/19/14 22:04	1
Surrogate	%Recovery Qu	ıalifier	Limits			Prepa	ared	Analyzed	Dil Fac
3,4-Dinitrotoluene	97		79 - 111			05/12/14	13:43	05/19/14 22:04	1
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		05/15/14 17:01	1

TestAmerica Job ID: 240-37114-1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGSCFMW-004-0440-GF

Lab Sample ID: 240-37114-16 Date Collected: 05/07/14 09:32 Matrix: Water

Date Received: 05/08/14 14:50

Method: 6010B - Metals (ICP) - Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	10	U	10	10	3.3	ug/L		05/15/14 10:24	1
Chromium	4.0	U	7.0	4.0		ug/L		05/15/14 10:24	1
Cobalt	4.0	U	7.0	4.0	1.5	ug/L		05/15/14 10:24	1
Lead	5.0	U	10	5.0	1.7	ug/L		05/15/14 10:24	1
Selenium	10	U	15	10	4.0	ug/L		05/15/14 10:24	1
Silver	5.0	U	7.0	5.0	1.7	ug/L		05/15/14 10:24	1
Vanadium	4.0	U	7.0	4.0	1.3	ug/L		05/15/14 10:24	1
Barium	76	J	200	5.0	2.8	ug/L		05/15/14 10:24	1
Calcium	150000		5000	1000	630	ug/L		05/15/14 10:24	1
Copper	10	U	25	10	4.4	ug/L		05/15/14 10:24	1
Magnesium	59000		5000	300	120	ug/L		05/15/14 10:24	1
Manganese	720		15	5.0	1.8	ug/L		05/15/14 10:24	1
Nickel	5.0	U	40	5.0	2.2	ug/L		05/15/14 10:24	1
Potassium	2800	J	5000	900	300	ug/L		05/15/14 10:24	1
Method: 6020 - Metals (ICP/MS)) - Total Recoverab	le							
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		05/21/14 15:01	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		05/21/14 15:01	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		05/21/14 15:01	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		05/21/14 15:01	1
Iron	100	U	150	100	44	ug/L		05/21/14 15:01	1
Sodium	10000		1000	400	160	ug/L		05/21/14 15:01	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		05/21/14 15:01	1
Zinc	50	U	50	50	27	ug/L		05/21/14 15:01	1
Method: 7470A - Mercury (CVA	Α)								
Analyte	•	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	11	0.20	0.20	0.12	/1		05/15/14 15:23	1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGEQUIPRINSE1-0443-GW

Lab Sample ID: 240-37114-17 Date Collected: 05/07/14 13:42 Matrix: Water

Date Received: 05/08/14 14:50

Method: 8260B - Volatile Orga Analyte		Qualifier	1	LOQ	LOD	DL	Unit	D Analyzed	Dil Fa
1,1,1-Trichloroethane	0.25	U		1.0	0.25	0.22	ug/L	05/19/14 15:06	
1,1,2,2-Tetrachloroethane	0.25	U		1.0	0.25	0.18	ug/L	05/19/14 15:06	
1,1,2-Trichloroethane	0.50	U		1.0	0.50	0.27	ug/L	05/19/14 15:06	
1,1-Dichloroethane	0.25	U		1.0	0.25	0.15	ug/L	05/19/14 15:06	
1,1-Dichloroethene	0.25	U		1.0	0.25	0.19	ug/L	05/19/14 15:06	
1,2-Dichloroethane	0.25	U		1.0	0.25	0.22	ug/L	05/19/14 15:06	
1,2-Dichloroethene, Total	0.25	U		2.0	0.25	0.17		05/19/14 15:06	
1,2-Dichloropropane	0.25	U		1.0	0.25	0.18	ug/L	05/19/14 15:06	
2-Hexanone	0.50	U		10	0.50	0.41	ug/L	05/19/14 15:06	
Bromochloromethane	0.50	U		1.0	0.50	0.29		05/19/14 15:06	
Acetone	12			10	1.1		ug/L	05/19/14 15:06	
Benzene	0.25	U		1.0	0.25	0.13	_	05/19/14 15:06	
Bromoform	0.64			1.0	0.64	0.64		05/19/14 15:06	
Bromomethane	0.50			1.0	0.50	0.41		05/19/14 15:06	
Carbon disulfide	0.25			1.0	0.25	0.13	-	05/19/14 15:06	
Carbon tetrachloride	0.25			1.0	0.25	0.13		05/19/14 15:06	
Chlorobenzene	0.25			1.0	0.25	0.15	_	05/19/14 15:06	
Chloroethane	0.50			1.0	0.50	0.29	-	05/19/14 15:06	
Chloroform	0.25			1.0	0.25	0.16		05/19/14 15:06	
Chloromethane	0.50			1.0	0.50	0.30		05/19/14 15:06	
cis-1,2-Dichloroethene	0.25			1.0	0.25	0.17	_	05/19/14 15:06	
cis-1,3-Dichloropropene	0.25			1.0	0.25	0.14		05/19/14 15:06	
Bromodichloromethane	0.25			1.0	0.25	0.15	-	05/19/14 15:06	
Ethylbenzene	0.25			1.0	0.25	0.17	-	05/19/14 15:06	
1,2-Dibromoethane	0.25			1.0	0.25	0.24		05/19/14 15:06	
m-Xylene & p-Xylene	0.50			2.0	0.50	0.24	-	05/19/14 15:06	
2-Butanone (MEK)	1.5			10	0.57	0.57		05/19/14 15:06	
4-Methyl-2-pentanone (MIBK)	0.50			10	0.50	0.32		05/19/14 15:06	
Methylene Chloride	0.50			1.0	0.50	0.33	-	05/19/14 15:06	
o-Xylene	0.25			1.0	0.25	0.14	-	05/19/14 15:06	
Styrene	0.25			1.0	0.25	0.11		05/19/14 15:06	
Tetrachloroethene	0.50			1.0	0.50	0.29	-	05/19/14 15:06	
Toluene	0.20			1.0	0.25	0.13		05/19/14 15:06	
trans-1,2-Dichloroethene	0.25			1.0	0.25	0.13	_	05/19/14 15:06	
trans-1,3-Dichloropropene	0.25			1.0	0.25	0.19		05/19/14 15:06	
Trichloroethene	0.25			1.0	0.25	0.19	_	05/19/14 15:06	
Vinyl chloride	0.25			1.0	0.25	0.17		05/19/14 15:06	
Xylenes, Total	0.25			2.0	0.25	0.22		05/19/14 15:06	
Aylenes, Total Dibromochloromethane	0.25			1.0	0.25		ug/L ug/L	05/19/14 15:06	
Dibromocniorometnane	0.25	U		1.0	0.25	0.18	ug/L	05/19/14 15:06	
Surrogate	%Recovery Qu	ıalifier	Limits				Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4 (Surr)	93		70 - 120	_				05/19/14 15:06	
4-Bromofluorobenzene (Surr)	96		75 - 120					05/19/14 15:06	
Toluene-d8 (Surr)	104		85 - 120					05/19/14 15:06	

Method: 8270C - Semivolatile	Organic Compounds (GC/MS)

Dibromofluoromethane (Surr)

meaned of the comment of game	o o o i i i po a i i a c	(00,)							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Acenaphthene	0.095	U	0.19	0.095	0.042	ug/L		05/16/14 15:52	1
Acenaphthylene	0.095	U	0.19	0.095	0.046	ug/L		05/16/14 15:52	1

85 - 115

TestAmerica Canton

05/19/14 15:06

TestAmerica Job ID: 240-37114-1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGEQUIPRINSE1-0443-GW

Lab Sample ID: 240-37114-17 Date Collected: 05/07/14 13:42 Matrix: Water

Date Received: 05/08/14 14:50

Analyte		Qualifier	LOQ	LOD		Unit	D	Analyzed	Dil Fa
Anthracene	0.095		0.19	0.095	0.084	ug/L		05/16/14 15:52	
Benzo[a]anthracene	0.095	U	0.19	0.095	0.028	ug/L		05/16/14 15:52	
Benzo[a]pyrene		U	0.19	0.095	0.049	ug/L		05/16/14 15:52	
Benzo[b]fluoranthene	0.095	U	0.19	0.095	0.038	ug/L		05/16/14 15:52	
Benzo[g,h,i]perylene	0.095	U	0.19	0.095	0.044	ug/L		05/16/14 15:52	
Benzoic acid	19	U	24	19	9.5	ug/L		05/16/14 15:52	
Benzo[k]fluoranthene	0.095	U	0.19	0.095	0.043	ug/L		05/16/14 15:52	
Benzyl alcohol	0.48	U	4.8	0.48	0.36	ug/L		05/16/14 15:52	
Bis(2-chloroethoxy)methane	0.48	U	0.95	0.48	0.30	ug/L		05/16/14 15:52	
Bis(2-chloroethyl)ether	0.095	U	0.95	0.095	0.095	ug/L		05/16/14 15:52	
Bis(2-ethylhexyl) phthalate	4.8	U	4.8	4.8	1.6	ug/L		05/16/14 15:52	
4-Bromophenyl phenyl ether	0.48	U	1.9	0.48	0.21	ug/L		05/16/14 15:52	
Butyl benzyl phthalate	0.48	U	4.8	0.48	0.25	ug/L		05/16/14 15:52	
Carbazole	0.48	U	0.95	0.48	0.27	ug/L		05/16/14 15:52	
4-Chloroaniline	0.48	U	1.9	0.48	0.20	ug/L		05/16/14 15:52	
4-Chloro-3-methylphenol	0.48	U	1.9	0.48	0.20	ug/L		05/16/14 15:52	
2-Chloronaphthalene	0.48	U	0.95	0.48	0.095	ug/L		05/16/14 15:52	
2-Chlorophenol	0.48	U	0.95	0.48	0.28	ug/L		05/16/14 15:52	
4-Chlorophenyl phenyl ether	0.48	U	1.9	0.48	0.29	ug/L		05/16/14 15:52	
Chrysene	0.095	U	0.19	0.095	0.048	ug/L		05/16/14 15:52	
Dibenz(a,h)anthracene	0.095	U	0.19	0.095	0.042	ug/L		05/16/14 15:52	
Dibenzofuran	0.095	U	0.95	0.095	0.019			05/16/14 15:52	
1,2-Dichlorobenzene	0.48	U	0.95	0.48	0.28	ug/L		05/16/14 15:52	
1,3-Dichlorobenzene	0.48	U	0.95	0.48	0.22	-		05/16/14 15:52	
1,4-Dichlorobenzene	0.48	U	0.95	0.48	0.32	_		05/16/14 15:52	
3,3'-Dichlorobenzidine	0.95	U	4.8	0.95	0.35			05/16/14 15:52	
2,4-Dichlorophenol	0.48	U	1.9	0.48		ug/L		05/16/14 15:52	
Diethyl phthalate	3.2		1.9	0.95		ug/L		05/16/14 15:52	
2,4-Dimethylphenol	0.48	U	1.9	0.48	0.24			05/16/14 15:52	
Dimethyl phthalate	0.48		1.9	0.48	0.28	-		05/16/14 15:52	
Di-n-butyl phthalate		U	4.8	4.8		ug/L		05/16/14 15:52	
4,6-Dinitro-2-methylphenol		U	4.8	3.8		ug/L		05/16/14 15:52	
2,4-Dinitrophenol	0.95		4.8	0.95	0.30	ug/L		05/16/14 15:52	
Di-n-octyl phthalate	0.48		1.9	0.48	0.22			05/16/14 15:52	
Fluoranthene	0.095		0.19	0.095	0.042			05/16/14 15:52	
Fluorene	0.095		0.19	0.095	0.039	_		05/16/14 15:52	
Hexachlorobenzene	0.095		0.19	0.095	0.081			05/16/14 15:52	
Hexachlorobutadiene	0.48		0.95	0.48	0.26			05/16/14 15:52	
Hexachlorocyclopentadiene	0.48		9.5	0.48	0.23			05/16/14 15:52	
Hexachloroethane	0.48		0.95	0.48		ug/L		05/16/14 15:52	
Indeno[1,2,3-cd]pyrene	0.095		0.93	0.095	0.041			05/16/14 15:52	
Indeno[1,2,3-cd]pyrene Isophorone	0.093		0.19	0.48		ug/L ug/L		05/16/14 15:52	
sopnorone 2-Methylnaphthalene	0.48		0.95	0.48	0.086	_		05/16/14 15:52	
2-Methylphenol	0.48		0.95	0.48	0.16	_		05/16/14 15:52	
3 & 4 Methylphenol	0.95		1.9	0.95	0.76			05/16/14 15:52	
Naphthalene	0.095		0.19	0.095	0.060			05/16/14 15:52	
2-Nitroaniline	0.48		1.9	0.48		ug/L		05/16/14 15:52	
3-Nitroaniline	0.48	U	1.9	0.48	0.27	ug/L		05/16/14 15:52	

TestAmerica Canton

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Heptachlor epoxide

Methoxychlor

Toxaphene

TestAmerica Job ID: 240-37114-1

Lab Sample ID: 240-37114-17

Matrix: Water

Client Sample ID: FWGEQUIPRINSE1-0443-GW Date Collected: 05/07/14 13:42

Method: 8270C - Semivolatile Analyte		s (GC/MS) Qualifier	(Continued) LOQ	LOD	DL	Unit D	Analyzed	Dil Fac
2-Nitrophenol	0.48	U	1.9	0.48	0.27	ug/L	05/16/14 15:52	1
-Nitrophenol	3.8	U	4.8	3.8	0.28	ug/L	05/16/14 15:52	1
-Nitrosodi-n-propylamine	0.48	U	0.95	0.48	0.23	ug/L	05/16/14 15:52	1
-Nitrosodiphenylamine	0.48	U	0.95	0.48	0.30	ug/L	05/16/14 15:52	1
2'-oxybis[1-chloropropane]	0.48	U	0.95	0.48	0.38	ug/L	05/16/14 15:52	1
entachlorophenol	0.95	U	4.8	0.95	0.26	ug/L	05/16/14 15:52	1
henanthrene	0.095	U	0.19	0.095	0.059	ug/L	05/16/14 15:52	1
henol	0.95	U	0.95	0.95	0.57	ug/L	05/16/14 15:52	1
yrene	0.095	U	0.19	0.095	0.040	ug/L	05/16/14 15:52	1
,2,4-Trichlorobenzene	0.48	U	0.95	0.48	0.27	ug/L	05/16/14 15:52	1
4,5-Trichlorophenol	0.48	U	4.8	0.48	0.29	ug/L	05/16/14 15:52	1
4,6-Trichlorophenol	0.48	U	4.8	0.48	0.23	ug/L	05/16/14 15:52	1
urrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fac
-Fluorobiphenyl (Surr)	83		50 - 110			05/12/14 07:40	05/16/14 15:52	1
Fluorophenol (Surr)	82		20 - 110			05/12/14 07:40	05/16/14 15:52	1
itrobenzene-d5 (Surr)	80		40 - 110			05/12/14 07:40	05/16/14 15:52	1
henol-d5 (Surr)	88		10 - 115			05/12/14 07:40	05/16/14 15:52	1
						05/40/44 07:40	05/40/44 45:50	
erphenyl-d14 (Surr)	111		50 - 135			05/12/14 07:40	05/16/14 15:52	1
	111 92		50 ₋ 135 40 ₋ 125			05/12/14 07:40	05/16/14 15:52	1
Terphenyl-d14 (Surr) 2,4,6-Tribromophenol (Surr) Method: 8081A - Organochlori	92							
,4,6-Tribromophenol (Surr)	92 ine Pesticides (GC)	Qualifier		LOD	DL			
,4,6-Tribromophenol (Surr) Method: 8081A - Organochlori	92 ine Pesticides (GC)		40 - 125	LOD 0.020	DL 0.0096	05/12/14 07:40 Unit D	05/16/14 15:52	1
4,6-Tribromophenol (Surr) lethod: 8081A - Organochlori nalyte 4'-DDD	92 ine Pesticides (GC) Result	U	40 - 125 LOQ			05/12/14 07:40 Unit	05/16/14 15:52 Analyzed	1 Dil Fac
4,6-Tribromophenol (Surr) lethod: 8081A - Organochlori nalyte .4'-DDD .4'-DDE	92 ine Pesticides (GC) Result 0.020	U	40 - 125 LOQ 0.050	0.020	0.0096	05/12/14 07:40 Unit	05/16/14 15:52 Analyzed 05/20/14 17:36	Dil Fac
4,6-Tribromophenol (Surr) lethod: 8081A - Organochlori nalyte .4'-DDD .4'-DDE .4'-DDT	92 ine Pesticides (GC) Result 0.020 0.020	U U U	40 - 125 LOQ 0.050 0.050	0.020 0.020	0.0096 0.0097	05/12/14 07:40 Unit	05/16/14 15:52 Analyzed 05/20/14 17:36 05/20/14 17:36	Dil Fac
4,6-Tribromophenol (Surr) lethod: 8081A - Organochlori nalyte 4'-DDD 4'-DDE 4'-DDT	92 ine Pesticides (GC) Result 0.020 0.020 0.020	U U U	LOQ 0.050 0.050 0.050	0.020 0.020 0.020	0.0096 0.0097 0.016	05/12/14 07:40 Unit D ug/L ug/L ug/L ug/L	Analyzed 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36	Dil Fac
4,6-Tribromophenol (Surr) lethod: 8081A - Organochlori nalyte 4'-DDD 4'-DDE 4'-DDT Idrin lpha-BHC	92 ine Pesticides (GC) Result 0.020 0.020 0.020 0.020	U U U U	LOQ 0.050 0.050 0.050 0.050	0.020 0.020 0.020 0.020	0.0096 0.0097 0.016 0.0082	05/12/14 07:40 Unit D ug/L ug/L ug/L ug/L ug/L ug/L	Analyzed 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36	Dil Fac 1 1 1
4,6-Tribromophenol (Surr) lethod: 8081A - Organochlori nalyte 4'-DDD 4'-DDE 4'-DDT Idrin lpha-BHC lpha-Chlordane	92 ine Pesticides (GC) Result 0.020 0.020 0.020 0.020 0.020 0.020	U U U U U	LOQ 0.050 0.050 0.050 0.030 0.030	0.020 0.020 0.020 0.020 0.020	0.0096 0.0097 0.016 0.0082 0.0070	05/12/14 07:40 Unit D ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Analyzed 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36	Dil Fac 1 1 1 1 1
4,6-Tribromophenol (Surr) lethod: 8081A - Organochlori nalyte ,4'-DDD ,4'-DDE ,4'-DDT Idrin lpha-BHC lpha-Chlordane eta-BHC	92 ine Pesticides (GC) Result 0.020 0.020 0.020 0.020 0.020 0.020 0.020	U U U U U	LOQ 0.050 0.050 0.050 0.030 0.030 0.030	0.020 0.020 0.020 0.020 0.020 0.020	0.0096 0.0097 0.016 0.0082 0.0070 0.014	05/12/14 07:40 Unit D ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Analyzed 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36	Dil Fac 1 1 1 1 1 1 1 1 1
.4,6-Tribromophenol (Surr) Method: 8081A - Organochlori nalyte	92 ine Pesticides (GC) Result 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	U U U U U U U	LOQ 0.050 0.050 0.050 0.030 0.030 0.050 0.050	0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0096 0.0097 0.016 0.0082 0.0070 0.014	05/12/14 07:40 Unit D ug/L	Analyzed 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36	Dil Fac 1 1 1 1 1 1 1
4,6-Tribromophenol (Surr) lethod: 8081A - Organochlori nalyte 4'-DDD 4'-DDE 4'-DDT Idrin lpha-BHC lpha-Chlordane eta-BHC eta-BHC ieldrin	92 Ine Pesticides (GC) Result 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	U U U U U U U U U U U U U U U U U U U	LOQ 0.050 0.050 0.050 0.030 0.030 0.050 0.050	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0096 0.0097 0.016 0.0082 0.0070 0.014 0.0084 0.0087	05/12/14 07:40 Unit D ug/L ug/L	Analyzed 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4,6-Tribromophenol (Surr) lethod: 8081A - Organochlori nalyte 4'-DDD 4'-DDE 4'-DDT Idrin pha-BHC pha-Chlordane eta-BHC elta-BHC ieldrin ndosulfan I	92 ine Pesticides (GC) Result 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	U U U U U U U U U U U U U U U U U U U	LOQ 0.050 0.050 0.050 0.050 0.030 0.030 0.050 0.050 0.050 0.050	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0096 0.0097 0.016 0.0082 0.0070 0.014 0.0084 0.0087	Unit D ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Analyzed 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1
### A.6-Tribromophenol (Surr) ### Idehod: 8081A - Organochlori nalyte ##-DDD ##-DDE ##-DDT ### Iden	92 ine Pesticides (GC) Result 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	U U U U U U U U U U U U U U U U U U U	LOQ 0.050 0.050 0.050 0.050 0.030 0.030 0.050 0.050 0.050 0.050	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0096 0.0097 0.016 0.0082 0.0070 0.014 0.0084 0.0087 0.0075	Unit D ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Analyzed 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36	Dil Fac
4,6-Tribromophenol (Surr) lethod: 8081A - Organochlori nalyte 4'-DDD 4'-DDE 4'-DDT Idrin Ipha-BHC Ipha-Chlordane eta-BHC elta-BHC ieldrin ndosulfan I ndosulfan III ndosulfan sulfate	92 ine Pesticides (GC) Result 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	U U U U U U U U U U U U U U U U U U U	LOQ 0.050 0.050 0.050 0.050 0.030 0.050 0.050 0.050 0.050 0.050	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0096 0.0097 0.016 0.0082 0.0070 0.014 0.0084 0.0087 0.0075 0.013	Unit D ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Analyzed 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36	Dil Fac
4,6-Tribromophenol (Surr) lethod: 8081A - Organochlori nalyte 4'-DDD 4'-DDE 4'-DDT Idrin Ipha-BHC Ipha-Chlordane eta-BHC elta-BHC ieldrin ndosulfan I ndosulfan II ndosulfan sulfate ndrin	92 ine Pesticides (GC) Result 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	U U U U U U U U U U U U U U U U U U U	LOQ 0.050 0.050 0.050 0.030 0.030 0.050 0.050 0.050 0.050 0.050 0.050	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0096 0.0097 0.016 0.0082 0.0070 0.014 0.0084 0.0087 0.0075 0.013 0.012	Unit D ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Analyzed 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4,6-Tribromophenol (Surr) lethod: 8081A - Organochlori nalyte 4'-DDD 4'-DDE 4'-DDT Idrin pha-BHC pha-Chlordane eta-BHC elta-BHC ieldrin ndosulfan I ndosulfan II ndosulfan sulfate ndrin ndrin aldehyde	92 ine Pesticides (GC) Result 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	U U U U U U U U U U U U U U U U U U U	LOQ 0.050 0.050 0.050 0.030 0.030 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0096 0.0097 0.016 0.0082 0.0070 0.014 0.0084 0.0087 0.0075 0.013 0.012 0.011	Unit D ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Analyzed 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4,6-Tribromophenol (Surr) lethod: 8081A - Organochlori nalyte 4'-DDD 4'-DDE 4'-DDT Idrin pha-BHC pha-Chlordane eta-BHC ieldrin ndosulfan I ndosulfan II ndosulfan sulfate ndrin ndrin aldehyde ndrin ketone	92 ine Pesticides (GC) Result 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LOQ 0.050 0.050 0.050 0.050 0.030 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0096 0.0097 0.016 0.0082 0.0070 0.014 0.0084 0.0087 0.0075 0.013 0.012 0.011 0.011 0.011	Unit D ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Analyzed 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
### Additional Action of the Indian Action of the I	92 Ine Pesticides (GC) Result 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	U U U U U U U U U U U U U U U U U U U	LOQ 0.050 0.050 0.050 0.050 0.030 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	0.0096 0.0097 0.016 0.0082 0.0070 0.014 0.0084 0.0087 0.0075 0.013 0.012 0.011 0.011	Unit D ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Analyzed 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36 05/20/14 17:36	Dil Fac

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	82	30 - 135	05/14/14 09:10	05/20/14 17:36	1
DCB Decachlorobiphenyl	82	30 - 135	05/14/14 09:10	05/20/14 17:36	1
Tetrachloro-m-xylene	80	25 - 140	05/14/14 09:10	05/20/14 17:36	1
Tetrachloro-m-xylene	75	25 - 140	05/14/14 09:10	05/20/14 17:36	1

0.030

0.10

2.0

0.020

0.050

0.80

0.020 U

0.050 U

0.80 U

0.0071 ug/L

0.032 ug/L

0.32 ug/L

TestAmerica Canton

05/20/14 17:36

05/20/14 17:36

05/20/14 17:36

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

TestAmerica Job ID: 240-37114-1

Client Sample ID: FWGEQUIPRINSE1-0443-GW

Lab Sample ID: 240-37114-17 Date Collected: 05/07/14 13:42 Matrix: Water

Date Received: 05/08/14 14:50

Method: 8082 - Polychlorinato Analyte		Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fa
Aroclor-1016	0.20	UH	0.50	0.20	0.17	ug/L	05/22/14 10:13	
Aroclor-1221	0.20	UH	0.50	0.20	0.13	ug/L	05/22/14 10:13	
Aroclor-1232	0.20	UH	0.50	0.20	0.16	ug/L	05/22/14 10:13	
Aroclor-1242	0.40	UH	0.50	0.40	0.22	ug/L	05/22/14 10:13	
Aroclor-1248	0.20	UH	0.50	0.20	0.099	ug/L	05/22/14 10:13	
Aroclor-1254	0.20	UH	0.50	0.20	0.16	ug/L	05/22/14 10:13	
Aroclor-1260	0.20	UН	0.50	0.20	0.17	ug/L	05/22/14 10:13	
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	74		40 - 140			05/20/14 07:4	12 05/22/14 10:13	
Tetrachloro-m-xylene	72		40 - 140			05/20/14 07:4	2 05/22/14 10:13	
DCB Decachlorobiphenyl	86		40 _ 135			05/20/14 07:4	2 05/22/14 10:13	
OCB Decachlorobiphenyl	81		40 - 135			05/20/14 07:4	12 05/22/14 10:13	
Method: 8330 Modified - Nitro	oguanidine (HPLC)							
Analyte	• ,	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fa
Nitroguanidine	6.0	U	20	6.0	2.4	ug/L	05/19/14 14:02	
Method: 8330A - Nitroaromati	ics and Nitramines							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fa
,3,5-Trinitrobenzene	0.051	U	0.15	0.051	0.032	ug/L	05/19/14 14:47	
,3-Dinitrobenzene	0.10	U	0.15	0.10	0.051	ug/L	05/19/14 14:47	
2,4,6-Trinitrotoluene	0.10	U	0.15	0.10	0.051	ug/L	05/19/14 14:47	
2,4-Dinitrotoluene	0.10	UM	0.13	0.10	0.051	ug/L	05/19/14 14:47	
2,6-Dinitrotoluene	0.10	U	0.13	0.10	0.051	ug/L	05/19/14 14:47	
2-Amino-4,6-dinitrotoluene	0.10	U	0.15	0.10	0.015	ug/L	05/19/14 14:47	
2-Nitrotoluene	0.10	U	0.51	0.10	0.090	ug/L	05/19/14 14:47	
3-Nitrotoluene	0.10	U	0.51	0.10	0.059	ug/L	05/19/14 14:47	
1-Nitrotoluene	0.10	U	0.51	0.10	0.090		05/19/14 14:47	
1-Amino-2,6-dinitrotoluene	0.10	U	0.15	0.10	0.051		05/19/14 14:47	
HMX	0.051	U	0.15	0.051	0.037	-	05/19/14 14:47	
RDX	0.051		0.15	0.051	0.037	-	05/19/14 14:47	
Nitrobenzene	0.10		0.15	0.10	0.051		05/19/14 14:47	
Fetryl	0.10		0.15	0.10	0.051		05/19/14 14:47	
Nitroglycerin	0.51		0.67	0.51		ug/L	05/19/14 14:47	
PETN	0.51		0.67	0.51		ug/L	05/19/14 14:47	
Surrogate	%Recovery Qu	ıalifier	Limits			Prepared	Analyzed	Dil Fa
3,4-Dinitrotoluene	94		79 - 111			05/13/14 13:3		
3,4-Dinitrotoluene	89		79 - 111			05/13/14 13:3		
Mothod: 6010P Motals (ICP)	Total Bassyorable							
Method: 6010B - Metals (ICP) Analyte		Qualifier	LOQ	LOD	DL	Unit	D Analyzed	Dil Fa
Arsenic	10	U	10	10	3.3	ug/L	05/15/14 10:28	
Chromium	4.0	U	7.0	4.0	1.4	ug/L	05/15/14 10:28	
Cobalt	4.0	U	7.0	4.0	1.5	ug/L	05/15/14 10:28	
ead	5.0	U	10	5.0	1.7	ug/L	05/15/14 10:28	
Selenium	10	U	15	10		ug/L	05/15/14 10:28	
211	5.0	U	7.0	5.0		ug/L	05/15/14 10:28	
Silver						-		
Silver Vanadium	4.0	U	7.0	4.0	1.3	ug/L	05/15/14 10:28	

TestAmerica Canton

TestAmerica Job ID: 240-37114-1

Client Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH)

Client Sample ID: FWGEQUIPRINSE1-0443-GW

Lab Sample ID: 240-37114-17 Date Collected: 05/07/14 13:42 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Calcium	1000	U	5000	1000	630	ug/L		05/15/14 10:28	1
Copper	10	U	25	10	4.4	ug/L		05/15/14 10:28	1
Magnesium	300	U	5000	300	120	ug/L		05/15/14 10:28	1
Manganese	5.0	U	15	5.0	1.8	ug/L		05/15/14 10:28	1
Nickel	5.0	U	40	5.0	2.2	ug/L		05/15/14 10:28	1
Potassium	900	U	5000	900	300	ug/L		05/15/14 10:28	1
Method: 6020 - Metals (ICP/MS) - To	tal Recoverab	le							
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Aluminum	60	U	60	60	20	ug/L		05/21/14 15:08	1
Antimony	1.0	U	2.0	1.0	0.33	ug/L		05/21/14 15:08	1
Beryllium	1.0	U	1.0	1.0	0.50	ug/L		05/21/14 15:08	1
Cadmium	1.0	U	2.0	1.0	0.40	ug/L		05/21/14 15:08	1
Iron	100	U	150	100	44	ug/L		05/21/14 15:08	1
Sodium	400	U	1000	400	160	ug/L		05/21/14 15:08	1
Thallium	1.5	U	2.0	1.5	0.79	ug/L		05/21/14 15:08	1
Zinc	50	U	50	50	27	ug/L		05/21/14 15:08	1
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Hg	0.20	U	0.20	0.20	0.12	ug/L		05/15/14 15:25	1
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Cyanide, Total	0.0050	U	0.010	0.0050	0.0032	mg/L		05/20/14 10:33	1
Nitrocellulose	1.0	U	2.0	1.0	0.48	mg/L		05/15/14 17:03	1

TestAmerica Laboratories, Inc.

CHAIN OF CUSTODY AND RECEIVING DOCUMENTS

Chain of Custody Record

stAmerica Laboratory location:	NORTH	CANTON			
Regulatory program:	DW	NPDES	→ RCRA	Other	

TestAr	nerica
THE LEADER IN ENV	IRONMENTAL TESTING

Client Contact	1			TestAmerica Laboratories, Inc.
Company Name:	Client Project Manager:	Site Contact:	Lab Contact:	COC No:
EQM	JOHN MILLER	ERIK CORBIN	MARK LDEB	CAL050714
Address:	Telephone:	Telephone:	Telephone:	1 of 1 cocs
1800 CARILLON BIND City/State/Zip:	513 6619 7330	513 742 7049	330.497.9396	TOTAL ASSESSMENT ASSES
City/State/Zip: CINCINNATI OH 45240 Phone:		Analysis Turnaround Time (in BUS days)		Resulting to only
Phone:	ecorbing egm.com	(in BUS days) TAT if different from below	Analyses	
Phone: 513.825.7500 Project Name: FORMER RVAAP Project Number:	1			2012 6010/6020/447 Trip contributed Trip cont
Project Name:	Method of Shipment/Carrier:	Per	8370 8370 8081 8082 8330	2005 Indication —
Former KVAAP	LAB PICKUP Shipping/Tracking No:	_ SO√ □ 1 week		3 33
Project Number:		2 days		90 m 200 m
30174.0016.01.11.1	N/A	I day	28 4 4 827 G	9 g
	Matrix.	Containers & Preservatives 1 1 4 4 5	에 선 기열 기이 됨	2 2 2
	since lend	2 8 1 2 3 2	SVOC 1 SVOC 4 SVOC 1 PESKLICKS PCB EXPLO	Sample Specific Notes/ Special Instructions:
Sample Identification	Sample Date Sample Time Voltier:	H2SO4 HNO3 HCI HCI ZnAc/ NaOH Unpres Other:	VOC 824 SVOC 1 PESKITES PCB EXPLO	Special Instructions:
FW6TERM Z-Tryo	5/7/14/0730 X		X	E-120
		 		
FUS SCFMW-004-040-6W		7 7	XXXX	C-111
FWG86Fmw-004-0440-GF	1 T X 1			X filered C-111
FUGFORPRIOSE 1-0443-64	1342 X	1319	XXXXXX	XX E-120
	 			
11: 11 11	 			
<u> </u>	1. PICHE			
	In Shiff			
	 			
Possible Hazard Identification	Liferat Discount Disc	Sample Disposal (A fee may be assessed if sa		Months
Non-Hazard Flammable Ski	n Irritant Poison B Unknow	vn Return to Client Dispose	ii by Lab Active For	violitis
	oler E120			
Relanquished by:	Company: Date/Tithe:)	1400 Recoired by: (460	Company	over 5-8-14- Hot
Relinquished by	Company: Date Time: 5-8-16	Received by:	Company	Date/Time:
Palinovished by:	Company DataTime	Received in Laboratory by:	Company:	Date Time:
Relinquished by:	Dater inte	Received in Laboratory by:	Company.	7
				

Chain of Custody Record

Jorth Canton

TestAmerica Laboratory location:

TestAmerica Laboratories, inc. All rights reserved erica & Design ™ are trademarks of TestAmerica Laboratories, Inc

Test/	∤ Υ	ner	ica
THE LEADER IN	N ENVIR	ONMENTA	L TESTING

Regulatory program: RCRA Client Contact TestAmerica Laboratories, Inc. Company Name: Mark Loeb EGM Sohn Miller Dragorty 56010 1800 Cavillon Blood
City/State/Zip:
Cincinnati Ono 45240 513-825-7500 330-497-9396 513 825-7500 adragotta a esm con Analysis Turnaround Time For lab use only (in BUS days) Walk-in client 5/3-825-7500 Lab pickup Method of Shipment/Carrier: Lab sampling Shipping/Tracking No: Job/SDG No: 2 days 030174.0016.001 Matrix Sample Specific Notes / Special Instructions: Sample Date | SampleTime Sample Identification 05/7/14 0730 TAO 0943 STIS FW7113mw-246-0439+6F FUGUZMO-DUPI-0442 GW 1043 TAO FUGUSMW-DUPI-0442-6F Fugu 2 mw - 271-0438- 6W XXX 1259 EIIS, IDET M23 REPAIN FWGLI 2mw-271-0438-GF FLOGILI MW-064C-0486 GW 1637 8 FUGILIMW-064C-0436-GF Sample Disposal A fee may be assessed if samples are retained longer than 1 month)

Return to Client Disposal By Lab Archive For Possible Hazard Identification MS/MSD on sample FIXGULZMW-271-0438-All VOAS IN COOPER TAD Relinguished by:

TAL 0018-1 (04/10)

Chain of Custody Record

Joven Canton

TestAmerica Laboratory location:

<u>TestAmerica</u>

Other J Regulatory program: Client Contact TestAmerica Laboratories, Inc. Company Name: Client Project Manager: COC No: 56011 EQM Mark Loeb John Miller 1800 Carillon Blvd 513-825-7500 incinnati Okid 15240 adragotta a For lab use only Walk-in client Lab pickup Lab sampling Shipping/Tracking No: Job/SDG No: 030174.0016.061. Matrix Sample Specific Notes / ZnAc/ NaOH Special Instructions: HCI Sample Identification Sample Date SampleTime 2 FUG TEAM 3-TRIPOSOS14 05/8/14 0800 3 FUGLLINW-088-04811-GW 1029 X FWGUI MW-088-048 GF 1029 9 3 FUE EQUIPRINSE 2 - 0444-QW 1300 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Unknown Disposal By Lab Non-Hazard Skin Irritant Poiscn B Return to Client regleirement muse collected near pickup time may not meet france Relinquished by:

	The state of the contract of t	Sample Receipt Form		_	Login	12 14 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	711 <u>\</u>	1
Clie	it EQM		Site Name	ć		Cooler t	mpacked	i by
Cool	er Received on	78/14	Opened on 5	8/14		< Ell	M	Va
Fed	Ex: 1st Grd Exp	UPS FAS Stetson	Client Drop Off	VestAmerica	Courier)	Other		
Tes	America Cooler#_		ox Client Cooler	Box				
		sed: Bubble Wrap	-	None	Other			
1	COOLANI: Cooler temperature	Wet Ice Blue Ice	Dry Ice Water	None				
1.	_	F +0 °C) Observed Coo	ler Temp °C	Corrected	d Cooler Ter	mn	°C	
		F -1 °C) Observed Coo			d Cooler Te	_	•C .	See Multiple
	IR GUN# 5 (C	F +1 °C) Observed Coo	ler Temp°C	Corrected	d Cooler Ter	mp.	°C	Opoler Form
	IR GUN#8 (C	F +1 °C) Observed Coo F +1 °C) Observed Coo	ler Temp°C		d Cooler Fer		°C	`
2.		on the outside of the co				No		
	-	ls on the outside of the c	ooler(s) signed & date	d?		No NA .		
3.	-Were custody sea	slip attached to the cooler	r(s)?			(NO)		
4.		accompany the sample	` '		/Yes	No		
5.		papers relinquished & sig	,	place?	Yes) _{No}		
41		ve in good condition (Un	,		(Yes	No		
Ħ		els be reconciled with-the e(s) used for the test(s) in			Yes) _{-No-}		
a		received to perform indi			بمص) No		
11		the correct pH upon rece	-		(_~~)		pH Stri	p Lot# <u>HC391902</u>
1	Were VOAs on the		•		Yes	•		
n		6 mm in any VOA vials?	?		Yes	No NA		
13.	Was a trip blank p	resent in the cooler(s)?			Yes	No		
Cor	itacted PM	Date	by	vi	ia Verbal V	oice Mail(Other	
II .	cerning				Stanton Control			
14	CHAIN OF CUS	TODY & SAMPLE DIS	CDEDANCIES			Samp	les proc	essed by:
17.	CHAIN OF COS.	ODI & SAMILE DIS	CRETAINCIES		£	ken	19	
						1		
					· · · · · · · · · · · · · · · · · · ·			
l								
l								
L								
-11	SAMPLE COND							
	aple(s)		were received after		rended hold ere received			
Sar	nple(s)		were receiv					
ļ	SAMPLE PRESE				V managa A			-,
1		M. P. ALLOIT				utla ou	und to at	no lohousts
	nple(s) ne preserved:	Preservative(s)	added/Lot number(s):		were mi	uner preser	vea in th	ne laboratory.

TestAmerica Multiple	Cooler Receipt Form/	Narrative	Login#: 3 17_L	
Cooler#	IR Gun#	Observed Temp °C	Corrected Temp	Coolant
client		3./	4 /	ice
(,(1)	2	7.90	4,19)	1
Client		4 (C/2	
Client	,	- L	3.4	
(light		6, 3	C 2	
China de		2.8	30	
Client		3.0	4.7	
Clarent		7.4	3 4	
clout		4,2	5.2	
ELLO		7.7	7.2	
client		1,4	2.4	
client		7.4	3.4	
		1 Mars - 2 1000000 to me and all all all all all all all all all al	CANONIC COMPANY OF THE PROPERTY OF THE PROPERT	
			,	
			,	
Walter Commence of the Commenc				
and the same of th				
		,	A CONTRACTOR OF THE PARTY OF TH	and the first of the same and t

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THE RESIDENCE OF THE STATE OF T

			The state of the s	
			Managed April 1	
			oranian gyysytysianny protesta anna an an anna againn again 1900 ann anna again ag gy gy gy garainn anna	
	1	1		

Project Number: 030174.0016 **Sample Event:** May 2014

Data Reviewer/Date: Angye Dragotta/August 18, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1,
3. Were holding times met?	X				QAPP Table 5-1, J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1,
5. Were all QAPP addendum-specified target analytes reported?	X				QAPP Table 4-5
6. Was the GC/MS system tuned with bromofluorobenzene (BFB) during each 12 hour shift (prior to ICAL and Cal Ver.)?	X				QSM Table F-4
7. Calibration					
7a. Did the initial calibration curve consist of 5 concentration levels?	X			Instrument A3UX9–4/3/14	QSM Table F-4 R
7b. Did the Calibration Check Compounds (CCCs) (see Table 1 below) relative standard deviations (%RSD) ≤ 30%?	X				QSM Table F-4 R
7c. Were the minimum response factors (RFs) for the System Performance Check Compounds (SPCCs) (see Table 2 below) met?	X				QSM Table F-4
7d. Did target analytes with an average calibration type have an RSD≤ 15%?	X				QSM Table F-4 15% <rsd< 20%="<br">J/UJ</rsd<>
7e. IF the RSD was >15% was a different calibration option used?	X				
7f. If a linear regression curve was used, was the correlation coefficient r>0.995?	X			Bromomethane, carbon disulfide, trans-1,2-dichloroethene used a linear fit	QSM Table F-4 R<0.995=-J/R
7g. If a non-linear regression was used, was the COD r≥0.99, with a minimum of 6 points for second order and 7 points for third order?	X				QSM Table F-4 R<0.99=-J/R
8. Was a LOD Level Verification performed quarterly for each reported analyte with detected results?	X				QSM Table F-4 and section D.1.2.1

Project Number: 030174.0016 **Sample Event:** May 2014

Data Reviewer/Date: Angye Dragotta/August 18, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
9. Was a MRL Level Verification run at the beginning and end of every daily sequence or every 12 hours?	X			5/19/14 @ 1005 and 1529	
10. Were the QC/MRL recoveries 70-130%		X		 The opening MRL analyzed 5/19/14 @ 1005 recovered above control limits of 70-130% for vinyl chloride at 137%. The closing MRL analyzed 5/19/14 @ 1529 recovered above control limits of 70-130% for bromomethane at 138% and below control limits of 70-130% for 2-hexanone at 67%, bromoform at 69%, carbon disulfide at 55%, carbon tetrachloride at 63%, 2-butanone at 66% and MIBK at 67%. A verification check sample was analyzed following the closing MRL with detected results for the outlier analytes. The 2-hexanone, bromoform, carbon disulfide, carbon tetrachloride, 2-butanone and MIBK results for samples FWGTEAM3-TRIP050814, FWGLL1MW-088-0437-GW, FWGEQUIPRINSE2-0444-GW, FWGTEAM3-TRIP, FWGLL3MW-246-0439-GW, FWGLL3MW-DUP1-0442-GW, FWGLL2MW-271-0438-GW, FWGTEAM2-TRIP and FWGEQUIPRINSE1-0443-GW were qualified as estimated, "J/ UJ". No qualifications were required for the bromomethane or vinyl chloride outliers as there were no detected concentrations of bromomethane or vinyl chloride reported for the bracketed field samples. 	Louisville Supplement to the DOD QSM
11. Was a second source verification (ICV) analyzed? Were results 80-120%?	X			4/3/14 @2204	QSM Table F-4 J=<80% and >120%
12. Was a CCV run daily prior to analysis and every 12 hours of analysis time?	X			5/19/14 @0907	QSM Table F-4
12a. Were the average response factors (RFs) for the (SPCCs) (see Table 2 below) met?	X				QSM Table F-4
12b. Were all target analytes ≤ 20%D?	X				QSM Table F-4 %D <20% = J/UJ
13. Were the internal standards added to every sample?	X				QSM Table F-4
13a. Was the EICP area between -50% and +100% of the ICAL mid-point standard?	X				QSM Table F-4 R
13b. Were the retention times for all IS compounds within ±30 seconds from the RT of the mid-point standard in the ICAL?	X				QSM Table F-4 J/UJ
14. Were the retention times for target analytes	X				QSM Table F-4

Project Number: 030174.0016

Sample Event: May 2014

Data Reviewer/Date: Angye Dragotta/August 18, 2014

within ±0.06 RRT units from the RT of the mid-point standard in the ICAL or the most recently updated RRT for all samples?				J
15. Was a method blank prepared and analyzed with each batch?	X			QSM Table F-4
15a. Were target analytes detected in the method blank >1/2 the MRL and >RL for common contaminants?		X	Checked by ADR.	QSM Table F-4 <5/10X =B
16. Was a field blank (equipment and/or trip) collected and analyzed?	X			
16a. Were target analytes detected in the field blanks?	X		Checked by ADR. Chloroform was detected in FWGTEAM3-Trip050814 at 0.35µg/L, FWGTEAM3-Trip at 0.29µg/L and at 0.34µg/L in sample FWGTEAM2-Trip. FWGEQUIPRINSE2-0444-GW had acetone detected at 14µg/L, carbon disulfide at 0.69µg/L, 2-butanone at 3.6µg/L and toluene at 0.22µg/L. FWGEQUIPRINSE1-0443-GW had acetone detected at 12µg/L, 2-butanone at 1.5µg/L and toluene at 0.20µg/L. There were no detected acetone, chloroform, carbon disulfide, 2-butanone or toluene concentrations reported for the associated field samples, so no qualifications were required.	QSM Table F-4 <5/10X =B
17. Was a LCS prepared and analyzed with each batch?	X			QSM Table F-4
17a. Were the LCS recoveries within limits specified in Table G-5 of the DoD QSM?	X		ADR checked section;	QSM Table F-4, Table G-5, J/UJ
18. Was a MS/MSD prepared with each batch?	X			QSM Table F-4
18a. Were the MS/MSD recoveries within limits specified in Table G-4 of the DoD QSM with an RPD <30%?	X			QSM Table F-4, Table G-5 J/UJ Parent sample only
19. Was a field duplicate analyzed?	X			QSM Table F-4,
19a. Were the field duplicates RPDs within ±30%?	X			QSM Table F-4, RPD >30=J Parent sample only

Project Number: 030174.0016 **Sample Event:** May 2014

Data Reviewer/Date: Angye Dragotta/August 18, 2014

SDG: 240-37114, rev1 **Analysis**: SW846 8260B

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
20. Were surrogate recoveries within control limits specified in the DOD QSM?	X				QSM Tables F-4 & G-3 >150%=J; 10% -50%=J/UJ; <10%=J/R
21. Were reported sample concentrations within calibration range?	X				

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Table 1 - CCCs

Analyte

1,1-Dichloroethene
Chloroform

1,2-Dichloropropane
Toluene
Ethylbenzene
Vinyl chloride

Table 2- SPCCs

Analyte	Minimum RF
Chloromethane	0.10
1,1-Dichlorethane	0.10
Bromoform	0.10
Chlorobenzene	0.30
1,1,2,2-Tetrachloroethane	0.30

Project Number: 030174.0016 **Sample Event:** May 2014

Data Reviewer/Date: Angela Dragotta/ August 18, 2014

Yes	No	N/A	Comments	Qual/Criteria
v				
Λ				
v				QAPP Table 5-1,
Λ				
X				QAPP Table 5-1, J/UJ/R
X				QAPP Table 5-1,
v				QAPP Table 4-6
Λ				
v				QSM Table F-4
Λ				
v			Instrument A4HP9–5/28/14	QSM Table F-4
Λ			Instrument A4HP7–5/14/14	R
				QSM Table F-4
X				R
				QSM Table F-4
X				
v				QSM Table F-4
Λ				15% < RSD < 20% = J/UJ
v				
Λ				
v				QSM Table F-4
A				R<0.99=-J/R
			Instrument A4HP7; 2,4-dinitrophenol and 4,6-dinitro-2-methylphenol	QSM Table F-4
v			used a linear fit.	R<0.99=-J/R
Λ			Instrument A4HP9; Benzoic acid and 4,6-dinitro-2-methylphenol used	
			a linear fit.	
v				QSM Table F-4 and
A				section D.1.2.1
				QSM Table F-4
v				R
A				
	X X X X X X	X	X	X X X X X X X X X X X Instrument A4HP9-5/28/14 Instrument A4HP7-5/14/14 X X X X X X X X X X X X X X X X X X X

Project Number: 030174.0016 **Sample Event:** May 2014

Data Reviewer/Date: Angela Dragotta/ August 18, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
10. Was a MRL Level Verification run at the				Instrument A4HP7–5/16/14 @ 1108, 1710	Louisville Supplement to
beginning and end of every daily sequence or every	X			Instrument A4HP9–5/30/14 @0853, 1148	the DOD QSM
12 hours with recoveries within 70-130%?					
11. Was a second source verification (ICV)	X			Instrument A4HP7–5/14/14 @ 2018	QSM Table F-4
analyzed? Were results 80-120%?	Λ			Instrument A4HP9-5/28/14 @1644	J=<80% and >120%
12. Was a CCV run daily prior to analysis and				Instrument A4HP7–5/16/14 @ 0956	QSM Table F-4
every 12 hours of analysis time?	X			Instrument A4HP9–5/30/14 @0823	
12a. Were the average response factors (RFs) for the System Performance Check Compounds (SPCCs) ≥0.050?	X				QSM Table F-4
12b. Were all target analytes ≤ 20%D?	3 7				QSM Table F-4
, <u>-</u>	X				D < 20% = J/UJ
13. Were the internal standards added to every sample?	X				QSM Table F-4
13a. Was the EICP area between -50% and +100%					QSM Table F-4
of the ICAL mid-point standard?	X				R
13b. Were the retention times for all IS compounds					QSM Table F-4
within ±30 seconds from the RT of the mid-point	X				J/UJ
standard in the ICAL?					
14. Were the retention times for target analytes within ±0.06 RRT units from the RT of the midpoint standard in the ICAL or the most recently updated RRT for all samples?	X				QSM Table F-4 J
15. Was a method blank prepared and analyzed with each batch?	X				QSM Table F-4
15a. Were target analytes detected in the method blank >1/2 the MRL, >RL for common contaminants?	X			Checked by ADR.	QSM Table F-4 <5/10X =B
16. Was a field blank (equipment and/or trip) collected and analyzed?	X			FWGEQUIPRINSE2-0444-GW and FWGEQUIPRINSE1-0443-GW	
16a. Were target analytes detected in the field blank?	X			 FWGEQUIPRINSE2-0444-GW had diethylphthalate detected at 2.7 μg/L, naphthalene at 0.14 μg/L and phenol at 0.73 μg/L. FWGEQUIPRINSE1-0443-GW had diethylphthalate detected at 3.2 μg/L. 	QSM Table F-4 <5/10X =B

Project Number: 030174.0016 Sample Event: May 2014

Data Reviewer/Date: Angela Dragotta/ August 18, 2014

SDG: 240-37114, rev1 **Analysis**: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
				The naphthalene result for sample FWGLL1mw-088-0437-GW and the	
				diethyl phthalate result for sample FWGLL2mw-271-0438-GW were	
				qualified, "B", as the reported concentrations were less than 5x the	
				associated equipment rinse contamination.	
17. Was a LCS prepared and analyzed with each batch?	X				QSM Table F-4
17a. Were the LCS recoveries within limits				ADR checked section; Hexachlorocyclopentadiene recovered below	QSM Table F-4,
specified in Table G-6 of the DoD QSM?				control limits of 10-115% in LCS 240-130172 at 9%. The	Table G-6
		X		hexachlorocyclopentadiene results for the associated samples	J/UJ
				(FWGL11mw-088-0437-GW, FWGLL3mw-246-0439-GW and	
				FWGLL3mw-DUP1-0442-GW) were qualified as estimated, "UJ".	
18. Was a MS/MSD prepared with each batch?	X				
18a. Were the MS/MSD recoveries within limits				Checked by ADR	QSM Table F-4, Table G-
specified in Table G-6 of the DoD QSM with an	X				6
RPD <30%?					J/UJ Parent sample only
19. Was a field duplicate analyzed?	X				
19a. Were the field duplicates RPDs within $\pm 50\%$?				The field duplicate analyzed on sample FWGLL3mw-246-0439-GW,	QSM Table F-4,
		X		had an RPD above control limits of 50% for naphthalene at 200%. The	RPD >50=J
		Λ		naphthalene result for sample FWGLL3mw-246-0439-GW was	Parent sample only
				qualified as estimated, "J".	
20. Were surrogate recoveries within control limits					QSM Tables F-4 & G-3
specified in the DOD QSM?	X				>150%=J; 10% -
					50%=J/UJ; <10%=J/R
21. Were reported sample concentrations within calibration range?	X				

References:

- DoD Quality Systems Manual (QSM), version 4.1, October 2010
- Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007
- Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012
- Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

SDG: 240-37114, rev1

Analysis: SW846 8270

Project Number: 030174.0016 Sample Event: May 2014

Data Reviewer/Date: Angela Dragotta/ August 18, 2014

Table 1: CCCs (All analytes if CCCs not included in standard)

Base / Neutral Compounds	Acid Compounds
Acenaphthalene	4-Chloro-3-methylphenol
1,4-Dichlorobenzene	2,4-Dichlorophenol
Hexachlorobutadiene	2-Nitrophenol
N-Nitrosodiphehylamine	Phenol
Di-n-octylphthalate	Pentachlorophenol
Fluoroanthene	2,4,6-Trichlorophenol
Benzo(a)pyrene	

Table 2: SPCCs -

N-Nitroso-di-n-propylamine	0.050
Hexachlorocyclopentadiene	0.050
2,4-Dinitrophenol	0.050
4-Nitrophenol	0.050

Project Number: 030174.0016

Sample Event: May 2014

Data Reviewer/Date: Angela Dragotta / June 13, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1, NELAC
3. Were holding times met?	X			Checked by ADR.	QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Was a DDT standard analyzed every 12 hours? Was the DDT %breakdown <15%?	X				QSM Table F-2 >15%=J/R
7. Was an endrin standard analyzed every 12 hours? Was the endrin %breakdown <15%?	X				QSM Table F-2 >15%=J/R
8. Initial Calibration					
8a. Does the initial calibration curve consist of 5 concentration levels?	X			Instrument A2HP3 4/30/14 & 5/20/14, 4/30/14 (tox)	QSM Table F-2 R
8a. Were the %RSDs for each analyte \leq 20%? OR was the average %RSD \geq 20% with the $r^2 > 0.990$?	X				QSM Table F-2 RSD>20% or r<0.99=J/R
9. Was a LOD Level Verification performed once per quarter with all target analytes detected?	X				QSM Table F-2 R
10. Was a MRL Verification performed at the beginning and end of the sequence or every 12 hours with results within limits of 70-130%?	X			Only the primary column recoveries were evaluated as there were no detected concentrations reported requiring confirmation.	QSM Table F-2, G- 14 >UL=J; <ll=j r<="" td="" uj=""></ll=j>
11. Was a second source (ICV) verification analyzed after the ICAL? Were results 80-120%?	X			A2HP3 5/1/14 @0118 and 5/20/14 @ 1544 4/30/14 @ 2007 (tox)	QSM Table F-2 >120%=J;<80%=J/UJ
12. Was a CCV run every 12 hours or at the beginning and end of the analytical run with the %D for all target analytes ≤20%?	X			A2HP3; 5/16/14 @ 1403, 1846 and 2139. 5/16/14 (tox) @ 1342 and 2118. 5/20/14 @ 2017 and tox on 5/20/14 @1607 and 1954.	QSM Table F-2 >120%=J; <80%=J/UJ
13. Was a method blank prepared and analyzed with each batch?	X				QSM Table F-2
14. Were target analytes detected> ½ the RL?		X			QSM Table F-2 <5x=B
15. Was a field blank collected and analyzed?	X				
16. Were target analytes detected in the field blank		X			QSM Table F-2

Vac Na N/A Comments

Project Number: 030174.0016 Sample Event: May 2014

Davier Overtions

Data Reviewer/Date: Angela Dragotta / June 13, 2014

SDG: 240-37114, rev1 **Analysis**: SW846 8081A

Oval/Cuitania

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
analyses >1/2 the MRL?					<5x=B
17. Was an LCS prepared and analyzed with each batch?	X				QSM Table F-2
18. Were the LCS recoveries within limits specified in QSM Table G-14?		X		Checked by ADR. Endosulfan I recovered below control limits of 50-110% at 46%. The endosulfan I sample result associated with the outlier LCS, FEGEQUIPRINSE1-0443-GW, was qualified as estimated, "UJ".	QSM Table G-14 >UL=J; <ll=j r<="" td="" uj=""></ll=j>
19. Was a MS/MSD pair prepared with each batch?	X				QSM Table F-2
20. Was the MS/MSD parent a Ravenna sample?	X				
21. Were MS/MSD recoveries and RPD within limits specified in QSM Table G-14?	X			The matrix spike analysis performed on sample FWGLL2mw-271-0438-GW recovered below control limits of 65-125% for alpha-chlordane in both the MS and MSD at 62% and 53%, respectively. The MSD recovered below control limits of 50-110% for endosulfan I at 40% and for endrin ketone at 68% (control limits 75-125%). The alpha-chlordane, endrin ketone and endosulfan I results for sample FWGLL2mw-271-0438-GW were qualified as estimated, "UJ".	QSM Table F-2 Pj with >UL=J; <ll=j r<="" td="" uj=""></ll=j>
22. Were surrogate recoveries as specified in QSM table G-3?		X		Decachlorobiphenyl recovered below control limits of 30-135% in sample FWGLL1mw-088-0437-GW at 21%. The results for sample FWGLL1mw-088-0437-GW were qualified as estimated, "UJ".	QSM Table F-2 >LL=J; <ll=uj j="" r<="" td=""></ll=uj>
23. Was a field duplicate analyzed? Were the RPDs <50%?	X			Checked by ADR.	RPD >50=J parent sample only
24. Were all positive results verified by a second column confirmation? Were the RPD's \(\leq 40?\)			X	There were no detected concentrations greater than the LOQ, so no evaluation was made.	QSM Table F-2 >40 RPD=J

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Project Number: 030174.0016 **Sample Event:** May 2014

Data Reviewer/Date: Angela Dragotta/ August 18, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1
3. Were holding times met?		X		Samples FWGEQUIPRINSE1-0443-GW was extracted outside of hold but within two times hold. The aroclor results for samples FWGEQUIPRINSE1-0443-GW was qualified as estimated, "UJ".	QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Calibration					
6a. Does the initial calibration curve consist of 5 concentration levels of Aroclors 1016 and 1260?	X			Instrument A2HP12 1/28/14, 5/20/14 Stds = 0.05, 0.1, 0.2, 0.5, 1.0, 2.0	QSM Table F-2 R
6b. Was the % RSD \leq 20%? or Were the $r^2s > 0.990$?	X				QSM Table F-2 RSD>20% or r<0.99= J/R
7. Was a LOD Verification performed once per quarter? Were all target analytes detected?	X				QSM Table F-2 R
8. Was an MRL Level Verification performed at the beginning and end of the sequence or every 12 hours? Were recoveries 70-130%?	X				LCG Table 3 >UCL=J; <lcl=j r;<="" td="" uj=""></lcl=j>
9. Was a second source (ICV) verification performed after the ICAL? Were the avg of all peaks for each aroclor 80-120%?	X			1/28/14, 5/21/14	QSM Table F-2 >120%=J; <80%=J/ UJ/R
10. Were single standards of the other five Aroclors run to aid in pattern recognition and to determine a single point calibration factor?		X		All aroclors had a multi-point calibration.	Method 8082 Section 5.6.2
11. Was a CCV run every 12 hours?	X			5/13/14@1400, 1701 and 5/22/14@0744, 1102	QSM Table F-2

Project Number: 030174.0016 **Sample Event:** May 2014

Data Reviewer/Date: Angela Dragotta/ August 18, 2014

SDG: 240-37114, rev1 **Analysis**: SW846 8082

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
12. Was the % D \leq 20 % for each analyte?					QSM Table F-2
	X				D>20%(neg)=J/R
					D>20% (pos) =J
13. Was a method blank prepared and analyzed with each batch?	X			Section checked by ADR	QSM Table F-2
14. Were target analytes <1/2 the MRL?	X				QSM Table F-2 $<5x = B$
15. Was an equipment blank collected and analyzed?	X				
16. Were target analytes in the field blank analyses (equipment) <1/2 the MRL?	X			Section checked by ADR	QSM Table F-2 $<5x = B$
17. Was an LCS prepared and analyzed with each batch?	X				QSM Table F-2
18. Were the LCS recoveries within limits specified in LCG Appendix C?	X			Section checked by ADR	QSM Table F-2, Table G-16, >UL=J; <lcl%=j r="" td="" uj;<=""></lcl%=j>
19. Was a MS/MSD pair prepared with each batch?	X				LCG Table 3
20. Was the MS/MSD parent a Ravenna sample?	X				
21. Were MS/MSD recoveries and RPD within limits specified in the DOD QSM Table G-16?	X			The matrix spike and spike duplicate analyzed on sample FWGLL2mw-271-0438-GW had an MS/MSD RPD above control limits of 30% for aroclor 1260 at 53%. No qualification of the data was required as there were no detected aroclor 1260 results reported for sample FWGLL2mw-271-0438-GW.	QSM Table F-2, Table G-16, >UL=J; <lcl%=j r="" td="" uj;<=""></lcl%=j>
22. Was the surrogate spiked into all samples?	X				
23. Were surrogate recoveries As specified in table G-3 of the DoD QSM?		X		Checked by ADR. The surrogate, DCB, recovered below control limits of 40-140% for sample FWGLL1mw-088-437-GW at 21%. The aroclor results for sample FWGLL1mw-088-437-GW were qualified as estimated, "UJ".	QSM Table F-2, Table G-3 >UCL=J; <lcl=j r<="" td="" uj=""></lcl=j>
24. Was a field duplicate analyzed? Were the RPDs <50%?	X			Checked by ADR. A field duplicate was not submitted for analysis with this set of samples.	QSM Table F-2, RPD >50=J
25. Were all positive results verified by a second dissimilar column confirmation? Was the RPD ≤ 40?			X	No detected concentrations were reported that required confirmation.	QSM Table F-2, RPD>40=J

References:

Project Number: 030174.0016 **Sample Event:** May 2014

Data Reviewer/Date: Angye Dragotta/August 18, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1,
3. Were holding times met?	X				QAPP Table 5-1, J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1,
5. Were all QAPP addendum-specified target analytes reported?	X				QAPP Table 4-5
6. Was the GC/MS system tuned with bromofluorobenzene (BFB) during each 12 hour shift (prior to ICAL and Cal Ver.)?	X				QSM Table F-4
7. Calibration					
7a. Did the initial calibration curve consist of 5 concentration levels?	X			Instrument A3UX9–4/3/14	QSM Table F-4 R
7b. Did the Calibration Check Compounds (CCCs) (see Table 1 below) relative standard deviations (%RSD) ≤ 30%?	X				QSM Table F-4 R
7c. Were the minimum response factors (RFs) for the System Performance Check Compounds (SPCCs) (see Table 2 below) met?	X				QSM Table F-4
7d. Did target analytes with an average calibration type have an RSD≤ 15%?	X				QSM Table F-4 15% <rsd< 20%="<br">J/UJ</rsd<>
7e. IF the RSD was >15% was a different calibration option used?	X				
7f. If a linear regression curve was used, was the correlation coefficient r>0.995?	X			Bromomethane, carbon disulfide, trans-1,2-dichloroethene used a linear fit	QSM Table F-4 R<0.995=-J/R
7g. If a non-linear regression was used, was the COD r≥0.99, with a minimum of 6 points for second order and 7 points for third order?	X				QSM Table F-4 R<0.99=-J/R
8. Was a LOD Level Verification performed quarterly for each reported analyte with detected results?	X				QSM Table F-4 and section D.1.2.1

Project Number: 030174.0016 **Sample Event:** May 2014

Data Reviewer/Date: Angye Dragotta/August 18, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
9. Was a MRL Level Verification run at the beginning and end of every daily sequence or every 12 hours?	X			5/19/14 @ 1005 and 1529	
10. Were the QC/MRL recoveries 70-130%		X		 The opening MRL analyzed 5/19/14 @ 1005 recovered above control limits of 70-130% for vinyl chloride at 137%. The closing MRL analyzed 5/19/14 @ 1529 recovered above control limits of 70-130% for bromomethane at 138% and below control limits of 70-130% for 2-hexanone at 67%, bromoform at 69%, carbon disulfide at 55%, carbon tetrachloride at 63%, 2-butanone at 66% and MIBK at 67%. A verification check sample was analyzed following the closing MRL with detected results for the outlier analytes. The 2-hexanone, bromoform, carbon disulfide, carbon tetrachloride, 2-butanone and MIBK results for samples FWGTEAM3-TRIP050814, FWGLL1MW-088-0437-GW, FWGEQUIPRINSE2-0444-GW, FWGTEAM3-TRIP, FWGLL3MW-246-0439-GW, FWGLL3MW-DUP1-0442-GW, FWGLL2MW-271-0438-GW, FWGTEAM2-TRIP and FWGEQUIPRINSE1-0443-GW were qualified as estimated, "J/ UJ". No qualifications were required for the bromomethane or vinyl chloride outliers as there were no detected concentrations of bromomethane or vinyl chloride reported for the bracketed field samples. 	Louisville Supplement to the DOD QSM
11. Was a second source verification (ICV) analyzed? Were results 80-120%?	X			4/3/14 @2204	QSM Table F-4 J=<80% and >120%
12. Was a CCV run daily prior to analysis and every 12 hours of analysis time?	X			5/19/14 @0907	QSM Table F-4
12a. Were the average response factors (RFs) for the (SPCCs) (see Table 2 below) met?	X				QSM Table F-4
12b. Were all target analytes ≤ 20%D?	X				QSM Table F-4 %D <20% = J/UJ
13. Were the internal standards added to every sample?	X				QSM Table F-4
13a. Was the EICP area between -50% and +100% of the ICAL mid-point standard?	X				QSM Table F-4 R
13b. Were the retention times for all IS compounds within ±30 seconds from the RT of the mid-point standard in the ICAL?	X				QSM Table F-4 J/UJ
14. Were the retention times for target analytes	X				QSM Table F-4

Project Number: 030174.0016 **Sample Event:** May 2014

Data Reviewer/Date: Angye Dragotta/August 18, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
within ±0.06 RRT units from the RT of the mid-point standard in the ICAL or the most recently updated RRT for all samples?					J
15. Was a method blank prepared and analyzed with each batch?	X				QSM Table F-4
15a. Were target analytes detected in the method blank >1/2 the MRL and >RL for common contaminants?		X		Checked by ADR.	QSM Table F-4 <5/10X =B
16. Was a field blank (equipment and/or trip) collected and analyzed?	X				
16a. Were target analytes detected in the field blanks?	X			Checked by ADR. Chloroform was detected in FWGTEAM3-Trip050814 at 0.35µg/L, FWGTEAM3-Trip at 0.29µg/L and at 0.34µg/L in sample FWGTEAM2-Trip. FWGEQUIPRINSE2-0444-GW had acetone detected at 14µg/L, carbon disulfide at 0.69µg/L, 2-butanone at 3.6µg/L and toluene at 0.22µg/L. FWGEQUIPRINSE1-0443-GW had acetone detected at 12µg/L, 2-butanone at 1.5µg/L and toluene at 0.20µg/L. There were no detected acetone, chloroform, carbon disulfide, 2-butanone or toluene concentrations reported for the associated field samples, so no qualifications were required.	QSM Table F-4 <5/10X =B
17. Was a LCS prepared and analyzed with each batch?	X				QSM Table F-4
17a. Were the LCS recoveries within limits specified in Table G-5 of the DoD QSM?	X			ADR checked section;	QSM Table F-4, Table G-5, J/UJ
18. Was a MS/MSD prepared with each batch?	X				QSM Table F-4
18a. Were the MS/MSD recoveries within limits specified in Table G-4 of the DoD QSM with an RPD <30%?	X				QSM Table F-4, Table G-5 J/UJ Parent sample only
19. Was a field duplicate analyzed?	X				QSM Table F-4,
19a. Were the field duplicates RPDs within ±30%?	X				QSM Table F-4, RPD >30=J Parent sample only

Project Number: 030174.0016 **Sample Event:** May 2014

Data Reviewer/Date: Angye Dragotta/August 18, 2014

SDG: 240-37114, rev1 **Analysis**: SW846 8260B

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
20. Were surrogate recoveries within control limits specified in the DOD QSM?	X				QSM Tables F-4 & G-3 >150%=J; 10% -50%=J/UJ; <10%=J/R
21. Were reported sample concentrations within calibration range?	X				

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Table 1 - CCCs

Analyte

1,1-Dichloroethene
Chloroform

1,2-Dichloropropane
Toluene
Ethylbenzene
Vinyl chloride

Table 2- SPCCs

Analyte	Minimum RF
Chloromethane	0.10
1,1-Dichlorethane	0.10
Bromoform	0.10
Chlorobenzene	0.30
1,1,2,2-Tetrachloroethane	0.30

Project Number: 030174.0016 **Sample Event:** May 2014

Data Reviewer/Date: Angela Dragotta/ August 18, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with	X				
laboratory report?					
2. Were samples preserved properly and received	X				QAPP Table 5-1,
in good condition?					
3. Were holding times met?	X				QAPP Table 5-1, J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1,
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-6
6. Was the GC/MS system tuned each 12 hour shift (prior to ICAL and Cal Ver.)?	X				QSM Table F-4
7. Initial Calibration					
7a. Did the initial calibration curve consist of 5	X			Instrument A4HP9–5/28/14	QSM Table F-4
concentration levels?	X			Instrument A4HP7–5/14/14	R
7b. Did the Calibration Check Compounds (CCCs)					QSM Table F-4
(see Table 1 below) relative standard deviations	X				R
$(\% RSD) \le 30\%$?					
7c. Were the minimum response factors (RFs) for					QSM Table F-4
the System Performance Check Compounds	X				
(SPCCs) (see Table 2 below) ≤ 0.050 ?					
7d. Were all other target analytes reported with an	T 7				QSM Table F-4
avg response have an RSD $\leq 15\%$?	X				15% < RSD < 20% = J/UJ
7e. IF the RSD was >15% was a different calibration option used?	X				
7f. If a linear regression curve was used, was the					QSM Table F-4
correlation coefficient r>0.995?	X				R<0.99=-J/R
7g. If a non-linear regression was used, was the				Instrument A4HP7; 2,4-dinitrophenol and 4,6-dinitro-2-methylphenol	QSM Table F-4
COD r≥0.99, with a minimum of 6 points for				used a linear fit.	R<0.99=-J/R
second order and 7 points for third order?	X			Instrument A4HP9; Benzoic acid and 4,6-dinitro-2-methylphenol used	K<0.99=-3/K
second order and 7 points for third order?				a linear fit.	
8. Was a LOD Level Verification performed				u meu nt.	QSM Table F-4 and
quarterly for each reported analyte?	X				section D.1.2.1
9 Was a breakdown check run at the beginning of					QSM Table F-4
every 12 hours with DDT degradation <20% and					QSW Table 1'-4 R
tailing factors of benzidine and pentachlorophenol	X				IX
carring factors of benziume and pentachiorophenor <2?					
<u>\$</u> 21	1				

Project Number: 030174.0016 **Sample Event:** May 2014

Data Reviewer/Date: Angela Dragotta/ August 18, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
10. Was a MRL Level Verification run at the				Instrument A4HP7–5/16/14 @ 1108, 1710	Louisville Supplement to
beginning and end of every daily sequence or every	X			Instrument A4HP9–5/30/14 @0853, 1148	the DOD QSM
12 hours with recoveries within 70-130%?					
11. Was a second source verification (ICV)	X			Instrument A4HP7–5/14/14 @ 2018	QSM Table F-4
analyzed? Were results 80-120%?	Λ			Instrument A4HP9-5/28/14 @1644	J=<80% and >120%
12. Was a CCV run daily prior to analysis and				Instrument A4HP7–5/16/14 @ 0956	QSM Table F-4
every 12 hours of analysis time?	X			Instrument A4HP9–5/30/14 @0823	
12a. Were the average response factors (RFs) for the System Performance Check Compounds (SPCCs) ≥0.050?	X				QSM Table F-4
12b. Were all target analytes ≤ 20%D?	3 7				QSM Table F-4
<i>z</i> , <u>–</u>	X				D < 20% = J/UJ
13. Were the internal standards added to every sample?	X				QSM Table F-4
13a. Was the EICP area between -50% and +100%					QSM Table F-4
of the ICAL mid-point standard?	X				R
13b. Were the retention times for all IS compounds					QSM Table F-4
within ±30 seconds from the RT of the mid-point	X				J/UJ
standard in the ICAL?					
14. Were the retention times for target analytes within ±0.06 RRT units from the RT of the midpoint standard in the ICAL or the most recently updated RRT for all samples?	X				QSM Table F-4 J
15. Was a method blank prepared and analyzed with each batch?	X				QSM Table F-4
15a. Were target analytes detected in the method blank >1/2 the MRL, >RL for common contaminants?	X			Checked by ADR.	QSM Table F-4 <5/10X =B
16. Was a field blank (equipment and/or trip) collected and analyzed?	X			FWGEQUIPRINSE2-0444-GW and FWGEQUIPRINSE1-0443-GW	
16a. Were target analytes detected in the field blank?	X			 FWGEQUIPRINSE2-0444-GW had diethylphthalate detected at 2.7 μg/L, naphthalene at 0.14 μg/L and phenol at 0.73 μg/L. FWGEQUIPRINSE1-0443-GW had diethylphthalate detected at 3.2 μg/L. 	QSM Table F-4 <5/10X =B

Project Number: 030174.0016 Sample Event: May 2014

Data Reviewer/Date: Angela Dragotta/ August 18, 2014

SDG: 240-37114, rev1 **Analysis**: SW846 8270

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
				The naphthalene result for sample FWGLL1mw-088-0437-GW and the	
				diethyl phthalate result for sample FWGLL2mw-271-0438-GW were	
				qualified, "B", as the reported concentrations were less than 5x the	
				associated equipment rinse contamination.	
17. Was a LCS prepared and analyzed with each batch?	X				QSM Table F-4
17a. Were the LCS recoveries within limits				ADR checked section; Hexachlorocyclopentadiene recovered below	QSM Table F-4,
specified in Table G-6 of the DoD QSM?				control limits of 10-115% in LCS 240-130172 at 9%. The	Table G-6
		X		hexachlorocyclopentadiene results for the associated samples	J/UJ
				(FWGLl1mw-088-0437-GW, FWGLL3mw-246-0439-GW and	
				FWGLL3mw-DUP1-0442-GW) were qualified as estimated, "UJ".	
18. Was a MS/MSD prepared with each batch?	X				
18a. Were the MS/MSD recoveries within limits				Checked by ADR	QSM Table F-4, Table G-
specified in Table G-6 of the DoD QSM with an	X				6
RPD <30%?					J/UJ Parent sample only
19. Was a field duplicate analyzed?	X				
19a. Were the field duplicates RPDs within $\pm 50\%$?				The field duplicate analyzed on sample FWGLL3mw-246-0439-GW,	QSM Table F-4,
		X		had an RPD above control limits of 50% for naphthalene at 200%. The	RPD >50=J
		Λ		naphthalene result for sample FWGLL3mw-246-0439-GW was	Parent sample only
				qualified as estimated, "J".	
20. Were surrogate recoveries within control limits					QSM Tables F-4 & G-3
specified in the DOD QSM?	X				>150%=J; 10% -
					50%=J/UJ; <10%=J/R
21. Were reported sample concentrations within calibration range?	X				

References:

- DoD Quality Systems Manual (QSM), version 4.1, October 2010
- Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007
- Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012
- Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

SDG: 240-37114, rev1

Analysis: SW846 8270

Project Number: 030174.0016 Sample Event: May 2014

Data Reviewer/Date: Angela Dragotta/ August 18, 2014

Table 1: CCCs (All analytes if CCCs not included in standard)

Base / Neutral Compounds	Acid Compounds
Acenaphthalene	4-Chloro-3-methylphenol
1,4-Dichlorobenzene	2,4-Dichlorophenol
Hexachlorobutadiene	2-Nitrophenol
N-Nitrosodiphehylamine	Phenol
Di-n-octylphthalate	Pentachlorophenol
Fluoroanthene	2,4,6-Trichlorophenol
Benzo(a)pyrene	

Table 2: SPCCs -

N-Nitroso-di-n-propylamine	0.050
Hexachlorocyclopentadiene	0.050
2,4-Dinitrophenol	0.050
4-Nitrophenol	0.050

Project Number: 030174.0016

Sample Event: May 2014

Data Reviewer/Date: Angela Dragotta / June 13, 2014

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1, NELAC
3. Were holding times met?	X			Checked by ADR.	QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Was a DDT standard analyzed every 12 hours? Was the DDT %breakdown <15%?	X				QSM Table F-2 >15%=J/R
7. Was an endrin standard analyzed every 12 hours? Was the endrin %breakdown <15%?	X				QSM Table F-2 >15%=J/R
8. Initial Calibration					
8a. Does the initial calibration curve consist of 5 concentration levels?	X			Instrument A2HP3 4/30/14 & 5/20/14, 4/30/14 (tox)	QSM Table F-2 R
8a. Were the %RSDs for each analyte \leq 20%? OR was the average %RSD \geq 20% with the $r^2 > 0.990$?	X				QSM Table F-2 RSD>20% or r<0.99=J/R
9. Was a LOD Level Verification performed once per quarter with all target analytes detected?	X				QSM Table F-2 R
10. Was a MRL Verification performed at the beginning and end of the sequence or every 12 hours with results within limits of 70-130%?	X			Only the primary column recoveries were evaluated as there were no detected concentrations reported requiring confirmation.	QSM Table F-2, G- 14 >UL=J; <ll=j r<="" td="" uj=""></ll=j>
11. Was a second source (ICV) verification analyzed after the ICAL? Were results 80-120%?	X			A2HP3 5/1/14 @0118 and 5/20/14 @ 1544 4/30/14 @ 2007 (tox)	QSM Table F-2 >120%=J;<80%=J/UJ
12. Was a CCV run every 12 hours or at the beginning and end of the analytical run with the %D for all target analytes ≤20%?	X			A2HP3; 5/16/14 @ 1403, 1846 and 2139. 5/16/14 (tox) @ 1342 and 2118. 5/20/14 @ 2017 and tox on 5/20/14 @1607 and 1954.	QSM Table F-2 >120%=J; <80%=J/UJ
13. Was a method blank prepared and analyzed with each batch?	X				QSM Table F-2
14. Were target analytes detected> ½ the RL?		X			QSM Table F-2 <5x=B
15. Was a field blank collected and analyzed?	X				
16. Were target analytes detected in the field blank		X			QSM Table F-2

Vas Na N/A Comments

Project Number: 030174.0016 **Sample Event:** May 2014

Davier Orestians

Data Reviewer/Date: Angela Dragotta / June 13, 2014

SDG: 240-37114, rev1 **Analysis**: SW846 8081A

Orral/Critaria

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
analyses >1/2 the MRL?					<5x=B
17. Was an LCS prepared and analyzed with each batch?	X				QSM Table F-2
18. Were the LCS recoveries within limits specified in QSM Table G-14?		X		Checked by ADR. Endosulfan I recovered below control limits of 50-110% at 46%. The endosulfan I sample result associated with the outlier LCS, FEGEQUIPRINSE1-0443-GW, was qualified as estimated, "UJ".	QSM Table G-14 >UL=J; <ll=j r<="" td="" uj=""></ll=j>
19. Was a MS/MSD pair prepared with each batch?	X				QSM Table F-2
20. Was the MS/MSD parent a Ravenna sample?	X				
21. Were MS/MSD recoveries and RPD within limits specified in QSM Table G-14?	X			The matrix spike analysis performed on sample FWGLL2mw-271-0438-GW recovered below control limits of 65-125% for alpha-chlordane in both the MS and MSD at 62% and 53%, respectively. The MSD recovered below control limits of 50-110% for endosulfan I at 40% and for endrin ketone at 68% (control limits 75-125%). The alpha-chlordane, endrin ketone and endosulfan I results for sample FWGLL2mw-271-0438-GW were qualified as estimated, "UJ".	QSM Table F-2 Pj with >UL=J; <ll=j r<="" td="" uj=""></ll=j>
22. Were surrogate recoveries as specified in QSM table G-3?		X		Decachlorobiphenyl recovered below control limits of 30-135% in sample FWGLL1mw-088-0437-GW at 21%. The results for sample FWGLL1mw-088-0437-GW were qualified as estimated, "UJ".	QSM Table F-2 >LL=J; <ll=uj j="" r<="" td=""></ll=uj>
23. Was a field duplicate analyzed? Were the RPDs <a> 50%?	X			Checked by ADR.	RPD >50=J parent sample only
24. Were all positive results verified by a second column confirmation? Were the RPD's \le 40?			Х	There were no detected concentrations greater than the LOQ, so no evaluation was made.	QSM Table F-2 >40 RPD=J

References:

DoD Quality Systems Manual (QSM), version 4.1, October 2010

Louisville DoD Quality Systems Manual Supplement (LS), Version 1 March 2007

Final Facility Wide Groundwater Monitoring Program, RVAAP-66 Facility Wide Groundwater Quality Assurance Project Plan (QAPP) Addendum for the Ravenna Army Ammunition Plant, Ravenna, OH, Environmental Quality Management, January 2012

Final Facility Wide Quality Assurance Project Plan for Environmental Investigations Groundwater for the Ravenna Army Ammunition Plant, Ravenna, OH, SAIC, February 2011

Additional Comments:

Ravenna, OH Data Review Checklist

Project Number: 030174.0016 **Sample Event:** May 2014

Data Reviewer/Date: Angela Dragotta/ August 18, 2014

SDG: 240-37114, rev1 **Analysis**: SW846 8082

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
1. Did Chain-of-Custody information agree with laboratory report?	X				
2. Were samples preserved properly and received in good condition?	X				QAPP Table 5-1
3. Were holding times met?		X		Samples FWGEQUIPRINSE1-0443-GW was extracted outside of hold but within two times hold. The aroclor results for samples FWGEQUIPRINSE1-0443-GW was qualified as estimated, "UJ".	QAPP Table 5-1 J/UJ/R
4. Were sample storage requirements met?	X				QAPP Table 5-1
5. Were all QAPP-specified target analytes reported?	X				QAPP Table 4-3
6. Calibration					
6a. Does the initial calibration curve consist of 5 concentration levels of Aroclors 1016 and 1260?	X			Instrument A2HP12 1/28/14, 5/20/14 Stds = 0.05, 0.1, 0.2, 0.5, 1.0, 2.0	QSM Table F-2 R
6b. Was the % RSD \leq 20%? or Were the $r^2s > 0.990$?	X				QSM Table F-2 RSD>20% or r<0.99= J/R
7. Was a LOD Verification performed once per quarter? Were all target analytes detected?	X				QSM Table F-2 R
8. Was an MRL Level Verification performed at the beginning and end of the sequence or every 12 hours? Were recoveries 70-130%?	X				LCG Table 3 >UCL=J; <lcl=j r;<="" td="" uj=""></lcl=j>
9. Was a second source (ICV) verification performed after the ICAL? Were the avg of all peaks for each aroclor 80-120%?	X			1/28/14, 5/21/14	QSM Table F-2 >120%=J; <80%=J/ UJ/R
10. Were single standards of the other five Aroclors run to aid in pattern recognition and to determine a single point calibration factor?		X		All aroclors had a multi-point calibration.	Method 8082 Section 5.6.2
11. Was a CCV run every 12 hours?	X			5/13/14@1400, 1701 and 5/22/14@0744, 1102	QSM Table F-2

Ravenna, OH Data Review Checklist

Project Number: 030174.0016 **Sample Event:** May 2014

Data Reviewer/Date: Angela Dragotta/ August 18, 2014

SDG: 240-37114, rev1 **Analysis**: SW846 8082

Review Questions:	Yes	No	N/A	Comments	Qual/Criteria
12. Was the % D \leq 20 % for each analyte?					QSM Table F-2
	X				D>20%(neg)=J/R
					D>20% (pos) =J
13. Was a method blank prepared and analyzed with each batch?	X			Section checked by ADR	QSM Table F-2
14. Were target analytes <1/2 the MRL?	X				QSM Table F-2 $<5x = B$
15. Was an equipment blank collected and analyzed?	X				
16. Were target analytes in the field blank analyses (equipment) <1/2 the MRL?	X			Section checked by ADR	QSM Table F-2 $<5x = B$
17. Was an LCS prepared and analyzed with each batch?	X				QSM Table F-2
18. Were the LCS recoveries within limits specified in LCG Appendix C?	X			Section checked by ADR	QSM Table F-2, Table G-16, >UL=J; <lcl%=j r="" td="" uj;<=""></lcl%=j>
19. Was a MS/MSD pair prepared with each batch?	X				LCG Table 3
20. Was the MS/MSD parent a Ravenna sample?	X				
21. Were MS/MSD recoveries and RPD within limits specified in the DOD QSM Table G-16?	X			The matrix spike and spike duplicate analyzed on sample FWGLL2mw-271-0438-GW had an MS/MSD RPD above control limits of 30% for aroclor 1260 at 53%. No qualification of the data was required as there were no detected aroclor 1260 results reported for sample FWGLL2mw-271-0438-GW.	QSM Table F-2, Table G-16, >UL=J; <lcl%=j r="" td="" uj;<=""></lcl%=j>
22. Was the surrogate spiked into all samples?	X				
23. Were surrogate recoveries As specified in table G-3 of the DoD QSM?		X		Checked by ADR. The surrogate, DCB, recovered below control limits of 40-140% for sample FWGLL1mw-088-437-GW at 21%. The aroclor results for sample FWGLL1mw-088-437-GW were qualified as estimated, "UJ".	QSM Table F-2, Table G-3 >UCL=J; <lcl=j r<="" td="" uj=""></lcl=j>
24. Was a field duplicate analyzed? Were the RPDs <50%?	X			Checked by ADR. A field duplicate was not submitted for analysis with this set of samples.	QSM Table F-2, RPD >50=J
25. Were all positive results verified by a second dissimilar column confirmation? Was the RPD ≤ 40?			X	No detected concentrations were reported that required confirmation.	QSM Table F-2, RPD>40=J

References:

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-3711	4-1									
6010B	FWGEQUIPRINSE2-0444- GW	AQ	EB							
				LEAD	5.0	1.7J		J	ug/L	RI
6010B	FWGLL1MW-064C-0436- GF	AQ	N							
				ARSENIC	10	4.5J		J	ug/L	RI
				NICKEL	5.0	2.5J		J	ug/L	RI
				POTASSIUM	900	800J		J	ug/L	RI
6010B	FWGLL1MW-088-0437-GF	AQ	N							
				LEAD	5.0	2.0J		В	ug/L	Eb
6010B	FWGLL2MW-271-0438-GF	AQ	N							
				ARSENIC	10	5.5J		J	ug/L	RI
				BARIUM	5.0	3.4J		J	ug/L	RI
6020	FWGLL2MW-271-0438-GF	AQ	N							
				THALLIUM	1.5	0.83J		J	ug/L	RI
6020	FWGLL3MW-DUP1-0442- GF	AQ	FD							
				ANTIMONY	1.0	0.35J		J	ug/L	RI
8081A	FWGEQUIPRINSE1-0443- GW	AQ	EB							
				ENDOSULFAN I	0.020	0.020U Q		UJ	ug/L	Lcs

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reasor Code
SDG: 240-371	14-1									
8081A	FWGLL1MW-088-0437- GW	AQ	N							
				4,4'-DDD	0.019	0.019U		UJ	ug/L	Surr
				4,4'-DDE	0.019	0.019U		UJ	ug/L	Surr
				4,4'-DDT	0.019	0.019U		UJ	ug/L	Surr
				ALDRIN	0.019	0.019U		UJ	ug/L	Surr
				ALPHA-BHC	0.019	0.019U		UJ	ug/L	Surr
				ALPHA-CHLORDANE	0.019	0.019U		UJ	ug/L	Surr
				BETA-BHC	0.019	0.019U		UJ	ug/L	Surr
				DELTA-BHC	0.019	0.019U		UJ	ug/L	Surr
				DIELDRIN	0.019	0.019U		UJ	ug/L	Surr
				ENDOSULFAN I	0.019	0.019U		UJ	ug/L	Surr
				ENDOSULFAN II	0.019	0.019U		UJ	ug/L	Surr
				ENDOSULFAN SULFATE	0.019	0.019U		UJ	ug/L	Surr
				ENDRIN	0.019	0.019U		UJ	ug/L	Surr
				ENDRIN ALDEHYDE	0.019	0.019U		UJ	ug/L	Surr
				ENDRIN KETONE	0.019	0.019U		UJ	ug/L	Surr
				gamma-BHC (Lindane)	0.019	0.019U		UJ	ug/L	Surr
				GAMMA-CHLORDANE	0.019	0.019U		UJ	ug/L	Surr
				HEPTACHLOR	0.019	0.019U		UJ	ug/L	Surr
				HEPTACHLOR EPOXIDE	0.019	0.019U		UJ	ug/L	Surr
				METHOXYCHLOR	0.048	0.048U		UJ	ug/L	Surr
				TOXAPHENE	0.76	0.76U		UJ	ug/L	Surr
B081A	FWGLL2MW-271-0438- GW	AQ	N							
				ALPHA-CHLORDANE	0.020	0.020U J		UJ	ug/L	Ms
				ENDOSULFAN I	0.020	0.020U J		UJ	ug/L	Ms
				ENDRIN KETONE	0.020	0.020U J		UJ	ug/L	Ms

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-371	14-1									
8082	FWGEQUIPRINSE1-0443- GW	AQ	EB							
				AROCLOR 1016	0.20	0.20U H		UJ	ug/L	StoE
				AROCLOR 1221	0.20	0.20U H		UJ	ug/L	StoE
				AROCLOR 1232	0.20	0.20U H		UJ	ug/L	StoE
				AROCLOR 1242	0.40	0.40U H		UJ	ug/L	StoE
				AROCLOR 1248	0.20	0.20U H		UJ	ug/L	StoE
				AROCLOR 1254	0.20	0.20U H		UJ	ug/L	StoE
				AROCLOR 1260	0.20	0.20U H		UJ	ug/L	StoE
8082	FWGLL1MW-088-0437- GW	AQ	N							
				AROCLOR 1016	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1221	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1232	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1242	0.38	0.38U		UJ	ug/L	Surr
				AROCLOR 1248	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1254	0.19	0.19U		UJ	ug/L	Surr
				AROCLOR 1260	0.19	0.19U		UJ	ug/L	Surr
8260B	FWGEQUIPRINSE1-0443- GW	AQ	EB							
				2-BUTANONE	0.57	1.5J		J	ug/L	ProfJudg
				2-HEXANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				4-METHYL-2-PENTANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				BROMODICHLOROMETHANE	0.25	0.25U		UJ	ug/L	ProfJudg
				BROMOFORM	0.64	0.64U		UJ	ug/L	ProfJudg
				CARBON DISULFIDE	0.25	0.25U		UJ	ug/L	ProfJudg
				CARBON TETRACHLORIDE	0.25	0.25U		UJ	ug/L	ProfJudg
				TOLUENE	0.25	0.20J		J	ug/L	RI

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-3711	14-1									
8260B	FWGEQUIPRINSE2-0444- GW	AQ	EB							
				2-BUTANONE	0.57	3.6J		J	ug/L	ProfJudg
				2-HEXANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				4-METHYL-2-PENTANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				BROMODICHLOROMETHANE	0.25	0.25U		UJ	ug/L	ProfJudg
				BROMOFORM	0.64	0.64U		UJ	ug/L	ProfJudg
				CARBON DISULFIDE	0.25	0.69J M		J	ug/L	ProfJudg
				CARBON TETRACHLORIDE	0.25	0.25U		UJ	ug/L	ProfJudg
				TOLUENE	0.25	0.22J		J	ug/L	RI
8260B	FWGLL1MW-088-0437- GW	AQ	N							
				2-BUTANONE	0.57	0.57U		UJ	ug/L	ProfJudg
				2-HEXANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				4-METHYL-2-PENTANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				BROMODICHLOROMETHANE	0.25	0.25U		UJ	ug/L	ProfJudg
				BROMOFORM	0.64	0.64U		UJ	ug/L	ProfJudg
				CARBON DISULFIDE	0.25	0.25U		UJ	ug/L	ProfJudg
				CARBON TETRACHLORIDE	0.25	0.25U		UJ	ug/L	ProfJudg
8260B	FWGLL2MW-271-0438- GW	AQ	N							
				2-BUTANONE	0.57	0.57U		UJ	ug/L	ProfJudg
				2-HEXANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				4-METHYL-2-PENTANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				BROMODICHLOROMETHANE	0.25	0.25U		UJ	ug/L	ProfJudg
				BROMOFORM	0.64	0.64U		UJ	ug/L	ProfJudg
				CARBON DISULFIDE	0.25	0.25U		UJ	ug/L	ProfJudg
				CARBON TETRACHLORIDE	0.25	0.25U		UJ	ug/L	ProfJudg

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-371	14-1									
8260B	FWGLL3MW-246-0439- GW	AQ	N							
				2-BUTANONE	0.57	0.57U		UJ	ug/L	ProfJudg
				2-HEXANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				4-METHYL-2-PENTANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				BROMODICHLOROMETHANE	0.25	0.25U		UJ	ug/L	ProfJudg
				BROMOFORM	0.64	0.64U		UJ	ug/L	ProfJudg
				CARBON DISULFIDE	0.25	0.25U		UJ	ug/L	ProfJudg
				CARBON TETRACHLORIDE	0.25	0.25U		UJ	ug/L	ProfJudg
8260B	FWGLL3MW-DUP1-0442- GW	AQ	FD							
				2-BUTANONE	0.57	0.57U		UJ	ug/L	ProfJudg
				2-HEXANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				4-METHYL-2-PENTANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				BROMODICHLOROMETHANE	0.25	0.25U		UJ	ug/L	ProfJudg
				BROMOFORM	0.64	0.64U		UJ	ug/L	ProfJudg
				CARBON DISULFIDE	0.25	0.25U		UJ	ug/L	ProfJudg
				CARBON TETRACHLORIDE	0.25	0.25U		UJ	ug/L	ProfJudg
8260B	FWGTEAM2-TRIP	AQ	ТВ							
				2-BUTANONE	0.57	0.57U		UJ	ug/L	ProfJudg
				2-HEXANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				4-METHYL-2-PENTANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				BROMODICHLOROMETHANE	0.25	0.25U		UJ	ug/L	ProfJudg
				BROMOFORM	0.64	0.64U		UJ	ug/L	ProfJudg
				CARBON DISULFIDE	0.25	0.25U		UJ	ug/L	ProfJudg
				CARBON TETRACHLORIDE	0.25	0.25U		UJ	ug/L	ProfJudg

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-3711	4-1									
8260B	FWGTEAM3-TRIP	AQ	ТВ							
				2-BUTANONE	0.57	0.57U		UJ	ug/L	ProfJudg
				2-HEXANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				4-METHYL-2-PENTANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				BROMODICHLOROMETHANE	0.25	0.25U		UJ	ug/L	ProfJudg
				BROMOFORM	0.64	0.64U		UJ	ug/L	ProfJudg
				CARBON DISULFIDE	0.25	0.25U		UJ	ug/L	ProfJudg
				CARBON TETRACHLORIDE	0.25	0.25U		UJ	ug/L	ProfJudg
8260B	FWGTEAM3-TRIP050814	AQ	ТВ							
				2-BUTANONE	0.57	0.57U		UJ	ug/L	ProfJudg
				2-HEXANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				4-METHYL-2-PENTANONE	0.50	0.50U		UJ	ug/L	ProfJudg
				BROMODICHLOROMETHANE	0.25	0.25U		UJ	ug/L	ProfJudg
				BROMOFORM	0.64	0.64U		UJ	ug/L	ProfJudg
				CARBON DISULFIDE	0.25	0.25U		UJ	ug/L	ProfJudg
				CARBON TETRACHLORIDE	0.25	0.25U		UJ	ug/L	ProfJudg
8270C-SVOC4	FWGEQUIPRINSE2-0444- GW	AQ	EB							
	3			HEXACHLOROCYCLOPENTADIENE	0.48	0.48U Q		UJ	ug/L	Lcs
				PHENOL	0.95	0.73J		J	ug/L	RI
8270C-SVOC4	FWGLL1MW-088-0437- GW	AQ	N							
	GVV			HEXACHLOROCYCLOPENTADIENE	0.51	0.51U Q		UJ	ug/L	Lcs
				NAPHTHALENE	0.10	0.15J		В	ug/L	Eb
8270C-SVOC4	FWGLL2MW-271-0438- GW	AQ	N							
				Diethylphthalate	0.95	0.64J		В	ug/L	Eb
8270C-SVOC4	FWGLL3MW-246-0439- GW	AQ	N							
				HEXACHLOROCYCLOPENTADIENE	0.48	0.48U Q		UJ	ug/L	Lcs
				NAPHTHALENE	0.095	0.10J		J	ug/L	Fd

Analytical Method	Field Sample ID	Matrix	Sample Type	Analyte	RL	Lab Result	Unc / Error	Overall Qualifier	Units	Reason Code
SDG: 240-3711	14-1									
8270C-SVOC4	FWGLL3MW-DUP1-0442- GW	AQ	FD							
				HEXACHLOROCYCLOPENTADIENE	0.48	0.48U Q		UJ	ug/L	Lcs
8330	FWGLL3MW-246-0439- GW	AQ	N							
				Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.051	0.039J M		J	ug/L	RI
8330	FWGLL3MW-DUP1-0442- GW	AQ	FD							
				Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.050	0.036J M		J	ug/L	RI
9012A	FWGEQUIPRINSE1-0443- GW	AQ	EB							
				CYANIDE	0.0050	0.0050U		UJ	mg/L	ProfJudg
9012A	FWGEQUIPRINSE2-0444- GW	AQ	EB							
				CYANIDE	0.0050	0.0050U		UJ	mg/L	ProfJudg
9012A	FWGLL1MW-088-0437- GW	AQ	N							
				CYANIDE	0.0050	0.0050U		UJ	mg/L	ProfJudg
9012A	FWGLL2MW-271-0438- GW	AQ	N							
				CYANIDE	0.0050	0.0050U		UJ	mg/L	ProfJudg
9012A	FWGLL3MW-246-0439- GW	AQ	N							
				CYANIDE	0.0050	0.0050U		UJ	mg/L	ProfJudg
9012A	FWGLL3MW-DUP1-0442- GW	AQ	FD							
				CYANIDE	0.0050	0.0050U		UJ	mg/L	ProfJudg

Lab Reporting Batch ID: 240-37114-1 Laboratory: TA CAN

EDD Filename: Prep240-37114-1revA3 eQAPP Name: RVAAP 66-rev June 2014

Method Category: GENCHEM

Method: 9012A Matrix: AQ

Sample ID: FWGEQUIPRINSE1-0443-GW	Collec	ted: 5/7/20	14 1:42:00	PM A	nalysis T	ype: RES	/TOT	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.0050	U	0.0032	MDL	0.0050	LOD	mg/L	UJ	ProfJudg

Sample ID: FWGEQUIPRINSE2-0444-GW Collected: 5/8/2014 1:00:00 PM Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.0050	U	0.0032	MDL	0.0050	LOD	mg/L	UJ	ProfJudg

Sample ID: FWGLL1MW-088-0437-GW Collected: 5/8/2014 10:29:00 Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.0050	U	0.0032	MDL	0.0050	LOD	mg/L	UJ	ProfJudg

Sample ID: FWGLL2MW-271-0438-GW Collected: 5/7/2014 12:59:00 Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code

Sample ID: FWGLL3MW-246-0439-GW Collected: 5/7/2014 9:43:00 AM Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.0050	U	0.0032	MDL	0.0050	LOD	mg/L	UJ	ProfJudg

Sample ID: FWGLL3MW-DUP1-0442-GW Collected: 5/7/2014 10:43:00 Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CYANIDE	0.0050	U	0.0032	MDL	0.0050	LOD	mg/L	UJ	ProfJudg

Method Category: METALS

Method: 6010B Matrix: AQ

Sample ID: FWGEQUIPRINSE2-0444-GW	Collected: 5/8/2014 1:00:00 PM	Analysis Type: RES/TOT	Dilution: 1
-----------------------------------	--------------------------------	------------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
LEAD	1.7	J	1.7	MDL	5.0	LOD	ug/L	J	RI

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-37114-1 Laboratory: TA CAN

EDD Filename: Prep240-37114-1revA3 eQAPP Name: RVAAP 66-rev June 2014

Method Category: METALS

Method: 6010B Matrix: AQ

Sample ID: FWGLL1MW-064C-0436-GF Collected: 5/7/2014 4:37:00 PM Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	4.5	J	3.3	MDL	10	LOD	ug/L	J	RI
NICKEL	2.5	J	2.2	MDL	5.0	LOD	ug/L	J	RI
POTASSIUM	800	J	300	MDL	900	LOD	ug/L	J	RI

Sample ID: FWGLL1MW-088-0437-GF Collected: 5/8/2014 10:29:00 Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
LEAD	2.0	J	1.7	MDL	5.0	LOD	ug/L	U	Eb

Sample ID: FWGLL2MW-271-0438-GF Collected: 5/7/2014 12:59:00 Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	5.5	J	3.3	MDL	10	LOD	ug/L	J	RI
BARIUM	3.4	J	2.8	MDL	5.0	LOD	ug/L	J	RI

Method Category: METALS

Method: Matrix: AQ

Sample ID: FWGLL2MW-271-0438-GF Collected: 5/7/2014 12:59:00 Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
THALLIUM	0.83	J	0.79	MDL	1.5	LOD	ug/L	J	RI

Sample ID: FWGLL3MW-DUP1-0442-GF Collected: 5/7/2014 10:43:00 Analysis Type: RES/TOT Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.35	J	0.33	MDL	1.0	LOD	ug/L	J	RI

Method Category: SVOA

Method: 8081A Matrix: AQ

Sample ID: FWGEQUIPRINSE1-0443-GW Collected: 5/7/2014 1:42:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ENDOSULFAN I	0.020	UQ	0.013	MDL	0.020	LOD	ug/L	UJ	Lcs

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-37114-1 **Laboratory: TA CAN**

EDD Filename: Prep240-37114-1revA3 eQAPP Name: RVAAP 66-rev June 2014

Method Category: **SVOA**

Method: 8081A Matrix: AQ

Sample ID: FWGLL1MW-088-0437-GW	Collected: 5/8/2014 10:29:00 Analysis Type: RES								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
4,4'-DDD	0.019	U	0.0091	MDL	0.019	LOD	ug/L	UJ	Surr		
4,4'-DDE	0.019	U	0.0092	MDL	0.019	LOD	ug/L	UJ	Surr		
4,4'-DDT	0.019	U	0.015	MDL	0.019	LOD	ug/L	UJ	Surr		
ALDRIN	0.019	U	0.0078	MDL	0.019	LOD	ug/L	UJ	Surr		
ALPHA-BHC	0.019	U	0.0067	MDL	0.019	LOD	ug/L	UJ	Surr		
ALPHA-CHLORDANE	0.019	U	0.013	MDL	0.019	LOD	ug/L	UJ	Surr		
BETA-BHC	0.019	U	0.0080	MDL	0.019	LOD	ug/L	UJ	Surr		
DELTA-BHC	0.019	U	0.0083	MDL	0.019	LOD	ug/L	UJ	Surr		
DIELDRIN	0.019	U	0.0071	MDL	0.019	LOD	ug/L	UJ	Surr		
ENDOSULFAN I	0.019	U	0.012	MDL	0.019	LOD	ug/L	UJ	Surr		
ENDOSULFAN II	0.019	U	0.011	MDL	0.019	LOD	ug/L	UJ	Surr		
ENDOSULFAN SULFATE	0.019	U	0.010	MDL	0.019	LOD	ug/L	UJ	Surr		
ENDRIN	0.019	U	0.010	MDL	0.019	LOD	ug/L	UJ	Surr		
ENDRIN ALDEHYDE	0.019	U	0.010	MDL	0.019	LOD	ug/L	UJ	Surr		
ENDRIN KETONE	0.019	U	0.0074	MDL	0.019	LOD	ug/L	UJ	Surr		
gamma-BHC (Lindane)	0.019	U	0.0061	MDL	0.019	LOD	ug/L	UJ	Surr		
GAMMA-CHLORDANE	0.019	U	0.011	MDL	0.019	LOD	ug/L	UJ	Surr		
HEPTACHLOR	0.019	U	0.0076	MDL	0.019	LOD	ug/L	UJ	Surr		
HEPTACHLOR EPOXIDE	0.019	U	0.0068	MDL	0.019	LOD	ug/L	UJ	Surr		

Sample ID: FWGLL2MW-271-0438-GW Collected: 5/7/2014 12:59:00 Analysis Type: RES Dilution: 1

U

U

0.048

0.76

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALPHA-CHLORDANE	0.020	ΠΊ	0.014	MDL	0.020	LOD	ug/L	UJ	Ms
ENDOSULFAN I	0.020	UJ	0.013	MDL	0.020	LOD	ug/L	UJ	Ms
ENDRIN KETONE	0.020	ΠΊ	0.0077	MDL	0.020	LOD	ug/L	UJ	Ms

0.030

0.30

MDL

MDL

0.048

0.76

LOD

LOD

ug/L

ug/L

UJ

UJ

Surr

Surr

METHOXYCHLOR

TOXAPHENE

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-37114-1 Laboratory: TA CAN

EDD Filename: Prep240-37114-1revA3 eQAPP Name: RVAAP 66-rev June 2014

Method Category: SVOA

Method: 8082 Matrix: AQ

Sample ID: FWGEQUIPRINSE1-0443-GW	Collected: 5/7/2014 1:42:00 PM	Analysis Type: RES	Dilution: 1
-----------------------------------	--------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.20	UН	0.17	MDL	0.20	LOD	ug/L	UJ	StoE
AROCLOR 1221	0.20	UН	0.13	MDL	0.20	LOD	ug/L	UJ	StoE
AROCLOR 1232	0.20	UΗ	0.16	MDL	0.20	LOD	ug/L	UJ	StoE
AROCLOR 1242	0.40	UН	0.22	MDL	0.40	LOD	ug/L	UJ	StoE
AROCLOR 1248	0.20	UΗ	0.099	MDL	0.20	LOD	ug/L	UJ	StoE
AROCLOR 1254	0.20	UН	0.16	MDL	0.20	LOD	ug/L	UJ	StoE
AROCLOR 1260	0.20	UН	0.17	MDL	0.20	LOD	ug/L	UJ	StoE

Sample ID: FWGLL1MW-088-0437-GW Collected: 5/8/2014 10:29:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.19	U	0.16	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1221	0.19	U	0.12	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1232	0.19	U	0.15	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1242	0.38	U	0.21	MDL	0.38	LOD	ug/L	UJ	Surr
AROCLOR 1248	0.19	U	0.095	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1254	0.19	U	0.15	MDL	0.19	LOD	ug/L	UJ	Surr
AROCLOR 1260	0.19	U	0.16	MDL	0.19	LOD	ug/L	UJ	Surr

Method Category: SVOA

Method: 8270C-SVOC4 Matrix: AC

Sample ID: FWGEQUIPRINSE2-0444-GW Collected: 5/8/2014 1:00:00 PM Analysis Type: RES-ACID Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PHENOL	0.73	J	0.57	MDL	0.95	LOD	ug/L	J	RI

Sample ID: FWGEQUIPRINSE2-0444-GW Collected: 5/8/2014 1:00:00 PM Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Anaryte	Resuit	Quai	DL	rype	KL	rype	Ullits	Quai	Code
HEXACHLOROCYCLOPENTADIENE	0.48	UQ	0.23	MDL	0.48	LOD	ug/L	UJ	Lcs

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-37114-1 **Laboratory: TA CAN**

eQAPP Name: RVAAP 66-rev June 2014 EDD Filename: Prep240-37114-1revA3

Method Category: **SVOA**

Method: 8270C-SVOC4 Matrix: AQ

Sample ID: FWGLL1MW-088-0437-GW Analysis Type: RES-BASE/NEUTRAL Dilution: 1 Collected: 5/8/2014 10:29:00

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXACHLOROCYCLOPENTADIENE	0.51	UQ	0.24	MDL	0.51	LOD	ug/L	UJ	Lcs
NAPHTHALENE	0.15	J	0.063	MDL	0.10	LOD	ug/L	U	Eb

Sample ID: FWGLL2MW-271-0438-GW Collected: 5/7/2014 12:59:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Diethylphthalate	0.64	J	0.57	MDL	0.95	LOD	ug/L	U	Eb

Sample ID: FWGLL3MW-246-0439-GW Collected: 5/7/2014 9:43:00 AM Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXACHLOROCYCLOPENTADIENE	0.48	UQ	0.23	MDL	0.48	LOD	ug/L	UJ	Lcs
NAPHTHALENE	0.10	J	0.060	MDL	0.095	LOD	ug/L	J	Fd

Sample ID: FWGLL3MW-DUP1-0442-GW Collected: 5/7/2014 10:43:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXACHLOROCYCLOPENTADIENE	0.48	UQ	0.23	MDL	0.48	LOD	ug/L	UJ	Lcs

Method Category: **SVOA**

Method: 8330 Matrix: AQ

Dilution: 1 Sample ID: FWGLL3MW-246-0439-GW Collected: 5/7/2014 9:43:00 AM Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.039	JM	0.037	MDL	0.051	LOD	ug/L	J	RI

Sample ID: FWGLL3MW-DUP1-0442-GW Collected: 5/7/2014 10:43:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	0.036	JM	0.036	MDL	0.050	LOD	ug/L	J	RI

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-37114-1 Laboratory: TA CAN

EDD Filename: Prep240-37114-1revA3 eQAPP Name: RVAAP 66-rev June 2014

Method Category: VOA

Method: 8260B Matrix: AQ

Sample ID: FWGEQUIPRINSE1-0443-GW Collected: 5/7/2014 1:42:00 PM Analysis Type: RES Dilution: 1

•						•			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	1.5	J	0.57	MDL	0.57	LOD	ug/L	J	ProfJudg
2-HEXANONE	0.50	U	0.41	MDL	0.50	LOD	ug/L	UJ	ProfJudg
4-METHYL-2-PENTANONE	0.50	U	0.32	MDL	0.50	LOD	ug/L	UJ	ProfJudg
BROMODICHLOROMETHANE	0.25	U	0.15	MDL	0.25	LOD	ug/L	UJ	ProfJudg
BROMOFORM	0.64	U	0.64	MDL	0.64	LOD	ug/L	UJ	ProfJudg
CARBON DISULFIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg
CARBON TETRACHLORIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg
TOLUENE	0.20	J	0.13	MDL	0.25	LOD	ug/L	J	RI

Sample ID: FWGEQUIPRINSE2-0444-GW Collected: 5/8/2014 1:00:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	3.6	J	0.57	MDL	0.57	LOD	ug/L	J	ProfJudg
2-HEXANONE	0.50	U	0.41	MDL	0.50	LOD	ug/L	UJ	ProfJudg
4-METHYL-2-PENTANONE	0.50	U	0.32	MDL	0.50	LOD	ug/L	UJ	ProfJudg
BROMODICHLOROMETHANE	0.25	U	0.15	MDL	0.25	LOD	ug/L	UJ	ProfJudg
BROMOFORM	0.64	U	0.64	MDL	0.64	LOD	ug/L	UJ	ProfJudg
CARBON DISULFIDE	0.69	J M	0.13	MDL	0.25	LOD	ug/L	J	ProfJudg
CARBON TETRACHLORIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg
TOLUENE	0.22	J	0.13	MDL	0.25	LOD	ug/L	J	RI

Sample ID: FWGLL1MW-088-0437-GW Collected: 5/8/2014 10:29:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	0.57	U	0.57	MDL	0.57	LOD	ug/L	UJ	ProfJudg
2-HEXANONE	0.50	U	0.41	MDL	0.50	LOD	ug/L	UJ	ProfJudg
4-METHYL-2-PENTANONE	0.50	U	0.32	MDL	0.50	LOD	ug/L	UJ	ProfJudg
BROMODICHLOROMETHANE	0.25	U	0.15	MDL	0.25	LOD	ug/L	UJ	ProfJudg
BROMOFORM	0.64	U	0.64	MDL	0.64	LOD	ug/L	UJ	ProfJudg
CARBON DISULFIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg
CARBON TETRACHLORIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-37114-1 Laboratory: TA CAN

EDD Filename: Prep240-37114-1revA3 eQAPP Name: RVAAP 66-rev June 2014

Method Category: VOA

Method: 8260B Matrix: AQ

Sample ID: FWGLL2MW-271-0438-GW	Collected: 5/7/2014 12:59:00	Analysis Type: RES	Dilution: 1
---------------------------------	------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	0.57	U	0.57	MDL	0.57	LOD	ug/L	UJ	ProfJudg
2-HEXANONE	0.50	U	0.41	MDL	0.50	LOD	ug/L	UJ	ProfJudg
4-METHYL-2-PENTANONE	0.50	U	0.32	MDL	0.50	LOD	ug/L	UJ	ProfJudg
BROMODICHLOROMETHANE	0.25	U	0.15	MDL	0.25	LOD	ug/L	UJ	ProfJudg
BROMOFORM	0.64	U	0.64	MDL	0.64	LOD	ug/L	UJ	ProfJudg
CARBON DISULFIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg
CARBON TETRACHLORIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg

Sample ID: FWGLL3MW-246-0439-GW Collected: 5/7/2014 9:43:00 AM Analysis Type: RES Dilution: 1

						•			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	0.57	U	0.57	MDL	0.57	LOD	ug/L	UJ	ProfJudg
2-HEXANONE	0.50	U	0.41	MDL	0.50	LOD	ug/L	UJ	ProfJudg
4-METHYL-2-PENTANONE	0.50	U	0.32	MDL	0.50	LOD	ug/L	UJ	ProfJudg
BROMODICHLOROMETHANE	0.25	U	0.15	MDL	0.25	LOD	ug/L	UJ	ProfJudg
BROMOFORM	0.64	U	0.64	MDL	0.64	LOD	ug/L	UJ	ProfJudg
CARBON DISULFIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg
CARBON TETRACHLORIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg

Sample ID: FWGLL3MW-DUP1-0442-GW Collected: 5/7/2014 10:43:00 Analysis Type: RES Dilution: 1

•	· · · · · · · · · · · · · · · · · · ·									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2-BUTANONE	0.57	U	0.57	MDL	0.57	LOD	ug/L	UJ	ProfJudg	
2-HEXANONE	0.50	U	0.41	MDL	0.50	LOD	ug/L	UJ	ProfJudg	
4-METHYL-2-PENTANONE	0.50	U	0.32	MDL	0.50	LOD	ug/L	UJ	ProfJudg	
BROMODICHLOROMETHANE	0.25	U	0.15	MDL	0.25	LOD	ug/L	UJ	ProfJudg	
BROMOFORM	0.64	U	0.64	MDL	0.64	LOD	ug/L	UJ	ProfJudg	
CARBON DISULFIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg	
CARBON TETRACHLORIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg	

Sample ID: FWGTEAM2-TRIP Collected: 5/7/2014 7:30:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	0.57	U	0.57	MDL	0.57	LOD	ug/L	UJ	ProfJudg
2-HEXANONE	0.50	U	0.41	MDL	0.50	LOD	ug/L	UJ	ProfJudg

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-37114-1 **Laboratory: TA CAN**

EDD Filename: Prep240-37114-1revA3 eQAPP Name: RVAAP 66-rev June 2014

Method Category: **VOA**

Method: 8260B Matrix: AQ

Sample ID: FWGTEAM2-TRIP Collected: 5/7/2014 7:30:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4-METHYL-2-PENTANONE	0.50	U	0.32	MDL	0.50	LOD	ug/L	UJ	ProfJudg
BROMODICHLOROMETHANE	0.25	U	0.15	MDL	0.25	LOD	ug/L	UJ	ProfJudg
BROMOFORM	0.64	U	0.64	MDL	0.64	LOD	ug/L	UJ	ProfJudg
CARBON DISULFIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg
CARBON TETRACHLORIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg

Sample ID: FWGTEAM3-TRIP Collected: 5/7/2014 7:30:00 AM Analysis Type: RES Dilution: 1

					,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	0.57	U	0.57	MDL	0.57	LOD	ug/L	UJ	ProfJudg
2-HEXANONE	0.50	U	0.41	MDL	0.50	LOD	ug/L	UJ	ProfJudg
4-METHYL-2-PENTANONE	0.50	U	0.32	MDL	0.50	LOD	ug/L	UJ	ProfJudg
BROMODICHLOROMETHANE	0.25	U	0.15	MDL	0.25	LOD	ug/L	UJ	ProfJudg
BROMOFORM	0.64	U	0.64	MDL	0.64	LOD	ug/L	UJ	ProfJudg
CARBON DISULFIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg
CARBON TETRACHLORIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg

Sample ID: FWGTEAM3-TRIP050814 Collected: 5/8/2014 8:00:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-BUTANONE	0.57	U	0.57	MDL	0.57	LOD	ug/L	UJ	ProfJudg
2-HEXANONE	0.50	U	0.41	MDL	0.50	LOD	ug/L	UJ	ProfJudg
4-METHYL-2-PENTANONE	0.50	U	0.32	MDL	0.50	LOD	ug/L	UJ	ProfJudg
BROMODICHLOROMETHANE	0.25	U	0.15	MDL	0.25	LOD	ug/L	ΟJ	ProfJudg
BROMOFORM	0.64	U	0.64	MDL	0.64	LOD	ug/L	UJ	ProfJudg
CARBON DISULFIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	ΟJ	ProfJudg
CARBON TETRACHLORIDE	0.25	U	0.13	MDL	0.25	LOD	ug/L	UJ	ProfJudg

^{*} denotes a non-reportable result

Lab Reporting Batch ID: 240-37114-1 **Laboratory: TA CAN**

EDD Filename: Prep240-37114-1revA3 eQAPP Name: RVAAP 66-rev June 2014

Reason Code Legend

Reason Code	Description
Eb	Equipment Blank Contamination
Fd	Field Duplicate Precision
Lcs	Laboratory Control Spike Lower Estimation
Mb	Method Blank Contamination
Ms	Matrix Spike Lower Estimation
Ms	Matrix Spike Precision
ProfJudg	Professional Judgment
RI	Reporting Limit Trace Value
StoE	Sampling to Extraction Estimation
Surr	Surrogate/Tracer Recovery Lower Estimation

^{*} denotes a non-reportable result

APPENDIX D

INVESTIGATION-DERIVED WASTE CHARACTERIZATION AND DISPOSAL PLAN

John R. Kasich, Governor Mary Taylor, Lt. Governor Craig W. Butler, Director

July 1, 2014

Mr. Brett Merkel Army National Guard Directorate ARNGD-ILE Clean Up 111 South George Mason Drive Arlington, VA 22203

RE: RAVENNA ARMY AMMUNITION PLANT, PORTAGE/TRUMBULL COUNTIES, RE: APPROVAL, INVESTIGATION DERIVED WASTE CHARACTERIZATION AND DISPOSAL PLAN, MAY 2014 GROUNDWATER SAMPLING EVENT FOR RVAAP-66 FWGMP, Ohio EPA # 267000859036

Dear Mr. Merkel:

The Ohio Environmental Protection Agency (Ohio EPA) has received and reviewed the, "Draft Investigation Derived Waste Disposal Plan" (IDW), associated with the May 2014 Groundwater Sampling Event in support of the Facility-Wide Groundwater Monitoring Program at the Ravenna Army Ammunition Plant, Ravenna, OH. This document was received at Ohio EPA, Northeast District Office (NEDO), Division of Environmental Response and Revitalization (DERR), on June 9, 2014, and is dated June 3, 2014. The document was prepared for the U.S. Army Corps of Engineers (USACE) – Louisville District, by Environmental Quality Management, Inc. (EQM), under contract no. W912QR-11-F-0266.

The IDW consists of purge water from the ground water sampling event and decontamination wastewater. Six monitoring wells were sampled during this event. The total volume of water is estimated at 37 gallons and is stored in two drums. One drum contained approximately two gallons of decontamination/rinse water and the other contained approximately 35 gallons of purge water. Based on the analytical results, the drum containing approximately 35 gallons of purge water will be classified as nonhazardous and be sent offsite for disposal at a permitted water treatment facility. The drum containing two gallons of decontamination/rinse water was also sampled and analyzed and the water determined to be nonhazardous. Based on the minimal amount of fluid remaining in the second drum, EQM suggested that this drum be retained for use during the next sampling event, scheduled for July 2014. This drum will be resampled after it is filled during that sampling event. Ohio EPA has no problem with

MR. BRETT MERKEL ARMY NATIONAL GUARD DIRECTORATE JULY 1, 2014 PAGE 2

this recommendation; however, since both drums were determined to be nonhazardous, the wastewater could be consolidated into one drum and sent off for disposal. If the second drum remains, it should simply be dated and labeled nonhazardous.

The Plan is approved and Ohio EPA concurs that the wastewater be disposed of as nonhazardous waste and be sent off-site for disposal to a permitted water treatment or waste disposal facility.

Pursuant to the CERCLA process, the property owner usually can provide the expected land uses to assist in ensuring that the investigation addresses all receptors for both current and future land uses. Be advised that due to land use uncertainty, Ohio EPA may require additional work in the future, to address data gaps. It is incumbent upon the Army to finalize land use at Camp Ravenna as soon as possible, otherwise additional work and schedule slippage may result.

If you have any questions, please call me at (330) 963-1292.

Sincerely,

Kevin M. Palombo

Environmental Specialist

Kuntala

Division of Environmental Response and Revitalization

KP/nvr

cc: Katie Tait, OHARNG RTLS

Kevin Sedlak, ARNG

Gregory F. Moore, USACE

Mark Nichter, USACE

Rebecca Haney/Gail Harris, Vista Sciences Corp.

ec: Nancy Zikmanis, Ohio EPA, NEDO DERR

Justin Burke, Ohio EPA, CO, DERR Rod Beals, Ohio EPA, NEDO DERR

DRAFT

FACILITY-WIDE GROUNDWATER MONITORING PROGRAM RVAPP-66 FACILITY-WIDE GROUNDWATER

INVESTIGATION-DERIVED WASTE CHARACTERIZATION AND DISPOSAL PLAN MAY 2014 GROUNDWATER SAMPLING EVENT REPORT

FORMER RAVENNA ARMY AMMUNITION PLANT, PORTAGE AND TRUMBULL COUNTIES, OHIO

June 3, 2014

GSA Contract Number GS-10F-0293K Delivery Order W912QR-11-F-0266

Prepared for:

U.S. Army Corps of Engineers 600 Martin Luther King Jr. Place Louisville, Kentucky 40202

Prepared by:

Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati, Ohio 45240

1		TABLE OF CONTENTS
2		
3	Tabl	e of Contentsi
4	Acro	onymsii
5	1.0	Introduction1
6	2.0	Operational History and Waste Generation
7	3.0	Management of Environmental Media
8	4.0	Discussion of Analytical Results4
9	5.0	Recommendations for Disposal5
10		5.1 Purge Water5
11		5.2 Decontamination Fluids5
12		5.3 Summary of Disposal Recommendations5
13	6.0	References
14		
15		
16		TABLES
17		
18	2-1	IDW Inventory of Drums
19	5-1	Detected Analytical Results When Compared to USEPA Regulatory
20		Characteristic Levels (40 CFR 261.20 - 24)
21	5-2	Summary of Drum Containers, TCLP Criteria, and Disposal
22		Recommendations6
23		
24		
25		APPENDICES
26		
27	A	Investigation-Derived Waste Analytical Report
28		

1		ACRONYMS
2		
3	AOC	area of concern
4	CFR	Code of Federal Regulations
5	EQM	Environmental Quality Management, Inc.
6	EPA	Environmental Protection Agency
7	${}^{\mathrm{o}}\mathrm{F}$	degrees Fahrenheit
8	FWG	Facility-Wide Groundwater
9	FWGWMPP	Facility-Wide Groundwater Monitoring Program Plan
10	FWSAP	Facility-Wide Sampling and Analysis Plan
11	gal	gallon
12	IDW	investigation-derived waste
13	MEK	methyl ethyl ketone (2-butanone)
14	mg/L	milligram per liter
15	OHARNG	Ohio Army National Guard
16	RCRA	Resource Conservation and Recovery Act
17	RVAAP	Ravenna Army Ammunition Plant
18	SAIC	Science Applications International Corporation
19	SAP	Sampling and Analysis Plan
20	SCF	Sharon Conglomerate Formation
21	S.U.	standard unit
22	SVOC	semivolatile organic compound
23	TCLP	Toxicity Characteristic Leaching Procedure
24	USACE	United States Army Corps of Engineers
25	VOC	volatile organic compound

1	1.0 INTRODUCTION
2	
3	Investigative activities were conducted during the Facility-Wide Groundwater
4	Monitoring Program sampling events in May 2014 at the former Ravenna Army
5	Ammunition Plant (RVAAP), Portage and Trumbull Counties, Ohio, resulting in the
6	generation of investigation-derived wastes (IDW). The IDW consists of purge water and
7	equipment decontamination wastewater. The IDW purge water was generated in the
8	course of field activities at each well. The IDW decontamination waters were generated
9	from the cleaning and decontamination of non-dedicated equipment used to sample the
10	wells. The purpose of this report is to characterize and classify the IDW for proper
11	disposal. The report includes:
12	
13	 A summary of the IDW generated and its origin.
14	 A review of the analytical results used for waste characterization.
15	• Classification of the IDW per the Facility Wide Sampling and Analysis Plan
16	(FWSAP).
17	 Recommendations for disposal.
18	
19	This document follows guidance established by the United States Army Corps of
20	Engineers (USACE), the Ohio Army National Guard (OHARNG), and the Ohio
21	Environmental Protection Agency (EPA) regarding IDW disposition at RVAAP.
22	
23	

FWGWMP May 2014 IDW Report Draft

2.0 OPERATIONAL HISTORY AND WASTE GENERATION

1 2 3

4

5

6

7

8

Information regarding the operational history and suspected contaminants for the Facility-Wide Groundwater Monitoring Program Plan (FWGWMPP) is presented in Section 1.2 of the Final Part 1 - Sampling and Analysis Plan Addendum for the Facility-Wide Groundwater Monitoring Program Plan at the Ravenna Army Ammunition Plant, Ravenna, Ohio (SAP Addendum; Portage, 2004). Section 4.6 of the FWGWMP SAP Addendum describes procedures used for sampling and managing IDW at the former RVAAP.

9 10 11

12

13

14

15

16

17

Water (purged groundwater and decontamination water) IDW was generated during the May 2014 sampling event (six wells). The purge water collected from the sampled areas of concern (AOCs) was stored in drums labeled for purge water disposal. Purge water was generated in accordance with the FWSAP, Section 5.4.4.2 (SAIC, 2011) under the micropurging criteria. Decontamination water was generated from the washing, rinsing, and decontamination procedures used for all non-dedicated sampling equipment. The decontamination water was stored in a drum separate from the purge water. These decontamination procedures are described in Section 5.4.8 of the FWSAP.

18 19 20

The drum container label, type and size of the drum container used, estimated volume per drum, and the source of purge wastewater or decontamination fluid is presented in Table 2-1.

21 22 23

Table 2-1. IDW Inventory of Drums

	1 4071			
Drum	Drum Type		Estimated	Location/
Label	& Size	Contents	Volume	Source
EQM 2014-5	55-gal Steel	Decontamination/Rinse	~2 gallons	Equipment Rinse/
		Water		Decontamination
EQM 2014-6	55-gal Steel	Purge Water	~35 gallons	Load Lines 1, 2, 3, SCF,
				and FWG wells

24 25 SCF = Sharon Conglomerate Formation FWG = New Facility-Wide Groundwater

26

3.0	MANAGEMENT	OF	'ENVIRONMENTAL MEDIA

All environmental media were managed in a manner that minimized potential risk to human health and the environment. Based on past sampling and IDW reports for the similar groundwater monitoring activities investigation-derived waste was handled as nonhazardous material pending waste characterization and classification based on analytical results. The FWSAP and the FWGWMP SAP Addendum describe approved procedures used for containerizing and handling IDW.

All purged groundwater IDW generated from each micropurging event was placed into a 55-gal drum as previously agreed upon by the Army, USACE, and Ohio EPA. The purge water was transferred daily from each well location after sampling via closed-top 5-gal buckets to the appropriately labeled 55-gal drum located and staged on secondary containment inside Building 1036.

1	4.0 DISCUSSION OF ANALYTICAL RESULTS
2	
3	As described in Section 8.4 of the FWSAP (IDW Characterization and Classification for
4	Disposal), all IDW were characterized for disposal by taking composite samples collected
5	from each of the segregated waste streams. There were only two segregated waste
6	streams during this sampling event that required characterization: one for the generated
7	purge water and one for the decontamination wastewater. A composite sample was taken
8	of each waste stream using a disposable bailer until a total of approximately
9	4 liters was withdrawn in equal amounts from all drums of that particular waste stream.
10	Each waste stream composite sample was submitted to TestAmerica Laboratories in
11	North Canton, Ohio, for full Toxicity Characteristic Leaching Procedure (TCLP) analysis
12 13	in accordance with the FWSAP using the following methods:
13	TCI D moreovery by EDA Method CW 946 1211/7470A
	• TCLP mercury by EPA Method SW-846 1311/7470A.
15 16	• TCLP metals (silver, arsenic, barium, cadmium, chromium, lead, and selenium) by EPA Method SW-846 1311/6010B.
17	 TCLP semivolatile organic compounds (SVOCs) by EPA Method SW-846
18	1311/8270C.
19	• TCLP volatile organic compounds (VOCs) by EPA Method SW-846 1311/8260B.
20	 TCLP pesticides by EPA Method SW-846 1311/8081A
21	 TCLP herbicides by EPA Method SW-846 1311/8151A
22	 Total cyanide by EPA Method SW-846 9012A
23	 Total sulfide by EPA Method SW-846 9034
24	• Flashpoint by EPA Method SW-846 1010
25	pH by EPA Method SW-846 9040B
26	
27	A trip blank was submitted with the samples and analyzed for VOCs. The IDW
28	analytical results are presented in Appendix A.

analytical results are presented in Appendix A.

5.0	RECOMN	TAGINAL	IONS FOR	DISPOSAL
5.0	KRAADWIN	TRINIJA I	IUNS PUR	DISPUSAL

Table 8-1 in the FWSAP presents the maximum concentrations of contaminants for the toxicity characteristic for hazardous wastes as per 40 CFR 261.24. Analytical results for the IDW generated during the May 2014 groundwater sampling event were compared against these criteria to determine whether the waste streams generated were potentially hazardous or non-hazardous.

5.1 Purge Water

During micro-purging of the monitoring wells, liquid IDW was generated and sampled. The analytical results for the purged groundwater were compared to the regulatory levels from Table 8-1 in the FWSAP. The regulatory criteria (TCLP) for Resource Conservation and Recovery Act (RCRA) hazardous waste determinations were not exceeded. Table 5-1 presents the detected results compared to the regulatory characteristics for hazardous wastes as per 40 CFR 261.24.

The drum containing purged groundwater will be classified as nonhazardous and be sent offsite for disposal to a permitted water treatment facility in accordance with Section 8.0 of the FWSAP.

5.2 Decontamination Fluids

A composite sample was collected of the decontamination fluids generated during cleaning of non-dedicated sampling equipment. Following collection of decontamination fluids from the drum for waste characterization analysis, only a minimal amount of fluid was retained in the drum (estimated as less than 2 gal). The analytical results indicated that all analytes were below TCLP threshold values. Therefore, the decontamination wastewater should be classified as non-hazardous and sent offsite to a permitted water treatment facility for disposal in accordance with Section 8.0 of the FWSAP.

Alternatively, and solely due to the minimal amount of fluid remaining in this drum, EQM suggests retaining the drum for the collection of decontamination fluids that will be generated during the next sampling event, which is planned for late July 2014. The drummed decontamination fluids will again be resampled to determine waste disposal options at that time.

5.3 Summary of Disposal Recommendations

All drums will be classified as contaminated but non-hazardous. The purge water drum shall be sent offsite to a permitted water treatment facility for disposal; with permission, the drum containing residual decontamination fluid will be maintained on site for reuse during the July 2014 sampling episode. The results for both composite samples show

6

1

2

Table 5-1. Detected Analytical Results When Compared to USEPA Regulatory Characteristic Levels (40 CFR 261.20 - 24)

Sample ID	Detected Contaminant	Detected Result (mg/L)	Regulatory Level ¹ (mg/L)	Above Regulatory Yes/No
	Barium	0.037 J B	100	No
FWG-IDW-	Lead	0.0019 J B	5.0	No
MWPURGEMAY2014	Flashpoint	>180°F	<140°F	No
	pH^2	7.51	<2 or >12.5	No
	2-Butanone (MEK)	0.030 J	200	No
	Arsenic	0.0045 J	5.0	No
	Barium	0.0058 J B	100	No
FWG-IDW-	Cadmium	0.00087 J	1.0	No
MWDECONMAY2014	Chromium	0.015 J	5.0	No
	Lead	0.0096 J B	5.0	No
	Flashpoint	>180°F	<140°F	No
	pH^2	9.33	<2 or >12.5	No
FWG-IDW-MWTBMAY2014	Chloroform	0.42 J	6.0	No

^{1 =} USEPA Regulatory Characteristic Levels (40 CFR 261.20 through 24).

NA = not applicable.

12 13 14

15

10

11

Table 5-2. Summary of Drum Containers, TCLP/Characteristic Waste Criteria, and Disposal Recommendations

Drum Container Label	Media	TCLP Criteria	Disposal Recommendation
EQM 2014-5 Decontamination/ Rinse Water	Water	Regulatory limits not exceeded.	Retain on site for next sampling event.
EQM 2014-6 Purge Water	Water	Regulatory limits not exceeded.	Offsite disposal as non- hazardous waste.

^{2 =} pH measured in Standard Units (S.U.).

J = estimated result. Result is less than reporting limit.

B = blank contamination.

1	6.0 REFERENCES
2	
3	Science Applications International Corporation (SAIC). February 24, 2011. Final
4	Facility-Wide Sampling and Analysis Plan for Environmental Investigations, Ravenna
5	Army Ammunition Plant, Ravenna, Ohio.
6	
7	Portage Environmental. 2004. RVAAP Facility Wide Groundwater Monitoring Program
8	Plan.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	APPENDIX A
11	
12	INVESTIGATION-DERIVED WASTE
13	ANALYTICAL REPORT
14	

E

7

0

11

12

1

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-37132-1 Client Project/Site: RVAAP (OH) - IDW

For:

Environmental Quality Mgt., Inc. 1800 Carillon Blvd Cincinnati, Ohio 45240

Attn: Mr. Erik Corbin

Jennifer Stiller

Authorized for release by: 5/20/2014 5:25:40 PM
Jennifer Stiller, Project Management Assistant II jennifer.stiller@testamericainc.com

Designee for

Mark Loeb, Project Manager II (330)966-9387 mark.loeb@testamericainc.com

.....LINKS

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

TestAmerica Job ID: 240-37132-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	7
Sample Summary	8
Detection Summary	9
Client Sample Results	10
Surrogate Summary	15
QC Sample Results	18
QC Association Summary	25
Lab Chronicle	29
Certification Summary	31
Chain of Custody	32

4

5

6

8

9

10

12

13

TestAmerica Job ID: 240-37132-1

Definitions/Glossary

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH) - IDW

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description** U Indicates the analyte was analyzed for but not detected. Χ Surrogate is outside control limits Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier **Qualifier Description** U Indicates the analyte was analyzed for but not detected. В Compound was found in the blank and sample. Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier **Qualifier Description** Sample was prepped or analyzed beyond the specified holding time U Indicates the analyte was analyzed for but not detected.

Glossary Abbreviation

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

TestAmerica Job ID: 240-37132-1

Job ID: 240-37132-1

Laboratory: TestAmerica Canton

Narrative

CASE NARRATIVE

Client: Environmental Quality Mgt., Inc.

Project: RVAAP (OH) - IDW

Report Number: 240-37132-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on $5/8/2014\ 2:50\ PM$; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 12 coolers at receipt time were $2.4^{\circ}\ C$, $3.2^{\circ}\ C$, $3.4^{\circ}\ C$, $3.4^{\circ}\ C$, $3.4^{\circ}\ C$, $3.8^{\circ}\ C$, $4.0^{\circ}\ C$, 4.

TCLP VOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWG-IDW-MWPURGE MAY 2014 (240-37132-1) and FWG-IDW-MWDECON MAY 2014 (240-37132-2) were analyzed for TCLP volatile organic compounds (GCMS) in accordance with EPA SW-846 Methods 1311/8260B. The samples were leached on 05/12/2014 and analyzed on 05/14/2014.

The continuing calibration verification (CCV) associated with batch 130706 recovered above the upper control limit for vinyl chloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No other difficulties were encountered during the VOCs analysis. All quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GCMS)

Sample FWG-IDW-MWTB MAY 2014 (240-37132-3) was analyzed for volatile organic compounds (GCMS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 05/14/2014.

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

Job ID: 240-37132-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

No difficulties were encountered during the VOCs analysis. All quality control parameters were within the acceptance limits.

TCLP SEMIVOLATILE ORGANIC COMPOUNDS (GCMS)

Samples FWG-IDW-MWPURGE MAY 2014 (240-37132-1) and FWG-IDW-MWDECON MAY 2014 (240-37132-2) were analyzed for TCLP semivolatile organic compounds (GCMS) in accordance with EPA SW-846 Methods 1311/8270C. The samples were leached on 05/12/2014, prepared on 05/13/2014 and analyzed on 05/14/2014.

Surrogates are added during the extraction process prior to dilution. When the sample is diluted, surrogate recoveries are diluted out and no corrective action is required.

No difficulties were encountered during the SVOCs analysis. All quality control parameters were within the acceptance limits.

TCLP CHLORINATED PESTICIDES

Samples FWG-IDW-MWPURGE MAY 2014 (240-37132-1) and FWG-IDW-MWDECON MAY 2014 (240-37132-2) were analyzed for TCLP chlorinated pesticides in accordance with EPA SW-846 Methods 1311/8081A. The samples were leached on 05/12/2014, prepared on 05/13/2014 and analyzed on 05/17/2014.

Surrogates are added during the extraction process prior to dilution. When the sample dilution is 5X or greater, surrogate recoveries are diluted out and no corrective action is required.

DCB Decachlorobiphenyl failed the surrogate recovery criteria low for FWG-IDW-MWDECON MAY 2014 (240-37132-2). Refer to the QC report for details.

The continuing calibration verification (CCV) associated with batch 131000 recovered above the upper control limit for Multiple Analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: FWG-IDW-MWDECON MAY 2014, FWG-IDW-MWPURGE MAY 2014.

2 surrogates are used for this analysis. The laboratory's SOP allows 1 of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample(s) contained an allowable number of surrogate compounds outside limits: FWG-IDW-MWDECON MAY 2014. These results have been reported and qualified.

No other difficulties were encountered during the pesticides analysis. All other quality control parameters were within the acceptance limits.

TCLP CHLORINATED HERBICIDES

Samples FWG-IDW-MWPURGE MAY 2014 (240-37132-1) and FWG-IDW-MWDECON MAY 2014 (240-37132-2) were analyzed for TCLP chlorinated herbicides in accordance with EPA SW-846 Methods 1311/8151A. The samples were leached on 05/12/2014, prepared on 05/13/2014 and analyzed on 05/15/2014.

Surrogates are added during the extraction process prior to dilution. When the sample dilution is 5X or greater, surrogate recoveries are diluted out and no corrective action is required.

No difficulties were encountered during the herbicides analysis. All quality control parameters were within the acceptance limits.

TCLP METALS (ICP)

Samples FWG-IDW-MWPURGE MAY 2014 (240-37132-1) and FWG-IDW-MWDECON MAY 2014 (240-37132-2) were analyzed for TCLP metals (ICP) in accordance with EPA SW-846 Methods 1311/6010B. The samples were leached on 05/12/2014, prepared on 05/13/2014 and analyzed on 05/14/2014.

Barium, Lead and Selenium were detected in method blank LB 240-130323/1-C at levels that were above the method detection limit but below the reporting limit. Barium was detected in method blank MB 240-130439/2-A at a level that was above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Case Narrative

TestAmerica Job ID: 240-37132-1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

Job ID: 240-37132-1 (Continued)

Laboratory: TestAmerica Canton (Continued)

No other difficulties were encountered during the metals analysis. All other quality control parameters were within the acceptance limits.

TCLP MERCURY

Samples FWG-IDW-MWPURGE MAY 2014 (240-37132-1) and FWG-IDW-MWDECON MAY 2014 (240-37132-2) were analyzed for TCLP mercury in accordance with EPA SW-846 Methods 1311/7470A. The samples were leached on 05/12/2014, prepared on 05/13/2014 and analyzed on 05/14/2014.

No difficulties were encountered during the mercury analysis. All quality control parameters were within the acceptance limits.

FLASHPOINT

Samples FWG-IDW-MWPURGE MAY 2014 (240-37132-1) and FWG-IDW-MWDECON MAY 2014 (240-37132-2) were analyzed for flashpoint in accordance with EPA SW-846 Method 1010. The samples were analyzed on 05/13/2014.

No difficulties were encountered during the flashpoint analysis. All quality control parameters were within the acceptance limits.

TOTAL CYANIDE

Samples FWG-IDW-MWPURGE MAY 2014 (240-37132-1) and FWG-IDW-MWDECON MAY 2014 (240-37132-2) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012A. The samples were prepared and analyzed on 05/14/2014.

No difficulties were encountered during the cyanide analysis. All quality control parameters were within the acceptance limits.

SULFIDE

Samples FWG-IDW-MWPURGE MAY 2014 (240-37132-1) and FWG-IDW-MWDECON MAY 2014 (240-37132-2) were analyzed for sulfide in accordance with EPA SW-846 Method 9034. The samples were prepared and analyzed on 05/13/2014.

No difficulties were encountered during the sulfide analysis. All quality control parameters were within the acceptance limits.

PH

Samples FWG-IDW-MWPURGE MAY 2014 (240-37132-1) and FWG-IDW-MWDECON MAY 2014 (240-37132-2) were analyzed for pH in accordance with EPA SW-846 Method 9040B. The samples were analyzed on 05/10/2014.

FWG-IDW-MWDECON MAY 2014, FWG-IDW-MWPURGE MAY 2014The following sample(s) was received with less than 2 days remaining on the holding time or less than one shift (8 hours) remaining on a test with a holding time of 48 hours or less. As such, the laboratory had insufficient time remaining to perform the analysis within holding time: FWG-IDW-MWDECON MAY 2014, FWG-IDW-MWPURGE MAY 2014.

No other difficulties were encountered during the pH analysis. All quality control parameters were within the acceptance limits.

Method Summary

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

TestAmerica Job ID: 240-37132-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CAN
8270C	Semivolatile Organic Compounds (GC/MS)	SW846	TAL CAN
8081A	Organochlorine Pesticides (GC)	SW846	TAL CAN
8151A	Herbicides (GC)	SW846	TAL CAN
6010B	Metals (ICP)	SW846	TAL CAN
7470A	Mercury (CVAA)	SW846	TAL CAN
1010	Ignitability, Pensky-Martens Closed-Cup Method	SW846	TAL CAN
9012A	Cyanide, Total and/or Amenable	SW846	TAL CAN
9034	Sulfide, Acid soluble and Insoluble (Titrimetric)	SW846	TAL CAN
9040B	pH	SW846	TAL CAN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

TestAmerica Job ID: 240-37132-1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

Collected Lab Sample ID Client Sample ID Matrix Received 240-37132-1 FWG-IDW-MWPURGE MAY 2014 05/08/14 12:55 05/08/14 14:50 Water 240-37132-2 FWG-IDW-MWDECON MAY 2014 Water 05/08/14 13:00 05/08/14 14:50 240-37132-3 FWG-IDW-MWTB MAY 2014 Water 05/08/14 12:50 05/08/14 14:50

Sample Summary

Detection Summary

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

TestAmerica Job ID: 240-37132-1

La	ab	Sample ID:	240-37132-1
Dil Fac	D	Method	Prep Type
1	_	6010B	TCLP

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.037	JB	10	0.00067	mg/L	1	_	6010B	TCLP
Lead	0.0019	JB	0.50	0.0019	mg/L	1		6010B	TCLP
Flashpoint	>180		1.00	1.00	Degrees F	1		1010	Total/NA
pH	7.51	Н	0.100	0.100	SU	1		9040B	Total/NA

Client Sample ID: FWG-IDW-MWDECON MAY 2014

Lab Sample ID: 240-37132-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Butanone (MEK)	0.030	J	0.25	0.029	mg/L	1	_	8260B	TCLP
Arsenic	0.0045	J	0.50	0.0032	mg/L	1		6010B	TCLP
Barium	0.0058	JB	10	0.00067	mg/L	1		6010B	TCLP
Cadmium	0.00087	J	0.10	0.00066	mg/L	1		6010B	TCLP
Chromium	0.015	J	0.50	0.0022	mg/L	1		6010B	TCLP
Lead	0.0096	JB	0.50	0.0019	mg/L	1		6010B	TCLP
Flashpoint	>180		1.00	1.00	Degrees F	1		1010	Total/NA
pН	9.33	Н	0.100	0.100	SU	1		9040B	Total/NA

Client Sample ID: FWG-IDW-MWTB MAY 2014

Lab Sample ID: 240-37132-3

Analyte	Result Qualifier	RL	MDL U	Unit	Dil Fac	D	Method	Prep Type
Chloroform	0.42 J	1.0	0.16 u	ug/L	1		8260B	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

TestAmerica Job ID: 240-37132-1

Client Sample ID: FWG-IDW-MWPURGE MAY 2014

Lab Sample ID: 240-37132-1 Date Collected: 05/08/14 12:55 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.025	U	0.025	0.0095	mg/L			05/14/14 20:37	1
1,2-Dichloroethane	0.025	U	0.025	0.011	mg/L			05/14/14 20:37	1
2-Butanone (MEK)	0.25	U	0.25	0.029	mg/L			05/14/14 20:37	1
Benzene	0.025	U	0.025	0.0065	mg/L			05/14/14 20:37	1
Carbon tetrachloride	0.025	U	0.025	0.0065	mg/L			05/14/14 20:37	1
Chlorobenzene	0.025	U	0.025	0.0075	mg/L			05/14/14 20:37	1
Chloroform	0.025	U	0.025	0.0080	mg/L			05/14/14 20:37	1
Tetrachloroethene	0.025	U	0.025	0.015	mg/L			05/14/14 20:37	1
Trichloroethene	0.025	U	0.025	0.0085	mg/L			05/14/14 20:37	1
Vinyl chloride	0.025	U	0.025	0.011	mg/L			05/14/14 20:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		80 - 121			1.5		05/14/14 20:37	1
4-Bromofluorobenzene (Surr)	96		70 - 124					05/14/14 20:37	1
Toluene-d8 (Surr)	103		80 - 120					05/14/14 20:37	1
Dibromofluoromethane (Surr)	94		80 - 128					05/14/14 20:37	1

Method: 8270C -	Semivolatile Organic Compounds (GC/MS) - TCL	.Р
Analyto	Posult Qualifier	D

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
1,4-Dichlorobenzene	0.0040	U	0.0040	0.00034	mg/L		05/13/14 11:46	05/14/14 14:57	1
2,4,5-Trichlorophenol	0.020	U	0.020	0.00030	mg/L		05/13/14 11:46	05/14/14 14:57	1
2,4,6-Trichlorophenol	0.020	U	0.020	0.00024	mg/L		05/13/14 11:46	05/14/14 14:57	1
2,4-Dinitrotoluene	0.020	U	0.020	0.00025	mg/L		05/13/14 11:46	05/14/14 14:57	1
Hexachlorobenzene	0.020	U	0.020	0.000085	mg/L		05/13/14 11:46	05/14/14 14:57	1
Hexachlorobutadiene	0.020	U	0.020	0.00027	mg/L		05/13/14 11:46	05/14/14 14:57	1
Hexachloroethane	0.020	U	0.020	0.00019	mg/L		05/13/14 11:46	05/14/14 14:57	1
3 & 4 Methylphenol	0.040	U	0.040	0.00080	mg/L		05/13/14 11:46	05/14/14 14:57	1
2-Methylphenol	0.0040	U	0.0040	0.00017	mg/L		05/13/14 11:46	05/14/14 14:57	1
Nitrobenzene	0.0040	U	0.0040	0.000040	mg/L		05/13/14 11:46	05/14/14 14:57	1
Pentachlorophenol	0.040	U	0.040	0.00027	mg/L		05/13/14 11:46	05/14/14 14:57	1
Pyridine	0.020	U	0.020	0.00035	mg/L		05/13/14 11:46	05/14/14 14:57	1

Surrogate	%Recovery	Qualifier	Limits	Prepa	ared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	80		30 _ 110	05/13/14	11:46	05/14/14 14:57	1
2-Fluorophenol (Surr)	39		20 - 110	05/13/14	11:46	05/14/14 14:57	1
2,4,6-Tribromophenol (Surr)	71		23 _ 110	05/13/14	111:46	05/14/14 14:57	1
Nitrobenzene-d5 (Surr)	82		28 - 110	05/13/14	111:46	05/14/14 14:57	1
Phenol-d5 (Surr)	39		21 - 110	05/13/14	11:46	05/14/14 14:57	1
Terphenyl-d14 (Surr)	103		48 _ 110	05/13/14	11:46	05/14/14 14:57	1

Method: 8081A - Organochlorine Pesticides (GC) - TCLP

1	Metriou. 000 IA - Organocinorine i	esticides (O	c) - ICLI							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chlordane (technical)	0.0050	U	0.0050	0.000033	mg/L		05/13/14 11:58	05/17/14 07:07	1
	Endrin	0.00050	U	0.00050	0.000011	mg/L		05/13/14 11:58	05/17/14 07:07	1
	Heptachlor	0.00050	U	0.00050	0.0000080	mg/L		05/13/14 11:58	05/17/14 07:07	1
	Heptachlor epoxide	0.00050	U	0.00050	0.0000071	mg/L		05/13/14 11:58	05/17/14 07:07	1
	gamma-BHC (Lindane)	0.00050	U	0.00050	0.0000064	mg/L		05/13/14 11:58	05/17/14 07:07	1
	Methoxychlor	0.0010	U	0.0010	0.000032	mg/L		05/13/14 11:58	05/17/14 07:07	1
	Toxaphene	0.020	U	0.020	0.00032	mg/L		05/13/14 11:58	05/17/14 07:07	1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

TestAmerica Job ID: 240-37132-1

Client Sample ID: FWG-IDW-MWPURGE MAY 2014

Lab Sample ID: 240-37132-1 Date Collected: 05/08/14 12:55 Matrix: Water

Date Received: 05/08/14 14:50

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Tetrachloro-m-xylene	96		40 - 129				05/13/14 11:58	05/17/14 07:07	
Tetrachloro-m-xylene	96		40 - 129				05/13/14 11:58	05/17/14 07:07	
DCB Decachlorobiphenyl	82		40 _ 152				05/13/14 11:58	05/17/14 07:07	
DCB Decachlorobiphenyl	75		40 - 152				05/13/14 11:58	05/17/14 07:07	
Method: 8151A - Herbicides (G	GC) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
2,4-D	0.0040	U	0.0040	0.00041	mg/L		05/13/14 12:01	05/15/14 18:53	
Silvex (2,4,5-TP)	0.0010	U	0.0010	0.00020	mg/L		05/13/14 12:01	05/15/14 18:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
2,4-Dichlorophenylacetic acid	79		56 _ 120				05/13/14 12:01	05/15/14 18:53	
2,4-Dichlorophenylacetic acid	81		56 _ 120				05/13/14 12:01	05/15/14 18:53	
Method: 6010B - Metals (ICP) -	TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Arsenic	0.50	U	0.50	0.0032	mg/L		05/13/14 10:24	05/14/14 17:38	
Barium	0.037	JB	10	0.00067	mg/L		05/13/14 10:24	05/14/14 17:38	
Cadmium	0.10	U	0.10	0.00066	mg/L		05/13/14 10:24	05/14/14 17:38	
Chromium	0.50	U	0.50	0.0022	mg/L		05/13/14 10:24	05/14/14 17:38	
Lead	0.0019	JB	0.50	0.0019	mg/L		05/13/14 10:24	05/14/14 17:38	
Selenium	0.25	U	0.25	0.0041	mg/L		05/13/14 10:24	05/14/14 17:38	
Silver	0.50	U	0.50	0.0022	mg/L		05/13/14 10:24	05/14/14 17:38	
Method: 7470A - Mercury (CVA	AA) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Mercury	0.0020	U	0.0020	0.00012	mg/L		05/13/14 14:15	05/14/14 12:43	
General Chemistry									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Flashpoint	>180		1.00	1.00	Degrees F			05/13/14 08:06	
Cyanide, Total	0.010	U	0.010	0.0032			05/14/14 12:34	05/14/14 15:47	
Sulfide	3.0	U	3.0	0.94	mg/L		05/13/14 08:09	05/13/14 08:09	
pH	7.51		0.100	0.100	OLL			05/10/14 15:17	

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

TestAmerica Job ID: 240-37132-1

Client Sample ID: FWG-IDW-MWDECON MAY 2014

Lab Sample ID: 240-37132-2 Date Collected: 05/08/14 13:00 Matrix: Water

Date Received: 05/08/14 14:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.025	U	0.025	0.0095	mg/L			05/14/14 20:58	1
1,2-Dichloroethane	0.025	U	0.025	0.011	mg/L			05/14/14 20:58	1
2-Butanone (MEK)	0.030	J	0.25	0.029	mg/L			05/14/14 20:58	1
Benzene	0.025	U	0.025	0.0065	mg/L			05/14/14 20:58	1
Carbon tetrachloride	0.025	U	0.025	0.0065	mg/L			05/14/14 20:58	1
Chlorobenzene	0.025	U	0.025	0.0075	mg/L			05/14/14 20:58	1
Chloroform	0.025	U	0.025	0.0080	mg/L			05/14/14 20:58	1
Tetrachloroethene	0.025	U	0.025	0.015	mg/L			05/14/14 20:58	1
Trichloroethene	0.025	U	0.025	0.0085	mg/L			05/14/14 20:58	1
Vinyl chloride	0.025	U	0.025	0.011	mg/L			05/14/14 20:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		80 - 121			1 -		05/14/14 20:58	1
4-Bromofluorobenzene (Surr)	96		70 - 124					05/14/14 20:58	1
Toluene-d8 (Surr)	106		80 - 120					05/14/14 20:58	1
Dibromofluoromethane (Surr)	95		80 - 128					05/14/14 20:58	1

Organic Compou	ilus (GC/IVIS) - ICLP						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
0.0040	U	0.0040	0.00034	mg/L		05/13/14 11:46	05/14/14 15:21	1
0.020	U	0.020	0.00030	mg/L		05/13/14 11:46	05/14/14 15:21	1
0.020	U	0.020	0.00024	mg/L		05/13/14 11:46	05/14/14 15:21	1
0.020	U	0.020	0.00025	mg/L		05/13/14 11:46	05/14/14 15:21	1
0.020	U	0.020	0.000085	mg/L		05/13/14 11:46	05/14/14 15:21	1
0.020	U	0.020	0.00027	mg/L		05/13/14 11:46	05/14/14 15:21	1
0.020	U	0.020	0.00019	mg/L		05/13/14 11:46	05/14/14 15:21	1
0.040	U	0.040	0.00080	mg/L		05/13/14 11:46	05/14/14 15:21	1
0.0040	U	0.0040	0.00017	mg/L		05/13/14 11:46	05/14/14 15:21	1
0.0040	U	0.0040	0.000040	mg/L		05/13/14 11:46	05/14/14 15:21	1
0.040	U	0.040	0.00027	mg/L		05/13/14 11:46	05/14/14 15:21	1
0.020	U	0.020	0.00035	mg/L		05/13/14 11:46	05/14/14 15:21	1
	Result 0.0040 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.040 0.0040 0.0040	Result Qualifier 0.0040 U 0.020 U 0.040 U	0.0040 U 0.0040 0.020 U 0.020 0.040 U 0.040 0.0040 U 0.0040 0.0040 U 0.0040 0.0040 U 0.0040	Result Qualifier RL MDL 0.0040 U 0.0040 0.00034 0.020 U 0.020 0.00030 0.020 U 0.020 0.00024 0.020 U 0.020 0.00025 0.020 U 0.020 0.000085 0.020 U 0.020 0.00027 0.020 U 0.020 0.00019 0.040 U 0.040 0.00080 0.0040 U 0.0040 0.000040 0.0040 U 0.0040 0.000040 0.040 U 0.0040 0.000027	Result Qualifier RL MDL Unit 0.0040 U 0.0040 0.00034 mg/L 0.020 U 0.020 0.00030 mg/L 0.020 U 0.020 0.00024 mg/L 0.020 U 0.020 0.00025 mg/L 0.020 U 0.020 0.000085 mg/L 0.020 U 0.020 0.00027 mg/L 0.020 U 0.020 0.00019 mg/L 0.040 U 0.040 0.00080 mg/L 0.0040 U 0.0040 0.00017 mg/L 0.0040 U 0.0040 0.000040 mg/L 0.0040 U 0.0040 0.000040 mg/L	Result Qualifier RL MDL Unit D 0.0040 U 0.0040 0.00034 mg/L mg/L 0.020 U 0.020 0.00030 mg/L 0.020 U 0.020 0.00024 mg/L 0.020 U 0.020 0.00025 mg/L 0.020 U 0.020 0.00027 mg/L 0.020 U 0.020 0.00019 mg/L 0.040 U 0.040 0.00080 mg/L 0.0040 U 0.0040 0.00017 mg/L 0.0040 U 0.0040 0.000040 mg/L 0.040 U 0.0040 0.000027 mg/L	Result Qualifier RL MDL Unit D Prepared 0.0040 U 0.0040 0.00034 mg/L 05/13/14 11:46 0.020 U 0.020 0.00030 mg/L 05/13/14 11:46 0.020 U 0.020 0.00024 mg/L 05/13/14 11:46 0.020 U 0.020 0.00025 mg/L 05/13/14 11:46 0.020 U 0.020 0.00085 mg/L 05/13/14 11:46 0.020 U 0.020 0.00027 mg/L 05/13/14 11:46 0.020 U 0.020 0.00019 mg/L 05/13/14 11:46 0.040 U 0.040 0.00080 mg/L 05/13/14 11:46 0.0040 U 0.0040 0.00017 mg/L 05/13/14 11:46 0.0040 U 0.0040 0.00017 mg/L 05/13/14 11:46 0.0040 U 0.0040 0.000040 mg/L 05/13/14 11:46 0.0040 U	Result Qualifier RL MDL Unit D Prepared Analyzed 0.0040 U 0.0040 0.00034 mg/L 05/13/14 11:46 05/14/14 15:21 0.020 U 0.020 0.00030 mg/L 05/13/14 11:46 05/14/14 15:21 0.020 U 0.020 0.00024 mg/L 05/13/14 11:46 05/14/14 15:21 0.020 U 0.020 0.00025 mg/L 05/13/14 11:46 05/14/14 15:21 0.020 U 0.020 0.000085 mg/L 05/13/14 11:46 05/14/14 15:21 0.020 U 0.020 0.000085 mg/L 05/13/14 11:46 05/14/14 15:21 0.020 U 0.020 0.00027 mg/L 05/13/14 11:46 05/14/14 15:21 0.040 U 0.040 0.00080 mg/L 05/13/14 11:46 05/14/14 15:21 0.040 U 0.040 0.00017 mg/L 05/13/14 11:46 05/14/14 15:21 0.040 U 0.040

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	72	30 _ 110	05/13/14 11:46	05/14/14 15:21	1
2-Fluorophenol (Surr)	55	20 _ 110	05/13/14 11:46	05/14/14 15:21	1
2,4,6-Tribromophenol (Surr)	82	23 _ 110	05/13/14 11:46	05/14/14 15:21	1
Nitrobenzene-d5 (Surr)	81	28 - 110	05/13/14 11:46	05/14/14 15:21	1
Phenol-d5 (Surr)	49	21 - 110	05/13/14 11:46	05/14/14 15:21	1
Terphenyl-d14 (Surr)	96	48 _ 110	05/13/14 11:46	05/14/14 15:21	1

Method:	8081A	 Organochlorine 	Pesticides (G	iC) - TCLP
Analyte			Result	Qualifier

method: 0001A - Organization (00) - 10El												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Chlordane (technical)	0.0050	U	0.0050	0.000033	mg/L		05/13/14 11:58	05/17/14 07:29	1			
Endrin	0.00050	U	0.00050	0.000011	mg/L		05/13/14 11:58	05/17/14 07:29	1			
Heptachlor	0.00050	U	0.00050	0.0000080	mg/L		05/13/14 11:58	05/17/14 07:29	1			
Heptachlor epoxide	0.00050	U	0.00050	0.0000071	mg/L		05/13/14 11:58	05/17/14 07:29	1			
gamma-BHC (Lindane)	0.00050	U	0.00050	0.0000064	mg/L		05/13/14 11:58	05/17/14 07:29	1			
Methoxychlor	0.0010	U	0.0010	0.000032	mg/L		05/13/14 11:58	05/17/14 07:29	1			
Toxaphene	0.020	U	0.020	0.00032	mg/L		05/13/14 11:58	05/17/14 07:29	1			

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

TestAmerica Job ID: 240-37132-1

Client Sample ID: FWG-IDW-MWDECON MAY 2014

Lab Sample ID: 240-37132-2 Date Collected: 05/08/14 13:00 Matrix: Water

Date Received: 05/08/14 14:50

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	60		40 _ 129				05/13/14 11:58	05/17/14 07:29	
Tetrachloro-m-xylene	56		40 _ 129				05/13/14 11:58	05/17/14 07:29	
DCB Decachlorobiphenyl	10	X	40 _ 152				05/13/14 11:58	05/17/14 07:29	
DCB Decachlorobiphenyl	11	X	40 - 152				05/13/14 11:58	05/17/14 07:29	
Method: 8151A - Herbicides (GC) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2,4-D	0.0040	U	0.0040	0.00041	mg/L		05/13/14 12:01	05/15/14 19:16	
Silvex (2,4,5-TP)	0.0010	U	0.0010	0.00020	mg/L		05/13/14 12:01	05/15/14 19:16	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4-Dichlorophenylacetic acid	85		56 _ 120				05/13/14 12:01	05/15/14 19:16	
2,4-Dichlorophenylacetic acid	92		56 _ 120				05/13/14 12:01	05/15/14 19:16	
Method: 6010B - Metals (ICP) - T	CLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.0045	J	0.50	0.0032	mg/L		05/13/14 10:24	05/14/14 17:42	
Barium	0.0058	JB	10	0.00067	mg/L		05/13/14 10:24	05/14/14 17:42	
Cadmium	0.00087	J	0.10	0.00066	mg/L		05/13/14 10:24	05/14/14 17:42	
Chromium	0.015	J	0.50	0.0022	mg/L		05/13/14 10:24	05/14/14 17:42	
Lead	0.0096	JB	0.50	0.0019	mg/L		05/13/14 10:24	05/14/14 17:42	
Selenium	0.25	U	0.25	0.0041	mg/L		05/13/14 10:24	05/14/14 17:42	
Silver	0.50	U	0.50	0.0022	mg/L		05/13/14 10:24	05/14/14 17:42	
Method: 7470A - Mercury (CVAA) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.0020	U	0.0020	0.00012	mg/L		05/13/14 14:15	05/14/14 12:44	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Flashpoint	>180		1.00	1.00	Degrees F			05/13/14 09:58	
Cyanide, Total	0.010	U	0.010	0.0032	mg/L		05/14/14 12:34	05/14/14 15:47	
Sulfide	3.0	U	3.0	0.94	mg/L		05/13/14 08:09	05/13/14 08:09	
pH	9.33	Н	0.100	0.100	SU			05/10/14 15:17	

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH) - IDW

Lab Sample ID: 240-37132-3

TestAmerica Job ID: 240-37132-1

Client Sample ID: FWG-IDW-MWTB MAY 2014

Date Collected: 05/08/14 12:50 Date Received: 05/08/14 14:50 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/14/14 15:53	1
1,2-Dichloroethane	1.0	U	1.0	0.22	ug/L			05/14/14 15:53	1
Benzene	1.0	U	1.0	0.13	ug/L			05/14/14 15:53	1
Carbon tetrachloride	1.0	U	1.0	0.13	ug/L			05/14/14 15:53	1
Chlorobenzene	1.0	U	1.0	0.15	ug/L			05/14/14 15:53	1
Chloroform	0.42	J	1.0	0.16	ug/L			05/14/14 15:53	1
2-Butanone (MEK)	10	U	10	0.57	ug/L			05/14/14 15:53	1
Tetrachloroethene	1.0	U	1.0	0.29	ug/L			05/14/14 15:53	1
Trichloroethene	1.0	U	1.0	0.17	ug/L			05/14/14 15:53	1
Vinyl chloride	1.0	U	1.0	0.22	ug/L			05/14/14 15:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		63 - 129			-		05/14/14 15:53	1
4-Bromofluorobenzene (Surr)	87		66 - 120					05/14/14 15:53	1
Toluene-d8 (Surr)	85		74 - 120					05/14/14 15:53	1
Dibromofluoromethane (Surr)	98		75 - 121					05/14/14 15:53	1

Surrogate Summary

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Su	rrogate Rec
		12DCE	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(63-129)	(66-120)	(74-120)	(75-121)
240-37132-3	FWG-IDW-MWTB MAY 2014	102	87	85	98
LCS 240-130598/4	Lab Control Sample	96	96	87	99
MB 240-130598/5	Method Blank	99	91	83	97
Surrogate Legend					

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Sur	rrogate Recov	ery (Acceptance Limits)
		12DCE	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(80-121)	(70-124)	(80-120)	(80-128)	
LCS 240-130522/9	Lab Control Sample	95	99	106	93	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: TCLP

_				Percent Sur	rrogate Rec
		12DCE	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(80-121)	(70-124)	(80-120)	(80-128)
240-37132-1	FWG-IDW-MWPURGE MAY 2014	99	96	103	94
240-37132-2	FWG-IDW-MWDECON MAY 2014	100	96	106	95
LB 240-130318/1-A MB	Method Blank	98	95	103	92
Surrogate Legend					

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

_				Percent Sur	rogate Reco	very (Accepta	ance Limits)
		FBP	2FP	TBP	NBZ	PHL	TPH
Lab Sample ID	Client Sample ID	(30-110)	(20-110)	(23-110)	(28-110)	(21-110)	(48-110)
LCS 240-130471/17-A	Lab Control Sample	85	72	100	90	64	108
MB 240-130471/16-A	Method Blank	83	70	97	90	59	106
Surrogate Legend							

Surrogate Summary

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

TestAmerica Job ID: 240-37132-1

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = Terphenyl-d14 (Surr)

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: TCLP

_							
				Percent Sur	rogate Reco	very (Accept	ance Limits)
		FBP	2FP	TBP	NBZ	PHL	TPH
Lab Sample ID	Client Sample ID	(30-110)	(20-110)	(23-110)	(28-110)	(21-110)	(48-110)
240-37132-1	FWG-IDW-MWPURGE MAY 2014	80	39	71	82	39	103
240-37132-2	FWG-IDW-MWDECON MAY	72	55	82	81	49	96
	2014						

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = Terphenyl-d14 (Surr)

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Water Prep Type: Total/NA

				Percent Sur	rogate Rec
		TCX1	TCX2	DCB1	DCB2
Lab Sample ID	Client Sample ID	(40-129)	(40-129)	(40-152)	(40-152)
LCS 240-130474/7-A	Lab Control Sample	89	88	94	93
MB 240-130474/6-A	Method Blank	95	96	84	84
Surrogate Legend					
CX = Tetrachloro-m-x	ylene				

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Water Prep Type: TCLP

			Percent Surrogate Recovery (Acceptance Limits)						
		TCX1	TCX2	DCB1	DCB2				
Lab Sample ID	Client Sample ID	(40-129)	(40-129)	(40-152)	(40-152)				
240-37132-1	FWG-IDW-MWPURGE MAY 2014	96	96	82	75				
240-37132-2	FWG-IDW-MWDECON MAY 2014	60	56	10 X	11 X				

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

DCB = DCB Decachlorobiphenyl

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

Method: 8151A - Herbicides (GC)

Matrix: Water Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		DCPA1	DCPA2	
Lab Sample ID	Client Sample ID	(56-120)	(56-120)	
LCS 240-130477/7-A	Lab Control Sample	77	94	
MB 240-130477/6-A	Method Blank	84	96	
Surrogate Legend				
DCPA = 2,4-Dichloroph	enylacetic acid			

Method: 8151A - Herbicides (GC)

Matrix: Water Prep Type: TCLP

				Percent Surrogate Recovery (Acceptance Limits)
		DCPA1	DCPA2	
Lab Sample ID	Client Sample ID	(56-120)	(56-120)	
240-37132-1	FWG-IDW-MWPURGE MAY 2014	79	81	
240-37132-2	FWG-IDW-MWDECON MAY 2014	85	92	
Surrogate Legend				
DCPA = 2.4-Dichlorophe	nylacetic acid			

14

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: LCS 240-130522/9

Matrix: Water Analysis Batch: 130522 Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	1.00	1.04	10	mg/L		104	71 - 133	
1,2-Dichloroethane	1.00	0.990		mg/L		99	80 _ 120	
Benzene	1.00	1.05		mg/L		105	80 _ 120	
2-Butanone (MEK)	2.00	1.99		mg/L		99	49 - 120	
Carbon tetrachloride	1.00	0.927		mg/L		93	54 - 122	
Chlorobenzene	1.00	1.01		mg/L		101	80 _ 120	
Chloroform	1.00	0.940		mg/L		94	80 _ 123	
Tetrachloroethene	1.00	1.08		mg/L		108	79 _ 134	
Trichloroethene	1.00	0.965		mg/L		97	78 _ 130	
Vinyl chloride	1.00	1.10		mg/L		110	56 ₋ 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		80 - 121
4-Bromofluorobenzene (Surr)	99		70 - 124
Toluene-d8 (Surr)	106		80 - 120
Dibromofluoromethane (Surr)	93		80 - 128

Lab Sample ID: MB 240-130598/5

Matrix: Water

Analysis Batch: 130598

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			05/14/14 12:00	1
1,2-Dichloroethane	1.0	U	1.0	0.22	ug/L			05/14/14 12:00	1
Benzene	1.0	U	1.0	0.13	ug/L			05/14/14 12:00	1
2-Butanone (MEK)	10	U	10	0.57	ug/L			05/14/14 12:00	1
Carbon tetrachloride	1.0	U	1.0	0.13	ug/L			05/14/14 12:00	1
Chlorobenzene	1.0	U	1.0	0.15	ug/L			05/14/14 12:00	1
Chloroform	1.0	U	1.0	0.16	ug/L			05/14/14 12:00	1
Tetrachloroethene	1.0	U	1.0	0.29	ug/L			05/14/14 12:00	1
Trichloroethene	1.0	U	1.0	0.17	ug/L			05/14/14 12:00	1
Vinyl chloride	1.0	U	1.0	0.22	ug/L			05/14/14 12:00	1

	MB N	MB			
Surrogate	%Recovery 0	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	63 _ 129		05/14/14 12:00	1
4-Bromofluorobenzene (Surr)	91	66 _ 120		05/14/14 12:00	1
Toluene-d8 (Surr)	83	74 _ 120		05/14/14 12:00	1
Dibromofluoromethane (Surr)	97	75 121		05/14/14 12:00	1

Lab Sample ID: LCS 240-130598/4

Matrix: Water

Analysis Batch: 130598

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Baton. 199999	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	10.0	8.78		ug/L		88	78 - 131	
1,2-Dichloroethane	10.0	11.0		ug/L		110	71 - 127	
Benzene	10.0	9.77		ug/L		98	80 - 120	

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 240-130598/4

Matrix: Water

Analysis Batch: 130598

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2-Butanone (MEK)	20.0	17.0		ug/L		85	60 - 126	1.5
Carbon tetrachloride	10.0	10.1		ug/L		101	66 _ 128	
Chlorobenzene	10.0	10.0		ug/L		100	80 _ 120	
Chloroform	10.0	10.6		ug/L		106	79 _ 120	
Tetrachloroethene	10.0	9.81		ug/L		98	79 _ 120	
Trichloroethene	10.0	11.1		ug/L		111	76 - 120	
Vinyl chloride	10.0	9.21		ug/L		92	53 - 127	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		63 _ 129
4-Bromofluorobenzene (Surr)	96		66 - 120
Toluene-d8 (Surr)	87		74 - 120
Dibromofluoromethane (Surr)	99		75 - 121

Lab Sample ID: LB 240-130318/1-A MB

Matrix: Water

Analysis Batch: 130522

Client Sample ID: Method Blank

Prep Type: TCLP

-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.025	U	0.025	0.0095	mg/L			05/13/14 19:56	1
1,2-Dichloroethane	0.025	U	0.025	0.011	mg/L			05/13/14 19:56	1
Benzene	0.025	U	0.025	0.0065	mg/L			05/13/14 19:56	1
2-Butanone (MEK)	0.25	U	0.25	0.029	mg/L			05/13/14 19:56	1
Carbon tetrachloride	0.025	U	0.025	0.0065	mg/L			05/13/14 19:56	1
Chlorobenzene	0.025	U	0.025	0.0075	mg/L			05/13/14 19:56	1
Chloroform	0.025	U	0.025	0.0080	mg/L			05/13/14 19:56	1
Tetrachloroethene	0.025	U	0.025	0.015	mg/L			05/13/14 19:56	1
Trichloroethene	0.025	U	0.025	0.0085	mg/L			05/13/14 19:56	1
Vinyl chloride	0.025	U	0.025	0.011	mg/L			05/13/14 19:56	1

MB MB

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	80 - 121		05/13/14 19:56	1
4-Bromofluorobenzene (Surr)	95	70 - 124		05/13/14 19:56	1
Toluene-d8 (Surr)	103	80 - 120		05/13/14 19:56	1
Dibromofluoromethane (Surr)	92	80 - 128		05/13/14 19:56	1

Method: 8270C - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-130471/16-A

Matrix: Water

Analysis Batch: 130607

Client	Sample ID: M	ethod Blank
	Prep Typ	e: Total/NA

Prep Batch: 130471

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	0.0040	U	0.0040	0.00034	mg/L	5% 53	05/13/14 11:46	05/14/14 11:50	1
2,4,5-Trichlorophenol	0.020	U	0.020	0.00030	mg/L		05/13/14 11:46	05/14/14 11:50	1
2,4,6-Trichlorophenol	0.020	U	0.020	0.00024	mg/L		05/13/14 11:46	05/14/14 11:50	1
2,4-Dinitrotoluene	0.020	U	0.020	0.00025	mg/L		05/13/14 11:46	05/14/14 11:50	1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

Method: 8270C - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 240-130471/16-A

Matrix: Water

Analysis Batch: 130607

Client Sample ID: Method Blank Prep Type: Total/NA

rep	Batch:	130471
-----	--------	--------

	MID	MID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorobenzene	0.020	U	0.020	0.000085	mg/L		05/13/14 11:46	05/14/14 11:50	1
Hexachlorobutadiene	0.020	U	0.020	0.00027	mg/L		05/13/14 11:46	05/14/14 11:50	1
Hexachloroethane	0.020	U	0.020	0.00019	mg/L		05/13/14 11:46	05/14/14 11:50	1
3 & 4 Methylphenol	0.040	U	0.040	0.00080	mg/L		05/13/14 11:46	05/14/14 11:50	1
2-Methylphenol	0.0040	U	0.0040	0.00017	mg/L		05/13/14 11:46	05/14/14 11:50	1
Nitrobenzene	0.0040	U	0.0040	0.000040	mg/L		05/13/14 11:46	05/14/14 11:50	1
Pentachlorophenol	0.040	U	0.040	0.00027	mg/L		05/13/14 11:46	05/14/14 11:50	1
Pyridine	0.020	U	0.020	0.00035	mg/L		05/13/14 11:46	05/14/14 11:50	1

QC Sample Results

MB MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	83		30 - 110	05/13/14 11:46	05/14/14 11:50	1
2-Fluorophenol (Surr)	70		20 - 110	05/13/14 11:46	05/14/14 11:50	1
2,4,6-Tribromophenol (Surr)	97		23 - 110	05/13/14 11:46	05/14/14 11:50	1
Nitrobenzene-d5 (Surr)	90		28 - 110	05/13/14 11:46	05/14/14 11:50	1
Phenol-d5 (Surr)	59		21 - 110	05/13/14 11:46	05/14/14 11:50	1
Terphenyl-d14 (Surr)	106		48 - 110	05/13/14 11:46	05/14/14 11:50	1

Lab Sample ID: LCS 240-130471/17-A

Matrix: Water

Analysis Batch: 130607

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 130471

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	0.0800	0.0624		mg/L		78	52 _ 110	
2,4,5-Trichlorophenol	0.0800	0.0681		mg/L		85	51 ₋ 110	
2,4,6-Trichlorophenol	0.0800	0.0683		mg/L		85	46 _ 110	
2,4-Dinitrotoluene	0.0800	0.0741		mg/L		93	54 _ 110	
Hexachlorobenzene	0.0800	0.0735		mg/L		92	50 _ 110	
Hexachlorobutadiene	0.0800	0.0625		mg/L		78	34 _ 110	
Hexachloroethane	0.0800	0.0621		mg/L		78	41 - 110	
3 & 4 Methylphenol	0.0800	0.0635		mg/L		79	48 _ 110	
2-Methylphenol	0.0800	0.0635		mg/L		79	44 - 111	
Nitrobenzene	0.0800	0.0684		mg/L		86	40 _ 110	
Pentachlorophenol	0.160	0.133		mg/L		83	12 _ 110	
Pyridine	0.0800	0.0632		mg/L		79	30 _ 110	

LCS	LCS
-----	-----

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	85		30 - 110
2-Fluorophenol (Surr)	72		20 - 110
2,4,6-Tribromophenol (Surr)	100		23 - 110
Nitrobenzene-d5 (Surr)	90		28 - 110
Phenol-d5 (Surr)	64		21 - 110
Terphenyl-d14 (Surr)	108		48 - 110

TestAmerica Job ID: 240-37132-1

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 240-130474/6-A

Matrix: Water

Analysis Batch: 131000

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 130474

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlordane (technical)	0.0050	U	0.0050	0.000033	mg/L		05/13/14 11:58	05/17/14 08:58	1
Endrin	0.00050	U	0.00050	0.000011	mg/L		05/13/14 11:58	05/17/14 08:58	1
Heptachlor	0.00050	U	0.00050	0.0000080	mg/L		05/13/14 11:58	05/17/14 08:58	1
Heptachlor epoxide	0.00050	U	0.00050	0.0000071	mg/L		05/13/14 11:58	05/17/14 08:58	1
gamma-BHC (Lindane)	0.00050	U	0.00050	0.0000064	mg/L		05/13/14 11:58	05/17/14 08:58	1
Methoxychlor	0.0010	U	0.0010	0.000032	mg/L		05/13/14 11:58	05/17/14 08:58	1
Toxaphene	0.020	U	0.020	0.00032	mg/L		05/13/14 11:58	05/17/14 08:58	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 40 - 129 Tetrachloro-m-xylene 95 05/13/14 11:58 05/17/14 08:58 Tetrachloro-m-xylene 96 40 - 129 05/13/14 11:58 05/17/14 08:58 DCB Decachlorobiphenyl 84 40 - 152 05/13/14 11:58 05/17/14 08:58 40 - 152 DCB Decachlorobiphenyl 84 05/13/14 11:58 05/17/14 08:58

Lab Sample ID: LCS 240-130474/7-A

Matrix: Water

Analysis Batch: 131000

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 130474

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endrin	0.00200	0.00195	J	mg/L		98	73 _ 146	
Heptachlor	0.00200	0.00183	J	mg/L		91	60 - 140	
Heptachlor epoxide	0.00200	0.00217	J	mg/L		108	73 _ 158	
gamma-BHC (Lindane)	0.00200	0.00188	J	mg/L		94	63 _ 157	
Methoxychlor	0.00400	0.00351	J	mg/L		88	49 - 160	

LCS LCS Surrogate %Recovery Qualifier Limits 89 40 - 129 Tetrachloro-m-xylene Tetrachloro-m-xylene 88 40 - 129 DCB Decachlorobiphenyl 94 40 - 152 40 - 152 DCB Decachlorobiphenyl 93

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 240-130477/6-A

Matrix: Water

Analysis Batch: 130851

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 130477

•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	0.0040	U	0.0040	0.00041	mg/L		05/13/14 12:01	05/15/14 20:51	1
Silvex (2,4,5-TP)	0.0010	U	0.0010	0.00020	mg/L		05/13/14 12:01	05/15/14 20:51	1
	MB	MB							

Surrogate Qualifier Limits Prepared Analyzed Dil Fac %Recovery 2,4-Dichlorophenylacetic acid 84 56 - 120 05/13/14 12:01 05/15/14 20:51 96 56 - 120 05/13/14 12:01 05/15/14 20:51 2,4-Dichlorophenylacetic acid

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: LCS 240-130477/7-A

Matrix: Water

Analysis Batch: 130851

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 130477

	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
2,4-D	0.0200	0.0154	mg/L	_	77	50 ₋ 120
Silvex (2,4,5-TP)	0.00500	0.00379	mg/L		76	45 - 129

 Surrogate
 %Recovery
 Qualifier
 Limits

 2,4-Dichlorophenylacetic acid
 77
 56 - 120

 2,4-Dichlorophenylacetic acid
 94
 56 - 120

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 240-130439/2-A

Matrix: Water

Analysis Batch: 130613

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 130439

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.50	U	0.50	0.0032	mg/L		05/13/14 10:24	05/14/14 09:51	1
Barium	0.00102	J	10	0.00067	mg/L		05/13/14 10:24	05/14/14 09:51	1
Cadmium	0.10	U	0.10	0.00066	mg/L		05/13/14 10:24	05/14/14 09:51	1
Chromium	0.50	U	0.50	0.0022	mg/L		05/13/14 10:24	05/14/14 09:51	1
Lead	0.50	U	0.50	0.0019	mg/L		05/13/14 10:24	05/14/14 09:51	1
Selenium	0.25	U	0.25	0.0041	mg/L		05/13/14 10:24	05/14/14 09:51	1
Silver	0.50	U	0.50	0.0022	mg/L		05/13/14 10:24	05/14/14 09:51	1

Lab Sample ID: LCS 240-130439/3-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 130613

Prep Type: Total/NA
Prep Batch: 130439

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	2.00	1.97		mg/L		98	50 _ 150	
Barium	2.00	1.83	J	mg/L		91	50 _ 150	
Cadmium	0.0500	0.0493	J	mg/L		99	50 _ 150	
Chromium	0.200	0.194	J	mg/L		97	50 ₋ 150	
Lead	0.500	0.439	J	mg/L		88	50 _ 150	
Selenium	2.00	2.03		mg/L		101	50 _ 150	
Silver	0.0500	0.0510	J	mg/L		102	50 - 150	

Lab Sample ID: LB 240-130323/1-C Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 130613

Prep Type: TCLP
Prep Batch: 130439

LB LB Analyte Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed 0.50 U 0.50 Arsenic 0.0032 mg/L 05/13/14 10:24 05/14/14 09:47 Barium 0.00173 J 10 0.00067 mg/L 05/13/14 10:24 05/14/14 09:47 0.00066 mg/L Cadmium 0.10 0.10 U 05/13/14 10:24 05/14/14 09:47 Chromium 0.50 U 0.50 0.0022 mg/L 05/13/14 10:24 05/14/14 09:47 0.50 0.0019 mg/L Lead 0.00379 J 05/13/14 10:24 05/14/14 09:47 Selenium 0.00527 J 0.25 0.0041 mg/L 05/13/14 10:24 05/14/14 09:47 Silver 0.50 U 0.50 0.0022 mg/L 05/13/14 10:24 05/14/14 09:47

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 130443

Prep Type: Total/NA

Prep Batch: 130443

Prep Type: TCLP

Prep Batch: 130443

QC Sample Results

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 240-130443/2-A Matrix: Water

Analysis Batch: 130680

мв мв

Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte 0.0020 U 0.0020 0.00012 mg/L 05/13/14 14:15 05/14/14 12:16 Mercury

Lab Sample ID: LCS 240-130443/3-A

Matrix: Water

Analyte

Mercury

Analyte

Mercury

Analyte

Flashpoint

Analysis Batch: 130680

Spike Added

0.00500

LCS LCS

Result Qualifier 0.00500

Unit mg/L

%Rec 100

Limits 50 - 150

Client Sample ID: Lab Control Sample

Lab Sample ID: LB 240-130323/1-D

Matrix: Water

Analysis Batch: 130680

IR IR

Result Qualifier 0.0020 U

0.0020

MDL Unit 0.00012 mg/L

Prepared 05/13/14 14:15 Analyzed

Client Sample ID: Lab Control Sample

%Rec.

Limits

97_103

Client Sample ID: Method Blank

Dil Fac 05/14/14 12:14

Prep Type: Total/NA

Method: 1010 - Ignitability, Pensky-Martens Closed-Cup Method

Lab Sample ID: LCS 240-130504/1

Matrix: Water

Analysis Batch: 130504

Flashpoint

Lab Sample ID: 240-37132-1 DU Matrix: Water

Analysis Batch: 130504

Analyte

Method: 9012A - Cyanide, Total and/or Amenable

Lab Sample ID: MB 240-130669/1-A

Matrix: Water

Cyanide, Total

Matrix: Water

Analyte

Cyanide, Total

Analysis Batch: 130712

Analyte

Lab Sample ID: LCS 240-130669/2-A

Analysis Batch: 130712

MR MR

0.010 U

Result Qualifier

Sample Sample

>180

Result Qualifier

Added 81.0

Spike

83.00

Result Qualifier

MDL Unit

0.0032 mg/L

Qualifier

Unit

mg/L

LCS LCS

Result

0.0186

LCS LCS

Unit Degrees F

%Rec 102

Prepared

05/14/14 12:34

%Rec

111

Client Sample ID: FWG-IDW-MWPURGE MAY 2014

Prep Type: Total/NA

DU DU Result Qualifier RPD Unit D >180 Degrees F

Client Sample ID: Method Blank

Prep Type: Total/NA

RPD

Limit

20

Prep Batch: 130669

Analyzed Dil Fac

Client Sample ID: Lab Control Sample

05/14/14 15:42

Prep Type: Total/NA

Prep Batch: 130669 %Rec.

Limits 69 _ 118

TestAmerica Canton

RL

0.010

Spike

Added

0.0168

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 130378

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Client: Environmental Quality Mgt., Inc.

Project/Site: RVAAP (OH) - IDW

Method: 9034 - Sulfide, Acid soluble and Insoluble (Titrimetric)

Lab Sample ID: MB 240-130378/1-A

Matrix: Water

Analysis Batch: 130482

мв мв

Result Qualifier RL Analyte MDL Unit D Prepared Analyzed Dil Fac 3.0 Sulfide 3.0 U 0.94 mg/L 05/13/14 08:09 05/13/14 08:09

Lab Sample ID: LCS 240-130378/2-A

Matrix: Water

Analyte

Sulfide

Sulfide

Analysis Batch: 130482

Spike Added 7.87

LCS LCS Result Qualifier

6.53

Unit mg/L %Rec Limits 83 70 - 130

Client Sample ID: FWG-IDW-MWPURGE MAY 2014

Client Sample ID: Lab Control Sample

Lab Sample ID: 240-37132-1 MS

Matrix: Water

Analysis Batch: 130482

Analyte

Sample Sample

Result Qualifier 3.0 U

Added 7.87

Spike

Result Qualifier 6.93

MS MS

ma/L

%Rec 88 27 - 124

Client Sample ID: FWG-IDW-MWPURGE MAY 2014

%Rec.

Lab Sample ID: 240-37132-1 MSD

Matrix: Water

Analysis Batch: 130482

Sample Sample Analyte Result Qualifier Sulfide 3.0 U

Spike Added 7.87

MSD MSD Result Qualifier 6.13

Unit mg/L

%Rec 78

D

%Rec

101

%Rec. Limits 27 124

Client Sample ID: Lab Control Sample

%Rec.

Limits

97 - 103

Client Sample ID: Lab Control Sample

97 - 103

RPD Limit 12 20

RPD

Method: 9040B - pH

Lab Sample ID: LCS 240-130116/19

Matrix: Water

Analyte

рΗ

Analysis Batch: 130116

Analyte

рΗ

Analysis Batch: 130116

Lab Sample ID: LCS 240-130116/2 Matrix: Water

> Spike Added

> > 6.47

Spike

Added

6.47

LCS LCS Result Qualifier

LCS LCS

6.510

6.490

Result Qualifier

Unit SU

Unit

SU

D %Rec 100 %Rec. Limits

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

TestAmerica Job ID: 240-37132-1

GC/MS VOA

Leac		

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	240-37132-1	FWG-IDW-MWPURGE MAY 2014	TCLP	Water	1311	
	240-37132-2	FWG-IDW-MWDECON MAY 2014	TCLP	Water	1311	
L	LB 240-130318/1-A MB	Method Blank	TCLP	Water	1311	

Analysis Batch: 130522

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 240-130318/1-A MB	Method Blank	TCLP	Water	8260B	130318
LCS 240-130522/9	Lab Control Sample	Total/NA	Water	8260B	

Analysis Batch: 130598

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-3	FWG-IDW-MWTB MAY 2014	Total/NA	Water	8260B	
LCS 240-130598/4	Lab Control Sample	Total/NA	Water	8260B	
MB 240-130598/5	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 130706

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	TCLP	Water	8260B	130318
240-37132-2	FWG-IDW-MWDECON MAY 2014	TCLP	Water	8260B	130318

GC/MS Semi VOA

Leach Batch: 130323

Lab Sam	iple ID Cl	ient Sample ID	Prep Type	Matrix	Method	Prep Batch
240-3713	32-1 FV	VG-IDW-MWPURGE MAY 2014	TCLP	Water	1311	
240-3713	32-2 FV	VG-IDW-MWDECON MAY 2014	TCLP	Water	1311	

Prep Batch: 130471

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	TCLP	Water	3510C	130323
240-37132-2	FWG-IDW-MWDECON MAY 2014	TCLP	Water	3510C	130323
LCS 240-130471/17-A	Lab Control Sample	Total/NA	Water	3510C	
MB 240-130471/16-A	Method Blank	Total/NA	Water	3510C	

Analysis Batch: 130607

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	TCLP	Water	8270C	130471
240-37132-2	FWG-IDW-MWDECON MAY 2014	TCLP	Water	8270C	130471
LCS 240-130471/17-A	Lab Control Sample	Total/NA	Water	8270C	130471
MB 240-130471/16-A	Method Blank	Total/NA	Water	8270C	130471

GC Semi VOA

Leach Batch: 130323

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	TCLP	Water	1311	
240-37132-2	FWG-IDW-MWDECON MAY 2014	TCLP	Water	1311	

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

TestAmerica Job ID: 240-37132-1

GC Semi VOA (Continued)

Pre	рΒ	atch	: 13	0474
-----	----	------	------	------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	TCLP	Water	3510C	130323
240-37132-2	FWG-IDW-MWDECON MAY 2014	TCLP	Water	3510C	130323
LCS 240-130474/7-A	Lab Control Sample	Total/NA	Water	3510C	
MB 240-130474/6-A	Method Blank	Total/NA	Water	3510C	

Prep Batch: 130477

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	TCLP	Water	8151A	130323
240-37132-2	FWG-IDW-MWDECON MAY 2014	TCLP	Water	8151A	130323
LCS 240-130477/7-A	Lab Control Sample	Total/NA	Water	8151A	
MB 240-130477/6-A	Method Blank	Total/NA	Water	8151A	

Analysis Batch: 130851

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	TCLP	Water	8151A	130477
240-37132-2	FWG-IDW-MWDECON MAY 2014	TCLP	Water	8151A	130477
LCS 240-130477/7-A	Lab Control Sample	Total/NA	Water	8151A	130477
MB 240-130477/6-A	Method Blank	Total/NA	Water	8151A	130477

Analysis Batch: 131000

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	TCLP	Water	8081A	130474
240-37132-2	FWG-IDW-MWDECON MAY 2014	TCLP	Water	8081A	130474
LCS 240-130474/7-A	Lab Control Sample	Total/NA	Water	8081A	130474
MB 240-130474/6-A	Method Blank	Total/NA	Water	8081A	130474

Metals

Leach Batch: 130323

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	TCLP	Water	1311	
240-37132-2	FWG-IDW-MWDECON MAY 2014	TCLP	Water	1311	
LB 240-130323/1-C	Method Blank	TCLP	Water	1311	
LB 240-130323/1-D	Method Blank	TCLP	Water	1311	

Prep Batch: 130439

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	TCLP	Water	3010A	130323
240-37132-2	FWG-IDW-MWDECON MAY 2014	TCLP	Water	3010A	130323
LB 240-130323/1-C	Method Blank	TCLP	Water	3010A	130323
LCS 240-130439/3-A	Lab Control Sample	Total/NA	Water	3010A	
MB 240-130439/2-A	Method Blank	Total/NA	Water	3010A	

Prep Batch: 130443

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	TCLP	Water	7470A	130323
240-37132-2	FWG-IDW-MWDECON MAY 2014	TCLP	Water	7470A	130323
LB 240-130323/1-D	Method Blank	TCLP	Water	7470A	130323
LCS 240-130443/3-A	Lab Control Sample	Total/NA	Water	7470A	
MB 240-130443/2-A	Method Blank	Total/NA	Water	7470A	

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

Metals (Continued)

Analysis Batch: 130613

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	TCLP	Water	6010B	130439
240-37132-2	FWG-IDW-MWDECON MAY 2014	TCLP	Water	6010B	130439
LB 240-130323/1-C	Method Blank	TCLP	Water	6010B	130439
LCS 240-130439/3-A	Lab Control Sample	Total/NA	Water	6010B	130439
MB 240-130439/2-A	Method Blank	Total/NA	Water	6010B	130439

Analysis Batch: 130680

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	TCLP	Water	7470A	130443
240-37132-2	FWG-IDW-MWDECON MAY 2014	TCLP	Water	7470A	130443
LB 240-130323/1-D	Method Blank	TCLP	Water	7470A	130443
LCS 240-130443/3-A	Lab Control Sample	Total/NA	Water	7470A	130443
MB 240-130443/2-A	Method Blank	Total/NA	Water	7470A	130443

General Chemistry

Analysis Batch: 130116

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	Total/NA	Water	9040B	
240-37132-2	FWG-IDW-MWDECON MAY 2014	Total/NA	Water	9040B	
LCS 240-130116/19	Lab Control Sample	Total/NA	Water	9040B	
LCS 240-130116/2	Lab Control Sample	Total/NA	Water	9040B	

Prep Batch: 130378

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	Total/NA	Water	9030B	- 1. A
240-37132-1 MS	FWG-IDW-MWPURGE MAY 2014	Total/NA	Water	9030B	
240-37132-1 MSD	FWG-IDW-MWPURGE MAY 2014	Total/NA	Water	9030B	
240-37132-2	FWG-IDW-MWDECON MAY 2014	Total/NA	Water	9030B	
LCS 240-130378/2-A	Lab Control Sample	Total/NA	Water	9030B	
MB 240-130378/1-A	Method Blank	Total/NA	Water	9030B	

Analysis Batch: 130482

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	Total/NA	Water	9034	130378
240-37132-1 MS	FWG-IDW-MWPURGE MAY 2014	Total/NA	Water	9034	130378
240-37132-1 MSD	FWG-IDW-MWPURGE MAY 2014	Total/NA	Water	9034	130378
240-37132-2	FWG-IDW-MWDECON MAY 2014	Total/NA	Water	9034	130378
LCS 240-130378/2-A	Lab Control Sample	Total/NA	Water	9034	130378
MB 240-130378/1-A	Method Blank	Total/NA	Water	9034	130378

Analysis Batch: 130504

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	Total/NA	Water	1010	
240-37132-1 DU	FWG-IDW-MWPURGE MAY 2014	Total/NA	Water	1010	
240-37132-2	FWG-IDW-MWDECON MAY 2014	Total/NA	Water	1010	
LCS 240-130504/1	Lab Control Sample	Total/NA	Water	1010	

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

TestAmerica Job ID: 240-37132-1

General Chemistry (Continued)

Prep Batch: 130669

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	Total/NA	Water	9012A
240-37132-2	FWG-IDW-MWDECON MAY 2014	Total/NA	Water	9012A
LCS 240-130669/2-A	Lab Control Sample	Total/NA	Water	9012A
MB 240-130669/1-A	Method Blank	Total/NA	Water	9012A

Analysis Batch: 130712

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-37132-1	FWG-IDW-MWPURGE MAY 2014	Total/NA	Water	9012A	130669
240-37132-2	FWG-IDW-MWDECON MAY 2014	Total/NA	Water	9012A	130669
LCS 240-130669/2-A	Lab Control Sample	Total/NA	Water	9012A	130669
MB 240-130669/1-A	Method Blank	Total/NA	Water	9012A	130669

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

Client Sample ID: FWG-IDW-MWPURGE MAY 2014

Lab Sample ID: 240-37132-1 Date Collected: 05/08/14 12:55 Matrix: Water Date Received: 05/08/14 14:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			130318	05/12/14 16:29	SMH	TAL CAN
TCLP	Analysis	8260B		1	130706	05/14/14 20:37	TJL1	TAL CAN
TCLP	Leach	1311			130323	05/12/14 16:20	SMH	TAL CAN
TCLP	Prep	3510C			130471	05/13/14 11:46	SDE	TAL CAN
TCLP	Analysis	8270C		1	130607	05/14/14 14:57	JMG	TAL CAN
TCLP	Leach	1311			130323	05/12/14 16:20	SMH	TAL CAN
TCLP	Prep	3510C			130474	05/13/14 11:58	SDE	TAL CAN
TCLP	Analysis	8081A		1	131000	05/17/14 07:07	BPM	TAL CAN
TCLP	Leach	1311			130323	05/12/14 16:20	SMH	TAL CAN
TCLP	Prep	8151A			130477	05/13/14 12:01	SDE	TAL CAN
TCLP	Analysis	8151A		1	130851	05/15/14 18:53	DEB	TAL CAN
TCLP	Leach	1311			130323	05/12/14 16:20	SMH	TAL CAN
TCLP	Prep	3010A			130439	05/13/14 10:24	DEE	TAL CAN
TCLP	Analysis	6010B		1	130613	05/14/14 17:38	KLC	TAL CAN
TCLP	Leach	1311			130323	05/12/14 16:20	SMH	TAL CAN
TCLP	Prep	7470A			130443	05/13/14 14:15	DEE	TAL CAN
TCLP	Analysis	7470A		1	130680	05/14/14 12:43	ADS	TAL CAN
Total/NA	Analysis	1010		1	130504	05/13/14 08:06	TPH	TAL CAN
Total/NA	Prep	9012A			130669	05/14/14 12:34	NJE	TAL CAN
Total/NA	Analysis	9012A		1	130712	05/14/14 15:47	NJE	TAL CAN
Total/NA	Analysis	9034		1	130482	05/13/14 08:09	WAL	TAL CAN
Total/NA	Prep	9030B			130378	05/13/14 08:09	WAL	TAL CAN
Total/NA	Analysis	9040B		1	130116	05/10/14 15:17	WAL	TAL CAN

Client Sample ID: FWG-IDW-MWDECON MAY 2014

Lab Sample ID: 240-37132-2 Date Collected: 05/08/14 13:00 Matrix: Water Date Received: 05/08/14 14:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			130318	05/12/14 16:29	SMH	TAL CAN
TCLP	Analysis	8260B		1	130706	05/14/14 20:58	TJL1	TAL CAN
TCLP	Leach	1311			130323	05/12/14 16:20	SMH	TAL CAN
TCLP	Prep	3510C			130471	05/13/14 11:46	SDE	TAL CAN
TCLP	Analysis	8270C		1	130607	05/14/14 15:21	JMG	TAL CAN
TCLP	Leach	1311			130323	05/12/14 16:20	SMH	TAL CAN
TCLP	Prep	3510C			130474	05/13/14 11:58	SDE	TAL CAN
TCLP	Analysis	8081A		1	131000	05/17/14 07:29	BPM	TAL CAN
TCLP	Leach	1311			130323	05/12/14 16:20	SMH	TAL CAN
TCLP	Prep	8151A			130477	05/13/14 12:01	SDE	TAL CAN
TCLP	Analysis	8151A		1	130851	05/15/14 19:16	DEB	TAL CAN
TCLP	Leach	1311			130323	05/12/14 16:20	SMH	TAL CAN
TCLP	Prep	3010A			130439	05/13/14 10:24	DEE	TAL CAN
TCLP	Analysis	6010B		1	130613	05/14/14 17:42	KLC	TAL CAN
TCLP	Leach	1311			130323	05/12/14 16:20	SMH	TAL CAN

Lab Chronicle

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

TestAmerica Job ID: 240-37132-1

Client Sample ID: FWG-IDW-MWDECON MAY 2014

Lab Sample ID: 240-37132-2 Date Collected: 05/08/14 13:00 Matrix: Water

Date Received: 05/08/14 14:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Prep	7470A			130443	05/13/14 14:15	DEE	TAL CAN
TCLP	Analysis	7470A		1	130680	05/14/14 12:44	ADS	TAL CAN
Total/NA	Analysis	1010		1	130504	05/13/14 09:58	TPH	TAL CAN
Total/NA	Prep	9012A			130669	05/14/14 12:34	NJE	TAL CAN
Total/NA	Analysis	9012A		1	130712	05/14/14 15:47	NJE	TAL CAN
Total/NA	Analysis	9034		1	130482	05/13/14 08:09	WAL	TAL CAN
Total/NA	Prep	9030B			130378	05/13/14 08:09	WAL	TAL CAN
Total/NA	Analysis	9040B		1	130116	05/10/14 15:17	WAL	TAL CAN

Client Sample ID: FWG-IDW-MWTB MAY 2014

Lab Sample ID: 240-37132-3 Date Collected: 05/08/14 12:50

Matrix: Water

Date Received: 05/08/14 14:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	130598	05/14/14 15:53	LEE	TAL CAN

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Certification Summary

Client: Environmental Quality Mgt., Inc. Project/Site: RVAAP (OH) - IDW

TestAmerica Job ID: 240-37132-1

Laboratory: TestAmerica Canton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	NELAP	9	01144CA	06-30-14 *
Connecticut	State Program	1	PH-0590	12-31-14
Florida	NELAP	4	E87225	06-30-14 *
Georgia	State Program	4	N/A	06-30-14 *
Illinois	NELAP	5	200004	07-31-14 *
Kansas	NELAP	7	E-10336	01-31-15
Kentucky (UST)	State Program	4	58	06-30-14 *
L-A-B	DoD ELAP		L2315	07-18-16
Minnesota	NELAP	5	039-999-348	12-31-14
Nevada	State Program	9	OH-000482008A	07-31-14 *
New Jersey	NELAP	2	OH001	06-30-14 *
New York	NELAP	2	10975	03-31-15
Ohio VAP	State Program	5	CL0024	10-31-15
Pennsylvania	NELAP	3	68-00340	08-31-14
Texas	NELAP	6		08-31-14
USDA	Federal		P330-13-00319	11-26-16
Virginia	NELAP	3	460175	09-14-14
Washington	State Program	10	C971	01-12-15
West Virginia DEP	State Program	3	210	12-31-14
Wisconsin	State Program	5	999518190	08-31-14

^{*} Expired certification is currently pending renewal and is considered valid.

TestAmerica Laboratories, Inc.

CHAIN OF CUSTODY AND RECEIVING DOCUMENTS

240-37132 Chain of Custody

TestAmerica Chain of Custody Record TestAmerica Laboratory location: Regulatory program: Other ____ DW NPDES NPDES W/LS TestAmerica Laboratories, Inc. Client Contact Company Name: Client Project Manager: 56030 FON COCs arillon RIVA Analysis Turnaround Time For lab use only (in BUS days) Analyses TAT if different from below Walk-in client 3 weeks Lab pickup 2 weeks Lab sampling Job/SDG No: 2 days 030174 0016.001 PO# Matrix Containers & Preservatives Sample Specific Notes / NaOH Special Instructions: HCI Sample Identification Sample Date SampleTime h 8 Page 33 of 36 0 8 255 1300 1250 Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return to Client Disposal By Lab Archive For Non-Hazard Flammable Skin Irritant Poison B Unknown Months Special Instructions/QC Requirements & Comments: Heated near Diokup Relinquished by:

5/20/2014

62008 TestAmerica Laboratories, Inc. All rights reserved

TAL 0018-1 (04/10)

Cant	America Canto ton Facility	n Sample R	eccipt Form/	Narrative			Log	gin`# :	3'115"	4	
	EQM			Site Name	9 ,			Cool	e r unpac ke	ed by	
	r Received on		1	Opened o	-	3/14		6	18111	16	<
FedE	x: 1st Grd Exp	UPS F	AS Stetson	Client Drop	Off	estAmeric	a Courier	Other	CNUM_	- for	
	America Cooler#					Box					
	Packing material				tic Bag	None	Other _			,	
			≥ Blue Ice	Dry Ice	Water	None					
II.	Cooler temperatu		*								
15	IR GUN# A (-			d Cooler	,	°C	1	
	IR GUN# 4 (IR GUN# 5 (CF -1°C) C	bserved Coole	r Temp.	°C		d Cooler ' d Cooler '		°C	— 火 ——	Multiple
	IR GUN# 8 (d Cooler			Opoler	rottii
	Were-custody-sea										
	-Were custody se						-	es No N	Ά		
	-Were custody se	eals on the bo	ttle(s)?				Y	es (No)			
ll l	Shippers' packing		,	,			Y	es No			1
li .	Did custody pape						Ž	es No			
5. \	Were the custody	papers relind	quished & sign	ed in the app	propriate p	olace?	CY.	es No			
6. I	Did all bottles arr	ive in good c	andition (Tinh	rolean)?			E	es No			
II .	Could all bottle la	_		,			×	es No			
11	Were correct bott						C2 /Y	es No			
u u	Sufficient quantit		, .		s? ·		X	es) No			1
10. 7	Were sample(s) a	t the correct p	pH upon receip	ot?			75	es No N	A pH Str	ip Lot# <u>HC3</u>	91902
11	Were VOAs on th						_	es No			
12.	Were air bubbles		*				Y	es (No) N	A		
1 12 1	37 4 1 1 1 . 1 .						4	- 1			
13. \	Was a trip blank p	present in the	cooler(s)?				Æ	es No			
				by		v	ria Verbal	es) No Voice Ma	il Other		
Cont	Was a trip blank pacted PM			by		V	ria Verbal	es) No Voice Ma	il Other	. 1	
Cont	acted PM	D	ate			V	ria Verbal			ressed hy	
Cont	acted PM	D	ate			V	ria Verbal		il Other	gessed by	
Cont	acted PM	D	ate				ria Verbal			gessed by	
Cont	acted PM	D	ate			V	ria Verbal			gessed by	
Cont	acted PM	D	ate			V	ria Verbal			gessed by	
Cont	acted PM	D	ate				ria Verbal			gessed by	
Cont	acted PM	D	ate				ria Verbal			gessed by	
Cont	acted PM	D	ate				ria Verbal			gessed by	
Cont	acted PM	D	ate				ria Verbal			gessed by	
Cont	acted PM	D	ate			V	ria Verbal			gessed by	
Cont	acted PM	D	ate				ria Verbal			gessed by	
Cont	acted PM	D	ate			V	ria Verbal			gessed by	
Contraction Concerns 14. (acted PM	D STODY & SA	ate			V	ria Verbal			gessed by	
14. (Cont.)	acted PM cerning CHAIN OF CUS	D STODY & SA	ate	REPANCI	ES			Se	imples pro		
Contraction Concerns 14. (Concerns 14. (Concerns 15. Saning	SAMPLE CONI	DETODY & SA	AMPLE DISC	REPANCI	ES	herecom	nended ho	Se S	had expire	od.	
Contraction Concerns 14. Concerns 14. Concerns 15. Samp Samp Samp	SAMPLE CONI	DOTTION	AMPLE DISC	REPANCI	ES ved after t	he recomm	nended ho	olding time ved in a bro	had expire	ed. iner,	
Contraction Concerns 14. (Concerns 15. Samp Samp Samp Samp Samp Samp Samp Samp	SAMPLE CONI	DETODY & SA	AMPLE DISC	REPANCI	ES ved after t	he recomm	nended ho	Se S	had expire	ed. iner,	
Contraction of the Contraction o	SAMPLE COND ple(s) ple(s) SAMPLE PRES	DETODY & SA	AMPLE DISC	REPANCI	ES ved after t	he recomm	nended ho vere receiv ble >6 mi	Selding time ved in a brom in diame	had expire ken contaiter. (Notify	ed. iner. y PM)	
Contraction Concerns and Contraction Concerns and Contraction Concerns and Contraction Concerns and Contraction Co	SAMPLE CONI	DITION ERVATION	AMPLE DISC	TREPANCI Were received were	ES ved after t	he recomm	nended ho vere receiv ble >6 mi	Selding time ved in a brom in diame	had expire ken contaiter. (Notify	ed. iner,	Ty.

1	Canton Facility		Varrative		3)
	Cooler#	IR Gun#	Observed Temp °C	Corrected Temp	Coolant
	clien		3./	4 ,	ice
Î	(.[]]	2	7 (2)	4.12	
F	Chent		507))	
F			7 4 4	3 11	
į.	Client	-	2 5 2	217	
	C (182)		<u> </u>	5-8	
	clicons		200	3,8	
	C(18)		3,0	4.0	
	Client		405	3.4	
	CICW		4,2	5,2	
	ELCO		2,2	3,2	
	CITENT		1,4	2.4	
	Clien		2,4	3.4	
			`		
į					
				,	
	119 A				
			,		
200					
			,		
Ì		10 to a secure 10 to 10			

			4		
	Transfer day and transf				
The second secon					

C:\Users\livengoodc\AppData\Local\Microsoft\Windows\Temporary Internet Files\OLKD16\WI-NC-099-031813 Cooler Receipt
Form_page 2 - Multiple Coolers.doc
Reviston 3, 3/18/13 rls

Login Container Summary Report

240-37132

Temperature readings: _					
Client Sample ID	Lab ID	Container Type	Container pH	Preservative Added (mls)	Lot#
FWG-IDW-MWPURGE M	AY 2014 240-37132-A-1	Plastic 250ml - with Sodium Hydrox	>12	024	
FWG-IDW-MWPURGE M.	AY 2014 240-37132-B-1	Plastic 500ml - with Zn Acetate and	>9		
FWG-IDW-MWDECON M	AY 2014240-37132-A-2	Plastic 250ml - with Sodium Hydrox	>12		
FWG-IDW-MWDECON M	AY 2014240-37132-B-2	Plastic 500ml - with Zn Acetate and	>9		

Former RVAAP Facility-Wide Groundwater Monitoring Program May 2014 Sampling Ev
--

APPENDIX E

REPORTING LIMITS THAT CURRENTLY
DO NOT MEET THE RVAAP QAPP PROJECT ACTION REQUIRMENTS, MCLS,
AND/OR RSL

VOCs

CAS No.	Analyte Name	Units	MDL	LOD	RL	PAR ²	MCL	RSL
79-34-5	1,1,2,2-Tetrachloroethane	μg/L	0.18	0.25	1	1	NS	0.076
106-93-4	1,2-Dibromoethane	μg/L	0.24	0.25	1	1	NS	0.0075
107-06-2	1,2-Dichloroethane	μg/L	0.22	0.25	1	1	5	0.17
75-27-4	Bromodichloromethane	μg/L	0.15	0.25	1	1	80	0.13
124-48-1	Dibromochloromethane	μg/L	0.18	0.25	1	1	NS	0.17
75-01-4	Vinyl chloride	μg/L	0.22	0.25	1	1	2	0.019
SVOCS	•							•
CAS No.	Analyte Name	Units	MDL	LOD'	RL	PAR²	MCL	RSL
91-94-1	3,3'-Dichlorobenzidine	μg/L	0.37	1	5	5	NS	0.12
534-52-1	4,6-Dinitro-2-methylphenol	μg/L	2.4	4	5	25	NS	1.5
50-32-8	Benzo(a)pyrene	μg/L	0.051	0.1	0.2	0.2	0.2	0.0034
205-99-2	Benzo(b)fluoranthene	μg/L	0.045	0.1	0.2	0.2	NS	0.034
111-44-4	bis(2-Chloroethyl)ether	μg/L	0.1	0.1	1	1	NS	0.014
53-70-3	Dibenzo(a,h)anthracene	μg/L	0.45	0.1	0.2	50	NS	0.0065
118-74-1	Hexachlorobenzene	μg/L	0.085	0.1	0.2	10	1	0.049
87-68-3	Hexachlorobutadiene	μg/L	0.27	0.5	1	10	NS	0.3
193-39-5	Indeno(1,2,3-cd)pyrene	μg/L	0.043	0.1	0.2	0.2	NS	0.034
180-60-1	2,2'-Oxybis (1-Chloropropane)	μg/L	0.4	0.5	1	10	NS	0.36
621-64-7	N-Nitroso-di-n-propylamine	μg/L	0.24	0.5	1	10	NS	0.011
87-86-5	Pentachlorophenol	μg/L	0.27	1	5	5	1	0.04
Pesticides								
CAS No.	Analyte Name	Units	MDL	LOD	RL	PAR ²	MCL	RSL
309-00-2	Aldrin	μg/L	0.0082	0.02	0.03	0.03	NS	0.00046
319-84-6	alpha-BHC	μg/L	0.007	0.02	0.03	0.03	NS	0.0071
60-57-1	Dieldrin	μg/L	0.0075	0.02	0.03	0.03	NS	0.0017
76-44-8	Heptachlor	μg/L	0.008	0.02	0.03	0.03	0.4	0.002
1024-57-3	Heptachlor epoxide	μg/L	0.0071	0.02	0.03	0.03	0.2	0.0038
8001-35-2	Toxaphene	μg/L	0.32	0.79	2	2	3	0.015
PCB								
CAS No.	Analyte Name	Units	MDL	LOD	RL	PAR ²	MCL	RSL
11104-28-2	PCB- 1221	μg/L	0.13	0.2	0.5	0.2	0.5	0.0046
11141-16-5	PCB- 1232	μg/L	0.16	0.2	0.5	0.2	0.5	0.0046
53469-21-9	PCB- 1242	μg/L	0.22	0.4	0.5	0.4	0.5	0.039
12672-29-6	PCB- 1248	μg/L	0.1	0.2	0.5	0.2	0.5	0.039
11097-69-1	PCB- 1254	μg/L	0.16	0.2	0.5	0.2	0.5	0.039
11096-82-5	PCB- 1260	μg/L	0.17	0.2	0.5	0.2	0.5	0.039
Explosives								
CAS No.	Analyte Name	Units	MDL	LOD'	RL	PAR²	MCL	RSL
606-20-2	2,6-Dinitrotoluene	μg/L	0.05	0.1	0.13	0.1	NS	0.048
Inorganics		<u> </u>						
CAS No.	Analyte Name	Units	MDL	LOD	RL	PAR ²	MCL	RSL
7440-38-2	Arsenic	μg/L	3.3	10	10	5	10	0.052
7440-70-2	Calcium	μg/L	630	1000	5000	100	NS	NS
7440-09-7	Potassium	μg/L	300	900	5000	200	NS	NS
7439-95-4	Magnesium	μg/L	120	300	5000	100	NS	NS
7440-66-6	Zinc	μg/L	27	50	50	10	NS	6000
7440-28-0	Thallium	μg/L	0.79	1.5	2	1	2	0.2
57-12-5	Cyanide	mg/L	0.01	0.01	0.0032	0.01	0.2	0.0015
Notes:	1- LOD= The smallest amount or concer	ntration of						

Notes:

NS= No Standard

¹⁻ LOD= The smallest amount or concentration of a substance that must be present in a sample

in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate is 1%.

²⁻ Project Action Requirements from table 4 of the Facility Wide QAPP