

Appendix P

Surface Water Analytical Data

C-Block Quarry

Building 1200

Landfill North of Winklepeck Burning Grounds

Pistol Range

Load Line 5

Load Line 7

Load Line 8

Load Line 10

Buildings F-15/F-16

Anchor Test Area

LABORATORY TEST RESULTS
Job Number: 231832

Date:12/01/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: CBLsw-001-SW Date Sampled....: 11/09/2004
Time Sampled....: 14:40
Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL DILUTION	UNITS	BATCH	DΤ	DATE/TIME TE	-ÇH
7196A	Hexavalent Chromium Hexavalent Chromium	0.010	n; H	0.0016	0.010 1	mg/L	133892		11/10/04 1234 pm	nf
							!			
			:				· ;			
							: :			
		:		3		4			,	
				·						
							:		:	

^{*} In Description = Dry Wgt.

Page 5

Job Number: 231832

LABORATORY TEST RESULTS

Date: 11/29/2004

CUSTOMER: MON Engineers, Inc.

PROJECT: USAGE RVXAP 14 AGCS

ATTN: Eric Ellis

Customer Sample ID: CBLsw-001-SW Date Sampled....: 11/09/2004 Time Sampled....: 14:40 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	G FLAGS	MOL.	RL	DILUTION	UNITS	BATCH	DT	DATE/TIM	ATE:	TECH
7041	Antimony (GFAA) Antimony	7.5	U	2.5	7.5	1	ug/L	134574	M, V, 2	11/16/04 1		9.00
7060A	Arsenic (GFAA) Arsenic	11		0.51	2.0	1	ug/L	134614		11/15/04 1		
7421	Lead (GFAA) Lead	1.0	8	0.79	3.0	1	ug/L	134350		 11/13/04 0	0612	daj
7841	Thallium (GFAA) Thallium	4.0	U	1.3	4.0	1	ug/L	134456		11/16/04 0	3512	daj
7470A	Mercury (CVAA) Mercury	0_066	В	0.049	0.20	1	ug/L	134946		11/19/04 1	1647	gok
6010B	Metals Analysis (ICAP Trace) Aluminum Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium	480 49 2.0 2.0 4500 1.8 4.7 4.5 7200 1700 2400 7.4 6700	B B B	24 1.5 0.17 0.44 24 1.5 1.0 1.6 40 12 0.71 1.9	150 10 2.0 2.0 100 10 5.0 10 120 100 10 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/L ug/L	134566 134566 134566 134566 134566 134566 134566 134566 134566 134566 134566		11/16/04 2 11/16/04 2	2215 2215 2215 2215 2215 2215 2215 2215	tds tds tds tds tds tds tds tds tds tds

^{*} In Description = Dry Wgt.

Page 8

LABORATORY TEST RESULTS Job Number: 231832 Date: 11/29/2004 CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAP 14 AOCS ATTN: Eric Ellis Customer Sample ID: CBLsw-001-SW Laboratory Sample ID: 231832-4 Date Sampled....: 11/09/2004 Date Received.....: 11/10/2004 Time Sampled.....: 14:40 Time Received.....: 09:45 Sample Matrix....: Water TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT O FLAGS MDL 81 DILUTION UNITS BATCH DT DATEXTIME Selenium 15 5.0 15 134566 ug/L 11/16/04 2215 tds Silver 10 Ų 11/16/04 2215 tds 11/16/04 2215 tds 3.1 10 ug/L 134566 Sodium 1500 500 1500 134566 ug/L Vanadi um 11/16/04 2215 tds 2.7 2.1 10 134566 ug/L Zinc 23 10 30 ug/L 134566 11/16/04 2215 tds

^{*} In Description = Dry Wgt.

STL Chicago is part of Severn Trent Laboratories, Inc.

Date: 12/03/2004

CUSTONER: MKM Engineers, Inc. PROJECT: USACE RVAAP 14:AGCS ATTW: Enic Elkis:

Customer Sample ID: CBLsw-001-SW Date Sampled....: 11/09/2004 Time Sampled....: 14:40 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DILUTION	UNITS	BATCH	DΤ	DATE/F	I NE	TECH
8081A	Organochlorine Pesticide Analysis alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Meptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Methoxychlor alpha-Chlordane gamma-Chlordane Endrin ketone Toxaphene	0.20 0.20 0.20 0.30 0.22 0.30 0.30 1.2 0.099 0.20 0.30		0.093 0.055 0.050 0.083 0.081 0.055 0.071 0.042 0.036 0.046 0.034 0.083 0.071 0.087 0.087 0.087 0.087 0.087	0.30 0.20 0.20 0.30 0.30 0.20 0.20 0.20	2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059	The state of the s	11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04	0619 0619 0619 0619 0619 0619 0619 0619	kati kati kati kati kati kati kati kati

^{*} In Description = Dry Wgt.

Job Number: 231832 LABORATORY TEST RESULTS

Date: 12/01/2004

APTN: Erie Ellis

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAP TA ADCS

Customer Sample ID: CBLsw-001-SW Date Sampled....: 11/09/2004 Time Sampled....: 14:40 Sample Matrix....: Water

PCB Analysis Arcolor 1016	TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	FLAGS	MOL.	RL	DILUTION	UNITS	BATCH	DATE/TIME	TEC
	8082	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	0.59 1.3 1.3 1.3 1.3 1.5	1	0.18 0.42 0.35 0.43 0.48 0.35	0.59 1.3 1.3 1.3 1.5 1.5	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135575 135575 135575 135575 135575 135575	11/19/04 2257 11/19/04 2257 11/19/04 2257 11/19/04 2257 11/19/04 2257 11/19/04 2257	bjt bjt bjt bjt

^{*} In Description = Dry Wgt.

Job Number: 231832

LABORATORY TEST RESULTS

Date: 11/20/2004

CUSTOMER: MKM Engineers; Inc. PROJECT: USACE RVAAP: 14 AGES AJTN: Enic Elkis

Customer Sample ID: CBLsw-001-SW Date Sampled....: 11/09/2004 Time Sampled....: 14:40 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST: DESCRIPTION	SAMPLE RESULT	q	FLAGS	WDT	RL	DILUTION	UNITS	BATCE	D.T	DATE/1	ME	TECH
8260B	Volatile Organics	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<i></i> 311.11.11				<u> </u>	100000	1 1 1 2 1	.00000338		43000
	Chloromethane	1.0	lu		0.080	1.0	1.00000	ug/ L	134612		44 144 101	101/	7
i	iVinyt chloride		Ū		0.080	1.0	1.00000	ug/L	134612		11/16/04		
	Bromomethane	1.0	ارزا		0.10	1.ŏ	1.00000	ug/L	134612	1 1	11/16/04 11/16/04	1714	Jun
	Chloroethane	1.0	U		0.080	1.0	1.00000	ug/L	134612		11/16/04	101/	jun
	1,1-Dichloroethene	1.0	lu¦	*	0.12	1.0	1.00000	ug/L	134612		11/16/04	1014	ide
	Carbon disulfide	5.0	υį	*	0.20	5.0	1.00000	ug/L	134612		11/16/04		
	Acetone	8.6	J		1.8	10	1.00000	ug/L	134612		11/16/04		
	Methylene chloride	1.5	Ü		0.35	1.5	1.00000	ug/L	134612		11/16/04	1014	ido
	trans-1,2-Dichloroethene	1.0	u		0.14	1.0	1.00000	ug/L	134612		11/16/04	1914	ida
	1.1-Dichloroethane	1.0	ш		0.11	1.0	1.00000	ug/L	134612	1 1	11/16/04	1914	ide
	cis-1,2-Dichloroethene	1.0	U		0.090	1.0	1.00000	ug/L	134612	1	11/16/04	1914	idn
	2-Butanone (MEX)	10	U		1.2	10	1.00000	ug/L	134612	íl	11/16/04	1914	idn
	Bromochloromethane	1.0	u		0.10	1.0	1.00000	ug/L	134612		11/16/04	1914	idn
	Chloroform	1.0	U		0.11	1.0	1.00000	ug/L	134612		11/16/04	1914	idn
	1,1,1-Trichloroethane	1.0	미		0.080	1.0	1.00000	ug/L	134612		11/16/04	1914	idn
	Carbon tetrachloride	1.0	U		0.13	1.0	1.00000	uig/L	134612		11/16/04		
	Benzene	1.0	u		0.090	1.0	1.00000	ug/L	134612		11/16/04	1914	jdn
	1,2-Dichloroethane	1.0	U		0.090	f.O	1.00000	ug/L	134612		11/16/04	1914	jdn
	Trichloroethene		υl		0.10	1.0	1.00000	ug/L	134612		11/16/04	1914	jdn
	1,2-Dichloropropane		U		0.12	1.0	1.00000	ug/L	134612	1 1	11/16/04	1914	jdn
	Bromodichloromethane		Цį		0.11	1.0	1.00000	ug/L	134612	1 1	11/16/04	1914	jdan
	cis-1,3-Dichloropropene		U		0.12	1.0	1.00000	ug/L	134612	1	11/16/04	1914	john
	4-Methyl-2-pentanone (MIBK)	10	П		0.65	10	1.00000	ug/L	134612		11/16/04		
	Toluene	8.6	ll		0.10	1.0	1.00000	ug/L	134612		11/16/04		
	trans-1,3-Dichloropropene		U		0.15	1.0	1.00000	ug/L	134612	f	11/16/04	1914	jdn
	1,1,2-Trichloroethane Tetrachloroethene		บ		0.15	1.0	1.00000	ug/L	134612		11/16/04	1914	jdn
	2-Hexanone		U		0.090	1.0	1.00000	ug/L	134612		11/16/04		
	C-uevalinis	10	"		0.53	10	1.00000	ug/L	134612		11/16/04	1914	jdn
	1 P. C.]

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS
Job Number: 231832

Date: 11/20/2004

CUSTOMER: NKN Engineers, Inc. PROJECT: USACE RVAAP: 14 ACCS ATTN: Engc Ellis

Customer Sample ID: CBLsw-001-SW
Date Sampled....: 11/09/2004
Time Sampled....: 14:40
Sample Matrix...: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	£L.	DILUTION		BATCH D	T DATE/TIME TECH
	Dibromochloromethane 1,2-Dibromochlane (EDB) Chlorobenzene Ethylbenzene m&p-Xylenes o-Xylene Styrene Bromoform 1,1,2,2-Tetrachloroethane 1,2-Dichloroethene (total) Xylenes (total)	1.0 1.0 1.0 2.0 1.0	ככבנככפפכ	0.060 0.13 0.08D 0.970 0.18 0.080 0.13 0.11 0.090 0.23 0.28	1.8 1.0 1.0 2.0 1.0 1.0 1.0 1.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134612 134612 134612 134612 134612 134612 134612 134612 134612	11/16/04 1914 jdn 11/16/04 1914 jdn

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 12/06/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric ELLIs

Customer Sample ID: CBLsw-001-SW Date Sampled....: 11/09/2004 Time Sampled....: 14:40 Sample Matrix....: Water

Phenol, I Bis(2-chl 1,3-Dichl 1,4-Dichl 1,2-Dichl Benzyl al 2-Methylp 2,2-oxybi n-Nitrosen Hexachlor 4-Methylp 2-Chlorop Nitrobens 8is(2-chl 1,2,4-Tri Benzoic al Isophoror 2,4-Dichl 4-Chlorop Naphthale 2,4-Dichl	latile Organics , Low Level Water chloroethyl)ether, Low Level Water chlorobenzene, Low Level Water chlorobenzene, Low Level Water chlorobenzene, Low Level Water alcohol, Low Level Water ylphenol (o-cresol), Low Level Water ybis (1-chloropropane), Low Level Water oso-di-n-propylamine, Low Level Water	4.9 1.9 1.9 1.9 1.9 19	0 0 0 0		0.34 0.29 0.42 0.32	4.9 1.9 1.9	1.00000 1.00000 1.00000	ug/L ug/L	136171 136171		11/28/04 11/28/04	
Bis(2-cht 1,3-Dicht 1,4-Dicht 1,2-Dicht Benzyt al 2-Methyt 2,2-oxybi n-Witrose Hexachtor 4-Methyt 2-Chtorop Nitrobens 8is(2-cht 1,2,4-Tri Benzoic al Isophoror 2,4-Dimet Hexachtor Naphthale 2,4-Dicht 4-Chtorop	chloroethyi)ether, Low Level Water chlorobenzene, Low Level Water chlorobenzene, Low Level Water chlorobenzene, Low Level Water alcohol, Low Level Water ylphenol (o-cresol), Low Level Water ybis (1-chloropropane), Low Level Water	1.9 1.9 1.9 1.9	lu l		0.2 9 0.42	1.9 1.9	1.00000	ug/L	136171			
1,3-Dichl 1,4-Dichl Benzyl al 2-Methylp 2,2-oxyb n-Witrosen Hexachlord 4-Methylp 2-Chlord Nitrobenz 85(2-chl 1,2,4-Tri Benzoic al Isophoror 2,4-Dichl 4-Chlord 4-Chlord 1,4-Dichl 4-Chlord 2,4-Oichl	chlorobenzene, Low Level Water chlorobenzene, Low Level Water chlorobenzene, Low Level Water alcohol, Low Level Water ylphenol (o-cresol), Low Level Water ybis (1-chloropropane), Low Level Water	1.9 1.9 1.9	lu l		0.42	1.9		ug/L	136171			
1.4-Dichl Benzyl al 2-Methylp 2,2-oxybin-Witrosc Hexachlord 4-Methylp 2-Chlorop Nitrobenz 8is(2-chl 1,2,4-Tri Benzoic al Isophoror 2,4-Dichl 4-Chloros 2,4-Dichl 4-Chloros 2,4-6-Tri	chlorobenzene, Low Level Water chlorobenzene, Low Level Water alcohol, Low Level Water ylphenol (o-cresol), Low Level Water ybis (1-chloropropane), Low Level Water	1.9 1.9 19	0 0				1.00000 l					. DZ16
11,2-Dicht Benzyl al 2-Methylp 2,2-oxybi n-Nitrosen Hexachlor 4-Methylp 2-Chlorop Nitrobenz 8is(2-chlorop Repart 1,2,4-Tri Benzoic al Isophoror 2,4-Dicht 4-Chlorop Repart 1,4-Dicht 1,4-Chlorop Repart 1,4-Chlorop Repart 1,4-Chlorop Repart 1,4-Chlorop Repart 1,4-6-Tri 1	chlorobenzene, Low Level Water alcohol, Low Level Water ylphenol (o-cresol), Low Level Water ybis (1-chloropropane), Low Level Water	1.9 19	U		ו כדח			ug/L	136171		11/28/04	
Benzyl al 2-Methylp 2,2-oxybi n-Nitroso Hexachlor 4-Methylp 2-Chlorop Nitrobenz 8is(2-chi 1,2,4-Tri Benzoic al Isophoror 2,4-Dinmet Hexachlor Naphthale 2,4-Dichl 4-Chloroe 2,4,6-Tri	alcohol, Low Level Water ylphenol (o-cresol), Low Level Water ybis (1-chloropropane), Low Level Water	19	U			1.9	1.00000	ug/L	136171		11/28/04	
2-Methylp 2,2-oxybi n-Nitrose Hexachlor 4-Methylp 2-Chlorop Nitrobenz 8is(2-chl 1,2,4-Tri Benzoic a Isophoror 2,4-Dimet Hexachlor Naphthala 2,4-Dichl 4-Chloros 2,4,6-Tri	ylphenol (o-cresol), Low Level Water /bis (1-chloropropane), Low Level Water				0.34	1.9	1.00000	ug/L	136171		11/28/04	
2,2-oxybi n-Nitrosc Hexachlor 4-Methylp 2-Chlorop Nitrobens 8is(2-chl 1,2,4-Tri Benzoic a Isophoror 2,4-Dimet Hexachlor Naphthale 2,4-Dichl 4-Chloroe 2,4,6-Tri	/bis (1-chloropropane), Low Level Water	1 79	[U]		2.1	19	1.00000	ug/L	136171		11/28/04	
n-Witrosc Hexachlor 4-Methyl 2-Chlorop Witrobens 8is(2-chl 1,2,4-Tri Benzoic a Isophoror 2,4-Dimet Hexachlor Maphthala 2,4-Dichl 4-Chloroe 2,4,6-Tri	/D18 (1-chloropropane), Low Level Water)80-di-n-propylamine. Low Level Water				0.25	1.9	1.00000	ug/L	136171		11/28/04	0216
Hexachlor 4-Methylp 2-Chlorop Nitrobenz 8is(2-chl 1,2,4-Tri Benzoic a Isophoror 2,4-Dimet Hexachlor Naphthala 2,4-Dichl 4-Chloroe 2,4,6-Tri	YSO-di-n-propylamine, low level Mater	1.9			0.27	1.9	1.00000	ug/L	136171		11/28/04	0216
4-Methylp 2-Chlorop Nitrobenz 8is(2-chl 1,2,4-Tri Benzoic a Isophoror 2,4-Dimet Hexachlor Naphthale 2,4-Dichl 4-Chloroe 2,4,6-Tri	b. shipming rou reset 40721	0.49	Ü		0.079	0.49	1.00000	ug/L	136171		11/28/04	0216
2-Chlorop Nitrobenz Bis(2-chi 1,2,4-Tri Benzoic a Isophoror 2,4-Dimet Hexachlor Naphthale 2,4-Dichl 4-Chloroe 2,4-6-Tri	loroethane, Low Level Water	4.9	JU		0.59	4.9	1.00000	ug/L	136171		11/28/04	0216
Nitrobenz 8is(2-chl 1,2,4-Tri Benzoic a Isophoror 2,4-Dimet Hexachlor Naphthala 2,4-Dichl 4-Chloros 2,4,6-Tri	/lphenol (m/p-cresol), Low Level Water	1.9	U		0.097	1.9	1.00000	ug/L	136171		11/28/04	021
8is(2-chl 1,2,4-Tri Benzoic a Isophoror 2,4-Dimet Hexachlor Naphthale 2,4-Dichl 4-Chloros 2,4,6-Tri	rophenol, Low Level Water	4.9	U		0.12	4.9	1.00000	ug/L	136171	!	11/28/04	0216
1,2,4-Tri Benzoic a Isophoror 2,4-Dimet Hexachlor Naphthale 2,4-Dichl 4-Chloros 2,4,6-Tri	enzene, Low Level Water	0.97	U		0.16	0.97	1.00000	ug/L	136171		11/28/04	0216
Benzoic a Isophoror 2,4-Dimet Hexachlor Naphthale 2,4-Dichl 4-Chloroe 2,4,6-Tri	chloroethoxy)methane, Low Level Water	1.9	ט ט ט ט ט		0.30	1.9	1.00000	ug/L	136171	1.	11/28/04	0216
Isophoror 2,4-Dimet Hexachlor Naphthale 2,4-Dichl 4-Chloroe 2,4-6-Tri	Trichlorobenzene, Low Level Water	1.9	្យម		0.33	1.9	1.00000	ug/L	136171	Ē	11/28/04	0216
2,4-Dimet Hexachlor Naphthale 2,4-Dichl 4-Chloroe 2,4,6-Tri	acid, Low Level Water	19			2.9	19	1.00000	ug/L	136171		11/28/04	0216
Hexachlor Naphthale 2,4-Dichl 4-Chloros 2,4,6-Tri	one, Low Level Water	1.9	U U U		0.25	1.9	1.00000	ug/L	136171		11/28/04	0216
Naphthale 2,4-Dichl 4-Chloros 2,4,6-Tri	nethylphenol, Low Level Water	9.7	U		1.3	9.7	1.00000	ug/L	136171		11/28/04	
2,4-Dichl 4-Chloros 2,4,6-Tri	lorobutadiene, Low Level Water	4.9	u		0.62	4.9	1.00000	ug/L	136171		11/28/04	0216
4-Chloros 2,4,6-Tri	alene, Low Level Water	0.97			0.16	0.97	1.00000	ug/L	136171		11/28/04	0216
2,4,6-Tri	chlorophenol, Low Level Water	9.7	u		0.88	9.7	[1.00000]	ug/L	136171		11/28/04	0216
2,4,6-Tri	roaniline, Low Level Water	9.7	0 0 0 U		2.7	9.7	1.00000	ug/L	136171	١	11/28/04	0216
	richlorophenol, Low Level Water	4.9			0.20	4.9	1.00000	ug/L	136171		11/28/04	
[2,4,5-Tr1	richlorophenol, Low Level Water	9.7	U		1.4	9.7	1.00000	ug/L	136171		11/28/04	
	lorocyclopentadiene, Low Level Water	19	Įυ	*	0.63	19	1.00000	ug/L	136171	·	11/28/04	0216
	/inaphthaiene, Low Level Water	0.49	įυ		0.13	0.49	1.00000 :	ug/L	136171	- 1	11/28/04	0216
2-Nitroar	paniline, Low Level Water	4.9	[u]		0.21	4.9	1.00000	ug/L	136171	- 1	11/28/04	0216
2-Chloror	onaphthalene, Low Level Water	1.9	u		0,25	1.9	1.00000		136171	- 1	11/28/04	0216

^{*} In Description = Dry Wgt.

STL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS

Date: 12/06/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGDS

ATTN: Eric Ellis

Customer Sample 1D: CBLsw-001-SW Date Sampled....: 11/09/2004 Time Sampled....: 14:40 Sample Matrix....: Water Laboratory Sample ID: 231832-4
Date Received.....: 11/10/2004
Fime Received.....: 09:45

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS MDL RL: DILUTION BATCH DT UNITS DATE/TIME 4-Chloro-3-methylphenol, Low Level Water 9.7 2.3 9.7 1.00000 136171 11/28/04 0216 dok ug/L 2,6-Dinitrotoluene, Low Level Water 0.49 lu 0.11 0.49 1.00000 136171 11/28/04 0216 dok ug/L 2-Nitrophenol, Low Level Water 9.7 IJ. 0.80 9.7 1.00000 11/28/04 0216 dpk ug/L 136171 13-Nitroaniline, Low Level Water 9.7 [u] 2.0 9.7 1.00000 11/28/04 0216 dpk ug/L 136171 Dimethyl chthalate, Low Level Water 1.9 υi 0.20 1.9 1.00000 ug/L 136171 11/28/04 0216 dpk 2,4-Dinitrophenol, Low Level Water 19 비비 3.2 11/28/04 0216 dpk 19 1.00000 ug/L 136171 U Acenaphthylene, Low Level Water 0.97 0.12 0.97 1.00000 ug/L 136171 11/28/04 0216 dok UUU 2,4-Dinitrotoluene, Low Level Water 0.970.13 0.97 1.00000 136171 ug/L 11/28/04 0216 dok Acenaphthene, Low Level Water 0.970.12 0.97 1,00000 11/28/04 0216 dok uq/L 136171 Dibenzofuran, Low Level Water 1.9 0.13 1.9 1.00000 ug/L 136171 11/28/04 0216 dok 4-Nitrophenol, Low Level Water Ł 19 3.6 19 1.00000 ug/L 136171 11/28/04 0216 dok ū Fluorene, Low Level Water 0.97 0.130.971.00000 ug/L 136171 11/28/04 0216 dpk 4-Mitroaniline, Low Level Water u 9.7 2.2 9.7 1.00000 ug/L 136171 11/28/04 0216 dok 4-Bromophenyl phenyl ether, Low Level Water 4.9 u 0.18 4.9 1.00000 ug/L 136171 11/28/04 0216 dpk Hexachlorobenzene, Low Level Water 0.49 U 0.094 0.49 1.00000 136171 11/28/04 0216 dpk ug/L Diethyl phthalate, low Level Water U 1.9 0.15 1.9 1,00000 136171 11/28/04 0216 dok ug/L 4-Chicrophenyl phenyl ether. Low Level Water 4.9 0.73 4.9 1.00000 ug/L 136171 11/28/04 0216 dok Pentachlorophenol, Low Level Water 9.7 U 9.7 1.7 1.00000 136171 11/28/04 0216 dpk ug/L n-Nitrosodiphenylamine, Low Level Water 0.97 U: 0.13 0.97 1.00000 136171 11/28/04 0216 dpk ug/L 4,6-Dinitro-2-methylphenol, Low Level Water 19 Uŝ 2.3 19 1.00000 ug/L 136171 11/28/04 0216 dpk Phenanthrene, Low Level Water 0.97 Иř 0.14 0.97 1.00000 11/28/04 0216 dok 136171 ug/L u. Anthracene, Low Level Water 0.970.15 0.97 1.00000 ug/L 136171 11/28/04 0216 dipk Carbazole, Low Level Water 4.9 lυ 0.28 4.9 1.00000 ug/L 136171 11/28/04 0216 dpk Ū Di-n-butyl phthalate, Low Level Water 4.9 0.354.9 1.00000 11/28/04 0216 dok ug/L 136171 Fluoranthene, Low Level Water 0.970.140.97 1.00000 ug/L 136171 11/28/04 0216 dok u Pyrene, Low Level Water 0.97 0.12 0.97 1.00000 11/28/04 0216 dok ug/L 136171 υ Butyl benzyl phthalate, Low Level Water 1.9 0.38 1.9 1.00000 ug/L 136171 11/28/04 0216 dok Benzo(a)anthracene, Low Level Water 0.19 U 0.048 0.191.00000 ug/L 136171 11/28/04 0216 dpk Chrysene, Low Level Water lu 0.49 0.044 0.491.00000 136171 11/28/04 0216 dpk ug/L

Page 12

^{*} In Description = Dry Wgt.

Job Number: 231832

Date:12/06/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ADCS

ATIN: Eric Ellis

Customer Sample ID: CBLsw-001-SW Date Sampled....: 11/09/2004 Time Sampled....: 14:40 Sample Matrix....: Water

Laboratory Sample ID: 231832-4
Date Received....: 11/10/2004

Time Received.....: 09:45

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	HDL.	RL.	DILUTION	UNITS	BATCH (n	DATEZTIM	(E	LECH
	3,3-Dichlorobenzidine, Low Level Water Bis(2-ethylhexyl)phthalate, Low Level Water Di-n-octyl phthalate, Low Level Water Benzo(b)fluoranthene, Low Level Water Benzo(k)fluoranthene, Low Level Water Benzo(a)pyrene, Low Level Water Indeno(1,2,3-cd)pyrene, Low Level Water Dibenzo(a,h)anthracene, Low Level Water Benzo(ghi)perylene, Low Level Water	130 9.7 0.39 0.39 0.39 0.39 0.39	บ 	0.70 19 2.4 0.065 0.070 0.082 0.083 0.13 0.18	4.9 73 9.7 0.39 0.39 0.39 0.39 0.39 0.39	1.00000 5.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	136171 136171 136171 136171 136171 136171 136171 136171 136171) 1 1 1 1 1 1	11/28/04 0 11/28/04 0 11/28/04 0 11/28/04 0 11/28/04 0 11/28/04 0 11/28/04 0 11/28/04 0	1505 c 1216 c 1216 c 1216 c 1216 c 1216 c	dok dok dok dok dok dok dok
THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRE			77. 18.48			100.00		40.44	T T WAAR		** ** ** ** ** ** ** ** ** ** ** ** **	
		The state of the s	TANKA.					30000	1,114,11			
			<u> </u>									

^{*} In Description = Dry Wgt,

Date: 12/02/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTM: Eric Ellis

Customer Sample ID: CBLsw-001-SW
Date Sampled....: 11/09/2004
Time Sampled....: 14:40
Sample Matrix....: Water

ST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	HDL	RL	DILUTION	LANITS	BATCH	DT	DATE/TIM	Ē
8330 8332M	Explosives by 833D (HPLC) HMX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Nitrobenzene 2,4,6-TNT Tetryl 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-Dinitrotoluene 4-Amino-2,6-Dinitrotoluene 4-Mitrotoluene 4-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene	0.39 0.25 0.25 0.25 0.20 0.31 0.98 0.45 0.54 0.45 0.41 0.39 0.39	נפפככככככככ	0.085 0.080 0.072 0.069 0.055 0.098 0.20 0.15 0.18 0.15 0.14 0.12 0.12	0.39 0.25 0.25 0.25 0.20 0.31 0.98 0.45 0.54 0.45 0.41 0.39 0.39	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135917 135917 135917 135917 135917 135917 135917 135917 135917 135917 135917 135917 135917		11/15/04 0: 11/15/04 0: 11/15/04 0: 11/15/04 0: 11/15/04 0: 11/15/04 0: 11/15/04 0: 11/15/04 0: 11/15/04 0: 11/15/04 0: 11/15/04 0: 11/15/04 0:	813 813 813 813 813 813 813 813 813 813
	Nîtroglycerîne	1.2	n-rite	0.19	1.2	1.00000	ug/L	135908		11/20/04 18	303

^{*} In Description = Dry Wgt.

Page 5

STL CHICAGO

Client Sample ID: CBLsw-001-SW

Trace Level Organic Compounds

Lot-Sample #:	G4K100349-012	Work Order	#: GWNG91AC	Matrix:	WATER
Totasamole #:	G4K1UU349-U12	work Order	#: GMNGSTWC	LICILITY	MALT

Date Sampled...: 11/09/04 14:40 Date Received..: 11/10/04 Prep Date....: 11/12/04 Analysis Date..: 11/17/04

Prep Batch #...: 4317345

Dilution Factor: 1 Initial Wgt/Vol: 10 mL Final Wgt/Vol.: 10 mL

DETECTION

PARAMETER RESULT LIMIT UNITS METHOD
Nitroguanidine ND 20 ug/L NONE UV/HPLC per

STL CHICAGO

Client Sample ID: CBLsw-001-SW

General Chemistry

Lot-Sample #: G4K100349-012	Work Order #: GWNG9	Matrix WATER
-----------------------------	---------------------	--------------

Date Sampled...: 11/09/04 14:40 Date Received..: 11/10/04

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Nitrocellulose	ND	0.50	mg/L	MCAWW 353.2	11/20-11/23/04	4325114
	Di	lution Fac	tor: 1	Initial Wgt/Vol: 100 mI	Final Wgt/Vol	: 40 mL
	MD	L	: 0.12			

LABORATORY TEST RESULTS

Job Number: 231832

Date: 12/01/2004

CUSTOMER: MKM Engineers, Inc. ATTN: Eric Ellis

Customer Sample ID: CBLsw-002-SW Date Sampled....: 11/09/2004 Time Sampled....: 12:50 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION		SAMPLE RESULT	a	FLAGS	NO.	RL .	DILUTION	LUNITS	BATCH	DT	DATE/TIME	TECH
7196A	Hexavalent Chromium Hexavalent Chromium			U	Н	0.0016	0.010	1	mg/L	133892		11/10/04 1233	
		:						:					
									!				
												·	•
		:	:										
											· . !		
										:			
] :					!

^{*} In Description = Dry Wgt.

Page 4

Job Number: 231832

Date:11/29/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RYAAP 14 ADGS ATTM: Eric Etlis

Customer Sample ID: CBLsw-002-SW Date Sampled.....: 11/09/2004 Time Sampled.....: 12:50 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOT .	RL.	DILUTION	UNITS	BATCH	01	DATE/TIME	TEC
7041	Antimony (GFAA) Antimony	7.5	U	2.5	7.5	1	ug/L	134574		11/16/04 183	33 daj
7060A	Arsenic (GFAA) Arsenic	4_4		0.51	2.0	1	ug/L	134614		11/15/04 143	39 daj
7421	Lead (GFAA) Lead	3.0	u	0.79	3. 0 -] 1	ug/L	134350		11/13/04 060	JO daj
7841	Thallium (GFAA) Thallium	1.7	В	1.3	4.0	1	ug/L	134456		11/16/04 045	59 daj
7470A	Mercury (CYAA) Mercury	0.20	U	0.049	0.20	1	ug/L	134946		11/19/04 164	44 gok
	Metals Analysis (ICAP Trace) Aluminum Barium Beryllium Cadmium Calcium Chromium Cobelt Copper Iron Magnesium Manganese Mickel Potassium	160 32 2.0 2.0 11000 10 2.0 2.1 2900 2300 1400 10 4500	D B B	24 1.5 0.17 0.44 24 1.5 1.0 1.6 40 12 0.71 1.9	150 10 2.0 2.0 100 10 5.0 10 120 100 10 10	111111111111111111111111111111111111111	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134566 134566 134566 134566 134566 134566 134566 134566 134566 134566 134566		11/16/04 220 11/16/04 220	19 tds 19 tds

^{*} In Description = Dry Wgt.

Page 6

LABORATORY TEST RESULTS

Job Number: 231832

Bate:11/29/2004

CUSTOMER: MKM Englineers, Inc. PROJECT: USACE RVAAP 14 ADES ATTN: Eric Ellis

Customer Sample ID: CBLsw-002-SW Date Sampled....: 11/09/2004 Time Sampled....: 12:50 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RI.	DILUTION	UNITS	BATCH	DT	DATE/TIME	TEC
	Selenium Silver Sodium Vanadium Zinc	1500 10	U U U U	5.0 3.1 500 2.1 10	15 10 1500 10 30	1 1 1 1	ug/L ug/L ug/L ug/L ug/L	134566 134566 134566 134566 134566		11/16/04 220 11/16/04 220 11/16/04 220 11/16/04 220 11/16/04 220	09 tds 09 tds 09 tds 09 tds
											-
			and the second			-					7,0
		į							4		7/100

^{*} In Description = Dry Wgt.

Page 7

Job Number: 231832

Date: 12/03/2004

CUSTOMER: NKM Engineers, Inc. PROJECT: USACE RVAAP 14 AGES

ATTN: Eric Ellis

Customer Sample ID: CBLsw-002-SW Date Sampled....: 11/09/2004 Time Sampled....: 12:50 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT OFLAC	S MOL	RL DILUTI	ON UNITS	BATCH	ON DATE/TIME TECH
8081A	Organochlorine Pesticide Analysis alpha-BHC delta-BHC delta-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Methoxychlor alpha-Chlordane gamma-Chlordane Endrin aldehyde Endrin ketone Toxaphene	0.15 U 0.10 U 0.15 U 0.15 U 0.16 U 0.10 U 0.10 U 0.10 U 0.15 U U 0.1	0.047 0.028 0.025 0.042 0.041 0.028 0.036 0.021 0.018 0.023 0.017 0.042 0.036 0.044 0.049 0.17 0.016 0.017 0.035 0.017	0.15 1.0000 0.10 1.0000 0.15 1.0000 0.15 1.0000 0.15 1.0000 0.15 1.0000 0.10 1.0000 0.15 1.0000 0.10 1.0000 0.50 1.0000 0.50 1.0000 0.50 1.0000 0.50 1.0000 0.50 1.0000 0.50 0.0000 0.50 0.0000 0.50 0.0000 0.50 0.0000 0.50 0.0000 0.50 0.0000 0.50 0.0000 0.50 0.0000 0.50 0.0000 0.50 0.0000 0.50 0.0000 0.0000 0.0000 0.50 0.0000 0.50 0.0000 0.50 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0	0	136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059	11/16/04 0554 kdl 11/16/04 0554 kdl

^{*} In Description = Dry Wgt.

Job Number: 231832 LABORATORY TEST RESULTS

Date: 12/01/2004

CUSTOMER: MICH Englineers, linc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: CBLsw-002-SW Date Sampled....: 11/09/2004 Time Sampled....: 12:50 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	G FLAGS	MDL	RE.	DILUTION	UNITS	BATCH	ĐΤ	DATE/11ME	ΤEC
8082	PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260	0.60 1.3 1.3 1.3	ב כ כ כ כ כ	0.18 0.42 0.35 0.43 0.48 0.35 0.17	0.60 1.3 1.3 1.3 1.5 1.5 0.60	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135575 135575 135575 135575 135575 135575 135575		11/19/04 2221 11/19/04 2221 11/19/04 2221 11/19/04 2221 11/19/04 2221 11/19/04 2221 11/19/04 2221	bjt bjt bjt bjt
	·		ry and the state of the state o			77					

^{*} In Description = Dry Wgt.

Page 4

LABORATORY TEST RESULTS

Job Number: 231832 Date:11/20/2004

CUSTOMER: MKM Engineers, Inc.: PROJECT: USACE RVAAP 14 AGCS ATTN: Eric Ellis

Customer Sample ID: CBLsw-002-SW
Date Sampled....: 11/09/2004
Time Sampled....: 12:50
Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	o)	LAGS	MDL	R L	DILUTION	UNITS	BATCH	DT	DATE/1	ME	TECH
82608	Volatile Organics				<u> </u>		***********	462143317.67117171	23.24.4.6.34.473	2534	aciónsa art	× 11.23.11.	12.222.13
Ē	Chloromethane	1.0	U.		0.080	1.0	1.00000	ug/L	134612		11/16/04	1852	Íida
	Vinyl chloride	1.0	U		0.080	1.0	1.00000	ug/L	134612		11/16/04		
	Bromomethane	1.0	U		0.10	1.0	1.00000	ug/L	134612		11/16/04	1852	ida
	Chloroethane	1.0	U		0.080	1.0	1.00000	ug/L	134612		11/16/04		
	1,1-Dichloroethene		į U	*	0.12	1.0	1.00000	ug/L	134612		11/16/04		
	Carbon disulfide	5.0	U	*	0.20	5.0	1.00000	ug/L	134612		11/16/04	1852	idn
	Acetone	8.6	J		1.8	10	1.00000	ug/L	134612]	11/16/04	1852	idn
	Methylene chloride	1.5	U		0.35	1.5	1.00000	ug/L	134612	[]	11/16/04	1852	jdn
	trans-1,2-Dichloroethene	1.0	u		0.14	1.0	1.00000	ug/L	134612	f l	11/16/04	1852	jdn
	1,1-Dichloroethane	1.0	u		0.11	1.0	1.00000	ug/L	134612		11/16/04	1852	jdn
	cis-1,2-Dichloroethene	1.0	U		0.090	1.0	1.00000	ug/L	134612		11/16/04	1852	jdn
	2-Butanone (MEK)	10	ממטטעטטטטט		1.2	10	1.00000	ug/L	134612	li	11/16/04	1852	jdn
	Bromochloromethane	1.0	U		0.10	1.0	1.00000	ug/L	134612		11/16/04		
	Chloroform	1.0	u		0.11	1.0	1.00000	ug/L	134612	1	11/16/04	1852	jdn
	1,1,1-Trichloroethane	1.0	lul.		0.080	1.0	1.00000	ug/L	134612		11/16/04		
	Carbon tetrachioride	1.0	U		0.13	1.0	1.00000	ug/L	134612		11/16/04		
	Benzene	1.0	U		0.090	1.0	1.00000	ug/L	134612	1 1	11/16/04	1852	john
	1,2-Dichloroethane	1.0	U		0.090	1.0	1.00000	ug/L	134612	1	11/16/04	1852	jdn
	Trichloroethene	1.0	U		0.10	1.0	1.00000	ug/L	134612		11/16/04	1852	jdn
	1,2-Dichtoropropane		[0]		0.12	1.0	1.00000	ug/L	134612	1	11/16/04	1852	jdn
	Bromodichloromethane	1.0	[4]		0.11	1.0	1.00000	ug/L	134612		11/16/04	1852	jdn
	cis-1,3-Dichloropropene	1.0	lui.		0.12	1.0	1.00000	ug/L	134612		11/16/04	1852	jdn
	4-Methyl-2-pentanone (MIBK)	10	l'il		0.65	10	1.00000	ug/L	134612		11/16/04	1852	jdn
	Toluene	1.0			0.10	1.0	1.00000	ug/L	134612		11/16/04		
	trans-1,3-Dichloropropene	1.0			0.15	1.0	1.00000	ug/L	134612	i [11/16/04	1852	jdn
	1,1,2-Trichloroethane Tetrachloroethene	1.0			0.15	1.0	1.00000	ug/L	134612		11/16/04		
		1.0			0.090	1.0	1.00000	ug/L	134612		11/16/04		
	2-Hexanone	10			0.53	10	1.00000	ug/L	134612	1	11/16/04	1852	John
Í			1										
<u> </u>		<u> </u>	Щ.					l	<u> </u>	Ш			<u></u>

^{*} In Description = Dry Wgt.

Page 6

Job Number: 231832	LABORATOR	Y TE	ST RESUL	TS		Date:1	1/20/2004	-
CUSTOMER: MKM Englineers, Ins.	PROJECT	. USACE R	VAAP 14 AGCS			ATIN;	Eric Ell	ī S
Customer Sample IO: CBLsw-002-SW Date Sampled: 11/09/2004 Time Sampled: 12:50 Sample Matrix: Water		Dar	boratory Sample I te Received me Received	.: 11/10/2004				
TEST METHOD PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MD1.	K IT	DILUTION	UNITS	BATCH	OT DATEXTIME TECH
Dibromochloromethane [1,2-Dibromoethane (EDB) Chlorobenzene Ethylbenzene m&p-Xylenes o-Xylene Styrene Bromoform 1,1,2,2-Tetrachloroethane 1,2-Dichloroethene (total) Xylenes (total)	1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0	טטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	0.060 0.13 0.080 0.070 0.18 0.080 0.13 0.11 0.090 0.23 0.28		1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134612 134612 134612 134612 134612 134612 134612 134612 134612	11/16/04 1852 jdn 11/16/04 1852 jdn

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 12/06/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: CBLsw-002-SW Date Sampled.....: 11/09/2004 Time Sampled.....: 12:50 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	LMITS	BATCH	D٢	DATE/T	IME	TECH
8270c	Semivolatile Organics					**	12424218148483414	440 955 3535	1000		<u>::::::)</u>	1
	Phenoi, Low Level Water	5.1	u	0.35	5.1	1,00000	ug/L	136171		11/29/04	1532	dok
	Bis(2-chloroethyl)ether, Low Level Water	2.0	u	0.30	2.0	1.00000	ug/L	136171		11/29/04		
	1,3-Dichlorobenzene, Low Level Water	2.0	U U	0.43	2.0	1.00000	ug/L	136171		11/29/04		
	1,4-Dichlorobenzene, Low Level Water	2.0	บ	0.33	2.0	1.00000	ug/L	136171		11/29/04		
	1,2-Dichlorobenzene, Low Level Water	2.0	[U]	0.35	2.0	1.00000	ug/L	136171		11/29/04		
	Benzyl alcohol, Low Level Water	20	U	2.2	20	1.00000	ug/L	136171		11/29/04		
	2-Methylphenol (o-cresol), Low Level Water	2.0	u	0.26	2.0	1.00000	ug/L	136171		11/29/04		
	2,2-oxybis (1-chloropropane), Low Level Water	2.0	שטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	0.28	2.0	1.00000	ug/L	136171		11/29/04	1532	dok
	n-Nitroso-di-n-propylamine, Low Level Water	0.51	U	0.082	0.51	1.00000	ug/L	136171		11/29/04		
	Hexachloroethane, Low Level Water	5.1		0.62	5.1	1.00000	ug/L	136171		11/29/04		
	4-Methylphenol (m/p-cresol), Low Level Water	2.0	U	0.10	2.0	1.00000	ug/L	136171		11/29/04		
	2-Chiorophenol, Low Level Water	5.1	U	0.12	5.1	1.00000	ug/L	136171		11/29/04		
	Nitrobenzene, Low Level Water	1.0	บ	0.16	1.0	1.00000	ug/L	136171	į	11/29/04	1532	dpk
	Bis(2-chloroethoxy)methane, Low Level Water	2.0	U ·	0.31	2.0	1.00000	ug/L	136171		11/29/04	1532	dok
	1.2.4-Trichlorobenzene, Low Level Water	2.0	וטן	0.34	2.0	1.00000	ug/L	136171	l i	11/29/04	1532	dok
	Benzoic acid, Low Level Water	20	비비	3.0	20	1.00000	ug/L	136171		11/29/04	1532	dok
	Isophorone, Low Level Water	2.0	U	0.26	2.0	[1.00000]	ug/t	136171	1 1	11/29/04	1532	dok
	2,4-Dimethylphenol, Low Level Water	10	}U	1.3	10	1.00000	ug/L	136171		11/29/04	1532	dok
	Hexachlorobutadiene, Low Level Water	5.1	U	0.65	5.1	1.00000	ug/L	136171		11/29/04	1532	dpk
	Naphthalene, Low Level Water	1.0	U	0.16	1.0	1.00000	ug/L	136171		11/29/04		
	2,4-Dichlorophenol, Low Level Water		U	0.92	10	1.00000	ug/L	136171		11/29/04	1532	dpk
	4-Chloroaniline, Low Level Water	10	u	2.8	10	1.00000	ug/L	136171	1	11/29/04	1532	dpk
	2,4,6-Trichlorophenol, Low Level Water	5.1	u	0.21	5.1	1.00000	Ug/L	136171		11/29/04	1532	dpk
	2,4,5-Frichlorophenol, Low Level Water	10	u	1.4	10	1.00000	ug/L	136171]	11/29/04	1532	dpk
1	Hexachlorocyclopentadiene, Low Level Water	20	□ *	0.66	20	1.00000	ug/L	136171	f :	11/29/04	1532	dok
	2-Methylnaphthalene, Low Level Water	0,51	u	0.13	0.51	1.00000	ug/L	136171	l	11/29/04	1532	dok
}	2-Nitroaniline, Low Level Water	5.1	υ	0.22	5.1	1.00000	ug/L	136171		11/29/04	1532	depk
•	2-Chloronaphthalene, Low Level Water	2.0	บ	0.26	2.0	1.00000	ug/L	136171		11/29/04	1532	dok

^{*} In Description = Dry Wgt.

Job Number: 231832

LABORATORY TEST RESULTS

Date:12/06/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE: RVAAP: 14-AOCS ATTN: Ecic elije

Customer Sample ID: CBLsw-002-SW Date Sampled.....: 11/09/2004 Time Sampled.....: 12:50 Sample Matrix.....: Water

ST: METHOD: PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL .	RL	DILUTION	UNITS	BATCH	OΤ	DATE/1	IME
4-Chloro-3-methylphenol, Low Level Water	10	u	2.4	10	1.00000	ug/L	136171		11/29/04	. 153
2,6-Dinitrotoluene, Low Level Water	0.51	u	0.11	0.51	1.00000	ug/L	136171		11/29/04	
2-Nitrophenol, Low Level Water	10	u	0.83	10	1.00000	ug/L	136171		1/29/04	
3-Nitroaniline, Low Level Water	10	u	2.1	10	1.00000	ug/L	136171		11/29/04	
Dimethyl phthalate, Low Level Water	2.0	U	0.21	2.0	1.00000	ug/L	136171		11/29/04	
2,4-Dinitrophenol, Low Level Water	20	U	3.3	20	1.00000	ug/L	136171	-	1/29/04	153
Acenaphthylene, Low Level Water	1.0	U	0.12	1.0	1.00000	ug/L	136171	-	11/29/04	153
2,4-Dinitrotoluene, Low Level Water	1.0	U.	0.13	1.0	1.00000	ug/L	136171	•	11/29/04	153
Acenaphthene, Low Level Water	1.0	u	0.12	1.0	1.00000	ug/L	136171		11/29/04	
Dibenzofuran, Low Level Water	2.0	U\$	0.13	2.0	1.00000	ug/L	136171		11/29/04	
4-Nitrophenol, Low Level Water	į 20	U	3.7	20	1.00000	ug/L	136171	-	1/29/04	153
Fluorene, Low Level Water	1.0	u	0.13	1.0	1.00000	ug/L	136171		1/29/04	
4-Nitroaniline, Low Level Water	10	u	2.3	10	1.00000	ug/L	136171	·	1/29/04	153
4-Bromophenyl phenyl ether, Low Level Water	5_1	u	0.19	5.1	1.00000	ug/L	136171		1/29/04	
Kexachlorobenzene, Low Level Water	0.51	บ	0.098	0.51	1.00000	ug/L	136171		1/29/04	
Diethyl phthalate, Low Level Water	2.0	u	0.15	2.0	1.00000	ug/L	136171	•	11/29/04	153
4-Chlorophenyl phenyl ether, Low Level Water	5.1	U	0.76	5.1	1.00000	ug/L	136171		11/29/04	
Pentachlorophenol, Low Level Water	10	U	1.7	10	1.00000	ug/L	136171	f•	11/29/04	153
n-Nitrosodiphenylamine, Low Level Water	1.0	U	0.13	1.0	1.00000	ug/L	136171		11/29/04	
4,6-Dinitro-2-methylphenol, Low Level Water	20	u	2.4	20	1.00000	ug/L	136171		1/29/04	
Phenanthrene, Low Level Water	1.0	U	0.14	t.0	1.00000	ug/L	136171		1/29/04	153
Anthracene, Low Level Water	1.0	įu	0.15	1.0	1.00000	ug/L	136171	:	1/29/04	153
Carbazole, Low Level Water	5.1	U	0.29	5.1	1.00000	ug/L	136171	•	11/29/04	153
Di-n-butyl phthalate, Low Level Water	5.1	U	0.36	5.1	1.00000	ug/L	136171		1/29/04	
Fluoranthene, Low Level Water	1.0	U	0.14	1.0	1.00000	ug/L	136171		1/29/04	
Pyrene, Low Level Water	1.0	U	0.12	1.D	1.00000	ug/L	136171	-	1/29/04	153
Butyl benzyl phthalate, Low Level Water	2.0	u u	0.39	2.0	1.00000	ug/L	136171		1/29/04	
Benzo(a)anthracene, Low Level Water	0.20	u	0.049	0.20	1.00000	ug/L	136171		1/29/04	
Chrysene, Low Level Water	0.51	u	0.045	0.51	1.00000	ug/L	136171		1/29/04	
							! !	Ì		

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 12/06/2004

CUSTOMER: NKW Engineers, Inc. PROJECT: USACE RVAAP 14 ACCS ATIN: Enic Ettis

Laboratory Sample ID: 231832-3 Date Received.....: 11/10/2004 Time Received.....: 09:45

Customer Sample ID: CBLsw-002-SW Date Sampled....: 11/09/2004 Time Sampled....: 12:50 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DΤ	DATE/TIM	Œ	TECH
	3,3-Dichlorobenzidine, Low Level Water Bis(2-ethylhexyl)phthalate, Low Level Water Di-n-octyl phthalate, Low Level Water Benzo(b)fluoranthene, Low Level Water Benzo(k)fluoranthene, Low Level Water Benzo(a)pyrene, Low Level Water Indeno(1,2,3-cd)pyrene, Low Level Water Dibenzo(a,h)anthracene, Low Level Water Benzo(ghi)perylene, Low Level Water	5.1 15 10 0.40 0.40 0.40 0.40 1.0	ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	0.73 3.9 2.5 0.068 0.073 0.085 0.087 0.13 0.19	0.40	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	136171 136171 136171 136171 136171 136171 136171 136171		11/29/04 1 11/29/04 1 11/29/04 1 11/29/04 1 11/29/04 1 11/29/04 1 11/29/04 1 11/29/04 1	532 532 532 532 532 532 532	dpk dpk dpk dpk dpk dpk dpk
							THE PARTY L	T A Laboratory	1 (A)		TR Philiphone	

^{*} In Description = Dry Wgt.

Page 10

Date:12/02/2004

CUSTOMER: MKM Englimbers; limb. PROJECT: USACE RVAAP to ADCS ATTN: Eric Ellis

Customer Sample ID: CBLsw-002-SW Date Sampled....: 11/09/2004 Time Sampled....: 12:50 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	% L	DILUTION	UNITS	BATCH	DI I	DATE/11	ME.	TECH
	Explosives by 8330 (HPLC) HMX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Nitrobenzene 2,4,6-TNT Tetryl 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-Dinitrotoluene 4-Amino-2,6-Dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene NG/PEIN by 8332M (HPLC) Nitroglycerine	0.35 0.23 0.23 0.23 0.18 0.28 0.88 0.41 0.49 0.41 0.37 0.35 0.35	U U U U U U U U U U U U U U U U U U U	0.077 0.073 0.066 0.062 0.050 0.088 0.19 0.14 0.16 0.13 0.13 0.11 0.11	0.35 0.23 0.23 0.23 0.18 0.28 0.88 0.41	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135917 135917 135917 135917 135917 135917 135917 135917 135917 135917 135917 135917	11, 11, 11, 11, 11, 11, 11, 11, 11,	/13/04 /13/04 /13/04 /13/04 /13/04 /13/04 /13/04 /13/04 /13/04 /13/04 /13/04 /13/04 /13/04	1826 1826 1826 1826 1826 1826 1826 1826	san san san san san san san san san san
To compare the same party of t						77,711			7 7 14			

^{*} In Description = Dry Wgt.

₽age 4

STL CHICAGO

Client Sample ID: CBLsw-002-SW

Trace Level Organic Compounds

Lot-Sample #: G4K100349-011 Date Sampled: 11/09/04 12:50 Prep Date: 11/12/04 Prep Batch #: 4317345 Dilution Factor: 1	Work Order #: Date Received: Analysis Date: Initial Wgt/Vol:	11/10/04 11/17/04		: \ gt/Vol:	
PARAMETER Nitroguanidine	RESULT ND		71111	METHOD NONE UV/HP	LC per

STL CHICAGO

Client Sample ID: CBLsw-002-SW

General Chemistry

Lot-Sample #...: G4K100349-011 Work Order #...: GWNG5 Matrix..... WATER

Date Sampled...: 11/09/04 12:50 Date Received..: 11/10/04

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Nitrocellulose
 ND
 0.50
 mg/L
 MCAWW 353.2
 11/20-11/23/04
 4325114

Dilution Factor: 1 Initial Wgt/Vol: 100 mL Final Wgt/Vol.: 40 mL

MDL..... 0.12

	Job Number: 231832	LABORATOR	LABORATORY TEST RESULTS Date:12/01/2004									
CUSTOMER: MKM	Engineers, Inc.	PROJECT	: Us	SACE RV	NAP 14 ADCS			ATTN:	Eric El	lis		:
Date Sam Time Sam	Sample ID: CBLsw-002-DUP pted: 11/09/2004 pted: 12:50 atrix: Water			Dat	oratory Sample : e Received e Received	: 11/10/2004						
TEST: METHOD	PARAMÉTER/TEST DESCRIPTION	SAMPLE RESULT	Q F	LAGS	MDL	RL	DJEUTION	UN1TS	BATCH	Dī	DATE/TIME	ŢEI
7196A	Hexavalent Chromium Hexavalent Chromium	0.010	υ	H	0.0016	0.010	1	mg/L	133892		11/10/04 1232	
								! •				
								! ! !				
							:				:	
			.				i		i ! ! :			
									· ·			
			: :						*			
			i .									

^{*} In Description = Dry Wgt.

Page 3

Date: 11/29/2004

STL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS

Job Number: 231832

CUSTOMER: MKM Engineers; Inc. PROJECT: USACE RVAAP 14 AGCS ATIN: Eric Ellis

Customer Sample ID: CBLsw-002-DUP Date Sampled.....: 11/09/2004 Time Sampled.....: 12:50 Laboratory Sample ID: 231832-2 Date Received.....: 11/10/2004 Time Received.....: 09:45

Sample Matrix....: Water

TEST METROD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DILUTION	LINITS	BATCH	рτ	DATE/TIME	T.E
7041	Antimony (GFAA)					P. 1711 11 11 11 11 11 11 11 11 11 11 11 1	1711.2 12 12 12 11 11 12 1	<u> </u>	1	· * 1 100 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20/20
	Antimony	7.5	u	2.5	7.5	1	ug/L	134574		11/16/04 182	23 da
7060A	Arsenic (GFAA)							1			
	Arsenic	4.0		0.51	2.0	1	ug/L	134614		11/15/04 141	6 da
7421	Lead (GFAA)										
	Lead	3.0	u	0.79	3.0	1	ug/L	134350		11/13/04 054	8 da
7841	Thallium (GFAA)]]
	Thattion	4.0	u	1.3	4.0	1	ug/L	134456		11/16/04 042	:7 da
74 7 0A	Mercury (CVAA)) i			
	Mercury	0.20	ļυ	0.049	0.20	1	ug/L	134946	!	11/19/04 164	,2 g
6010B	Metals Analysis (ICAP Trace)					;	· i		! ;		
	Atuminum	160	i !	24	150	1	ug/L	134566	.	11/16/04 220	3 t
	Berium	28		1.5	10	1	ug/L	134566		11/16/04 2203	/3 t
	8eryllium	2.0	U	0.17	2.0	1	Ug/L	134566		11/16/04 220	/3 t
	Cadmium	2.0	u	0.44	2.0	1	ug/L	134566		11/16/04 220	
	Calcium	11000	1 1	24	100	¹ 1	ug/L	134566		11/16/04 2200	/3 t
	Chromium	10	U	1.5	10	<u>į</u> 1	ug/L	134566		11/16/04 2200	3 t
	Cobalt	1.9	B	1.0	5.0	1	ug/L	134566		11/16/04 2203	
	Capper	2.3	В	1.6	10	1	ug/L	134566	٠ ا	11/16/04 220	3 t
	lron	2700		40	120	1 .	ug/L	134566		11/16/04 220	
	Nagnesium	2300		12	100	1	ug/L	134566		11/16/04 220	
	Kanganese	1400	1	0.71	10	1	ug/L	134566		11/16/04 220	
	Nickel	10	!U	1.9	10	1	ug/L	134566		11/16/04 220	
	Potassium	4400	·	110	500		ug/L	134566	! i	11/16/04 220	_1 -

^{*} In Description = Dry Wgt.

Page 4

Job Number: 231832

Date:11/29/2004

CUSTONER: MKM Engineers, Jnc. PROJECT: USACE RVAND 14 Abris ATTN: Erro £ULTS

LABORATORY TEST

Customer Sample ID: CBLsw-002-DUP
Date Sampled.....: 11/09/2004
Time Sampled.....: 12:50
Sample Matrix....: Water

Laboratory Sample ID: 231832-2 Date Received.....: 11/10/2004 Time Received.....: 09:45

RESULTS

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DIEUTION	UNITS	ватсн	CT	DATE/TIME	TECH
	Selenium Silver Sodium Vanadium Zinc	15 10 1500 10 30	บ บ บ	5.0 3.1 500 2.1 10	15 10 1500 10 30	1 1 1 1	ug/L ug/L ug/L ug/L ug/L	134566 134566 134566 134566 134566		11/16/04 2203 11/16/04 2203 11/16/04 2203 11/16/04 2203 11/16/04 2203	tds tds tds tds
			The second secon					TT. S. databases in	1.12 1		
										·	
									7		
			War and defendance								

^{*} In Description = Dry Wgt.

Page 5

STE Chicago is part of Severn Trent Laboratories, Inc.

Date: 12/03/2004

COSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: CBLsw-002-DUP Date Sampled.....: 11/09/2004 Time Sampled.....: 12:50 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	FLAGS	MOL	RL:	D) LUT) ON	UNITS	BATCH	pπ	DATE/TIME	TECH
8081A	Organochlorine Pesticide Analysis alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Methoxychlor alpha-Chlordane gamma-Chlordane Endrin aldehyde Endrin ketone Toxaphene	0.097 0.15 0.15 0.097 0.15 0.097 0		0.046 0.027 0.024 0.041 0.040 0.027 0.035 0.020 0.017 0.022 0.017 0.041 0.035 0.048 0.17 0.016 0.017 0.034	0.15 0.097 0.097 0.15 0.15 0.097 0.15 0.097 0.097 0.15 0.11 0.15 0.15 0.15 0.15 0.15 0.49 0.097 0.097	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059 136059	7/1.	11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528 11/16/04 0528	8 kdl 8 kdl

^{*} In Description = Dry Wgt.

Job Number: 231832 LABORATORY TEST RESULTS

Date: 12/01/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Enic Ellis

Customer Sample ID: CBLsw-002-DUP Date Sampled....: 11/09/2004 Time Sampled....: 12:50 Sample Matrix....: Water

TEST METHOD	PARAMETERYTEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	WOL	RL	DILUTION	UNITS	RATES	P) T	DATE/TIME	TECH
8082	PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	0.58 1.3 1.3 1.3 1.5 1.5	U U U U	0.17 0.41 0.34 0.42 0.47 0.34 0.17	0.58 1.3 1.3 1.3 1.5 1.5 1.3 0.58	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135575 135575 135575 135575 135575 135575 135575		11/19/04 214 11/19/04 214 11/19/04 214 11/19/04 214 11/19/04 214 11/19/04 214 11/19/04 214	6 bjt 6 bjt 6 bjt 6 bjt 6 bjt 6 bjt
	·										
				777							

^{*} In Description = Dry Wgt.

Job Number: 231832

LABORATORY TEST RESULTS

Date: 11/20/2004

CUSTOMER: MKM Engineers, Enc. ATTN: Eric ELLis

Customer Sample ID: CBLsw-002-DUP Date Sampled.....: 11/09/2004 Time Sampled.....: 12:50

Sample Matrix....: Water

TEST HETROC	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT		FLAGS	ЮТ	91	OTLUTION	UNITS	BATCH	DT	DATE/T	1ME	TECH
8260B	Volatile Organics		П								*******	. A. A. Markin	
	Chloromethane	1.0	U		0.080	1.0	1.00000	ug/L	134612		11/16/04	1830	jon
	Vinyl chloride	1.0	u		0.080	1.0	1.00000	ug/L	134612		11/16/04	1830	jdn
	Bromomethane	1.0	ט ט ט ט		0.10	1.0	1.00000	ug/L	134612		11/16/04	1830	jdn
	Chloroethane	1.0			0.080	1.0	1.00000	ug/L	134612		11/16/04	1830	jdn
	1,1-Dichloroethene	1.0	u	*	0.12	1.0	1.00000	ug/L	134612		11/16/04	1830	jdn
Į.	Carbon disulfide	5.0	U į Jį	*	0.20	5.0	1.00000	ug/L	134612		11/16/04		
	Acetone	8.2	Jş		1.8	10	1.00000	ug/L	134612		11/16/04	1830	jdn
	Methylene chloride	1.5	u		0.35	1.5	1.00000	ug/L	134612		11/16/04	1830	jdn
	trans-1,2-Dichloroethene	1.0	ם ב כ ב כ כ כ ב		0.14	1.0	1.00000	ug/L	134612		11/16/04	1830	ijdn
	1,1-Dichloroethane	1.0	ΙU		0.11	1.0	1.00000	ug/L	134612		11/16/04		
	cis-1,2-Dichloroethene	1.0	U		0.090	1.0	1.00000	ug/L	134612		11/16/04		
	2-Butsnone (MEK)	10	Ш		1.2	10	1.00000	ug/L	134612		11/16/04		
-	Bromochloromethane	1.0	ĮΨį		0.10	1.0	1.00000	ug/L	134612		11/16/04	1830	jdn
	Chloroform	1.0	u		0.11	1.0	1.00000	ug/L	134612		11/16/04	1830	jdn
1	1,1,1-Trichloroethane	1.0	U		0.080	1.0	1.00000	ug/L	134612	1	11/16/04	1830	l jdn
	Carbon tetrachloride	1.0			0.13	1.0	1.00000	ug/L	134612		11/16/04	1830	jdn
	Benzene	1.0	U		0.090	1.0	1.00000	ug/L	134612		11/16/04	1830	jdn
i	1,2-Dichloroethane	1.0	u		0.090	1.0	1.00000	ug/L	134612		11/16/04	1830	jdn
	Trichloroethene	1.0	u		0.10	1.0	1.00000	ug/L	134612		11/16/04	1830	jdn
1	1,2-Dichloropropane	1.0	u		0.12	1.0	1.00000	ug/L	134612	1 1	11/16/04	1830	jdn
	Bromodichloromethane	1.0	ט ט ט		0.11	1.0	1.00000	ug/L	134612		11/16/04		
	cis-1,3-Dichloropropene	1.0	u		0.12	1.0	1.00000	ug/L	134612		11/16/04		
]	4-Methyl-2-pentanone (M18K)	10	וטן		0.65	10	1.00000	ug/L	134612		11/16/04		
	Toluene	1.0	lul.		0.10	1.0	1.00000	ug/L	134612	1 1	11/16/04	1830	jdn
	trans-1,3-Dichloropropene	1.0	Inl		0.15	1.0	1.00000	ug/L	134612		11/16/04		
	1,1,2-Trichloroethane	1.0	U U		0.15	1.0	1.00000	ug/L	134612		11/16/04		
	Tetrach loroethene	1.0			0.090	1.0	1.00000	ug/L	134612		11/16/04		
1	2-Hexanone	10	u		0.53	10	1.00000	ug/L	134612		11/16/04	1830	jdn

^{*} In Description = Dry Wgt.

Job Number: 231832	LABORATORY	T E	ST RESUL	T S		Date:1	1/20/200	4	
OMER: MKM Engineers, ling,	ьярлеся:	USACE R	VARP 14 AGES			ATTN:	Eric El	iis	
Customer Sample ID: CBLsw-00Z-DUP Date Sampled: 11/09/2004 Time Sampled: 12:50 Sample Matrix: Water		Da	boratory Sample : te Received me Received	.: 11/10/2004					
T METNOD PARAMETER/TEST DESCRIPTION	N SAMPLE RESULT	Q FLAGS	3 0 L	RL	DILUTION	UNITS	BATCH	DT DATE	YT1ME
Dibromochloromethane 1,2-Dibromocthane (EDB) Chlorobenzene Ethylbenzene m&p-Xylenes o-Xylene Styrene Bromoform 1,1,2,2-Tetrachloroethane 1,2-Dichloroethene (total) Xylenes (total)	1.0 1.0 1.0 2.0 1.0 1.0 1.0		0.060 0.13 0.080 0.070 0.18 0.080 0.13 0.11 0.090 0.23 0.28	1.0 1.0 1.0 2.0 1.0 1.0 1.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134612 134612 134612 134612 134612 134612 134612 134612 134612	11/16/ 11/16/ 11/16/ 11/16/ 11/16/ 11/16/ 11/16/	/04 1830 /04 1830 /04 1830 /04 1830 /04 1830 /04 1830 /04 1830 /04 1830 /04 1830

^{*} In Description = Dry Wgt.

Page 5

LABORATORY TEST RESULTS

Date:12/06/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: CBLsw-002-DUP
Date Sampled....: 11/09/2004
Time Sampled....: 12:50
Sample Matrix...: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MUL	RL	DILUTION	UNITS	BATCH	CT	DATE/1	濉	TEC)
8270c	Semivolatile Organics					111111111111111111111111111111111111111		1	12.2	1.53.131.31.25)!!	21111
	Phenol, Low Level Water	4.9	U	0.34	4.9	1.00000	ug/L	136171	1	11/29/04	1612	dok
	Bis(2-chloroethyl)ether, Law Level Water	2.0	U	0.29	2.0	1.00000	ug/L	136171		11/29/04		
	1,3-Dichlorobenzene, Low Level Water	2.0	U	0.42	2.0	1.00000	ug/L	136171		11/29/04		
	1,4-Dichlorobenzene, Low Level Water	2.0	u	0.32	2.0	1.00000	ug/L	136171		11/29/04		
	1,2-Dichlorobenzene, Low Level Water	2.0	u	0.34	2.0	1.00000	ug/L	136171		11/29/04		
	Benzyl alcohol, Low Level Water	20	U	2.2	20	1.00000	ug/L	136171		11/29/04		
	2-Methylphenol (o-cresol), Low Level Water	2.0	ם ה ה ה ה	0.25	0.5	1.00000	ug/L	136171		11/29/04		
	2,2-oxybis (1-chloropropane), Low Level Water	2.0	U	0.27	2.0	1.00000	ug/L	136171		11/29/04	1412	dpk
	n-Nitroso-di-n-propylamine, Low Level Water	0.49	U	0.079	0.49	1.00000	ug/L	136171		11/29/04	1412	dpk
	Hexachloroethane, Low Level Water	4.9	4	0.60	4.9	1.00000	ug/L	136171		11/29/04	1412	dpk
	4-Methylphenol (m/p-cresol), Low Level Water	2.0	U	0.098	2.0	1.00000	ug/L	136171		11/29/04		
	2-Chlorophenol, Low Level Water	4.9	U	0.12	4.9	1.00000	ug/L	136171		11/29/04	1412	. dipk
	Nitrobenzene, Low Level Water	0.98	u	0.16	0.98	1.00000	ug/L	136171		11/29/04	1412	dipk
	Bis(2-chloroethoxy)methane, Low Level Water	2.0	U	0.30	2.0	1.00000	ug/L	136171		11/29/04		
	1,2,4-Trichlorobenzene, Low Level Water	2.0	U	0.33	2.0	1.00000	ug/L	136171		11/29/04		
	Benzoic acid, Low Level Water	50	ย	2.9	20	1.00000	ug/L	136171		11/29/04		
	Isophorone, Low Level Water	2.0	լս	0.25	2.0	1.00000	ug/L	136171		11/29/04		
	2,4-Dimethylphenol, Low Level Water	9.8	0 0 0	1.3	9.8	1.00000	ug/L	136171		11/29/04		
	Hexachiorobutadiene, Low Level Water	4.9	U	0.63	4.9	1.00000	ug/L	136171		11/29/04		
	Naphthalene, Low Level Water	0.98	<u> (U)</u>	0.16	0.98	1.00000	ug/L	136171	1 1	11/29/04	1412	dpl
	2,4-Dichlorophenol, Low Level Water	9.8	U	0.89	9.8	1.00000	ug/L	136171		11/29/04		
	4-Chloroaniline, Low Level Water	9.8	U]	2.7	9.8	1.00000	ug/L	136171		11/29/04		
	2,4,6-Trichlorophenol, Low Level Water	4.9	U	0.21	4.9	1.00000	ug/L	136171		11/29/04		
	2,4,5-Trichlorophenol, Low Level Water	9.8	u .	1.4	9.8	1.00000	ug/L	136171		11/29/04		
	Hexachlorocyclopentadiene, Low Level Water	20	U *	0.64	20	1.00000	ug/L	136171		11/29/04		
	2-Methylnaphthalene, Low Level Water	0.49	lu	0.13	0.49	1.00000	ug/L	136171		11/29/04		
	2-Nitroaniline, Low Level Weter	4.9	ויין	0.22	4.9	1.00000	ug/L	136171		11/29/04		
	2-Chloronaphthalene, Low Level Water	2.0	u	0.25	2.0	1.00000	ug/L	136171		11/29/04	1412	. depk
		1										

^{*} In Description = Dry Wgt.

Job Number: 231832

LABORATORY TEST RESULTS

Date: 12/06/2004

CUSTOMER: MKH Engineers, Inc.

PROJECT: USACE RVAAP 14 ADCS

ATTN) Eric Ellis

Customer Sample ID: CBLsw-002-DUP
Date Sampled.....: 11/09/2004
Time Sampled.....: 12:50
Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	G FLAGS	MDL	RL	DILUTION	UNITS	BATCH	ОŤ	DATE/T	!ME	TECH
	4-Chioro-3-methylphenol, Low Level Water	9.8	U	2.4	9.8	1.00000	ug/L	136171		11/29/04	141	iifiiriii 2 dok
	2,6-Dimitrotoluene, Low Level Water	0.49	U	0.11	0.49	1.00000	ug/L	136171		11/29/04		
	2-Nitrophenoi, Low Level Water	9.8	ย	0.80	9.8	1.00000	ug/L	136171		11/29/04		
	3-Nitroaniline, Low Level Water	9.8	U	2.1	9.8	1.00000	ug/L	136171		11/29/04		
	Dimethyl phthalate, Low Level Water	2.0	lυ	0.21	2.0	1.00000	ug/L	136171		11/29/04		
	2,4-Dinitrophenol, Low Level Water	20	u	3.2	20	1.00000	ug/L	136171		11/29/04		
	Acenaphthylene, Low Level Water	0.98	ប]	0.12	0.98	1.00000	ug/L	136171		11/29/04		
	2,4-Dinitrotoluene, Low Level Water	0.98	uį	0.13	0.98	1.00000	ug/L	136171		11/29/04		
1	Acenaphthene, Low Eevel Water	0.98	U U U	0.12	0.98	1.00000	ug/L	136171	1	11/29/04	. 141;	2 dok
1	Dibenzofuran, Low Level Water	2.0	u	0.13	2.0	1.00000	ug/L	136171		11/29/04	1417	2 dok
-	4-Nitrophenol, Low Level Water	20	u	3.6	20	1.00000	ug/L	136171		11/29/04		
	Fluorene, Low Level Water	0.98	u	0.13	0.98	1.00000	ug/L	136171		11/29/04		
	4-Mitroaniline, Low Level Water	9.8	U	2.3	9.8	1.00000	ug/L	136171		11/29/04		
	4-Bromophenyl phenyl ether, Low Level Water	4.9	U	0.19	4.9	1.00000	ug/L	136171		11/29/04		
	Mexachiorobenzene, Low Level Water		U	0.095	0.49	1.00000	ug/L	136171		11/29/04		
	Diethyl phthalate, Low Level Water	2.0	IJ	0.15	2.0	1.00000	ug/L	136171		11/29/04		
	4-Chlorophenyl phenyl ether, Low Level Water	4.9	U	0.74	4.9	1.00000	ug/L	136171		11/29/04		
	Pentachlorophenol, Low Level Water]u	1.7	9.8	1.00000	ug/L	136171		11/29/04		
	n-Nitrosodiphenylamine, Low Level Water		iu	0.13	0.98	1.00000	Ug/L	136171		11/29/04		
	4,6-Dinitro-2-methylphenol, Low Level Water	20	u	2.4	20	1.00000	ug/L	136171	1	11/29/04	1417	2 dok
	Phenanthrene, Low Level Water		ti	0.14	0.98	1.00000	ug/L	136171		11/29/04		
	Anthracene, Low Level Water		u J	0.15	0.98	1.00000	ug/L	136171		11/29/04		
	Carbazole, Low Level Water	4.9	U U U U U U U U U U U U U U U U U U U	0.28	4.9	1.00000	ug/l.	136171		11/29/04		
Į	Di-n-butyl phthalate, Low Level Water	4.9	비비	0.35	4.9	1.00000	ug/L	136171		11/29/04		
	Fluoranthene, Low Level Water	0.98	u	0.14	0.98	1.00000	ug/L	136171		11/29/04	1417	2 dok
	Pyrene, Low Level Water	0.98	[נו]	0.12	0.98	1.00000	ug/L	136171		11/29/04		
	Butyl benzyl phthalate, Low Level Water			0.38	2.0	1.00000	ug/L	136171		11/29/04		
	Benzo(a)anthracene, Low Level Water		บ	0.048	0.20	1.00000	ug/L	136171		11/29/04		
	Chrysene, Low Level Water	0.49	U	0.044	0.49	1.00000	ug/L	136171		11/29/04		
	ļ						_	<u> </u>				

^{*} In Description = Dry Wgt.

Job Wumber: 231832

LABORATORY TEST RESULTS

Date: 12/06/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: CBLsw-002-DUP Date Sampled.....: 11/09/2004 Fime Sampled.....: 12:50 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDT.	RE.	DILUTION	UNITS	BATCH	DΤ	DATE/TI	ME	TECH
TES II MELINOUS	3,3-Dichlorobenzidine, Low Level Water Bis(2-ethylhexyl)phthalate, Low Level Water Di-n-octyl phthalate, Low Level Water Benzo(b)fluoranthene, Low Level Water Benzo(x)fluoranthene, Low Level Water Benzo(a)pyrene, Low Level Water Indeno(1,2,3-cd)pyrene, Low Level Water Dibenzo(a,h)anthracene, Low Level Water Benzo(ghi)perylene, Low Level Water	4.9 15 9.8 0.39 0.39 0.39 0.39 0.39	U U U U U U U U U U U U U U U U U U U	MD4 0.71 3.8 2.5 0.066 0.071 0.082 0.084 0.13 0.19	4.9 15 9.8 0.39 0.39 0.39 0.39 0.39	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	8ATCH 136171 136171 136171 136171 136171 136171 136171 136171	7/11/2 4/11/2	11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04	1412 1412 1412 1412 1412 1412 1412 1412	\$ \$
			7762						**************************************			- Transfer

^{*} In Description = Dry Wgt.

Page 7

LABORATORY TEST RESULTS

Date: 12/02/2004

CUSTOMER: MOM Engineers, Inc. PROJECT: USAGE RVAAP 14 ADGS ATTM: Eric Ellis

Customer Sample ID: CBLsw-002-DUP Date Sampled.....: 11/09/2004 Time Sampled.....: 12:50 Sample Matrix....: Water Laboratory Sample ID: 231832-2 Date Received.....: 11/10/2004 Time Received.....: 09:45

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS MDL RL DILUTION THITS BATCH DT DATE/TIME 8330 Explosives by 8330 (HPLC) HMX 0.31 0.068 0.31 1,00000 ug/L 135917 11/13/04 1753 san RDX 0.20 U 0.064 0.20 1.00000 ug/L 135917 11/13/04 1753 san 1.3.5-Trinitrobenzene 0.20 Ιυί 0.058 0.20 1.00000 ug/L 135917 11/13/04 1753 san 1.3-Dinitrobenzene 0.20 0.055 0.20 1.00000 ug/L 135917 11/13/04 1753 san Nitrobenzene 0.16 0.044 0.16 1.00000 ug/L 135917 11/13/04 1753 san 2,4,6-TRT 0.25 0.078 0.25 1.00000 ug/L 135917 11/13/04 1753 san Tetryl 0.78 0.16 0.781.00000 ug/L 135917 11/13/04 1753 san 2,4-Dinitrotoluene 0.36 0.12 0.36 1.00000 ug/L 135917 11/13/04 1753 san 2.6-Dinitrotoluene 0.430.140.43 1.00000 ug/L 135917 11/13/04 1753 san 2-Amino-4,6-Dinitrotoluene 0.36 0.120.361.000000 ug/L 135917 11/13/04 1753 san 4-Amino-2,6-Dinitrotoluene 0.33 0.11 0.33 1.00000 135917 ug/L 11/13/04 1753 san 2-Nitrotaluene 0.31 0.0930.31 1.00000 135917 ug/L 11/13/04 1753 san 4-Nitrotaluene 0.31 0.10 0.31 1.00000 135917 11/13/04 1753 san ug/L 3-Nitrotoluene 0.31 0.10 0.31 1.00000 ug/L 135917 11/13/04 1753 san 8332M MG/PETN by 8332M (HPLC) Mitroglycerine 1.0 0.15 1.0 1,00000 uq/L 135908 11/20/04 1652 san

^{*} In Description = Dry Wgt.

STL CHICAGO

Client Sample ID: CBLsw-002-DUP

Trace Level Organic Compounds

Lot-Sample #: Date Sampled: Prep Date:	11/09/04 12:50 11/12/04	Work Order #: Date Received: Analysis Date:	11/10/04	Matrix		WATER
Prep Batch #: Dilution Factor:		Initial Wgt/Vol:	10 mL	Final	Wgt/Vol:	10 mL
PARAMETER Nitroguanidine		RESULT ND	DETECTION LIMIT 20	UNITS ug/L	METHOD NONE UV/H	PLC per

STL CHICAGO

Client Sample ID: CBLsw-002-DUP

General Chemistry

Lot-Sample #: G4K100349-010	Work Order #: GWNGW	Matrix: WATER

Date Sampled...: 11/09/04 12:50 Date Received..: 11/10/04

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrocellulose	ND	0.50	mg/L	MCAWW 353.2	11/20-11/23/04	4325114
	Dil	ution Fact	or: 1	Initial Wgt/Vol: 100 mL	Final Wgt/Vol	: 40 mL
	MDL		: 0.12			

CUSTOMER: MKM Engineers, Inc. Customer Sample ID: CBLsw-003-SW Date Sampled: 11/08/2004 Time Sampled: 14:30 Sample Matrix: Water TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT: Q FLAGS MDL RL DILUTION UNIT 7196A Hexavalent Chromium Hexavalent Chromium Hexavalent Chromium 0.022 B 0.0080 0.050 5 mg/L	i⊫e Eric Eblís
Customer Sample ID: CBLsw-003-SW Date Sampled: 11/08/2004 Time Sampled: 14:30 Sample Matrix: Water TEST METHOD. PARAMETER/TEST DESCRIPTION SAMPLE RESULT OF FLAGS MODE RL DILUTION UNIT	
7196A Hexavalent Chromium	
7196A Hexavalent Chromium	S BATCH DT DATE/TIME TECH

^{*} In Description = Dry Wgt.

Page 17

Date:11/24/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

Alin: Eric Ellis

Customer Sample ID: CBLsw-003-Sw Date Sampled....: 11/08/2004 Time Sampled....: 14:30 Sample Matrix....: Water

Laboratory Sample ID: 231793-19
Date Received.....: 11/09/2004

Time Received.....: 09:45

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MCL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIM	E .	TECH
7041	Antimony (GFAA) Antimony	7.5	U	2.5	7.5	•	ug/L	134574	2 3 2 3 3 7	11/16/04 1		
7060A	Arsenic (GFAA) Arsenic	11		0.51	2.0	1	ug/L	134614		11/15/04 1	354	daj
7421	Lead (GFAA) Lead	3.0	U	0.79	3.0	1	ug/L	134350	100	11/13/04 0	513	daj
7841	Thallium (GFAA) Thallium	4_0	u	1.3	4.0	1	ug/L	134456		11/16/04 0	402	daj
7470A	Mercury (CVAA) Mercury	0.056	В	0.049	0.20	ī	ug/L	134946		11/19/04 1	637	gok
6010 8	Metals Analysis (ICAP Trace) Aluminum Barium Beryllium Cadnium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium	350 120 2.0 2.0 17000 2.0 9.4 3.4 23000 3500 4100 3.9	U B B	24 1.5 0.17 0.44 24 1.5 1.0 1.6 40 12 0.71 1.9	150 10 2.0 2.0 100 10 5.0 10 120 100 10 10 500	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134566 134566 134566 134566 134566 134566 134566 134566 134566 134566 134566	7/4	11/16/04 2 11/16/04 2	150 150 150 150 150 150 150 150 150	tds tds tds tds tds tds tds tds tds tds

^{*} In Description = Dry Wgt.

Job Number: 231793

Date:11/24/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTM: Eric Ellis

Customer Sample ID: CBLsw-003-SW Date Sampled....: 11/08/2004 Time Sampled....: 14:30 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O FLAGS	WDL	RL	DILUTION	CHITS	BATCH	DI	DATE/TIME	TEC
	Selenium Silver Sodium Venadium Zinc	10	B U U	5.0 3.1 500 2.1 10	15 10 1500 10 30	1 1 1 1	ug/L ug/L ug/L ug/L ug/L	134566 134566 134566 134566 134566	100	11/16/04 2150 11/16/04 2150 11/16/04 2150 11/16/04 2150 11/16/04 2150	0 tds 0 tds 0 tds
				1					, , , , , , , , , , , , , , , , , , ,		
								1991			
									114		
						·			140		

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS
Job Number: 231793

Date:12/02/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAP 14 ACCS ATTN: Eric Ellis

Customer Sample ID: CBLsw-003-SW Date Sampled....: 11/08/2004 Time Sampled....: 14:30 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL		DILUTION	LINITE	BATCH	DT DATE/T	IME	TECH
8081A	Organachlorine Pesticide Analysis alpha-BHC beta-BHC deita-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Methoxychlor alpha-Chlordane gamma-Chlordane Endrin aldehyde Endrin ketone Toxaphene	0.29 0.19 0.19 0.29 0.29 0.19 0.19 0.19 0.29 0.21 0.29 0.21 0.29 0.29	טטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	0.090 0.054 0.048 0.081 0.079 0.054 0.069 0.043 0.033 0.081 0.069 0.085 0.094 0.33 0.031 0.031 0.033 0.031	0.29 0.19 0.19 0.29 0.29 0.19 0.19 0.19 0.29 0.29 0.29 0.29 1.2 0.096 0.19 0.29	2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135979 135979 135979 135979 135979 135979 135979 135979 135979 135979 135979 135979 135979 135979 135979 135979 135979 135979	11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04 11/16/04	1223 1223 1223 1223 1223 1223 1223 1223	kal kal kal kal kal kal kal kal kal kal

^{*} In Description = Dry Wgt.

Date: 12/01/2004

CUSTOMER: MKN Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATIN: Eric El is

Customer Sample ID: CBLsw-003-SW Date Sampled....: 11/08/2004 Time Sampled....: 14:30 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	PO L	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	TECH
	PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	0.58 1.2 1.2 1.2 1.4 1.4 1.2	0 0 0 0 0 0	0.17 0.40 0.34 0.41 0.46 0.34 0-16	0.58 1.2 1.2 1.2 1.4 1.4 0.58	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135575 135575 135575 135575 135575 135575 135575		11/19/04 2036 11/19/04 2036 11/19/04 2036 11/19/04 2036 11/19/04 2036 11/19/04 2036 11/19/04 2036	bjt bjt bjt bjt bjt bjt
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			:		5			
	·								i salaning i s		

^{*} In Description = Dry Wgt.

Page 17

Date: 11/18/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ADES

ATTN: Eric Ellis

Customer Sample ID: CBLsw-003-SW Date Sampled....: 11/08/2004 Time Sampled....: 14:30 Sample Matrix....: Water

T METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RI_	DILUTION	UNITS	BATCH	ют	DATE/T	
260B	Volatile Organics			144-11-114-114-114-114-114-114-114-114-		183834817479		3 000000	33		
	Chloromethane	1.0	ful I	0 770			ľ				
	Vinyl chloride	1.0		0.080	1.0	1.00000	ug/L	134097		11/12/04	0641
	Bromomethane	1.0	ارا	0.080	1.0	1.00000	ug/L	134097		11/12/04	0641
	Chloroethane	1.0	U	0.10	1.0	1.00000	ug/L	134097		11/12/04	0641
	1.1-Dichloroethene	1.0	U	0.080	1.0	1.00000	ug/L	134097		11/12/04	0641
	Carbon disulfide	3.7		0.12	1.0	1.00000	ug/L	134097	lĺ	11/12/04	064
	Acetone	14	! 4	0.20	5.0	1.00000	ug/L	134097		11/12/04	0641
	Methylene chloride		1	1.8	10	1.00000	ug/L	134097	i	11/12/04	064
	trans-1,2-Dichloroethene	1.5 1.0	ָטן טו	0.35	1.5	1.00000	ug/L	134097		11/12/04	064
	1,1-Dichtoroethane			0.14	1.0	1.00000	ug/L	134097		11/12/04	064
	cis-1,2-Dichloroethene	1.0		0.11	1.0	1.00000	ug/L	134097		11/12/04	064
	2-Butanone (MEK)	1.0	u	0.090	1.0	1.00000	ug/L	134097	ĺ	11/12/04	064
	Bromoch Lorome thane	10		1.2	10	1.00000	ug/L	134097		11/12/04	064
	Chleroform	1.0	U	0.19	1.0	1.00000	ug/L .	134097	-	11/12/04	064
	1,1,1-TrichLoroethane	1-0	ู้บ เบ	0.11	1.0	1.00000	ug/L	134097	ļ ·	11/12/04	064
	Carbon tetrachloride	1.0	\[\begin{align*}	0.080	1.0	1.00000	ug/L	134097	!	11/12/04	064
	Benzene	1.0	U	0.13	1.0	1.00000	ug/L	134097		11/12/04	0.64
	1,2-Dichtorgethane	1.0	[u]	0.090	1.0	1.00000	ug/L	134097		11/12/04	DA4
	Trichloroethene	1.0		0.090	1.0	1.00000	ug/L	134097		11/12/04	064
	1,2-Dichloropropane	1.0	U	0.10	1.0	1.00000	ug/L	134097		11/12/04	064
	Bromodichloromethane	1.0	U	0.12	1.0	1.00000	ug/L	134097	-	11/12/04	064
	cis-1,3-Dichloropropene	1.0	[U]	0.11	1.0	1.00000	vg/L	134097	١,	11/12/04	DA4
	4-Methyl-2-pentanone (MIBK)	1.0	u	0.12	1.0	1.00000	ug/L	134097	į.	11/12/04	na4
	Toluene	10	u	0.65	10	1.00000	ug/L	134097	-	11/12/04	044
	trans-1,3-Dichloropropene	64		0.10	1.0	1.00000 (ug/L	134097	- [-	11/12/04	064
	1 1 2 Tadable	1.0	U [0.15	1.0	1.00000	ug/L	134097	-	11/12/04	0641
	1,1,2-Trichloroethane Tetrachloroethene	1.0	u	0.15	1.0	1.00000	ug/L	134097	- 1.	11/12/04	0641
	2- Hexanone	1.0	U	0.090	1.0	1.00000	ug/L	134097	- }.	11/12/04	064
	2- nexamone	10	[t]	0.53	10	1.00000	ug/L	134097	į,	11/12/04	06/1
								''''	- 1	117 127 04	u 04 I

^{*} In Description = Dry Wgt.

RESULTS Job Number: 231793 Date: 11/18/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAP 14 AOCS ATTN: Eric Ellis

LABDRATORY TEST

Customer Sample ID: CBLsw-003-SW Date Sampled....: 11/08/2004 Time Sampled....: 14:30 Sample Matrix....: Water

Dibromochloromethane	UNITS BATCH	DA DATEXITME TEC
Ethyl benzene 1.0 U 0.080 1.0 1.00000	ug/L 134097	11/12/04 0641 jdn 11/12/04 0641 jdn

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS Job Number: 231793

Date: 12/06/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAP 14 AGCS ATTMs Eric Ellis

Customer Sample ID: CBLsw-003-SW Date Sampled.....: 11/08/2004 Time Sampled.....: 14:30 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O FLAG	s MpL	RL.	DILUTION	UNITS	ВАТСИ	OΠ	DATE/T	ĮME:	TECH
8270C	Semivolatile Organics Phenol, Low Level Water Bis(2-chloroethyl)ether, Low Level Water 1,3-Dichlorobenzene, Low Level Water 1,4-Dichlorobenzene, Low Level Water 1,2-Dichlorobenzene, Low Level Water 8 enzyl alcohol, Low Level Water 2-Methylphenol (o-cresol), Low Level Water 2,2-oxybis (1-chloropropane), Low Level Water n-Nitroso-di-n-propylamine, Low Level Water Hexachloroethane, Low Level Water	68 2.0 2.0 2.0 2.0 12 72 72 2.0 0.50 5.0	* *************	0.35 0.30 0.43 0.33 0.35 2.2 0.26 0.28 0.080 0.60	5.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.50 5.0	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135729 135729 135729 135729 135729 135729 135729 135729 135729		11/26/04 11/26/04 11/26/04 11/26/04 11/26/04 11/26/04 11/26/04 11/26/04 11/26/04	2041 2041 2041 2041 2041 2041 2041 2041	glr glr glr gir gir gir gir
	4-Methylphenol (m/p-cresol), Low Level Water 2-Chlorophenol, Low Level Water Nitrobenzene, Low Level Water Bis(2-chloroethoxy)methane, Low Level Water 1,2,4-Trichlorobenzene, Low Level Water Benzoic acid, Low Level Water Isophorone, Low Level Water 2,4-Dimethylphenol, Low Level Water Naphthalene, Low Level Water 2,4-Dichlorophenol, Low Level Water	86 5.0 0.99 2.0 2.0 410 2.2 88 5.0 0.99 9.9	טטט טטט	0.099 0.12 0.16 0.31 0.34 30 0.26 1.3 0.63 0.16	2.0 5.0 0.99 2.0 2.0 2.0 9.9 5.0 0.99 9.9	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135729 135729 135729 135729 135729 135729 135729 135729 135729 135729	01	11/26/04 11/26/04 11/26/04 11/26/04 11/26/04 12/03/04 11/26/04 11/26/04 11/26/04	2041 2041 2041 2041 2041 1734 2041 2041 2041	gir gir gir gir gir gir gir
	4-Chloroaniline, Low Level Water 2,4,6-Trichlorophenol, Low Level Water 2,4,5-Trichlorophenol, Low Level Water Hexachlorocyclopentadiene, Low Level Water 2-Methylnaphthalene, Low Level Water 2-Mitroaniline, Low Level Water 2-Chloronaphthalene, Low Level Water	9.9 5.0 9.9 20 0.50 5.0 2.0	U U U U U U	2.8 0.21 1.4 0.64 0.13 0.22 0.26	9.9 5.0 9.9 20 0.50 5.0 2.0	1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135729 135729 135729 135729 135729 135729 135729		11/26/04 11/26/04 11/26/04 11/26/04 11/26/04 11/26/04 11/26/04	2041 2041 2041 2041 2041 2041	gir gir gir gir gir gir

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:12/06/2004

CUSTONER: MKN Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric ELLis

Customer Sample ID: CBLsw-003-SW Date Sampled....: 11/08/2004 Time Sampled....: 14:30 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLACS	MDL	RL	DILUTION	LUNITS	BATCH	QT	DATE/TIME	E TECI
	4-Chloro-3-methylphenol, Low Level Water	9.9	U	2.4	9.9	1.00000	ug/L	135729	700.00	11/26/04 20	Mat ele
	2,6-Dinitrotoluene, Low Level Water	0.50	u	0.11	0.50	1.00000	ug/L	135729		11/26/04 20	
	2-Nitrophenol, Low Level Water	9.9	u	0.81	9.9	1.00000	ug/L	135729		11/26/04 20	
	3-Nitroaniline, Low Level Water	9.9	U	2.1	9.9	1.00000	ug/L	135729		11/26/04 20	
	Dimethyl phthalate, Low Level Water	2.0	U	0.21	2.0	1.00000	ug/L	135729		11/26/04 20	
	2,4-Dinitrophenol, Low Level Water	50	U	3.3	20	1.00000	ug/L	135729		11/26/04 20	161 pt r
	Acenaphthylene, Low Level Water	0.99	u	0.12	0.99	1.00000	ug/L	135729		11/26/04 20	MAT OLE
	2,4-Dinitrotoluene, Low Level Water	0.99	Ū	0.13	0.99	1.00000	ug/L	135729	1 1	11/26/04 20	041 ol r
	Acenaphthene, Low Level Water	0.99	u	0.12	0.99	1.00000	ug/L	135729		11/26/04 20	
	Dibenzofuran, Low Level Water	2.0	U	0.13	2.0	1.00000	ug/L	135729		11/26/04 20	
	4-Nitrophenol, Low Level Water	20	U	3.7	20	1.00000	ug/L	135729		11/26/04 20	
	Fluorene, Low Level Water	0.99	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.13	0.99	1.00000	ug/L	135729		11/26/04 20	
	4-Nitroaniline, Low Level Water	9.9	U	2.3	9,9	1.00000	ug/L	135729		11/26/04 20	341 alr
	4-Bromophenyl phenyl ether, Low Level Water	5.0	เป	0.19	5.0	1.00000	ug/L	135729	1	11/26/04 20	341 glr
†	Hexachlorobenzene, Low Level Water	0.50	ย	0.096	0.50	1.00000	ug/L	135729		11/26/04 20	
	Diethyl phthalate, Low Level Water	2.0	U	0.15	2.0	1.00000	ug/L	135729		11/26/04 20	
	4-Chlorophenyl phenyl ether, Low Level Water	5,0	U	0.74	5.0	1.00000	ug/L	135729		11/26/04 20	
	Pentachlorophenol, Low Level Water	9.9	U	1.7	9.9	1.00000	ug/L	135729		11/26/04 20	
	n-Nitrosodiphenylamine, Low Level Water	0.99	וטו	0.13	0.99	1.00000	ug/L	135729	1	11/26/04 20	M1 glr
	4,6-Dinitro-2-methylphenol, Low Level Water	20	{U	2.4	20	1.00000	ug/L	135729	H	11/26/04 20	341 gtr
	Phenanthrene, Low Level Water	0.99	U	0.14	0.99	1.00000	ug/L	135729		11/26/04 20	J41 glr
	Anthracene, Low Level Water	0.99	[0]	0.15	0.99	1.00000	ug/L	135729		11/26/04 20)41 gtr
	Carbazole, Low Level Water	5.0	U	0.29	5.0	1.00000	ug/L	135729		11/26/04 20	041 gtr
	Di-n-butyl phthalate, Low Level Water		U	0.36	5.0	1.00000	ug/L	135729		11/26/04 20	J41 gtr
	Fluoranthene, Low Level Water	0.99	U	0.14	0.99	1.00000	ug/L	135729		11/26/04 20)41 gtr
	Pyrene, Low Level Water	0.99	u	0.12	0.99	1.00000	ug/L	135729		11/26/04 20)41 gtr
	Butyl benzyl phthalate, Low Level Water	2.0	U	0.39	2.0	1.00000	ug/L	135729		11/26/04 20	
	Senzo(a)anthracene, Low Level Water	0.20	u	0.049	0.20	1.00000	ug/L	135729		11/26/04 20	
	Chrysene, Low Level Water	0.50	u	0.045	0.50	1.00000	ug/L	135729		11/26/04 20	41 gtr

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS
Job Number: 231793

Date: 12/06/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTHE Eric Ellis

Customer Sample ID: CBLsw-003-SW
Date Sampled....: 11/08/2004
Time Sampled....: 14:30
Sample Matrīx....: Water

Laboratory Sample ID: 231793-19
Date Received.....: 11/09/2004
Time Received.....: 09:45

DILLITION SAMPLE RESULT G FLAGS TEST METHOD PARAMETER/TEST DESCRIPTION UNITS BATCH DI DATE/TIME 5.0 0.71 5.0 1.00000 3,3-Dichlorobenzidine, Low Level Water 135729 11/26/04 2041 gtr ug/L 11/26/04 2041 gir 3.9 Bis(2-ethylhexyl)phthalate, Low Level Water 15 15 1.00000 135729 ug/L 9.9 1.00000 11/26/04 2041 glr Di-n-octyl phthalate, Low Level Water 2.5 9.9 ug/L 135729 Benzo(b)fluoranthene, Low Level Water 0.400.066 0.40 1.00000 11/26/04 2041 gtr ug/L 135729 11/26/04 2041 gtr Benzo(k)fluoranthene, Low Level Water 0.400.0710.401.00000 135729 ug/L 1.00000 11/26/04 2041 glr 0.40 0.083 0.40Benzo(a)pyrene, Low Level Water ug/L 135729 Indeno(1,2,3-cd)pyrene, Low Level Water 0.400.085 0.401.00000 135729 11/26/04 2041 gtr ug/L Dibenzo(a,h)anthracene, Low Level Water 0,40 0.13 0.40 1.00000 11/26/04 2041 gtr ug/L 135729 11/26/04 2041 glr Benzo(ghi)perylene, Low Level Water 0.99 0.19 0.991.00000 135729 ug/L

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS
Job Number: 231793

Date: 11/23/2004

CUSTOMER: MKM: Engineers, Inc. ATTW: Eric Ellis

Customer Sample ID: CBLsw-003-SW
Date Sampled....: 11/08/2004
Time Sampled....: 14:30
Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	a l	FLAGS	KDL	RL	DILUTION	UNITS	BATCH	αi	DATE/TI	I ME	TECH
8332M	Explosives by 8330 (MPLC) MMX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Nitrobenzene 2,4,6-TNT Tetryl 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-Dinitrotoluene 4-Amino-2,6-Dinitrotoluene 4-Mitrotoluene 4-Nitrotoluene 3-Nitrotoluene NG/PETN by 8332M (MPLC) Nitroglycerine	0.27	ם עטעעטעעעעע	312.232.23	0.073 0.068 0.062 0.059 0.047 0.083 0.17 0.13 0.15 0.12 0.099 0.11 0.11	0.33 0.21 0.21 0.21 0.17 0.27 0.83 0.38 0.46 0.38 0.35 0.33 0.33 0.33	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135154 135154 135154 135154 135154 135154 135154 135154 135154 135154 135154 135154	F	11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04	1543 1543 1543 1543 1543 1543 1543 1543	san san san san san san san san san san
		- 1 Average											:

^{*} In Description = Dry Wgt.

STL CHICAGO

Client Sample ID: CBLsw-003-SW

Trace Level Organic Compounds

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #: Dilution Factor:	11/09/04 14:30 11/12/04 4317345	Work Order #: Date Received: Analysis Date: Initial Wgt/Vol:	11/10/04 11/17/04		Wgt/Vol: 10 mL
PARAMETER Nitroguanidine		RESULT ND	DETECTION LIMIT 20	UNITS ug/L	METHOD NONE UV/HPLC per

STL CHICAGO

Client Sample ID: CBLsw-003-SW

General Chemistry

Lot-Sample #...: G4K100349-009 Work Order #...: GWNGQ Matrix..... WATER

Date Sampled...: 11/09/04 14:30 Date Received..: 11/10/04

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrocellulose		0.50	_	MCAWW 353.2 Initial Wgt/Vol: 100 mI	11/20-11/23/04 Final Wgt/Vol	

	Job Number: 231912	LABORATOR	Y TE	ST RESUL	TS		Date: 1	2/02/2004	 -		
CUSTOMER: MKM	Engineers, Inc.	PROJECT	: USACE R	VAAP 14 AOCS			ATTN:	Eric El	l j s		
Date Sam Time Sam	r Sample ID: CBLsw-004-SW upled: 11/11/2004 upled: 14:15 Batrix: Water		Đa	boratory Sample te Received me Received	: 11/12/2004						
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	МДТ	RL	DILUTION	UNITS	BATCH	DT	DATE/11ME	TEC
7196A	Hexavalent Chromium Hexavalent Chromium	0.010	U	0.0016	0.010	1	mg/L	134276		11/12/04 114	: :
	· 										į
					! : :						
									;		
				; 	:						
					; ; !						
							İ				
I											:

^{*} In Description = Dry Wgt.

Page 29

Job Number: 231912

LABORATORY TEST RESULTS

Date: 12/01/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATIN: Eric Ellis

Customer Sample ID: CBLsw-004-SW Date Sampled....: 11/11/2004 Time Sampled.....: 14:15 Sample Matrix....: Water

Laboratory Sample ID: 231912-27 Date Received.....: 11/12/2004

Time Received.....: 09:15

TEST HETHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O FLAGS	MOL.	RL	DILUTION	UNITS	BATCH	OΤ	DATE/TIM	E	TECH
7041	Antimony (GFAA) Antimony	7.5	U	2.5	7.5	1	ug/L	134864		11/18/04 20	:023	daj
7060A	Arsenic (GFAA) Arsenic	2.0	U	0.51	2.0	1	ug/L	134620		11/17/04 1	141	daj
7421	Lead (GFAA) Lead	3.0	u	0.79	3.0	1	ug/L	134494		11/16/04 12	218	da j
7841	Thallium (GFAA) Thallium	4.0	u	1.3	4.0	1	ug/L	134623		11/17/04 00	820	d a ĵ
7470A	Mercury (CVAA) Mercury	0.20	U	0.049	0.20	1	ug/L	134946	- Haraman - California	11/19/04 16	651	gok
6010B	Metals Analysis (ICAP Trace) Aluminum Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Magnesium Mangenese Nickel Potessium	200 36 2.0 2.0 4900 10 3.4 10 4500 1500 690 3.0	U U B U B	24 1.5 0.17 0.44 24 1.5 1.0 1.6 40 12 0.71 1.9	150 10 2.0 2.0 100 10 10 120 100 10 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134566 134566 134566 134566 134566 134566 134566 134566 134566 134566 134566		11/16/04 2: 11/16/04 2:	228 228 228 228 228 228 228 228 228 228	tds tds tds tds tds tds tds tds tds tds

^{*} In Description = Dry Wgt.

Job Number: 231912 Date:12/01/2004

CUSTOMER: MON Engineers, Inc. ATTN: Eric Ellis

LABORATORY TEST

Customer Sample ID: CBLsw-004-SW
Date Sampled....: 11/11/2004
Time Sampled....: 14:15
Sample Matrix....: Water

Laboratory Sample ID: 231912-27 Date Received.....: 11/12/2004 Time Received.....: 09:15

RESULTS

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS HOL DILUTION UNITS BATCH OT DATE/TIME 11/16/04 2228 tds 11/16/04 2228 tds 11/16/04 2228 tds 11/16/04 2228 tds Selenium 15 5_0 15 134566 ug/L Silver 10 3.1 10 ug/L 134566 Sodium 1600 500 1500 134566 ug/L Vanadium 10 2.1 10 134566 ug/L Zinc 30 10 30 ug/L 134566 11/16/04 2228 tds

^{*} In Description = Dry Wgt.

Job Number: 231912

LABORATORY TEST RESULTS

Date:12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Eltis

Customer Sample ID: CBLsw-004-SW Date Sampled....: 11/11/2004 Time Sampled....: 14:15 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLACS	М ОЦ	RE	DILUTION	STIMU	BATCH	рт	DATE/TIME	TECH
8081A	Organochlorine Pesticide Analysis alpha-BHC beta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan ! Dieldrin 4,4*-DDE Endrin Endosulfan !! 4,4*-DDD Endosulfan sulfate 4,4*-DDT Methoxychlor alpha-Chlordane gamma-Chlordane Endrin aldehyde Endrin ketone Toxephene	0.19 0.29 0.19 0.19 0.19 0.29 0.21 0.29 0.29 1.2 0.096 0.19		0.090 0.054 0.048 0.081 0.079 0.054 0.069 0.040 0.035 0.044 0.033 0.081 0.069 0.085 0.094 0.33 0.031 0.033 0.067	0.29 0.19 0.19 0.29 0.29 0.19 0.19 0.19 0.19 0.29 0.21 0.29 0.21	2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000 2.00000	09/L 09/L 09/L 09/L 09/L 09/L 09/L 09/L	136412 136412 136412 136412 136412 136412 136412 136412 136412 136412 136412 136412 136412 136412 136412 136412 136412	ALL CONTRACTOR OF THE PROPERTY	11/18/04 0619 11/18/04 0619	y kal y kal

^{*} In Description = Dry Wgt.

Job Number: 231912

LABORATORY TEST RESULTS

Date:12/02/2004

CUSTOMER: MKM Englineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTNE Eric Ellis

Customer Sample ID: CBLsw-004-SW Date Sampled.....: 11/11/2004 Time Sampled.....: 14:15 Sample Matrix....: Water

TEST METROD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MCT	RL	DILLUTION	UNITS	BATCH	ÐΤ	DATE/TIME	TECH
8082	PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	0.58 1.2 1.2 1.2 1.4 1.2 0.58	ככבכככ	0.17 0.40 0.34 0.41 0.46 0.34 0.16	0.58 1.2 1.2 1.2 1.4 1.2 0.58	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L	135582 135582 135582 135582 135582 135582 135582		11/21/04 0710 11/21/04 0710 11/21/04 0710 11/21/04 0710 11/21/04 0710 11/21/04 0710 11/21/04 0710	0 bjt 0 bjt 0 bjt 0 bjt 0 bjt
						ALL DEPORTURE TO					
							TANK TANK TANK TANK TANK TANK TANK TANK				

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 231912

Date: 11/29/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: CBLsw-004-SW
Date Sampled....: 11/11/2004
Time Sampled....: 14:15
Sample Matrix....: Water

Laboratory Sample ID: 231912-27
Date Received.....: 11/12/2004
Time Received.....: 09:15

TEST METHOD: PARAMETER/TEST DESCRIPTION SAMPLE RESULT O FLAGS MDL DILUTION UNITS BAICH DT DATE/TIME TECH 8260B Volatile Organics Chloromethane 1.0 0.080lυ 1.0 1.00000 ug/L 134937 11/18/04 1554 Lm Vinyl chloride 1.0 اررا 0.0801.0 11.00000 134937 11/18/04 1554 Lm ug/L Bromomethane 1.0 اريا! 0.10 1.0 1.00000 134937 11/18/04 1554 Lm ug/L : Chloroethane 1.0 U 0.080 1.0 :1.00000 ug/L 134937 11/18/04 1554 Lm 1.1-Dichloroethene 1.0 iu. 0.12 1.0 1.00000 134937 ug/L 11/18/04 1554 Lm Carbon disulfide 5.0 lul 0.20 5.0 1.00000 ug/L 134937 11/18/04 1554 im Acetone 10 lul 1.8 10 1.00000 ug/L 134937 11/18/04 1554 lm Methylene chloride 6.4 0.35 1.5 1.00000 ug/L 134937 11/18/04 1554 lm trans-1,2-Dichloroethene 1.0 0.14 1.0 1.00000 134937 ug/L 11/18/04 1554 Em 1,1-Dichloroethane 1.0 0.11 1.0 1.00000 134937 11/18/04 1554 Lm ug/L cis-1,2-Dichloroethene 1.0 lυ 0.090 1.0 1.00000 ug/L 134937 11/18/04 1554 Lm 'Z-Butanone (MEK) 10 u 1.2 10 1.00000 134937 11/18/04 1554 Lm ug/L |Bromoch||oromethane 1.0 :U 0.10 1.0 1.00000 134937 ug/L 11/18/04 1554 lm Chlocoform 1.0 lu: 0.11 1.0 1.00000 134937 ug/L 11/18/04 1554 Lm 1.1.1-Trichloroethane 1.0 0.080 1.0 1.00000 134937 11/18/04 1554 lm ug/L Carbon tetrachloride 1.0 0.13 1.00000 1.0 ug/L 134937 11/18/04 1554 Lm Benzene 1.0 0.090 1.0 1.00000 ug/L 134937 11/18/04 1554 (m. 1,2-Dichloroethane 1.0 0.0901.0 11.00000 134937 .11/18/04 1554 Lm ug/L Trichloroethene 1.0 0.10 1.0 1.00000 134937 ug/L 11/18/04 1554 Lm 1.2-Dichloropropage 1.0 U 0.12 1.0 1.00000 134937 11/18/04 1554 lm ug/L Bromodich Loromethane 1.0 U 0.11 1_0 1.00000 ug/L 134937 11/18/04 1554 lm cis-1.3-Dichloropropene 1.0 0.12 1.0 1.00000 ug/L 134937 11/18/04 1554 Lm 4-Methyl-2-pentanone (MIBK) 10 ÍЦ. 0.65 10 1.00000 ug/L 134937 11/18/04 1554 Lm Toluene 14 0.10 1.0 1.00000 ug/L 134937 11/18/04 1554 Lm trans-1,3-Dichloropropene 1.0 0.15 1.0 1.00000 ug/L 134937 -11/18/04 1554 Lm 1,1,2-Trichloroethane 1.0 0.15 1.0 1.00000 ug/L 134937 11/18/04 1554 Lm Tetrachloroethene 1.0 0.090 1.00000 1.0 ug/L 134937 11/18/04 1554 lm 2-Rexamme to 0.5310 1.00000 ug/L 134937 11/18/04 1554 lm

^{*} In Description = Dry Wgt.

	Job Number: 231912	LABORATORY	7 E S	T RESUL	. т s		Date:1	1/29/200)4	- PHIPLES III	- Corr	
CUSTOMER: MKM	Engineers, Inc.	PROJECT:	USACE RV	AP 14 AGES			ATTN:	Eric El	ltis:			
Date Sam Time Sam	Sample 1D: CBLsw-004-SW pled: 11/11/2004 pled: 14:15 atrix: Water		Date	oratory Sample Received	: 11/12/2004							
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL.	DILUTION	UNITS	ВАТСН	10	DATE/TIM	E TI	EC
	Dibromochloromethane 1,2-Dibromoethane (EDB) Chlorobenzene Ethylbenzene m&p-Xylenes o-Xylene Styrene Bromoform 1,1,2,2-Tetrachloroethane 1,2-Dichloroethene (total) Xylenes (total)	1.0 1.0 1.0 2.0 1.0 1.0 1.0		0.060 0.13 0.080 0.070 0.18 0.080 0.13 0.11 0.090 0.23	1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.000000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134937 134937 134937 134937 134937 134937 134937 134937 134937		11/18/04 1 11/18/04 1 11/18/04 1 11/18/04 1 11/18/04 1 11/18/04 1 11/18/04 1 11/18/04 1	554 lr 554 lr 554 lr 554 lr 554 ln 554 ln 554 ln	m m m m m m

^{*} In Description = Dry Wgt.

Page 30

Job Number: 231912 LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: NKW Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: CBLsw-004-SW Date Sampled.....: 11/11/2004 Time Sampled.....: 14:15 Sample Matrix....: Water

Laboratory Sample ID: 231912-27
Date Received....: 11/12/2004
Time Received....: 09:15

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS HDL DILUTION UNITS BATCH DT DATE/TIME TECH Semivolatile Organics 8270C Phenol, Low Level Water 4.3 0.34 4.8 1.00000 ug/L 135947 11/29/04 1216 dok Bis(2-chloroethyl)ether, Low Level Water 1.9 0.29 1,9 1.00000 135947 ug/L 11/29/04 1216 dok 1.3-Dichlorobenzene, Low Level Water 1.9 0.41 1.9 11/29/04 1216 dpk 1.00000 ug/L 135947 1,4-Dichlorobenzene, Low Level Water 1.9 0.32 1.9 1.00000 ug/L 135947 11/29/04 1216 dpk 1,2-Dichlorobenzene, Low Level Water 1.9 0.341.9 1,00000 ug/L 135947 11/29/04 1216 dpk Benzyl alcohol. Low Level Water 8.6 2.1 19 1.00000 ug/L 135947 11/29/04 1216 dok 2-Methylphenol (o-cresol), Low Level Water 1.9 0.25 1.9 1.00000 135947 11/29/04 1216 dpk ug/L 2,2-oxybis (1-chloropropane), Low Level Water 1.9 0.27 1.9 1.00000 ug/L 135947 11/29/04 1216 dpk n-Mitroso-di-n-propylamine, Low Level Water 0.48 0.078 0.48 1.00000 uq/L 135947 11/29/04 1216 dpk Hexachloroethane, Low Level Water 4.8 0.59 4.8 1.00000 135947 11/29/04 1216 dpk ug/L 4-Methylphenol (m/p-cresol), Low Level Water 32 0.096 1.9 1.00000 11/29/04 1216 dpk ug/L 135947 2-Chlorophenol, Low Level Water 4.8 0.124.8 1.00000 ug/L 135947 11/29/04 1216 dok Nitrobenzene, Low Level Water 0.960.15 0.96 1.00000 ug/L 135947 11/29/04 1216 dok Bis(2-chloroethoxy)methane, Low Level Water 1.9 0.30 1.9 1.00000 ug/L 135947 11/29/04 1216 dpk 1,2,4-Trichlorobenzene, Low Level Water 1.9 0.33 11/29/04 1216 dpk 11/29/04 1216 dpk 1.9 1.00000 ug/L 135947 Benzoic acid, Low Level Water 19 2.9 19 1.00000 ug/L 135947 Isophorone, Low Level Water 1.9 U 0.251.9 1.00000 UQ/L 135947 11/29/04 1216 dok 2,4-Dimethylphenol, Low Level Water Ú 9.6 1.2 9.6 (1.00000) ug/L 135947 11/29/04 1216 dpk Hexachlorobutadiene, Low Level Water 4.8 0.62 4.8 1.00000 üg/L 135947 11/29/04 1216 dpk Naphthalene, Low Level Water 0.96 0.15 0.96 1.00000 135947 ug/L 11/29/04 1216 dpk 2.4-Dichlorophenol, Low Level Water 9.6 0.87 9.6 1.00000 ug/L 135947 11/29/04 1216 dok 4-Chloroaniline, Low Level Water 9.6 2.7 9.6 1.00000 ug/L 135947 11/29/04 1216 dipk 2,4,6-Trichlorophenol, Low Level Water 4.8 w 0.20 4.8 1.00000 ug/L 135947 11/29/04 1216 dpk 2,4,5-Trichlorophenol, Low Level Water 9.6 U 1.3 9.6 1.00000 135947 11/29/04 1216 dpk ug/L Hexachlorocyclopentadiene, Low Level Water 19 0.62 19 1.00000 ug/L 135947 11/29/04 1216 dpk 2-Methylnaphthalene. Low Level Water 0.480.12 0.48 1.00000 11/29/04 1216 dok ug/L 135947 2-Nitroaniline, Low Level Water 4.8 0.21 4.8 1.00000 ug/L 135947 11/29/04 1216 dok 2-Chloronaphthalene, Low Level Water 1.9 0.25 1.9 1.00000 ug/L 135947 11/29/04 1216 dok

Page 41

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 12/07/2004

CLISTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: CBLsw-004-SW Date Sampled.....: 11/11/2004 Time Sampled....: 14:15 Sample Matrix.... Water

<u>.: :::::::::::::::::::::::::::::::::::</u>	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL.	RL	DILUTION	UNITS	BATCH	DT DATE/TIME	TEX
	4-Chloro-3-methylphenol, Low Level Water	9.6	Ш	2.3	9,6	1.00000	######################################			384 383
	2,6-Dinitrotoluene, Low Level Water	0.48	اتا	0.11	0.48	1.00000	ug/L	135947	11/29/04 121	16 dp
	2-Nitrophenol, Low Level Water	9.6	υl	0.79	9.6	1.00000	ug/L	135947	11/29/04 121	16 dp
	3-Nitroaniline, Low Level Water	9.6	U	2.0	9.6	1.00000	ug/L	135947	11/29/04 121	16 dpl
	Dimethyl phthalate, Low Level Water	1.9	โบไ	0.20	1.9	1.00000	ug/L	135947	11/29/04 121	i6 dp
	2,4-Dinitrophenol, Low Level Water	19	luí	3.2	19	1.00000	ug/L	135947	11/29/04 121	lő jápk
	Acenaphthylene, Low Level Water	0.96	ΙυΙ	0.12	0.96	1.00000	ug/L	135947	11/29/04 121	16 dok
	2,4-Dinitrotoluene, Low Level Water	0.96	lul	0.12	0.96	1.00000	ug/L	135947	11/29/04 121	ić dok
	Acenaphthene, Low Level Water	0.96	lul	0.12	0.96	1.00000	ug/L	135947	11/29/04 121	6 dpk
	Dibenzofuran, Low Level Water	1.9	U	0.12	1.9	1.00000	ug/L	135947	11/29/04 121	i 6 dpk
	4-Nitrophenol, Low Level Water	19	u	3.6	19	1.00000	ug/L	135947	11/29/04 121	io dek
	Fluorene, Low Level Water	0.96	u	0.12	0.96	1.00000	ug/L	135947	11/29/04 121	ió jobok
	4-Witroamiline, Low Level Water	9.6	U	2.2	9.6	1.00000	ug/L	135947	11/29/04 121	ie opk
	4-Bromophenyl phenyl ether, Low Level Water	4.8	/ul	0.18	4.8	1.00000	ug/L	135947	11/29/04 121	6 dpk
	Hexachlorobenzene, Low Level Water	0.48	U	0.093	0.48	1.00000	ug/L	135947	11/29/04 121/	ió lapk
	Diethyl phthalate, Low Level Water	1.9	-lūl	0.14	1.9	1.00000	ug/L	135947	11/29/04 121	6 dopk
	4-Chlorophenyl phenyl ether, Low Level Water	4.8	lul	0.72	4.8	1.00000	ug/L	135947	11/29/04 121	6 dpk
	Pentachlorophenol, Low Level Water	9.6	U	1.6	9.6	1.00000	ug/L	135947	11/29/04 1210	6 dpk
	n-Witrosodiphenylamine, Low Level Water	0.96	liil i	0.12	0. 9 6	1.00000	ug/L	135947	11/29/04 1216	.6 dpk
	4,6-Dinitro-2-methylphenol, Low Level Water	19	lu l	2.3	19	1.00000	ug/L	135947	11/29/04 1216	6 dok
	Phenanthrene, Low Level Water	0.96	الآا	0.13	0.96	1.00000	Ug/L	135947	11/29/04 121/	6 dok
	Anthracene, Low Level Water	0.96	ũ	0.14	0.96	1.00000	ug/L	135947	11/29/04 1210	6 dpk
	Carbazole, Low Level Water	4.8	u	0.28	4.8	1.00000	ug/L	135947	11/29/04 1216	6 dpk
	Di-n-butyl phthalate, Low Level Water	4.8	U U	0.35	4.8		ug/L	135947	11/29/04 1216	6 dpk
	fluoranthene, Low Level Water	0.96	ŭ	0.13	4.0 0.96	1.00000		135947	11/29/04 1216	.6∣dapk
	Pyrene, Low Level Water	0.96	ŭ	0.12		1.00000	ug/L	135947	11/29/04 1216	6 dpk
	Butyl benzyl phthalate, Low Level Water	1.9	ŭ	0.37	0.96	1.00000	ug/L	135947	11/29/04 1218	6 dpk
	Benzo(a)anthracene, Low Level Water	0.19	บ	0.047	1.9 0.19	1.00000	ug/L	135947	11/29/04 1216	6 dpk
	Chrysene, Low Level Water	0.48	ĭ	0.043		1.00000	ug/L	135947	11/29/04 1216	oidapk
			[]	0.043	0.48	1.00000	ug/L	135947	11/29/04 1216	6 dok

^{*} In Description = Dry Wgt.

Page 42

Job Number: 231912 LASORATORY TEST

Date: 12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAKE TA AGES

ATTM: Eric ELLIS

Customer Sample ID: CBLsw-004-sw Date Sampled.....: 11/11/2004 Time Sampled.....: 14:15 Sample Matrix....: Water

Laboratory Sample 10: 231912-27
Date Received....: 11/12/2004

RESULTS

Time Received.....: 09:15

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	1001	RL	DILUTION	UNITS	SATCH	DT	DATE/TIME		TECH
	3,3-Dichlorobenzidine, Low Level Water Bis(2-ethylhexyl)phthalate, Low Level Water Di-n-octyl phthalate, Low Level Water Benzo(b)fluoranthene, Low Level Water Benzo(k)fluoranthene, Low Level Water Benzo(a)pyrene, Low Level Water Indeno(1,2,3-cd)pyrene, Low Level Water Dibenzo(a,h)anthracene, Low Level Water Benzo(ghī)perylene, Low Level Water	4.8 14 9.6 0.38	ט ב ט ב ט פ ט ט פ	0.69 3.7 2.4 0.064 0.069 0.081 0.083 0.12 0.18	4.8 14 9.6 0.38 0.38 0.38 0.38 0.38	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135947 135947 135947 135947 135947 135947 135947 135947 135947		11/29/04 12 11/29/04 12 11/29/04 12 11/29/04 12 11/29/04 12 11/29/04 12 11/29/04 12 11/29/04 12 11/29/04 12	216 216 216 216 216 216 216	dok dok dok dok dok dok dok

^{*} In Description = Dry Wgt.

Page 43

LABORATORY TEST RESULTS

Job Number: 231912

Date: 11/30/2004

CUSTOMER: MKM Engineers; Inc.: PROJECT: USAGE RVAAP 14 ACCS ATTN: Eric Ellis

Customer Sample ID: CBLsw-004-SW Date Sampled....: 11/11/2004 Time Sampled....: 14:15 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	G F	LAGS	MD1	RL	DIEUTION	UNITS	BATCH	ĐΤ	DATEATIO	Œ.	TECH
8332M	Explosives by 8330 (HPLC) HMX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Nitrobenzene 2,4,6-TNT Tetryl 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-Dinitrotoluene 4-Amino-2,6-Dinitrotoluene 4-Mitrotoluene 3-Nitrotoluene NG/PETN by 8332M (HPLC) Nitroglycerine	0.20 0.20 0.16 0.25 0.78 0.36 0.43 0.36	ט טטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	*	0.068 0.064 0.058 0.055 0.044 0.078 0.16 0.12 0.14 0.12 0.11 0.093 0.10 0.10	0.31 0.20 0.20 0.20 0.16 0.25 0.78 0.36 0.33 0.31 0.31	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L	135676 135676 135676 135676 135676 135676 135676 135676 135676 135676 135676 135676		11/20/04 (11/20/04 (1938 1938 1938 1938 1938 1938 1938 1938	san san san san san san san san san san

^{*} In Description = Dry Wgt.

Page 29

STL CHICAGO

Client Sample ID: CBLsw-004M-SW

Trace Level Organic Compounds

Date Sampled: Prep Date:	11/11/04 14:15 11/16/04	Date Received.:: 11/12/04 Analysis Date.:: 11/17/04	Matrix WATER	
Prep Batch #: Dilution Factor:		Initial Wgt/Vol:	10 mL	Final Wgt/Vol: 10 mL
PARAMETER		RESULT ND	DETECTION LIMIT 20	UNITS METHOD NONE UV/HPLC per

Nitroguanidine

STL CHICAGO

Client Sample ID: CBLsw-004M-SW

General Chemistry

Lot-Sample #...: G4K120333-005 Work Order #...: GWW79 Matrix....: WATER

Date Sampled...: 11/11/04 14:15 Date Received..: 11/12/04

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- PREP ANALYSIS DATE BATCH #
Nitrocellulose		0.50 Lution Fact		MCAWW 353.2 Initial Wgt/Vol: 100	11/20-11/23/04 4325114 mL Final Wgt/Vol: 40 mL

LABORATORY TEST RESULTS

Date:11/19/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTM: Eric ELLIS

Customer Sample ID: B12sw-025-Sw Date Sampled....: 11/05/2004 Time Sampled....: 08:45 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DILUTION	UNITS	BATCH	DΤ	DATE/I	TME	TEC
7041	Antimony (GFAA) Antimony	7.5	U	2.5	7.5	1	ug/L	134574	861.113	11/16/04	2000	<u> </u>
7060A	Arsenic (GFAA) Arsenic	1.7	B	0.51	2.0	1	ug/L	134614		11/15/04		
7421	Lead (GFAA) Lead	3.0	U	0.79	3.0	1	ug/L	134350		11/13/04		
7841	Thallium (GFAA) Thallium	4.0	U	1.3	4.0	1	ug/L	134623		11/16/04		
7470A	Mercury (CVAA) Nercury	0.20	u	0.049	0.20		ug/L	134293				
6010B	Metals Analysis (ICAP Trace) Aluminum	440					n#v r	134293		11/12/04	1421	gok
	Barium Beryllium	440 86 2.0	U	24 1.5 0.17	150 10 2.0	1	ug/L ug/L ug/L	134280 134280 134280		11/13/04 11/13/04 11/13/04	1407	tds
	Cadmium Calcium Chromium	2.0 48000 1.8		0.44 24 1.5	2.0 100 10	1	ug/L ug/L	134280 134280		11/13/04 11/13/04	1407	tds
	Cobalt Copper [ron	5.0 10 3100	B U	1.0 1.6	5.0 10	i]	ug/L ug/L ug/L	134280 134280 134280		11/13/04 11/13/04 11/13/04	1407 1407	tds tds
	Magnesium Manganese	5700 4500		40 12 0.71	120 100 10	1 1 1	ug/L ug/L ug/L	134280 134280 134280		11/13/04 11/13/04 11/13/04	1407 1407	tds tds
	Nickel Potassium	2.4 6500	B .	1.9 110	10 500	1	ug/L ug/L	134280 134280		11/13/04 11/13/04	1407	tds

^{*} In Description = Dry Wgt.

Date: 11/19/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USAGE RVAAP 14 AQCS ATTN: Eric Ellis

Customer Sample ID: B12sw-025-SW Date Sampled....: 11/05/2004 Time Sampled....: 08:45 Sample Metrix....: Water

Laboratory Sample ID: 231757-1
Date Received.....: 11/06/2004
Time Received.....: 11:00

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS MDL RL DILUTION UNITS BATCH DT DATE/TIME Setenium 5.0 15 11/13/04 1407 tds 11/13/04 1407 tds 11/13/04 1407 tds ug/L 134280 Silver 10 3.1 10 ug/L 134280 Sodium 1000 500 1500 134280 ug/L Vanadium 10 2.1 10 134280 ug/L 11/13/04 1407 tds Zinc 30 10 30 ug/L 134280 11/13/04 1407 tds

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS
Job Number: 231757

Date: 12/02/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTM: Eric Ellis

Customer Sample ID: B12sw-025-SW Date Sampled.....: 11/05/2004 Time Sampled.....: 08:45 Sample Matrix....: Water Laboratory Sample ID: 231757-1 Date Received.....: 11/06/2004

Time Received.....: 11:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESIDET	G FLAGS	MOL	RL.	OTEUTION	UNITS	BATCH	DT	DATE/T	
8081A	Organochlorine Pesticide Analysis alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Methoxychlor alpha-Chlordane gamma-Chlordane Endrin aldehyde Endrin ketone Toxaphene	0.099 0.099 0.15 0.15 0.15 0.099 0.15 0.099 0.099 0.099 0.15 0.11 0.15 0.15 0.15 0.15 0.15 0.15		0.047 0.028 0.025 0.042 0.041 0.028 0.036 0.021 0.018 0.023 0.017 0.042 0.036 0.044 0.049 0.17 0.016 0.017 0.035 0.017	0.15 0.099 0.099 0.15 0.15 0.099 0.15 0.099 0.099 0.099 0.15 0.11 0.15 0.59 0.050 0.099 0.15 0.50	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135869 135869 135869 135869 135869 135869 135869 135869 135869 135869 135869 135869 135869 135869 135869 135869	1	11/10/04 11/10/04 11/10/04 11/10/04 11/10/04 11/10/04 11/10/04 11/10/04 11/10/04 11/10/04 11/10/04 11/10/04 11/10/04 11/10/04 11/10/04 11/10/04 11/10/04	0404 0404 0404 0404 0404 0404 0404 040

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 231757

Date:12/01/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USAGE RYRAP 14 ACCS ATTW: Enic Ellis

Customer Sample ID: B12sw-025-SW Date Sampled....: 11/05/2004 Time Sampled....: 08:45 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MD1	RL	DILUTION	UNITS	BATCH	m	DATE/TIME	TECH.
8082	PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260	1.3	22222	0.18 0.42 0.35 0.43 0.48 0.35 0.17	0.59 1.3 1.3 1.3 1.5 1.5 1.3 0.59	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135625 135625 135625 135625 135625 135625 135625		11/10/04 1157 11/10/04 1157 11/10/04 1157 11/10/04 1157 11/10/04 1157 11/10/04 1157 11/10/04 1157	bjt bjt bjt bjt bjt bjt
								,			And the second s

^{*} In Description = Dry Wgt.

Page 2

LABORATORY TEST RESULTS

Date: 11/18/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Elile

Customer Sample ID: B12sw-025-SW Date Sampled.....: 11/05/2004 Time Sampled....: 08:45 Sample Matrix....: Water

Laboratory Sample ID: 231757-1 Date Received.....: 11/06/2004

Time Received.....: 11:00

82608 Volatile O Chlorometha Vinyl chlor Bromomethai 1,1-Dichlor Carbon dist Acetone Methylene o trans-1,2-[1,1-Dichlor cis-1,2-Dic 2-Butanone Bromochloro Chloroform 1,1,1-Trick Carbon tert Benzene 1,2-Dichlor Irichloroet 1,2-Dichlor Bromodichlo cis-1,3-Dic 4-Methyl-2- Toluene	hane oride ane ane oroethene sulfide	1.0 1.0 1.0 1.0 1.0	U U	0.080 0.080 0.10	1.0 1.0 1.0	1.00000 1.00000	ug/L ug/L	134097	1832	0AJE/TI 1/12/04	
Vinyl chlor Bromomethal Chloroethal 1,1-Dichlor Carbon dist Acetone Methylene of trans-1,2-Dichlor cis-1,2-Dichlor Chloroform 1,1,1-Trich Carbon tetr Benzene 1,2-Dichlor Trichloroet 1,2-Dichlor Bromodichlor cis-1,3-Dichlor Ch-Methyl-2-	oride ane ane oroethene sulfide	1.0 1.0 1.0 1.0	U	0.080 0.10	1.0				1	1/12/04	n251 .
Bromomethan Chloroethan 1,1-Dichlor Carbon dish Acetone Methylene of trans-1,2-Dichlor cis-1,2-Dichlor 2-Butanone Bromochloro Chloroform 1,1,1-Trich Carbon tetr Benzene 1,2-Dichlor Trichloroet 1,2-Dichlor Bromodichlor cis-1,3-Dichlor d-Methyl-2-	ane ane oroethene sulfide	1.0 1.0 1.0 1.0	U	0.080 0.10	1.0				1 1	1717/10	
Chloroethai 1,1-Dichlor Carbon dist Acetone Methylene of trans-1,2-Dichlor cis-1,2-Dichlor 2-Butanone Bromochloro Chloroform 1,1,1-Trich Carbon tetr Benzene 1,2-Dichlor Trichloroet 1,2-Dichlor Bromodichlor cis-1,3-Dichlor 64-Methyl-2-	ane proethene sulfide	1.0 1.0	u	0.10		1.000000		1171007			
1,1-Dichlor Carbon dist Acetone Methylene de trans-1,2-Dichlor Cis-1,2-Dichlor C-Butanone Bromochlore Chlorofore 1,1,1-Trick Carbon tetr Benzene 1,2-Dichlor Trickloroet 1,2-Dichlor Bromodichlor Cis-1,3-Dichlor Cis-1,3-Dich	orcethene sulfide	1.0			1 - 14	1.00000	ug/L ug/L	134097 134097		1/12/04 :	
Carbon distance Acetone Methylene of trans-1,2-Dichlor cis-1,2-Dichlor Chloroform 1,1,1-Trick Carbon tetr Benzene 1,2-Dichlor Trickloroet 1,2-Dichlor Bromodichlor cis-1,3-Dichlor 4-Methyl-2-	sul fide			0.080	1.0	1.00000	ug/L	134097		1/12/04 1/12/04	0251
Acetone Methylene of trans-1,2-I 1,1-Dichlor cis-1,2-Dic 2-Butanone Bromochloro (Chloroform 1,1,1-Trick Carbon tetr Benzene 1,2-Dichlor Irichloroet 1,2-Dichlor Bromodichlo cis-1,3-Dic 4-Methyl-2-			u	0.12	1.0	1.00000	ug/L	134097	1	1/12/04	025111
Methylene of trans-1,2-0 1,1-Dichlor cis-1,2-Dic 2-Butanone Bromochloro Chloroform 1,1,1-Trich Carbon tetr Benzene 1,2-Dichlor Trichloroet 1,2-Dichlor Bromodichlo cis-1,3-Dic 4-Methyl-2-		5.0	ļu	0.20	5.0	1.00000	ug/L	134097		1/12/04	0251
trans-1,2-0 1,1-Dichlor cis-1,2-Dic 2-Butanone Bromochloro Chloroform 1,1,1-Trich Carbon tetr Benzene 1,2-Dichlor Trichloroet 1,2-Dichlor Bromodichlo cis-1,3-Dic 4-Methyl-2-		7.2	t	1.8	10	1.00000	ug/L	134097	- 14.	1/12/04	0251 3
1,1-Dichlor cis-1,2-Dic 2-Butanone Bromochloro Chloroform 1,1,5-Trich Carbon tetr Benzene 1,2-Dichlor Trichloroet 1,2-Dichlor Bromodichlo cis-1,3-Dic		1.5		0.35	1.5	1.00000	ug/L	134097		1/12/04	0251
cis-1,2-Dic 2-Butanone Bromochlors Chloroform 1,1,1-Trick Carbon tetr Benzene 1,2-Dichlor Trichloroet 1,2-Dichlor Bromodichlo cis-1,3-Dic 4-Methyl-2-		1.0	[U]	0.14	1.0	1.00000	ug/L	134097	j.	1/12/04	D251
2-Butanone Bromochlors Chloroform 1,1,1-Trick Carbon tetr Benzene 1,2-Dichlor Trichloroet 1,2-Dichlor Bromodichlo cis-1,3-Dic 4-Methyl-2-		1.0	U	0.11	1.0	1.00000	ug/L	134097	j·	1/12/04	0251
Bromochlord Chloroform 1,1,1-Trich Carbon tetr Benzene 1,2-Dichlor Trichloroet 1,2-Dichlor Bromodichlo cis-1,3-Dic 4-Methyl-2-		1.0	U	0.090	1.0	1.00000	ug/L	134097	j.	1/12/04	0251
Chloroform 1,1,1-Trich Carbon tetr Benzene 1,2-Dichlor Trichloroet 1,2-Dichlor Bromodichlo cis-1,3-Dic	# (MEK)	10	u	1.2	10	1.00000	ug/L	134097	1	1/12/04	025117
1,1,1-Trick Carbon tetr Benzene 1,2-Dichlor Trichloroet 1,2-Dichlor Bromodichlo cis-1,3-Dic 4-Methyl-2-		1.0	U	0.10	1.0	1.00000	ug/L	134097	1	1/12/04	0251
Carbon tetr Benzene 1,2-Dichlor Trichloroet 1,2-Dichlor Bromodichlo cis-1,3-Dic 4-Methyl-2-		1.0	u	0.11	1.0	1.00000	ug/L	134097		1/12/04 (
Benzene 1,2-Dichlor Trichloroet 1,2-Dichlor Bromodichlo cis-1,3-Dic 4-Methyl-2-		1.0	U	0.080	1.0	1.00000	ug/L	134097	li:	1/12/04	0251
1,2-Dichlor Trichloroet 1,2-Dichlor Bromodichlo cis-1,3-Dic 4-Methyl-2-	:rachtoride	1.0	เก	0.13	1.0	1.00000	ug/L	134097		1/12/04 (0251
Trichloroet 1,2-Dichlor Bromodichlo cis-1,3-Dic 4-Methyl-2-	h	1.0	U	0.090	1.0	1.00000	ug/L	134097	1	1/12/04 (0251 i
1,2-Dichlor Bromodfahlo cis-1,3-Dic 4-Methyl-2-	iroethane	1.0	U	0.090	1.0	1.00000	ug/L	134097	11	1/12/04 (0251
Bromodichlo cis-1,3-Dic 4-Methyl-2-		1.0	u U	0.10	1.0	1.00000	ug/L	134097		1/12/04 (
cis-1,3-Dic 4-Methyl-2-	ropropane	1.0	U	0.12	1.0	1.00000	ug/L	134097	111	1/12/04 (025 i i
4-Methyl-2-	.oromethane	1.0	. ŭ U	0.11	1.0	1.00000	ug/L	134097	111	1/12/04	3251 î
Toluene	cni oropropene	1.0		0.12	1.0	1.00000	ug/L	134097	111	1/12/04 (025 i i
Hotuene	-pentanone (MIBK)	10	[0]	0.65	10	1.00000	ug/L	134097	11	1/12/04 (325 1 i
4 7 5	B.A. S. C	1.0		0.10	1.0	1.00000	ug/L	134097	111	1/12/04 (0251 i
trans-1,3-0	DichLoropropene	1.0	ע	0.15	1.0	1.00000	ug/L	134097	111	1/12/04 0	0251
1,1,2-1110	hloroethane	1.0	u	0.15	1.0	1.00000	ug/L	134097		1/12/04 0	
Tetrachloro		1.0	u	0.090	1.0	1.00000	ug/L	134097		1/12/04 0	
2-Hexanone		10	u	0.53	10	1.00000		134097	111	/12/04 0	J251 i

^{*} In Description = Dry Wgt.

Page 2

Job Number: 231757

LABORATORY TEST RESULTS

Date: 11/18/2004

CLISTOMER: MKM Engineers, Inc. PROJECT: USAGE RVAMP 14 ACCS AITH: Effc Ellis

Customer Sample 10: B12sw-025-Sw Date Sampled....: 11/05/2004 Time Sampled.....: 08:45 Sample Matrix....: Water

Laboratory Sample ID: 231757-1 Date Received....: 11/06/2004

Time Received....: 11:00

TEST METHOD	PARAMETERZTEST DESCRIPTION	SAMPLE RESULT	O FLAGS	901	RL	DILUTION	UNITS	BATCH	DT DATE/TIME	TE
	Dibromochloromethane 1,2-Dibromoethane (EDB) Chlorobenzene Ethylbenzene m&p-Xylenes c-Xylenes Styrene Bromoform 1,1,2,2-Tetrachloroethane 1,2-Dichloroethene (total) Xylenes (total)	1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0	ממממממממ	0.060 0.13 0.080 0.070 0.18 0.080 0.13 0.11 0.090 0.23 0.28	1.0 1.0 1.0 2.0 f.0 1.0 1.0 1.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134097 134097 134097 134097 134097 134097 134097 134097 134097	11/12/04 0251 11/12/04 0251 11/12/04 0251 11/12/04 0251 11/12/04 0251 11/12/04 0251 11/12/04 0251 11/12/04 0251 11/12/04 0251 11/12/04 0251	

^{*} In Description = Dry Wgt.

Page 3

LABORATORY TEST RESULTS Job Number: 231757

Date: 11/30/2004

CLISTONER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: B12sw-025-SW Date Sampled.....: 11/05/2004 Time Sampled....: 08:45 Sample Matrix....: Water

TEST WETHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q	FLAGS	MOL	R L.	DILUTION	UNITS	BATCH	l _{or}	DATEXII	ie (ii)	TECH
8270c	Semivolatile Organics Phenol, Low Level Water Bis(2-chloroethyl)ether, Low Level Water 1,3-Dichlorobenzene, Low Level Water 1,4-Dichlorobenzene, Low Level Water 1,2-Dichlorobenzene, Low Level Water 2-Methylphenol (o-cresol), Low Level Water 2,2-oxybis (1-chloropropane), Low Level Water n-Nitroso-di-n-propylamine, Low Level Water Hexachloroethane, Low Level Water 4-Methylphenol (m/p-cresol), Low Level Water 2-Chlorophenol, Low Level Water Witrobenzene, Low Level Water Bis(2-chloroethoxy)methane, Low Level Water 1,2,4-Trichlorobenzene, Low Level Water 1,2,4-Trichlorobenzene, Low Level Water Isophorone, Low Level Water 2,4-Dimethylphenol, Low Level Water Maphthalene, Low Level Water 2,4-Oichlorophenol, Low Level Water 2,4-Oichlorophenol, Low Level Water 2,4-G-Trichlorophenol, Low Level Water 2,4,6-Trichlorophenol, Low Level Water 2,4,6-Trichlorophenol, Low Level Water 2,4,5-Trichlorophenol, Low Level Water 2,4,5-Trichlorophenol, Low Level Water 2-Methylnaphthalene, Low Level Water 2-Mitroaniline, Low Level Water 2-Mitroaniline, Low Level Water 2-Mitroaniline, Low Level Water 2-Chloronaphthalene, Low Level Water	7.7 2.0 2.0 2.0 8.5 1.8 2.0 0.50 5.0 1.0 2.0 79 2.0 10 5.0 10 10 5.0 10 20 6.50	ככנים שנים בפפי בפפי בפפי בפפי	a a * H	0.35 0.35 0.33 0.35 2.2 0.26 0.28 0.081 0.61 0.10 0.12 0.16 0.31 0.34 3.0 0.26 1.3 0.64 0.16 0.91 2.8 0.21 1.4 0.65 0.13	5.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	1.00000 1.00000	Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L	135729 135729		11/26/04 11/26/04	1733 17	
	* In Description = Dry Wat.		Dago									<u> </u>	

In Description = Dry Wgt.

Page 2

Job Number: 231757 LABORATORY TEST RESULTS

Date:11/30/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RYAMP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: B12sw-025-Sw Date Sampled....: 11/05/2004 Time Sampled....: 08:45 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	OFLAGS	MOL.	RL:	DILUTION	UNITS	BATCH	DT	DATE/	TTM# i	TEC
4-Chlore	-3-methylphenol, Low Level Water	10	U	2.4	10	1.00000			100		3035- 4	31011
2,0-DIN:	trotoluene, Low Level Water	0.50	lu	0.11	0.50	1.00000	ug/L ug/L	135729 135729	! [11/26/04	4 1733	gir
Z-MIEFOP	henol, Low Level Water	10	U	0.82	10	1.00000	ug/L	135729		11/26/04	1/33	gli
Dimathul	niline, Low Level Water	10	u	2.1	10	11.00000	ug/L	135729	l i.	11/26/04 11/26/04	1/35	gLI
2 A-Dini	phthalate, Low Level Water	2.0	u	0.21	2.0	1.00000	ug/L	135729		11/26/04 11/26/04	* 1133: 1727	gr.
Acenacht	trophenol, Low Level Water hylene, Low Level Water	20	บ บ	3.3	20	1.00000	ug/L	135729	1	11/26/04 11/26/04	1727	91
2 4-Dini	trotoluene, Low Level Water	1.0	U	0.12	1.0	1.00000	ug/L	135729	ļ ļ.	11/26/04	1777	91
Aceranht	hene, Low Level Water	1,0	บ	0.13	1.0	1.00000	ug/L	135729	().	11/26/04	1733	y ()
Dibenzof	uran, Low Level Water	1.0	ַ װ װ	0,12	1.0	1.00000	ug/L	135729	1.	11/26/04	1733	gt.
4-Nitror	henol, Low Level Water	2.0	أيا	0.13	2.0	1.00000	ug/L	135729	-	11/26/04	1733	or l
Fluorene	, Low Level Water	20	u u	3.7	20	1.00000	ug/L	135729	!	11/26/04	1733	a l
4-Nitroa	niline, Low Level Water	1.0	U	0.13	1.0	1.00000	ug/L	135729		1/26/04	1733	ai
4-Bromop	henyl phenyl ether, Low Level Water	5.0	ا ال	2.3	10	1.00000	ug/L	135729	1	11/26/04	1733	al.
Hexach to	robenzene, Low Level Water	0.50	U U	0.19	5.0	1.00000	ug/L	135729	(1	1/26/04	1733	άĹ
Diethy£	phthalate, Low Level Water	2.0	lu!	0.097 0.15	0.50	1.00000	ug/L	135729	1	11/26/04	· 1733	g١
4-Chloro	phenyl phenyl ether. Low Level Water	5.0	اتا	0.75	2.0	1.00000	ug/L	135729	1	11/26/04	1733	g l
Pentachi	orophenol, Low Level Water	10	lŭl l	1.7	5.0	1.00000	ug/L	135729	1	1/26/04	· 1733 -	gli
n-Nitros	odiphenylamine, Low Level Water	1.0	ใช้ไ	0.13	10	1.00000	ug/L	135729	1	1/26/04	· 1733	gl
4,6-Dini	tro-2-methylphenol, Low Level Water	20	ا انا	2.4	20	1.00000	ug/L	135729	[[1	1/26/04	، 1733	gl
Phenanth	rene, Low Level Water	1.0	اتا	0.14	1.0	1.00000	ug/L	135729]	1/26/04	ر 1733 إ	gļ
Anthrace	ne, Low Level Water	1.0	lui l	0.15	1.0	1.00000	ug/L	135729	1	1/26/04	1733	glı
Carbazol	e, Low Level Water	5_0	U	0.29	5.0	1.00000	ug/L	135729]]	1/26/04	1733	gli
Di-n-but	vi phthalate, Low Level Water	5.0	U	0.36	5.0	1.00000	ug/L ug/L	135729 135729 i	1	1/26/04	1733	j٤
Fluoranti	iene, Low Level Water	1.0	U	D.14	1.0	1.00000		135729	11	1/26/04	1733	g[
Pyrene,	ow Level Water	1.0	U U	0.12	1.0	1.00000	ug/L	135729		1/26/04	1/3316) L
Butyl Bei	nzyl phthalate, Low Level Water	2.0	u¦	0.39	2.0	1.00000		135729	'	1/26/04	1777] [] - []
Christian Christian	anthracene, Low Level Water	0.20	U	0.049	0.20	1.00000		135729	;	1/26/04 1/26/04	1733	∦ L I 1 :
Chrysene	, Low Level Water	0.50	1n	0.045	0.50	1.00000	ug/L	135729	'	1/26/04	1733 6	ایل سام
						ļ			i'	1) 20/04	1133	jil

^{*} In Description = Dry Wgt.

Page 3

Job Number: 231757 LABORATORY TEST RESULTS

Date:11/30/2004

CLISTOMER: MKW Englosers, Inc.

PROJECT: USACE RVAAP 14 ADES

ATTN: Eric Etits

Customer Sample ID: B12sw-025-sw Date Sampled....: 11/05/2004 Time Sampled....: 08:45 Sample Matrix...: Water

Laboratory Sample ID: 231757-1
Date Received.....: 11/06/2004
Time Received.....: 11:00

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT OFFLAGS PIDE RL DILUTION UNITS BATCH DT DATE/TIME TECH 3.3-Dichlorobenzidine, Low Level Water 5.0 0.725.0 1.00000 Bis(Z-ethylhexyl)phthalate, Low Level Water ug/L 135729 11/26/04 1733 glr 15 3.9 15 1.00000 ug/L 135729 11/26/04 1733 gtr Di-n-octyl phthalate, Low Level Water 10 2.5 10 1.00000 ug/L 135729 Benzo(b)fluoranthene, Low Level Water 11/26/04 1733 gtr 0.40 0.067 0.40 1.00000 ug/L Benzo(k)fluoranthene, Low Level Water 135729 11/26/04 1733 gtr 0.40 0.072 0.40 1.00000 Benzo(a)pyrene, Low Level Water ug/L 135729 11/26/04 1733 gtr 0.40 0.084 0.40 1.00000 ug/L 135729 Indeno(1,2,3-cd)pyrene, Low Level Water 11/26/04 1733 gir 0.40 0.0860.40 1.00000 ug/L Dibenzo(a,h)anthracene, Low Level Water 135729 11/26/04 1733 glr 0.40 0.13 0.401.00000 Benzo(ghi)perylene, Low Level Water ug/L 135729 11/26/04 1733 gtr 1.0 0.19 1.0 1.00000 ug/L 11/26/04 1733 gtr 135729

Page 4

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS Job Number: 231757

Date:11/19/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTW: Eric Etlis

Customer Sample ID: B12sw-025-SW Date Sampled....: 11/05/2004 Time Sampled....: 08:45

Laboratory Sample ID: 231757-1 Date Received..... 11/06/2004 Time Received.....: 11:00

Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLA	S 1901.	RL	DILUTION	UNITS	BATCH	BT	DATE/TIME	TECH
8332M	Explosives by 8330 (HPLC) HMX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Nitrobenzene 2,4,6-TNT Tetryl 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-Dinitrotoluene 4-Amino-2,6-Dinitrotoluene 3-Nitrotoluene 4-Nitrotoluene NG/PETN by 8332M (NPLC) Nitroglycerine	29 42 0.45 0.45 0.36 0.56 1.8 0.81 0.97 0.81 0.74 0.70 0.70	י דתמתהחחחח e	1.5 1.4 0.13 0.12 0.099 0.18 0.37 0.27 0.32 0.27 0.25 0.21 0.22 0.23	7.0 4.5 0.45 0.36 0.56 1.8 0.81 0.97 0.81 0.74 0.70 0.70	10.0000 10.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		D1	11/14/04 2300 11/14/04 2300 11/13/04 1842 11/13/04 1842	san san san san san san san san san san

^{*} In Description = Dry Wgt.

Page 2

STL CHICAGO

Client Sample ID: B12sw-025-SW

Trace Level Organic Compounds

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #: Dilution Factor:	11/05/04 08:45 11/08/04 4313492	Work Order #: Date Received: Analysis Date: Initial Wgt/Vol:	11/06/04 11/11/04	Matrix: WATER Final Wgt/Vol.: 10 mL
PARAMETER Nitroquanidine	-	RESULT ND	DETECTION LIMIT 20	UNITS METHOD UG/L NONE UV/HPLC per

Nitroguanidine

STL CHICAGO

Client Sample ID: B12sw-025-SW

General Chemistry

Lot-Sample #...: G4K060194-001 Work Order #...: GWE97 Matrix.....: WATER

Date Sampled...: 11/05/04 Date Received..: 11/06/04

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Nitrocellulose
 ND
 0.50
 mg/L
 MCAWW 353.2
 11/11-11/13/04
 4316571

MDL..... 0.12

Date: 11/19/2004

CLISTOMER: MAIM Eriglicheers, Inc. PROJECT: USAGE RVAAP: 14 AGES ATTMS Enfor Ellife

Customer Sample ID: B12sw-D25-DUP Date Sampled....: 11/05/2004 Time Sampled....: 08:45 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	PDL	RL.	DILUTION	LNITS	BATCH	D7	DATE/T	IME	TEC
7041	Antimony (GFAA) Antimony	7.5	U	2.5	7.5	1	ug/L	134574	1850	11/16/04	<u>::::088</u>	W. 17.
7060A	Arsenic (GFAA) Arsenic	3.0		0.51	2.0	1	ug/L	134614		11/15/04		
7421	Lead (GFAA) Lead	1.2	B	0.79	3.0	1	ug/L	134350		11/13/04	0312	2 daj
7841	Thallium (GFAA) Thallium	1.5	B	1.3	4.0	1	ug/L	134456		11/16/04	0154	daj
7470A	Mercury (CVAA) Mercury	0.20	u	0.049	0.20	1	ug/L	134293		11/12/04	1430	gok
	Metals Analysis (ICAP Trace) Aluminum Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Nagnesium Nanganese Nickel Potassium	1600 91 2.0 2.0 49000 2.8 5.0 10 3900 5900 4500 2.9 6700	U U U B	24 1.5 0.17 0.44 24 1.5 1.0 1.6 40 12 0.71 1.9	150 2.0 2.0 2.0 100 10 5.0 10 120 100 100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134280 134280 134280 134280 134280 134280 134280 134280 134280 134280 134280 134280		11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04	1440 1440 1440 1440 1440 1440 1440 1440	tds tds tds tds tds tds tds tds tds

^{*} In Description = Dry Wgt.

Page 4

LABORATORY TEST RESULTS

Date: 11/19/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ettis

Customer Sample ID: B12sw-025-DUP Date Sampled.....: 11/05/2004 Time Sampled.....: 08:45

Laboratory Sample ID: 231757-2 Date Received.....: 11/06/2004

Inme Sampled....: 08:45 Sample Matrix...: Water Time Received.....: 11:00

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT G FLAGS MDL DILUTION UNITS BATCH DT DATE/TIME TECH Selenium 15 5.0 15 134280 ug/L 11/13/04 1440 tds Silver 10 3.1 10 11/13/04 1440 tds ug/L 134280 Sodium 1200 500 1500 ug/L 134280 11/13/04 1440 tds 11/13/04 1440 tds Vanadium 2.8 2.1 10 ug/L 134280 Zinc 12 10 30 134280 ug/L 11/13/04 1440 tds

Page 5

^{*} In Description = Dry Wgt.

ATTN: Eric Ellis

STL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS Job Number: 231757 Date: 12/02/2004

PROJECT: USACE RVAAP 14 ACCS

CUSTOMER: MKM Engineers, Inc.

Customer Sample ID: B12sw-025-DUP Date Sampled.....: 11/05/2004

Time Sampled....: 08:45 Sample Natrix....: Water Laboratory Sample ID: 231757-2 Date Received.....: 11/06/2004 Time Received.....: 11:00

TEST METHOD SAMPLE RESULT PARAMETER/TEST DESCRIPTION Q FLAGS DILUTION MDL RL. UNITS BATCH DT DATE/TIME TECH 8081A Organochlorine Pesticide Analysis alpha-BHC 11/10/04 0519 kdl 11/10/04 0519 kdl 11/10/04 0519 kdl 0.15 0.046 0.15 1.00000 135869 ug/L beta-9HC 0.098 0.027 0.098 1.00000 ug/L 135869 del ta-BHC 0.098 0.025 0.098 1.00000 ug/L 135869 gamma-BHC (Lindane) 0.15 0.041 0.15 1.00000 ug/L 135869 11/10/04 0519 kdt Heptachlor 0.15 0.040 0.15 1.00000 11/10/04 0519 kdl ug/L 135869 Aldrin 0.098 0.027 11/10/04 0519 kdl 0.0981.00000 135869 ug/L Heptachlor epoxide 0.15 0.035 0.15 1.00000 135869 11/10/04 0519 kdt ug/L Endosulfan 1 0.098 0.021 0.098 1.00000 ug/L 135869 11/10/04 0519 kdl Dieldrin 0.098 U 0.018 0.0981.00000 135869 11/10/04 0519 kdt ug/L 4,41-DDE 0.098 0.023 0.098 1.00000 11/10/04 0519 kdt ug/L 135869 11/10/04 0519 kdl 11/10/04 0519 kdl Endrin 0.098 lul 0.017 0.0981.00000 ug/L 135869 Endosulfan II 0.15 0.041 0.15 1.00000 ug/L 135869 4,41-DDD 0.11 0.035 11/10/04 0519 kdl 0.11 1.00000 ug/L 135869 Endosulfan sulfate 0.15 0.043 0.15 1.00000 ug/L 135869 11/10/04 0519 kdl 4,4'-DDT 0.15 0.048 0.15 1.00000 11/10/04 0519 kdl 135869 ug/L Methoxychlor 0.59 0.17 1.00000 0.59 ug/L 135869 11/10/04 0519 kdl alpha-Chlordane 0.049 0.016 0.049 1.00000 ug/L 135869 11/10/04 0519 kdl gamma-Chilordane 0.098 0.017 0.098 11/10/04 0519 kdl 1.00000 135869 ug/L Endrin aldehyde 11/10/04 0519 kdt 11/10/04 0519 kdt 0.15 0.034 0.15 1.00000 135869 ug/L Endrin ketone 0.098 0.028 0.098 1.00000 ug/L 135869 Toxaphene 0.49 0.14 0.49 1.00000 ug/L 135869 11/10/04 0519 kdL

Page 3

^{*} In Description = Dry Wgt.

STL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS
Job Number: 231757
Date:12/01/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAP 14 ACCS ATTHE Enic Ellis

Customer Sample ID: 812sw-025-DUP Date Sampled.....: 11/05/2004 Fime Sampled.....: 08:45 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	lo L	RL	CILLUTION	UNITS	BATCH	DT	DATE/TIME	1 000	TECH
	PCB Analysis Aroctor 1016 Aroctor 1221 Aroctor 1232 Aroctor 1242 Aroctor 1248 Aroctor 1254 Aroctor 1260	0.59 1.3 1.3 1.3 1.5 1.5 0.59	0 0 0 0	0.18 0.41 0.34 0.42 0.47 0.34 0.17	1.3	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L	135625 135625 135625 135625 135625 135625 135625		11/10/04 13 11/10/04 13 11/10/04 13 11/10/04 13 11/10/04 13 11/10/04 13	343 k 343 k 343 k 343 k 343 k	bjt bjt bjt bjt bjt
			in the second se									

^{*} In Description = Dry Wgt.

Page 3

LABORATORY TEST RESULTS

Date:11/18/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USAGE RVAAP 14 ADES

ATTR: Eric Ellis

Customer Sample ID: B12sw-025-pup Date Sampled.....: 11/05/2004 Yime Sampled.....: 08:45 Sample Matrix....: Water

ST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O FLAGS	901.	R L	DILUTION		BATCH	Dτ	DATE/T	1ME
3260B	Volatile Organics					100000000000000000000000000000000000000		200000000000000000000000000000000000000		######################################	3333
	Chloromethane	1.0	ll	0.080	1.0					l	
	Vinyl chloride	1.0	ŭ	0.080	1.0	1.00000	ug/L	134097	1 1	11/12/04	0401
	Bromomethane	1.0	ŭ	0.10	1.0	1.00000	ug/L	134097		11/12/04	040
	Chloroethane	1.0	ŭ	0.080	1.0	1.00000	ug/L	134097		11/12/04	040
	1,1-Dichloroethene	1.0	ŭ	0.12	1.0	1.00000	ug/L	134097	ı [11/12/04	040
	Carbon disulfide	5.0	lŭ l	0.20	5.0	1.00000	Ug/L	134097	1	11/12/04	040
	Acetone	6.6	j l	1.8	10	1.00000	ug/L	134097	1 1	11/12/04	040
	Methylene chloride	1.5	li l	0.35	1.5	1.00000	ug/L	134097	. 1	11/12/04	040
	trans-1,2-Dichloroethene	1.0	U	0.14	1.0	1.00000 1.00000	ug/L	134097	il	11/12/04	040
	1,1-Dichloroethane		lŭ l	0.11	1.0	1.00000	ug/L	134097		11/12/04	040
	cis-1,2-Dichloroethene	1.0	lŭ l	0.090	1.0	1.00000	ug/L	134097	. 1	11/12/04	040
	2-Butanone (MEK)	10	ii l	1.2	10		ug/L	134097	. !	11/12/04	040
	Bromochloromethane	1,0	טע פ פ פ פ פ פ פ פ	0.10	1.0	1.00000	Ug/L	134097	. [11/12/04	040
	Chloroform	1.0	ŭ	0.11	1.0	1.00000	ug/L	134097		11/12/04	040
	1,1,1-Trichtoroethane	1.0	ii l	0.080	1.0	1.00000	ug/L	134097		11/12/04	0400
	Carbon tetrachloride	1.0	ii l	0.13	1.0	1.00000	ug/L	134097		11/12/04	040
	Benzene	1.0	ŭ i	0.090	1.0	1.00000	ug/L	134097	.	11/12/04	0400
	1,2-Dichloroethane	1,0	ii l	0.090	1.0	1.00000	ug/L	134097]	11/12/04	0400
	Trichloroethene	1.0	ă l	0.10	1.0		ug/L	134097	l'	11/12/04	0400
	1,2-Dichloropropane	1.0	ĭ,	0.12	1.0	1.00000	ug/L	134097	- 1	11/12/04	0400
	Bromodichloromethane	1.0	ĭi l	0.11	1.0	1.00000 1.00000	ug/L	134097	- [11/12/04	0400
	cis-1,3-Dichtoropropene	1.0	ũ l	0.12	1.0	1.00000		134097	- 1	11/12/04	0400
	4-Methyl-2-pentanone (MISK)	10	ŭl l	0.65	10	1.00000		134097]	11/12/04	0400
	Toluene	1.3	"	0.10	1.6		ug/L	134097	- 1	11/12/04	0400
	trans-1,3-Dichloropropene	1.0	ال	0.15	1.0	1.00000	ug/L	134097		11/12/04	0400
	1,1,2-Trichloroethane		ŭ	0.15		1.00000	ug/L	134097	- 1	11/12/04	0400
	Tetrachloroethene		ŭ	0.090		1.00000		134097	ľ	11/12/04	0400
	2-Hexanone		ŭ	0.53	10			134097	f.	11/12/04	0400
			~1 l	0.55	10	1.00000	ug/L	134097	1	11/12/04	0400

^{*} In Description = Dry Wgt.

Page 4

STL Chicago is part of Severn Trent Laboratories, Inc.

Job Number: 231757

Date: 11/18/2004

CUSTONER: MON Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ettis

Customer Sample ID: 912sW-025-DUP Date Sampled.....: 11/05/2004 Time Sampled.....: 08:45 Sample Matrix....: Water

Laboratory Sample ID: 231757-2 Date Received.....: 11/06/2004 Time Received.....: 11:00

TEST NETHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS **POL** DILUTION LULIS BATCH DT DATE/TIME Dibromochloromethane 1.0 0.060 1.0 1.00000 ug/L 134097 11/12/04 0400 idn 1,2-Dibromoethane (EDB) 1.0 0.13 11/12/04 0400 jdn 11/12/04 0400 jdn 1.0 1.00000 ug/L 134097 Chlorobenzene 1.0 0.0801.0 1.00000 ug/L 134097 Ethylbenzene 1.0 0.070 1.0 1.00000 ug/L 134097 11/12/04 0400 jdn m&p-Xylenes 2.0 0.18 2.0 1.00000 ug/L 134097 11/12/04 0400 jdn o-Xylene 1.0 0.0801.0 1.00000 ug/L 134097 11/12/04 0400 Jdn Styrene 1.0 0.13 1.0 1.00000 ug/L 134097 11/12/04 0400 jdn Bromoform 1.0 0.11 1.0 1.00000 ug/L 134097 11/12/04 0400 Jan 1,1,2,2-Tetrachloroethane 1.0 0.090 1.0 1.00000 ug/L 134097 11/12/04 0400 dn 1,2-Dichloroethene (total) 1.0 0.23 1.00000 1.0 11/12/04 0400 jdn ug/L 134097 Xylenes (total) 1.0 0.281.0 1.00000 ug/L 134097 11/12/04 0400 jdn

Page 5

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 11/30/2004

DUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP TA AOCS

ATTN: Eric Ellis

Customer Sample ID: B12sw-025-DUP Date Sampled.....: 11/05/2004 Time Sampled.....: 08:45 Sample Matrix....: Water

Laboratory Sample ID: 231757-2
Date Received.....: 11/06/2004

Time Received.....: 11:00

ST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FL	AGS	MDL		DILUTION	UNITS	BATCH	рτ	DATE/T	IME
8270c	Semivolatile Organics				3338.11 1 141.11.13.1	211, 11, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23	#T03H81:000	<u> </u>		127	<u> 2011) (000)</u>	
	Phenol, Low Level Water	10	<i>i</i>	اً	0.35	5.0	1.00000					
	Bis(2-chloroethyl)ether, Low Level Water	2.0	u		0.30	2.0	1.00000	ug/L	135729		11/26/04	1759
	11,3-Dichlorobenzene, Low Level Water	2.0	ŭ		0.43	2.0	1.00000	ug/L	135729	!	11/26/04	1759
	1,4-Dichlorobenzeme, Low Level Water	2.0	Πį		0.33	2.0	11.00000	ug/L	135729	1	11/26/04	1759
	1,2-Dichlorobenzene, Low Level Water	2.0	lu[l	0.35	2.0	1.00000	ug/L	135729		11/26/04	1/55
	Benzyl alcohol, Low Level Water	7.8		a I	2.2	20	1.00000	ug/L	135729 135729		11/26/04	1759
	2-Methylphenol (o-cresol), Low Level Water	2.2	1-1	"	0.26	2.0	1.00000	ug/L			11/26/04	1755
	[2,2-oxybis (1-chloropropage), Low Level Water	2.0	ן טי	* {	0.28	2.0	1.00000	ug/L ug/L	135729 135729		11/26/04	1759
	in-Nitroso-di-n-propylamine. Low Level Water	0.50	រ៉ូប	ľ	0.080	0.50	1.00000	ug/L	135729		11/26/04	1/25
	Hexachloroethane, Low Level Water	5.0	U	ŀ	0.60	5.0	1.00000	ug/L	135729		11/26/04	1725
	4-Methylphenol (m/p-cresol), Low Level Water	11		i	0.099	2.0	1.00000	ug/L	135729	i	11/26/04	1725
	2-Chlorophenol, Low Level Water	5.0	Ui		0.12	5.0	1.00000	ug/L Ug/L	135729	ĺĺ	11/26/04	1723 1724
	Nitrobenzene, Low Level Water	0.99	u	l	0.16	0.99	1.00000	ug/L	135729		11/26/04	1703
	Bis(2-chloroethoxy)methane, Low Level Water	2.0	U	i	0.31	2.0	1.00000	ug/L	135729		11/26/04 11/26/04	1757
	1,2,4-Trichlorobenzene, Low Level Water	2.0	U		0.34	2.0	1.00000	ug/L	135729		11/26/04	1725 1757
	Benzoic acid, Low Level Water	93	:	н	3.0	20	1.00000	ug/L	135729		11/26/04	
	Isophorone, Low Level Water	2.0	U	ĺ	0.26	2.0	1.00000	ug/L	135729	Ι Ι.	11/26/04	1751
	2,4-Dimethylphenol, Low Level Water	9.9	U		1.3	9.9	1.00000		135729	! .	11/26/04	1750
	Hexachlorobutadiene, Low Level Water	5.0	u		0.63	5.0	1.00000		135729		11/26/04	
	Naphthalene, Low Level Water	0.99	lu!		0.16	0.99	1.00000	ug/L	135729	_ .	11/26/04	1750
	2,4-Dichlorophenol, Low Level Water	9.9	U		0.90	9.9	1.00000	ug/L	135729	- .	11/26/04	1750
	4-Chloroaniline, Low Level Water	9.9	U		2.8	9.9	1.00000		135729	_ .	11/26/04	1750
	2,4,6-Trichlorophenol, Low Level Water	5.0	U		0.21	5.0	1.00000		135729	- -	11/26/04	1750
	2,4,5-Trichlorophenol, Low Level Water	9.9		إ	1.4	9.9	1.00000		135729		11/26/04	1750
	Hexachlorocyclopentadiene, Low Level Water		n ,	*	0.64	20	1.00000	ug/L	135729		11/26/04	
	2-Methylmaphthalene, Low Level Water	0.50	U		G.13	0.50	1.00000	ug/L	135729	į,	11/26/04	1750
	2-Nitroaniline, Low Level Water	5.0	[u]		0.22	5.0	1.00000		135729	- [-	11/26/04	1750
	2-Chloronaphthalene, Low Level Water	2.0	U		8.26	2.0	1.00000	ug/L	135729	- 1:	11/26/04	1750
					1		1	-3	,,	- 1	, 20, 04	41.47

^{*} In Description = Dry Wgt.

Page 5

LABORATORY TEST RESULTS

Date: 11/30/2004 ~

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGCS

ATTN: Éric Etlis

Customer Sample ID: B12sw-025-DUP Date Sampled.....: 11/05/2004 Time Sampled.....: 08:45 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	TECH
	4-Chloro-3-methylphenol, Low Level Water	9.9	ju	2.4	9.9	1.00000	ug/L	135729	::::::	11/74/04 176	0 -1 -
	2.6-Dinitrotoluene, Low Level Water	0.50	10 U	0.11	0.50	1.00000	ug/L	135729		11/26/04 175 11/26/04 175	
	2-Nitrophenol, Low Level Water	9.9	lul	0.81	9.9	1.00000	ug/L	135729		11/26/04 175	
	3-Nitroaniline, Low Level Water	9.9	u	2.1	9.9	1.00000	ug/L	135729		11/26/04 175	
1	Dimethyl phthalate, Low Level Water	2.0	U	0.21	2.0	1.00000	ug/L	135729		11/26/04 175	Olair
ļ.	2,4-Dinitrophenol, Low Level Water	20	u	3.3	20	1.00000	ug/L	135729	t i	11/26/04 175	9 alr
	Acenaphthylene, Low Level Water	0.99	u	0.12	0.99	1.00000	ug/L	135729	1	11/26/04 1759	Ople
	2,4-Dinitrotoluene, Low Level Water	0.99	u	0.13	0.99	1.00000	ug/L	135729		11/26/04 1759	9 alr
	Acenaphthene, low Level Water	0.99	וען	0.12	0.99	1.00000	ug/L	135729		11/26/04 1759	
	Dibenzofuran, Low Level Water	2.0	u	0.13	2.0	1.00000	ug/L	135729		11/26/04 1759	
	4-Nitrophenol, Low Level Water	20	U	3.7	20	1.00000	ug/L	135729		11/26/04 1759	
	Fluorene, Low Level Water	0.99	U	0.13	0.99	1.00000	ug/L	135729		11/26/04 1759	
	4-Nitroaniline, Low Level Water	9.9	U	2.3	9.9	1.00000	ug/L	135729		11/26/04 1759	9 gtr
	4-Bromophenyl phenyl ether, Low Level Water	5.0	U	0.19	5.0	1.00000	ug/L	135729		11/26/04 1759	
	Hexachlorobenzene, Low Level Water Diethyl phthalate, Low Level Water	0.50	U	0.096	0.50	1.00000	ug/L	135729		11/26/04 1759	9 gir
	4-Chlorophenyl phenyl ether, Low Level Water	2.0	u	0.15	2.0	1.00000	ug/L	135729	1 /	11/26/04 1759	9 gir
	Pentachlorophenol, Low Level Water	5.0	u	0.74	5.0	1.00000	ug/L	135729	l	11/26/04 1759	9 gtr
	n-Nitrosodiphenylamine, Low Level Water	9.9		1.7	9.9	1.00000	ug/L	135729		11/26/04 1759	9 glr
	4,6-Dinitro-2-methylphenol, Low Level Water	0.99		0.13	0.99	1.00000	ug/L	135729		11/26/04 1759	9 gir
	Phenanthrene, Low Level Water	20 0.99		2.4	20	1.00000	ug/L	135729	$ \cdot $	11/26/04 1759	9 glr
	Anthracene, Low Level Water	0.99 0.99		0.14	0.99	1.00000	ug/L	135729	ΙI	11/26/04 1759	9 glr
•	Carbazole, Low Level Water	5.0	U	0.15	0.99	1.00000	ug/L	135729		11/26/04 1759	
	Di-n-butyl phthalate, Low Level Water	5.0	U .	0.29	5.0	1.00000	ug/L	135729		11/26/04 1759	
	Fluoranthene, Low Level Water		יטי ט	0.36	5.0	1.00000	ug/L	135729		11/26/04 1759	9 glr
	Pyrene, Low Level Water	0.99	u	0.14	0.99	1.00000	ug/L	135729		11/26/04 1759	
	Butyl benzyl phthalate, Low Level Water	2.0	u	0.12	0.99	1.00000	ug/L	135729		11/26/04 1759	
	Benzo(a)anthracene, Low Level Water	0.20	u	0.39	2.0	1.00000	ug/L	135729		11/26/04 1759	glr
	Chrysene, Low Level Water	0.50	u i	0.049 0.045	0.20	1.00000	ug/L	135729		11/26/04 1759	
	multiplication and and and and and and and and and an	9.30	"	0.043	0.50	1.00000	ug/L	135729		11/26/04 1759	≯ļglr
:				ļ							i

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 11/30/2004

CUSTOMER: MKM Engineers, loc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Enic Ellis

Customer Sample ID: B12sw-025-DUP Date Sampled.....: 11/05/2004 Time Sampled.....: 08:45 Sample Matrix....; Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	E TECH
	3,3-Dichlorobenzidine, Low Level Water Bis(2-ethylhexyl)phthalate, Low Level Water Di-n-octyl phthalate, Low Level Water Benzo(b)fluoranthene, Low Level Water Benzo(k)fluoranthene, Low Level Water Benzo(a)pyrene, Low Level Water Indeno(1,2,3-cd)pyrene, Low Level Water Dibenzo(a,h)anthracene, Low Level Water Benzo(ghi)perylene, Low Level Water	5.0 15		0.71 3.9 2.5 0.066 0.071 0.083 0.085 0.13	5.0 15 9.9 0.40 0.40 0.40 0.40	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135729 135729 135729 135729 135729 135729 135729 135729 135729	2.40	11/26/04 17 11/26/04 17 11/26/04 17 11/26/04 17 11/26/04 17 11/26/04 17 11/26/04 17 11/26/04 17	759 glr 759 glr 759 glr 759 glr 759 glr 759 glr 759 glr 759 glr

^{*} In Description = Dry Wgt.

Page 7

STL CHICAGO

Client Sample ID: B12sw-025-DUP

Trace Level Organic Compounds

Lot-Sample #: Date Sampled: Prep Date:	11/05/04 08:45	Work Order #: Date Received: Analysis Date:	,,	Matrix WATER
Prep Batch #: Dilution Factor:	4313492	Initial Wgt/Vol:	10 mL	Final Wgt/Vol: 10 mL
PARAMETER		RESULT ND	DETECTION LIMIT 20	UNITS METHOD Ug/L NONE UV/HPLC per

Nitroguanidine

STL CHICAGO

Client Sample ID: B12sw-025-DUP

General Chemistry

Lot-Sample #...: G4K060194-002 Work Order #...: GWE99 Matrix.....: WATER

Date Sampled...: 11/05/04 Date Received..: 11/06/04

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Nitrocellulose
 ND
 0.50
 mg/L
 MCAWW 353.2
 11/11-11/13/04
 4316571

MDL..... 0.12

SIL Chicago is part of Severn Trent Laboratories, Inc.

Job Number: 231757

LABORATORY TEST RESULTS

Date: 11/19/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: B12sw-D25-DUP Date Sampled....: 11/05/2004 Time Sampled....: 08:45 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAG	901	RL	DILUTION	UNITS	BATCH	Dat.	DATE/TIME	TECH
8330 8332M	Explosives by 8330 (HPLC) HMX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Nitrobenzene 2,4,6-TNT Tetryl 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-Dinitrotoluene 4-Amino-2,6-Dinitrotoluene 4-Mitrotoluene 3-Nitrotoluene NG/PETN by 8332M (HPLC) Nitroglycerine	1.2 0.57 0.68 0.57 0.52 0.49	, CC GCCCCCC	1.1 1.0 0.092 0.087 0.070 0.12 0.26 0.19 0.23 0.19 0.18 0.15 0.16 0.16	4.9 3.2 0.32 0.32 0.25 0.40 1.2 0.57 0.68 0.57 0.52 0.49 0.49	10.0000 10.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134865	D1	11/15/04 003 11/15/04 003 11/13/04 213 11/13/04 213 11/13/04 213 11/13/04 213 11/13/04 213 11/13/04 213 11/13/04 213 11/13/04 213 11/13/04 213 11/13/04 213 11/13/04 213 11/13/04 213	7 san 1 san

^{*} In Description = Dry Wgt.

Page 3

LABORATORY TEST RESULTS

Date: 11/19/2004

CUSTOMER: MKN Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTM: Eric Ellis

Customer Sample ID: B12sw-026-SW Date Sampled....: 11/05/2004 Time Sampled....: 10:45 Sample Matrix....: Water

Laboratory Sample [D: 231757-15 Data Received....: 11/06/2004 Time Received....: 11:00

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT G FLACS MDL RL DILUTION UNITS BATCH OT DATE/TIME TECH 7041 Antimony (GFAA) Antimony 7.5 2.5 7.5 ug/L 134574 11/16/04 1419 dai 7060A Arsenic (GFAA) Arsenic 2.0 0.51 2.0 ug/L 134614 11/15/04 1206 dai 7421 Lead (GFAA) Lead 3.0 0.793.0 ug/L 134350 11/13/04 0352 daj 7841 Thallium (GFAA) Thallium 4.0 1.3 4.0 uq/L 134456 11/16/04 0220 daj 7470A Mercury (CVAA) Mercury 0.0510.049 0.20 ug/L 134293 11/12/04 1439 gok 6010B Metals Analysis (ICAP Trace) Aluminum 670 24 150 ug/L 134280 11/13/04 1453 tds Barium 34 1.5 10 ug/L 134280 11/13/04 1453 tds Beryllium 2.0 0.17 2.0 ug/L 134280 11/13/04 1453 tds Cadmi um 2.0 0.44 2.0 134280 ug/L 11/13/04 1453 tds Calcium 26000 24 100 134280 ug/L 11/13/04 1453 tds Chromium 1.7 1.5 10 ug/L 134280 11/13/04 1453 tds Cobalt 5.0 1.0 5.0 ug/L 134280 11/13/04 1453 tds Copper 10 1.6 10 ug/L 134280 11/13/04 1453 tds Iron 1200 40 120 ug/L 134280 11/13/04 1453 tds Magnesium 3800 12 100 ug/L 134280 11/13/04 1453 tds Manganese 480 0.71 10 134280 ug, L 11/13/04 1453 tds Nickel 2.0 1.9 10 ug/L 134280 11/13/04 1453 tds Potassium 4600 110 500 134280 ug/L 11/13/04 1453 tds

^{*} In Description = Dry Wgt.

Job Number: 231757 LABORATORY TEST RESULTS
Date: 11/19/2004

CUSTOMER: MKM Engineers, End. PROJECT: USACE RVAAP 14 AGCS ATTN: Eric EUlis

Customer Sample [D: B12sw-026-SW Date Sampled....: 11/05/2004 Time Sampled....: 10:45 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	G FLAGS	HDE	RL	DIEUTION	UNITS	BATCH	ori	DATE/TIM	e j	ECH
	Setenium Sitver Sodium Vanadium Zinc	15 10 940 10 30	U U	5.0 3.1 500 2.1 10	75 10 1500 10 30	1 1 1 1	ug/L ug/L ug/L ug/L ug/L	134280 134280 134280 134280 134280		11/13/04 14 11/13/04 14 11/13/04 14 11/13/04 14 11/13/04 14	453 t 453 t 453 t 453 t	:ds :ds :ds
ſ	•								71676			
				·				1				
									TTTTALL .			

^{*} In Description = Dry Wgt.

STL Chicago is part of Severn Trent Laboratories, Inc.

Job Number: 231757

Date:12/02/2004

CUSTOMER: MKM: Engineers, Inc. PROJECT: USAGE RVAAP 14 ADCS ATTN: Eric Ellis

Customer Sample ID: B12sw-026-SW Date Sampled....: 11/05/2004 Time Sampled....: 10:45 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O FLAGS	80 L	44	DILUTION	UNITS	BATCH				ECH
8081A	Organochlorine Pesticide Analysis alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4"-DDE Endrin Endosulfan II 4,4"-DDD Endosulfan sulfate 4,4"-DDT Nethoxychlor alpha-Chlordane gamma-Chlordane gamma-Chlordane Endrin aldehyde Endrin ketone Toxaphene	0.15 0.097 0.097 0.15 0.15 0.097 0.097 0.097 0.097 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.49 0.049 0.097 0.15		0.046 0.027 0.024 0.041 0.040 0.027 0.035 0.020 0.017 0.022 0.017 0.041 0.035 0.043 0.048 0.17 0.046 0.17	0.15 0.097 0.097 0.15 0.15 0.097 0.097 0.097 0.097 0.15 0.15 0.15 0.15 0.15 0.15 0.25 0.049 0.097 0.15 0.097	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135869 135869 135869 135869 135869 135869 135869 135869 135869 135869 135869 135869 135869 135869 135869 135869 135869 135869	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/10/04 0 11/10/04 0 11/10/04 0 11/10/04 0 11/10/04 0 11/10/04 0 11/10/04 0 11/10/04 0 11/10/04 0 11/10/04 0 11/10/04 0 11/10/04 0 11/10/04 0 11/10/04 0 11/10/04 0	0609 k	didididididididididididididididididi

^{*} In Description = Dry Wgt.

Page 2

STL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS

Job Number: 231757

Date:12/01/2004

CUSTOMER: NKM Engineers, Inc. PROJECT: USACE RVAAP 14 AOCS ATTRE Eric ELLis

Customer Sample ID: B12sw-026-SW
Date Sampled....: 11/05/2004
Time Sampled....: 10:45
Sample Matrix...: Water

TEST METHICO	PARAMETER/JEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	ed C	44	O LEUTION	UNITS	BATCH	DΤ	DATE/TIM	E	TECH
8082	PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	0.58 1.3 1.3 1.3 1.5 1.5 0.58	ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	0.17 0.41 0.34 0.42 0.47 0.34 0.17	0.58 1.3 1.3 1.3 1.5 1.5 1.3 0.58	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135625 135625 135625 135625 135625 135625 135625		11/10/04 14 11/10/04 14 11/10/04 14 11/10/04 14 11/10/04 14 11/10/04 14 11/10/04 14	453 453 453 453 453	bit bit bit bit bit

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 11/18/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTR: Eric Ellis

Customer Sample ID: B12sw-026-SW Date Sampled.....: 11/05/2004 Time Sampled....: 10:45 Sample Matrix....: Water

Laboratory Sample 10: 231757-15 Date Received.....: 11/06/2004

Time Received.....: 11:00

TEST METACO	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MD.	RL.	DILUTION	UNITS	BATCH	DΤ	DATE/T	I ME	TEC
8260B	Volatile Organics		11			1.55652.0000000000	**********	483 65 8 83 8 8 7 9 7	3 (42.33		<u> </u>	1000
	Chloromethane	1.0	U	0.080	1.0	1.00000	ug/L	134097		11/12/04	MAKE	1
	Vinyl chloride	1.0	U	0.080	1.0	1.00000	ug/L	134097		11/12/04		
	Bromomethane	1.0	u	0.10	1.0	1.00000	ug/L	134097		11/12/04	0445	juan Lida
	Chloroethane	1.0	U U	0.080	1.0	1.00000	ug/L	134097	1 1	11/12/04	0445	lide
	1,1-Dichloroethene	1_0	u	0.12	1.0	1.00000	ug/L	134097		11/12/04	0445	1
	Carbon disulfide	5.0	u	0.20	5.0	1.00000	ug/L	134097	H	11/12/04	0445	idr
	Acetone	5.5	11	1.8	10	1.00000	ug/L	134097	1	11/12/04	0445	lide
	Methylene chloride	1,5	0	0.35	1.5	1.00000	ug/L	134097	1 1	11/12/04	0445	îdr
	trans-1,2-Dichloroethene	1.0	U	0.14	1.0	1.00000	Ug/L	134097	1 1	11/12/04	0445	Īdr
	1,1-Dichloroethane	1.0	U	0.11	1.0	1.00000	ug/L	134097	1	11/12/04	0445	lidr
	cis-1,2-Dichloroethene	1.0	U	0.090	1.0	1.00000	ug/L	134097		11/12/04	0445	jobr
	2-Butanone (MEK)	10	U	1.2	10	1.00000	ug/L	134097		11/12/04		
	Bromochloromethane	1.0	u	0_10	1.0	1.00000	ug/L	134097		11/12/04		
	Chloroform	1.0	u	0.11	1.0	1.00000	ug/L	134097		11/12/04	0445	jdr
	1,1,1-TrichLoroethane	1.0	u	0.080	1.0	1.00000	ug/L	134097		11/12/04	0445	jdr
	Carbon tetrachloride	1.0	U	0.13	1.0	1.00000	ug/L	134097	1	11/12/04	0445	Jdr
	Benzene	1.0	U	0.090	1.0	1.00000	ug/L	134097	1	11/12/04	0445	jdr
	1,2-Dichloroethane	1.0	U U U	0.090	1.0	1.00000	ug/L	134097		11/12/04	0445	jdr
	Trichloroethene	1.0	U	0.10	1.0	1.00000	ug/L	134097		11/12/04	0445	Jdr
	1,2-Dichloropropane	1.0	U	0.12	1.0	1.00000	ug/L	134097		11/12/04	0445	jde
	Bromodichloromethane	1.0	U	0.11	1.0	1.00000	ug/L	134097		11/12/04	0445	jde
	cis-1,3-Dichloropropene	1.0	U	0.12	1.0	1.00000	ug/L	134097		11/12/04		
	4-Methyl-2-pentanone (MIBK)	10	u	0.65	10	1.00000	ug/L	134097	!!	11/12/04	0445	jdr
	Toluene	1.0	u	0.10	1.0	1.00000	ug/L	134097		11/12/04		
	trans-1,3-Dichloropropene	1.0	u	0.15	1.0	1.00000	ug/L	134097		11/12/04		
	1,1,2-Trichloroethane Tetrachloroethana	1.0	U	0.15	1.0	1.00000	ug/L	134097		11/12/04		
	Petrachtorgetnens 2-Nexanone	1.0	U	0.090	1.0	1.00000	ug/L	134097		11/12/04		
	2-nexamone	10	U	0.53	10	1.00000	ug/L	134097		11/12/04	0445	Jan
		[1 1				i				İ

^{*} In Description = Dry Wgt.

Page 24

STL Chicago is part of Severn Trent Laboratories, Inc.

Job Number: 231757

LABORATORY TEST RESULTS

PROJECT: USACE RVAAP 14 ADCS

Date:11/18/2004

ATTW: Eric Eliis

Customer Sample ID: B12sw-026-5W

CUSTOMER: MKM Engineers, Inc.

Date Sampled.....: 11/05/2004 Time Sampled.....: 10:45 Sample Matrix....: Water Laboratory Sample 10: 231757-15
Date Received.....: 11/06/2004
Time Received.....: 11:00

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS MDL DILUTION UNITS BATCH OT DATE/TIME TECH Dibromochloromethane 1.0 0.060 1.00000 1.0 ug/L 134097 11/12/04 0445 idn U 1,2-Dibromoethane (EDB) 1.0 0.13 1.0 1.00000 134097 11/12/04 0445 jdn ug/L Chlorobenzene 1.0 0.080 1.00000 1.0 ug/L 134097 11/12/04 0445 jdn Ethylbenzene Įΰ 1.0 0.070 1.0 1.00000 ug/L 134097 11/12/04 0445 jdn måp-Xylenes lυ 2.0 0.18 2.0 1.00000 134097 ug/L 11/12/04 0445 jdn o-Xylene 1.0 0.080 1.0 1.00000 134097 ug/L 11/12/04 0445 jdn Styrene u 1.0 0.13 1.0 1.00000 ug/L 134097 11/12/04 0445 idn Bromoform 1.0 0.11 1.0 1.00000 11/12/04 0445 jdn ug/L 134097 1,1,2,2-Tetrachloroethane 1.0 U 0.090 1.00000 1.0 ug/L 134097 11/12/04 0445 jdn 1,2-Dichloroethene (total) u 1.0 0.23 1.0 1.00000 ug/L 134097 11/12/04 0445 jdn Xylenes (total) U 1.0 0,28 1.0 1.00000 ug/L 134097 11/12/04 0445 jdn

Page 25

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:11/30/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: B12sw-026-SW Date Sampled....: 11/05/2004 Time Sampled....: 10:45 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	q	FLAGS	MOL	RL	DICUTION	UNITS	BATCH	DΤ	DATE/T	IME.	TEC
8270c	Semivolatile Organics						<u>. </u>	111111111111111111111111111111111111111	1 12 12 21 12 11	3	<u> </u>	<u>\$1</u> 62633	Title (
	Phenol, Low Level Water	4.9	U		0.34	4.9	1.00000	ug/L	135729	1	11/26/04	1257	ale
	Bis(2-chloroethyl)ether, Low Level Water	2.0	U		0.29	2.0	1.00000	ug/L	135729	1	11/26/04		
	1,3-Dichlorobenzene, Low Level Water	2.0	U		0.42	2.0	1.00000	ug/L	135729		11/26/04		
	1,4-Dichlorobenzene, Low Level Water	2.0	U		0.32	2.0	1.00000	ug/L	135729	!	11/26/04		
	1,2-Dichlorobenzene, Low Level Water	2.0	lul		0.34	2.0	1.00000	ug/L	135729	i	11/26/04	1253	MI C
	Benzyl alcohol, Low Level Water	20	U		2.2	20	1.00000	ug/L	135729	1 ,	11/26/04	1853	ol c
	2-Methylphenol (o-cresol), Low Level Water	2.0	U		0.25	2.0	1.00000	ug/L	135729		11/26/04	1853	lal c
	2,2-oxybis (1-chloropropane), Low Level Water	2.0	u	*	0.27	2.0	1.00000	ug/L	135729		11/26/04		
	n-Witroso-di-n-propylamine, Low Level Water	0.49	u		0.079	0.49	1.00000	ug/L	135729		11/26/04		
	Hexachloroethane, Low Level Water	4.9	טטטטטט		0.60	4.9	1.00000	ug/L	135729		11/26/04		
	4-Methylphenol (m/p-cresol), Low Level Water	2.0	U		0.098	2.0	1.00000	ug/L	135729		11/26/04	1853	nir
	2-Chlorophenol, Low Level Water	4.9	u		0.12	4.9	1.00000	ug/L	135729		11/26/04		
	Nitrobenzene, Low Level Water	0.98	U		0.16	0.98	1.00000	ug/L	135729		11/26/04		
	Bis(2-chloroethoxy)methane, Low Level Water	2.0	fυ		0.30	2.0	1.00000	ug/L	135729		11/26/04		
	1,2,4-Trichlorobenzene, Low Level Water	2.0	U		0.33	2.0	1.00000	ug/L	135729		11/26/04		
	Benzoic acid, Low Level Water	20	U		2.9	20	1.00000	ug/L	135729		11/26/04		
	Isophorone, Low Level Water	2.0	U	İ	0.25	2.0	1.00000	ug/L	135729		11/26/04	1853	al r
	2,4-Dimethylphenol, Low Level Water	9.8	u	i	1.3	9.8	1.00000	ug/L	135729		11/26/04	1853	ol r
	Hexachlorobutediene, Low Level Water	4.9	0-		0.63	4.9	1.00000	ug/L	135729		11/26/04	1853	Gir
	Naphthalene, Low Level Water	0.98	u		D. 1 6	0.98	1.00000	ug/L	135729		11/26/04		
	2,4-Dichlorophenol, Low Level Water	9.8	U		0.89	9.8	1.00000	ug/L	135729		11/26/04		
	4-Chloroaniline, Low Level Water	9.8	U U		2.7	9.8	1.00000	ug/L	135729		11/26/04	1853	ialr
	2,4,6-Trichlorophenol, Low Level Water	4.9	U		0.21	4.9	1.00000	ug/L	135729		11/26/04	1853	alr
	2,4,5-Trichlorophenol, Low Level Water	9.8	u		1.4	9.8	1.00000	ug/L	135729		11/26/04		
	Hexachlorocyclopentadiene, Low Level Water	20	U	*	0.64	20	1.00000	ug/L	135729		11/26/04		
	2-Methylnaphthalene, Low Level Water	0.49	U	:	0.13	0.49	1.00000	ug/L	135729		11/26/04		
	2-Nitroaniline, Low Level Water	4.9	U		0.22	4.9	1.00000	ug/L	135729	E.	11/26/04		
	2-Chloronaphthalene, Low Level Water	2.0	U		0.25	2.0	1.00000	ug/L	135729	i i	11/26/04		
								- -	İ				

^{*} In Description = Dry Wgt.

LABORATORY YEST RESULTS

Date:11/30/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTHE ERIC ELLIS

Customer Sample ID: B12sw-026-SW Date Sampled....: 11/05/2004 Time Sampled....: 10:45 Sample Matrix....: Water Laboratory Sample ID: 231757-15 Date Received.....: 11/06/2004 Time Received.....: 11:00

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS MOL DILUTION UNITS BATCH DT DATE/TIME TECH 4-Chloro-3-methylphenol, Low Level Water 9.8 2.4 9.8 1.00000 135729 ug/L 11/26/04 1853 gtr 2,6-Dinitrotoluene, Low Level Water 0.49 0.11 0.491.00000 135729 uq/L 11/26/04 1853 glr 2-Nitrophenol, Low Level Water 9.8 0.80 9.8 1.00000 ug/L 135729 11/26/04 1853 gtr 3-Nitroaniline, Low Level Water 9.8 2.1 9.8 1.00000 11/26/04 1853 glr ug/L 135729 Dimethyl phthalate, Low Level Water 2.0 0.21 2.0 1.00000 ug/L 135729 \$1/26/04 1853 gtr 2,4-Dinitrophenol, Low Level Water 20 3.2 20 1.00000 11/26/04 1853 gtr 135729 ug/L Acenaphthylene, Low Level Water 0.980.12 0.98 1.00000 ug/L 135729 /11/26/04 1853 gtr 2.4-Dinitrotoluene, Low Level Water 0.98D. 13 0.98 11.00000 ug/L 135729 11/26/04 1853 gtr Acenaphthene, Low Level Water 0.98 0.12 0.98 1.00000 135729 11/26/04 1853 glr ug/L Dibenzofuran, Low Level Water 2.0 0.132.0 1.00000 11/26/04 1853 gtr ug/L 135729 4-Nitrophenol, Low Level Water 20 3.6 20 1.00000 ug/L 135729 11/26/04 1853 glr Fluorene, Low Level Water 0.980.13 0.98 1.00000 11/26/04 1853 gtr ug/L 135729 4-Witroaniline, Low Level Water 9.8 2.3 1.00000 9.8 11/26/04 1853 gtr ug/L 135729 4-Bromophenyl phenyl ether. Low Level Water اراأ 4.9 0.19 4.9 1.00000 ug/L 135729 11/26/04 1853 glr Hexachlorobenzene, Low Level Water 0.49 0.095 0.49 1.00000 ug/L 135729 11/26/04 1853 gtr Diethyl phthalate, Low Level Water 2.0 0.15 2.0 1.00000 ug/L 135729 11/26/04 1853 gtr 4-Chlorophenyl phenyl ether, Low Level Water 4.9 0.74 4.9 1.00000 11/26/04 1853 gtr ug/L 135729 Pentachlorophenol, Low Level Water 9.8 1.7 9.8 1.00000 11/26/04 1853 gtr uq/L 135729 n-Mitrosodiphenylamine, Low Level Water 0.98 0.13 11/26/04 1853 glr 0.98 1.00000 ug/L 135729 4.6-Dinitro-2-methylphenol, Low Level Water 20 2.4 20 1.00000 11/26/04 1853 gtr ug/L 135729 Phenanthrene, Low Level Water 0.98 0.98 0.14 1.00000 ug/L 135729 11/26/04 1853 gtr Anthracene, Low Level Water 0.980.15 0.981.00000 11/26/04 1853 gtr ug/L 135729 Carbazole, Low Level Water 4.9 0.28 4.9 1.00000 11/26/04 1853 gtr 135729 ug/L Di-n-butyl phthalate, Low Level Water 4.9 0.35 4.9 1.00000 uq/L 135729 11/26/04 1853 glr Fluoranthene, Low Level Water 0.98 U, 0.14 0.98 1.00000 135729 11/26/04 1853 gtr ug/L Pyrene, Low Level Water 0.98 0.12 0.98 1.00000 ug/L 135729 11/26/04 1853 gtr Butyl benzyl phthalate, Low Level Water 2.0 0.38 2.0 1.00000 ug/L 135729 11/26/04 1853 gtr Benzo(a)anthracene, Low Level Water 0.200.0480.20 1.00000 11/26/04 1853 gtr 135729 ug/L Chrysene, Low Level Water 0.49 0.044 0.491.00000 uq/L 135729 11/26/04 1853 glr

^{*} In Description = Dry Wgt.

Job Number: 231757 LABORATORY TEST RESULTS

Date: 11/30/2004

ATTN: Eric Ellis

CUSTOMER: MKM Engineers, Inc. PROJECT: USAGE RVAAP: 14 ADGS

Customer Sample ID: B12sw-026-sw Date Sampled....: 11/05/2004 Time Sampled....: 10:45 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	R£.	DILUTION	UNITS	BATCH	m	DATE/TIME	TECH
	3,3-Dichlorobenzidine, Low Level Water Bis(2-ethylhexyl)phthalate, Low Level Water Di-n-octyl phthalate, Low Level Water Benzo(b)fluoranthene, Low Level Water Benzo(k)fluoranthene, Low Level Water Benzo(a)pyrene, Low Level Water Indeno(1,2,3-cd)pyrene, Low Level Water Dibenzo(a,h)anthracene, Low Level Water Benzo(ghi)perylene, Low Level Water	4.9 4.5 9.8 0.39 0.39 0.39 0.39 0.39 0.39	n n n n n n	0.71 3.8 2.5 0.066 0.071 0.082 0.084 0.13	4.9 15 9.8 0.39 0.39 0.39 0.39 0.39	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135729 135729 135729 135729 135729 135729 135729 135729 135729		11/26/04 185 11/26/04 185 11/26/04 185 11/26/04 185 11/26/04 185 11/26/04 185 11/26/04 185 11/26/04 185	53 gir 53 gir 53 gir 53 gir 53 gir 53 gir 53 gir
									- And desired		

^{*} In Description = Dry Wgt.

Page 28

STL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS
Job Number: 231757

Date: 11/19/2004

CUSTONER: MXM Engineers, Inc. ATTN: Enic ELLIS

Customer Sample ID: B12sw-026-SW Date Sampled....: 11/05/2004 Time Sampled....: 10:45 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SANPLE RESULT	Q FLAGS	MOL	RL	DILUTIDA	UNITS	BATCH	DT	DATE/T	THE .	TECH
8330	Explosives by 8330 (HPLC) HMX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Nitrobenzene 2,4,6-TNT Tetryl 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-Dinitrotoluene 4-Amino-2,6-Dinitrotoluene 2-Nitrotoluene 4-Nitrotoluene 3-Nitrotoluene	3.7 2.8 0.22 0.22 0.17 0.27 0.85 0.39 0.47 0.39 0.36 0.34 0.34		0.074 0.069 0.063 0.060 0.048 0.085 0.18 0.13 0.15 0.13 0.12 0.10 0.11	0.34 0.22 0.22 0.22 0.17 0.27 0.85 0.39 0.47 0.39 0.36 0.34	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134865 134865 134865 134865 134865 134865 134865 134865 134865 134865 134865 134865 134865		11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04 11/13/04	2236 2236 2236 2236 2236 2236 2236 2236	san san san san san san san san
8332 H	NG/PETN by 8332M (HPLC) Nitroglycerine	1,1	U	0.16	1.1	1.00000	ug/L	134869	TT V	11/10/04	0543	san

^{*} In Description = Dry Wgt.

Page 11

STL CHICAGO

Client Sample ID: B12sw-026-SW

Trace Level Organic Compounds

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	11/05/04 10:45 11/08/04	Work Order #: Date Received: Analysis Date:	11/06/04		WATER
Dilution Factor:		<pre>Initial Wgt/Vol:</pre>	10 mL	Final	Wgt/Vol: 10 mL
			DETECTION	TOTTOG	ALTERITO'S
PARAMETER		RESULT	LIMIT	UNITS	METHOD
Nitroguanidine		ND	20	ug/L	NONE UV/HPLC per

STL CHICAGO

Client Sample ID: B12sw-026-SW

General Chemistry

Lot-Sample #...: G4K060194-006 Work Order #...: GWFAK Matrix.....: WATER

Date Sampled...: 11/05/04 Date Received..: 11/06/04

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrocellulose	ND MDL	0.50	mg/L	MCAWW 353.2	11/11-11/13/04	4316571

LABORATORY TEST RESULTS

Date:11/18/2004

DUSTOMER: MKM Engineers, Inc. ATTN: Enic Ellis

Customer Sample ID: LNWsw-D47-SW Date Sampled.....: 11/03/2004 Time Sampled.....: 10:10 Sample Matrix....: Water

TEST METHOO	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLACS	ю	RL	DILUTION	UNITS	BATCH	DI	DATE/TIME	TECH
7041	Antimony (GFAA)										
	Antimony	7.5	U	2.5	7.5	1	ug/L	133763		11/09/04 2211	: daj
7060A	Arsenic (GFAA) Arsenic	0.63		0.54		<u> </u>					
	Arsenic .	Ų.D.	5	0.51	2.0		ug/L	134121		11/11/04 2339	/ da j
7421	Lead (GFAA) Lead	3.0		0.79	3.0		*!	47/750		44 (40 (0) 0303	
		3.0	"	0.77	3.0	1	ug/L	134350		11/12/04 2307	Gal
78 41	Thallium (GFAA) Thallium	4.0		1.3	4.0	١,	ug/L	134082		11/11/04 0347	z do i
		7.0		'	4.0	'	ug/L	134002		11711704 0347	uaj
7470A	Mercury (CVAA) Mercury	0.20	Lui	0.049	0.20	1,	ug/L	134293		11/12/04 1401	1 ack
494AD							45,1	1342/3			300
6010B	Metals Analysis (ICAP Trace) Aluminum	120	В	24	150	1	ug/L	134280	!	1 11/13/04 1155	5 tds
	Berium	120 33 2.0		1.5	10	1	ug/L	134280		11/13/04 1155	5 tds
	Beryllium Cadmium	2.0	U	0.17 0.44	2.0 2.0	1	ug/L ug/L	134280 134280		11/13/04 1155 11/13/04 1155	itds
	Calcium	38000		24	100	1	ug/L	134280		11/13/04 1155	5 tds
	Chromiam Cobalt	10 5.0	บ	1.5 1.0	10 5.0	}	ug/L ug/L	134280 134280		11/13/04 1155 11/13/04 1155	
	Copper	10	u	1.6	10	1	ug/L	134280	} :	11/13/04 1155	5 tds
	I con Nagnesium	890 8700		40 12	120 100	11	ug/L ug/L	134280 134280	1	11/13/04 1155 11/13/04 1155	tds tds
	Manganese Nickel	310	1,,	0.71	10	1	ug/L	134280		11/13/04 1155	5 tds
	Potassium	10 2800	U	1.9 110	10 500	1	ug/L ug/L	134280 134280		11/13/04 1155 11/13/04 1155	
·											

^{*} In Description = Dry Wgt.

STL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS
Job Number: 231657

Date:11/18/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAR 14 ACCS

ATIN: Eric Ellis

Customer Sample ID: LNWsw-047-SW Date Sampled.....: 11/03/2004 Time Sampled.....: 10:10 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	101	RL.	DILUTION	UNITS	BATCH	ĐΤ	DATE/FIME	TEC
<u> </u>	Selenium Silver Sodium Vanadium Zinc	3000 10	บ บ บ	5.0 3.1 500 2.1 10	15 10 1500 10 30	1 1 1 1	ug/L ug/L ug/L ug/L ug/L	134280 134280 134280 134280 134280		11/13/04 119 11/13/04 119 11/13/04 119 11/13/04 119 11/13/04 119	55 tds 55 tds 55 tds
				- T				Andrea de Angles de Manageres de La Companyo de La	1.		
										49.0	

^{*} In Description = Dry Wgt.

SIL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS

Job Number: 231657

Date: 11/28/2004

CUSTOMER: MKM Engineers, Inc. ATTM: Effic Ellis

Customer Sample ID: LNWsw-047-SW Date Sampled....: 11/03/2004 Time Sampled....: 10:10 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Ø FLAGS	MDL	R L	DILUTION	UNITS	BATCH	DT	DATE/TIME	TECH
8081A	Organochlorine Pesticide Analysis alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Methoxychlor alpha-Chlordane gamma-Chlordane Endrin aldehyde Endrin ketone Toxaphene	0.14 0.095 0.095 0.14 0.14 0.095 0.14 0.095 0.095 0.095 0.14 0.10 0.14 0.14 0.57 0.048 0.095 0.14		0.045 0.027 0.024 0.040 0.039 0.027 0.034 0.020 0.017 0.022 0.016 0.034 0.042 0.047 0.16 0.015 0.016 0.033 0.028 0.13	0.14 0.095 0.095 0.14 0.195 0.14 0.095 0.095 0.095 0.14 0.14 0.14 0.57 0.048 0.095 0.14	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511		11/08/04 23: 11/08/04 23:	57 pig 57 pig 57 pig 57 pig 57 pig 57 pig 57 pig 57 pig 57 pig 57 pig 57 pig 57 pig 57 pig 57 pig 57 pig 57 pig 57 pig

^{*} In Description = Dry Wgt.

Date: 11/24/2004

CUSTOMER: NKM Englineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LNWsw-047-SW Date Sampled....: 11/03/2004 Time Sampled....: 10:10 Sample Matrix...: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	G FLAGS	H EE	RL	DILUTION	UNITS	BATCH	DΤ	DATE/TIME	TEC
8082	PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	0.57 1.2 1.2 1.2 1.4 1.2 0.57	ט ט ט ט ט ט ט ט ט ט ט ט	0.17 0.40 0.33 0.41 0.46 0.33 0.16	0.57 1.2 1.2 1.2 1.4 1.2 0.57	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135436 135436 135436 135436 135436 135436 135436		11/10/04 034; 11/10/04 034; 11/10/04 034; 11/10/04 034; 11/10/04 034; 11/10/04 034; 11/10/04 034;	5 bj 5 bj 5 bj 5 bj
										9	

^{*} In Oescription = Dry Wgt.

Page 4

LABORATORY TEST RESULTS

Date: 11/18/2004

CUSTOMER: MOR Engineers, Inc.

PROJECT: USACE RVAAP 14 ADCS

AFINE Eric Etlis

Customer Sample ID: LNWsw-047-SW Date Sampled....: 11/03/2004 Time Sampled....: 10:10 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	NOL	RL	DILUTION	UNITS	BATCH	от	DATE/I	INE.	TECH
8260B	Volatile Organics							1		**********	22.40.402.42	1811277
	Chloromethane	1.0	u	0.080	1.0	1.00000	ug/L	134097	1 1	11/11/04	2324	ida
	Vinyl chloride	1.0	U	0.080	1.0	1.00000	ug/L	134097		11/11/04		
	Bromomethane	1.0	ш	0.10	1.0	1.00000	ug/L	134097	1	11/11/04	2324	john
	Chloroethane	1.0	U	0.080	1.0	1.00000	ug/L	134097		11/11/04	, 2324	jdn
	1,1-Dichloroethene	1.0	บ	0.12	1.0	1.00000	ug/L	134097		11/11/04	, 2324	jďn
ļ	Carbon disulfide	5.0	u	0.20	5.0	1.00000	ug/L	134097		11/11/04		
	Acetone	10	U	1.8	10	1.00000	ug/L	134097		11/11/04		
	Methylene chloride	1.5	U	0.35	1.5	1.00000	Ug/L	134097		11/11/04		
	trans-1,2-Dichloroethene	1.0	U	0.14	1.0	1.00000	ug/L	134097		11/11/04		
	1,1-Dichloroethane	1.0	U	0.11	1.0	1.00000	ug/L	134097		11/11/04		
	cis-1,2-Dichloroethene	1.0	u	0.090	1.0	1.00000	ug/L	134097		11/11/04		
	2-Butanone (MEK)	10	u	1.2	10	1.00000	ug/L	134097		11/11/04		
]	Bromochtoromethane	1.0	บ	0.10	1.0	1.00000	ug/L	134097		11/11/04	2524	jdn
	Chloroform	1.0	U U	0.11	1.0	1.00000	ug/L	134097		11/11/04		
-	1,1,1-Trichloroethane Carbon tetrachloride	1.0 1.0	u	0.080	1.0	1.00000	ug/L	134097		11/11/04		
Ì	Benzene	1.0	U	0_13	1.0	1.00000	ug/L	134097	1	11/11/04	2324	Jan
	1,2-Dichloroethane	1.0	0	0.090	1.0 1.0	1.00000	ug/L	134097		11/11/04	, 6064 . 2724	l Jon
1	Trichloroethene	1.0		0.090		1.00000	ug/L	134097		11/11/04		
	1,2-Dichloropropane	1.0	U U	0.10 0.12	1.0 1.0	1.00000	ug/L	134097 134097		11/11/04		
	Rromodichloromethane	1.0	เป็	0.12	1,0	1.00000	ug/L	134097		11/11/04		
}	cis-1,3-Dichtoropropene	1.0	u	0.12	1.0	1.00000	ug/L ug/L	134097		11/11/04		
	4-Methyl-2-pentanone (MIBK)	10	li l	0.65	10	1.00000	ug/L ug/L	134097		11/11/04 11/11/04	2324	Jun
1	Toluene	1.0	U	0.10	1.0	1.00000	ug/L	134097	1	11/11/04	2324	المارا
	trans-1,3-Dichloropropene	1.0	i i	0.15	1.0	1.00000	ug/L	134097		11/11/04		
	1,1,2-Trichloroethane	1.0	U	0.15	1.0	1.00000	ug/L ug/L	134097		11/11/04		
	Tetrachloroethene	1.0	ŭ	0.090	1.0	1.00000	ug/L	134097		11/11/04		
	2-Hexanone	10	اتا	0.53	10	1.00000	ug/L	134097		11/11/04		
										, .,,		,
		<u> </u>	Ш.			<u> </u>				L		<u> </u>

^{*} In Description = Dry Wgt.

STL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS

Job Number: 231657

Date: 11/18/2004

CUSTOMER: NKM Engineers, Inc. ATTN: Eric Eltis

Customer Sample ID: LNWsw-047-SW Date Sampled.....: 11/03/2004 Time Sampled.....: 10:10 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	e i	FLAGS	MOL	W L	DILLUTION	UBITS	BATCH	91	DATE/TIME	TECH
	Dibromochloromethane 1,2-Dibromochlane (EDB) Chlorobenzene Ethylbenzene m&p-Xylenes o-Xylene Styrene Bromoform 1,1,2,2-Tetrachloroethane 1,2-Dichloroethene (total) Xylenes (total)	1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0	ם מעט שעט שט ט		0.060 0.13 0.080 0.070 0.18 0.080 0.13 0.11 0.090 0.23 0.28	1.0 1.0 1.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000		134097 134097 134097 134097 134097 134097 134097 134097 134097		11/11/04 2324 11/11/04 2324	jdn jdn jdn jdn jdn jdn jdn jdn
				-								

^{*} In Description = Dry Wgt.

RESULTS TEST LABORATORY

PROJECT: USACE RVAAP 14 AGES

Date: 11/19/2004

ATTN: Eric Ellis

Customer Sample ID: LNWsw-047-SW Date Sampled....: 11/03/2004

Time Sampled....: 10:10

CUSTOMER: MKM Engineers, Inc.

Laboratory Sample ID: 231657-4 Date Received....: 11/04/2004 Time Received.....: 09:10

Sample Matrix....: Water DATE/TIME TECH DILUTION units BATCH DT SAMPLE RESULT G FLAGS MOL PARAMETER/TEST DESCRIPTION TEST METHOD

8270C	Semivolatile Organics Phenol, Low Level Water Bis(2-chloroethyl)ether, Low Level Water 1,3-Dichlorobenzene, Low Level Water 1,4-Dichlorobenzene, Low Level Water 1,2-Dichlorobenzene, Low Level Water Benzyl alcohol, Low Level Water 2-Nethylphenol (o-cresol), Low Level Water 2,2-oxybis (1-chloropropane), Low Level Water Ritroso-di-n-propylamine, Low Level Water Hexachloroethane, Low Level Water 4-Methylphenol (m/p-cresol), Low Level Water 8-Methylphenol (m/p-cresol), Low Level Water Ritrobenzene, Low Level Water 8-Sis(2-chloroethoxy)methane, Low Level Water 1,2,4-Trichlorobenzene, Low Level Water 1,2,4-Trichlorobenzene, Low Level Water 1,2,4-Dimethylphenol, Low Level Water 2,4-Dimethylphenol, Low Level Water 4-Chloroaniline, Low Level Water 2,4,5-Trichlorophenol, Low Level Water 2,4,5-Trichlorophenol, Low Level Water 2,4,5-Trichlorophenol, Low Level Water 2,4,5-Trichlorophenol, Low Level Water 2,4,5-Trichlorophenol, Low Level Water 2,4,5-Trichlorophenol, Low Level Water 2,4-Methylnaphthalene, Low Level Water 2-Methylnaphthalene, Low Level Water 2-Mitroaniline, Low Level Water	1.9	*	0.34 0.29 0.42 0.32 0.34 2.1 0.25 0.27 0.079 0.59 0.097 0.12 0.16 0.30 0.33 2.9 0.25 1.3 0.62 0.16 0.88 2.7 0.20 1.4 0.63 0.13 0.25	4.9 1.9 1.9 1.9 1.9 1.9 1.9 4.9 4.9 1.9 1.9 1.9 1.9 9.7 4.9 0.97 9.7 4.9 9.7 4.9 9.7	1.00000 1.00000	ug/L ug/L	134790 134790	11/18/04 150 11/18/04 150	13 dpk 13 dpk 13 dpk 13 dpk 13 dpk 13 dpk 13 dpk 13 dpk 13 dpk 13 dpk 13 dpk 13 dpk 13 dpk 13 dpk 13 dpk 13 dpk 13 dpk 13 dpk 14 dpk 15 dpk 16 dpk 16 dpk 17 dpk 18	١
-------	---	-----	---	---	--	---	--------------	--	--	--	---

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 11/19/2004

Job Number: 231657

CUSTOMER: MKH Englineers, Inc.

PROJECT: USACE RVAAP 16 ACCS

ATTN: Eric Ellis

Customer Sample ID: LNWsW-047-SW Date Sampled....: 11/03/2004 Time Sampled....: 10:10 Sample Matrix....: Water

itroaniline, Low Level Water romophenyl phenyl ether, Low Level Water	9.7 0.49 9.7 9.7 1.9 19 0.97 0.97 1.9 19 0.97 4.9	* *	2.3 0.11 0.80 2.0 0.20 3.2 0.12 0.13 0.13 3.6 0.13 2.2 0.18	9.7 0.49 9.7 9.7 1.9 19 0.97 0.97 1.9 19 0.97 9.7	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134790 134790 134790 134790 134790 134790 134790 134790 134790 134790 134790 134790 134790 134790	11, 11, 11, 11, 11, 11, 11, 11,	/18/04 /18/04 /18/04 /18/04 /18/04 /18/04 /18/04 /18/04 /18/04 /18/04	1503 1503 1503 1503 1503 1503 1503 1503
-Dinitrotoluene, Low Level Water itrophenol, Low Level Water itroaniline, Low Level Water ethyl phthalate, Low Level Water -Dinitrophenol, Low Level Water naphthylene, Low Level Water -Dinitrotoluene, Low Level Water naphthene, Low Level Water nenzofuran, Low Level Water itrophenol, Low Level Water itrophenol, Low Level Water itrophenol, Low Level Water itroaniline, Low Level Water	0.49 9.7 9.7 1.9 19 0.97 0.97 1.9 19 0.97 9.7	* * *	0.11 0.80 2.0 0.20 3.2 0.12 0.13 0.12 0.13 3.6 0.13 2.2	9.7 9.7 1.9 19 0.97 0.97 1.9 19 0.97 9.7 4.9	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134790 134790 134790 134790 134790 134790 134790 134790 134790 134790 134790	11, 11, 11, 11, 11, 11, 11,	/18/04 /18/04 /18/04 /18/04 /18/04 /18/04 /18/04 /18/04 /18/04	1503 1503 1503 1503 1503 1503 1503 1503
itrophenol, Low Level Water itrosniline, Low Level Water ethyl phthalate, Low Level Water -Dinitrophenol, Low Level Water naphthylene, Low Level Water -Dinitrotoluene, Low Level Water naphthene, Low Level Water nenzofuran, Low Level Water itrophenol, Low Level Water itrosniline, Low Level Water itrosniline, Low Level Water	9.7 9.7 1.9 19 0.97 0.97 1.9 19 0.97 9.7	*	0.80 2.0 0.20 3.2 0.12 0.13 0.13 3.6 0.13 2.2 0.18	9.7 1.9 19 0.97 0.97 1.9 19 0.97 9.7 4.9	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134790 134790 134790 134790 134790 134790 134790 134790 134790 134790	11, 11, 11, 11, 11, 11,	/18/04 /18/04 /18/04 /18/04 /18/04 /18/04 /18/04 /18/04	1503 1503 1503 1503 1503 1503 1503 1503
itroaniline, Low Level Water ethyl phthalate, Low Level Water -Dinitrophenol, Low Level Water maphthylene, Low Level Water -Dinitrotoluene, Low Level Water maphthene, Low Level Water menzofuran, Low Level Water itrophenol, Low Level Water itroaniline, Low Level Water itromochenyl phenyl ether, Low Level Water	9.7 1.9 19 0.97 0.97 0.97 1.9 19 0.97 9.7	*	2.0 0.20 3.2 0.12 0.13 0.12 0.13 3.6 0.13 2.2 0.18	1.9 19 0.97 0.97 0.97 1.9 19 0.97 9.7 4.9	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134790 134790 134790 134790 134790 134790 134790 134790 134790	11, 11, 11, 11, 11, 11,	/18/04 /18/04 /18/04 /18/04 /18/04 /18/04 /18/04	1503 1503 1503 1503 1503 1503 1503 1503
ethyl phthalate, Low Level Water -Dinitrophenol, Low Level Water naphthylene, Low Level Water -Dinitrotoluene, Low Level Water naphthene, Low Level Water menzofuran, Low Level Water itrophenol, Low Level Water itroaniline, Low Level Water itromochenyl phenyl ether, Low Level Water	1.9 0.97 0.97 0.97 0.97 1.9 19 0.97 9.7 4.9	U *	3.2 0.12 0.13 0.12 0.13 3.6 0.13 2.2 0.18	19 0.97 0.97 0.97 1.9 19 0.97 9.7 4.9	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134790 134790 134790 134790 134790 134790 134790 134790	11, 11, 11, 11, 11,	/18/04 /18/04 /18/04 /18/04 /18/04 /18/04 //18/04	1503 1503 1503 1503 1503 1503 1503
-Dinitrophenol, Low Level Water naphthylene, Low Level Water -Dinitrotoluene, Low Level Water naphthene, Low Level Water menzofuran, Low Level Water itrophenol, Low Level Water itroaniline, Low Level Water itromochenyl phenyl ether, Low Level Water	0.97 0.97 0.97 0.97 1.9 19 0.97 9.7 4.9	U U U *	0.12 0.13 0.12 0.13 3.6 0.13 2.2 0.18	0.97 0.97 0.97 1.9 19 0.97 9.7 4.9	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134790 134790 134790 134790 134790 134790 134790	11, 11, 11, 11,	/18/04 /18/04 /18/04 /18/04 /18/04 /18/04	1503 1503 1503 1503 1503 1503 1503
naphthylene, Low Level Water -Dinitrotoluene, Low Level Water naphthene, Low Level Water enzofuran, Low Level Water itrophenol, Low Level Water itroaniline, Low Level Water itroaniline, Low Level Water	0.97 0.97 0.97 1.9 19 0.97 9.7 4.9	U U U *	0.12 0.13 0.12 0.13 3.6 0.13 2.2 0.18	0.97 0.97 1.9 19 0.97 9.7 4.9	1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L	134790 134790 134790 134790 134790 134790	11, 11, 11, 12,	/18/04 /18/04 /18/04 /18/04 /18/04	1503 1503 1503 1503 1503 1503
-Dinitrotoluene, Low Level Water naphthene, Low Level Water menzofuran, Low Level Water itrophenol, Low Level Water iorene, Low Level Water itroaniline, Low Level Water iromochenyl phenyl ether, Low Level Water	0.97 0.97 1.9 19 0.97 9.7 4.9	U U *	0.13 0.12 0.13 3.6 0.13 2.2 0.18	0.97 1.9 19 0.97 9.7 4.9	1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L	134790 134790 134790 134790 134790	11, 11, 12, 11,	/18/04 /18/04 /18/04 /18/04 /18/04	1503 1503 1503 1503 1503
naphthene, Low Level Water enzofuran, Low Level Water itrophenol, Low Level Water lorene, Low Level Water litroaniline, Low Level Water Iromochenyl phenyl ether, Low Level Water	0.97 1.9 19 0.97 9.7 4.9	U *	0.13 3.6 0.13 2.2 0.18	1.9 19 0.97 9.7 4.9	1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L	134790 134790 134790 134790	11, 11, 11,	/18/04 /18/04 /18/04 /18/04	1503 1503 1503 1503
enzofuran, tow Level Water itrophenol, Low Level Water orene, Low Level Water litroaniline, Low Level Water romophenyl phenyl ether, Low Level Water	1.9 19 0.97 9.7 4.9	U *	0.13 3.6 0.13 2.2 0.18	19 0.97 9.7 4.9	1.00000 1.00000 1.00000	ug/L ug/L ug/L	134790 134790 134790	11. 11.	/18/04 /18/04 /18/04	1503 1503 1503
itrophenol, Low Level Water prene, Low Level Water litroaniline, Low Level Water promophenyl phenyl ether, Low Level Water	19 0.97 9.7 4.9	U *	3.6 0.13 2.2 0.18	0.97 9.7 4.9	1_00000	ug/L ug/L	134790 134790	11,	/18/04 /18/04	1503 1503
orene, Low Level Water Titroaniline, Low Level Water Tromophenyl phenyl ether, Low Level Water	0.97 9.7 4.9	U *	2.2 0.18	9.7 4.9	1.00000	ug/L	134790	111	/18/04	1503
itroaniline, Low Level Water romophenyl phenyl ether, Low Level Water	9.7 4.9		2.2 0.18	4.9				1 11	/ IS/U4	1203
romophenyl phenyl ether, Low Level Water	4.9		0.18		1.00000	l ug/L	113470111		440 202	4507
romophenyt phenyt ether, tow tevet water		1.7.1							/18/04	1000
echlarabonzene iow Level Walti		11111	0.094	0.49	1.00000	ug/L	134790	11	/18/04	1000
Delited Obstitute and I have	1.9	lül	0.15	1.9	1.00000	ug/L	134790	13	/18/04	1203
thyl phthalate, Low Level water	4.9	liil	0.73	4.9	1.00000	ug/L	134790	111	/18/04	1703
Fluorene, Low Level Water 4-Witroaniline, Low Level Water 4-Bromophenyl phenyl ether, Low Level Water Hexachlorobenzene, Low Level Water Diethyl phthalate, Low Level Water 4-Chlorophenyl phenyl ether, Low Level Water Pentachlorophenol, Low Level Water n-Witrosodiphenylamine, Low Level Water 4,6-Dinitro-2-methylphenol, Low Level Water Phenanthrene, Low Level Water Anthracene, Low Level Water Carbazole, Low Level Water		lül		9.7				(-1)	/18/04	1000
	n 97	lül		0.97				13	/18/04	1505
			2.3	19				11	/15/04	1505
-Dinitro-2-methylphenol, Low Level Water			0.14	0.97					1/18/04	1503
enanthrene, Low Level Water	0.77		0.15	0.97	1.00000	ug/L				
hracene, Low Level Water				4.9	1.00000	ug/L				
bazole, Low Level Water			0.35	4.9	1.00000	ug/L				
-n-butyl phthalate, low Level Water	0.16	151	0.14	0.97	1.00000	ug/L				
uoranthene, Low Level Water		[7]		0.97	1.00000	ug/L				
rene, Low Level Water				1.9	1.00000	ug/L				
tyl benzyl phthalate, Low Level Water		151			11.00000	ug/L		117	1/18/04	1503
nzo(s)anthracene, Low Level Water				0.49	1.00000	ug/L	134790	11	1/18/04	1503
rysene, Low Level Water	6.11	"			1.	1				
	tachlorophenol, Low Level Water litrosodiphenylamine, Low Level Water -Dinitro-2-methylphenol, Low Level Water enanthrene, Low Level Water chracene, Low Level Water	introtoplenty phony tends of the control of the con	itrachtorophenot, Low Level Water itrosodiphenylamine, Low Level Water inhitro-2-methylphenol, Low Level Water manthrene, Low Level Water chracene, Low Level Water bazole, Low Level Water inhutyl phthalate, low Level Water coranthene, Low Level Water core, Low Level Water iprofe) phthalate, Low Level Water iprofe) phthalate, Low Level Water core, Low Lev	itrocodiphenylamine, Low Level Water -Dinitro-2-methylphenol, Low Level	1	1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.00000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000000	1	134790 1	1	17/18/04 17/18/04

^{*} In Description = Dry Wgt.

Date: 11/19/2004

Job Number: 231657

LABORATORY TEST RESULTS

project isace grass to accs ATTN: Eric Ettis

CUSTONER: MKM Engineers, Inc. PROJECT: USACE RYAAR 14 AGES

Customer Sample ID: LNWsw-047-SW Date Sampled....: 11/03/2004 Time Sampled....: 10:10 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDF	R .	DILUTION	UNITS	BATCH (π	DATE/TIME	TECH
<u> </u>	3,3-Dichlorobenzidine, Low Level Water Bis(2-ethylhexyl)phthalate, Low Level Water Di-n-octyl phthalate, Low Level Water Benzo(b)fluoranthene, Low Level Water Benzo(k)fluoranthene, Low Level Water Benzo(a)pyrene, Low Level Water Benzo(a)pyrene, Low Level Water Indeno(1,2,3-cd)pyrene, Low Level Water Dibenzo(a,h)anthracene, Low Level Water Benzo(ghi)perylene, Low Level Water	15 9.7 0.11	* * *	0.70 3.8 2.4 0.065 0.070 0.082 0.083 0.13	4.9 15 9.7 0.39 0.39 0.39 0.39 0.39	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134790 134790 134790 134790 134790 134790 134790 134790	1 1 1 1 1 1	1/18/04 1503 1/18/04 1503 1/18/04 1503 1/18/04 1503 1/18/04 1503 1/18/04 1503 1/18/04 1503 1/18/04 1503 1/18/04 1503	dpk dpk dpk dpk dpk dpk dpk dpk dpk
					To the party of th	AND AND AND AND AND AND AND AND AND AND					

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS Job Number: 231657

Date:11/18/2004

CUSTOMER: NKM Engineers, Inc. PROJECT: USAGE RVAAP 14 AGCS ATTM: Eric Ellis.

Customer Sample ID: LNWsw-047-SW Date Sampled.....: 11/03/2004 Time Sampled.....: 10:10 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O FLAGS	MOL	# L	DILUTION	UNITS	BATCH	OT	DATE/TI	IME	TECH
8330	Explosives by 8330 (HPLC) HMX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Nitrobenzene 2,4,6-TNT Tetryt 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 4-Amino-4,6-Dinitrotoluene 4-Amino-2,6-Dinitrotoluene 4-Nitrotoluene 4-Nitrotoluene 3-Nitrotoluene	0.20 0.20 0.20 0.16 0.25 0.78 0.36 0.43 0.33 0.33		0.068 0.064 0.058 0.055 0.044 0.078 0.16 0.12 0.14 0.12 0.11 0.093 0.10	0.31 0.20 0.20 0.20 0.16 0.25 0.78 0.36 0.43 0.36 0.33 0.31	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134706 134706 134706 134706 134706 134706 134706 134706 134706 134706 134706 134706 134706 134706	111111111111111111111111111111111111111	11/06/04 11/06/04 11/06/04 11/06/04 11/06/04 11/06/04 11/06/04 11/06/04 11/06/04 11/06/04 11/06/04 11/06/04	0513 0513 0513 0513 0513 0513 0513 0513	san san san san san san san san san
8332M	NG/PETN by 8332M (MPLC) Nitroglycerine	1.0		0.15	1.0	1.00000	ug/L	134713		11/09/04	0438	san

^{*} In Description = Dry Wgt.

Page 5

STL CHICAGO

Client Sample ID: LNWsw-047-SW

Trace Level Organic Compounds

Lot-Sample #: Date Sampled: Prep Date:	11/03/04 10:10 11/08/04	Work Order #: Date Received: Analysis Date:	11/04/04	Matrix	WATER
Prep Batch #: Dilution Factor:		Initial Wgt/Vol:	10 mL	Final '	Wgt/Vol: 10 mL
PARAMETER Nitroguanidine		RESULT ND	DETECTION LIMIT 20	UNITS ug/L	METHOD NONE UV/HPLC per

STL CHICAGO

Client Sample ID: LNWsw-047-SW

General Chemistry

Lot-Sample #...: G4K040343-002 Work Order #...: GV9KE Matrix....: WATER

Date Sampled...: 11/03/04 Date Received..: 11/04/04

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Nitrocellulose
 ND
 0.50
 mg/L
 MCAWW 353.2
 11/11-11/13/04
 4316571

MDL..... 0.12

LABORATORY TEST RESULTS

Date: 11/18/2004

CUSTOMER: MKN Engineers, Inc.

PROJECT: USACE RVAAP 14 ADES

ATTN: Eric Ellis

Oustomer Sample ID: LNWsw-048-SW Date Sampled.....: 11/03/2004 Time Sampled.....: 09:10 Laboratory Sample 10: 231657-5 Date Received.....: 11/04/2004 Fime Received.....: 09:10

Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	C FLAGS	MOT.	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	TEC
7041	Antimony (GFAA) Antimony	7.5	Ü	2.5	7.5	1	ug/L	133763		11/09/04 2231	l daj
7060A	Arsenic (GFAA) Arsenic	0.57	В	0.51	2.0	1	ug/L	134121		11/11/04 2350) daj
7421	Lead (GFAA) Lead	3.0	U	0.79	3.0	1	ug/L	134350		11/12/04 2319	daj
7841	Thallium (GFAA) Thallium	4.0	U	1.3	4.0	1	ug/L	134082		11/11/04 0400	0 daj
7470A	Mercury (CVAA) Mercury	0.20	u	0.049	0.20	1	ug/L	134293		11/12/04 1403	3 gak
6010B	Metals Analysis (ICAP Trace) Aluminum Berium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium	120 35 2.0 2.0 39000 10 5.0 10 1100 9000 470 10 2800	B U U U U	24 1.5 0.17 0.44 24 1.5 1.0 1.6 40 12 0.71 1.9	150 10 2.0 2.0 100 10 5.0 10 120 100 10 500	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134280 134280 134280 134280 134280 134280 134280 134280 134280 134280 134280		11/13/04 1201 11/13/04 1201	1 tds 1 tds 1 tds 1 tds 1 tds 1 tds 1 tds 1 tds 1 tds 1 tds 1 tds 1 tds 1 tds 1 tds 1 tds 1 tds 1 tds

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 231657

Date: 11/18/2004

CUSTOMER: NKN Engineers, Inc. ATTN: Eric ELLIS

Customer Sample ID: LNWsw-048-SW Date Sampled.....: 11/03/2004 Fime Sampled.....: 09:10 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	#DL	RL	DIEUTION	ONITS	BATCH	рт	DATE/TIM	E TECH
	Selenium Silver Sodium Vanadium Zinc	3100 10	u u	5.0 3.1 500 2.1 10	15 10 1500 10 30	1 1 1 1	ug/L ug/L ug/L ug/L ug/L	134280 134280 134280 134280 134280		11/13/04 1: 11/13/04 1 11/13/04 1 11/13/04 1 11/13/04 1	201 tds 201 tds 201 tds
					·						And the state of t
							4 to 1 to 1 to 1 to 1 to 1 to 1 to 1 to				
										-	

^{*} In Description = Dry Wgt.

Page 11

Job Number: 231657

LABORATORY TEST RESULTS

Date: 11/28/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAP 14: AOCS ATTMS Enfo Ellis

Customer Sample 10: LNWsw-048-SW
Date Sampled....: 11/03/2004
Time Sampled....: 09:10
Sample Matrix...: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	₩DL	R L	DILUTION	UNITS	BATCH	DT	CATE/TIME	TECH
8081A	Organochlorine Pesticide Analysis alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dietdrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Methoxychlor alpha-Chlordane gamma-Chlordane Endrin aldehyde Endrin ketone Toxaphene	0.096 0.14 0.14		0.045 0.027 0.024 0.040 0.039 0.027 0.035 0.020 0.017 0.022 0.016 0.035 0.042 0.047 0.16 0.015 0.016 0.015	0.14 0.096 0.096 0.14 0.14 0.096 0.096 0.096 0.096 0.14 0.14 0.14 0.14 0.58 0.048 0.096 0.14	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511		11/09/04 0022 11/09/04 0022	2 Pjg 2 Pjg

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS Job Number: 231657

Date: 11/24/2004

ATTN: Eric Ellis

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP IN ACCS

Customer Sample ID: LNWsw-048-SW Date Sampled....: 11/03/2004

Laboratory Sample ID: 231657-5 Date Received....: 11/04/2004

Sample Matrix....: Water

Time Sampled....: 09:10 Time Received.....: 09:10

TEST METHOD	PARAMETER/TEST, DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL.	DILUTION	UNETS	BATCH	DT	DATE/TIM	催	TECH
	PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	1.2	2 2 2 2 2 2	0.17 0.40 0.34 0.41 0.46 0.34 0.16	0.58 1.2 1.2 1.2 1.2 1.4 1.2 0.58	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135436 135436 135436 135436 135436 135436		11/10/04 0 11/10/04 0 11/10/04 0 11/10/04 0 11/10/04 0 11/10/04 0	0420 k 0420 k 0420 k 0420 k 0420 k	bjt bjt bjt bjt bjt
												į

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 11/18/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGCS

ATTN: Eric Ellis

Customer Sample ID: LNWsw-048-SW Date Sampled....: 11/03/2004 Time Sampled....: 09:10 Sample Matrix....: Water

Notatile Drganics Chloromethane 1.0 U 0.080 1.0 1.0000 Ug/L 134097

^{*} In Description = Dry Wgt.

Job Number: 231657

LABORATORY TEST RESULTS

Date: 11/18/2004

CUSTOMER: MKM Engineers, inc.

PROJECT: USACE RVAAP 14 AOCS

ATIN: Eric Ellis

Customer Sample ID: LMWsw-048-SW Date Sampled.....: 11/03/2004 Time Sampled.....: 09:10 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SANPLE RESULT	Q FLAGS	MDE	PL:	DILUTEON	UNITS	BATCH	ĐΤ	DATE/TIME	ECH
	Dibromochloromethane 1,2-Dibromochlane (EDB) Chlorobenzene Ethylbenzene map-Xylenes o-Xylene Styrene Bromoform 1,1,2,2-Tetrachloroethane 1,2-Dichloroethene (total) Xylenes (total)	1.0 1.0 2.0		0.060 0.13 0.080 0.070 0.18 0.080 0.13 0.11 0.090 0.23 0.28	1.0 1.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L	134097 134097 134097 134097 134097 134097 134097 134097 134097		11/11/04 2347 11/11/04 2347 11/11/04 2347 11/11/04 2347 11/11/04 2347 11/11/04 2347 11/11/04 2347 11/11/04 2347 11/11/04 2347	7 jdin 7 jdin 7 jdin 7 jdin 7 jdin 7 jdin 7 jdin 7 jdin 7 jdin
				, <u> </u>							

^{*} In Description = Dry Wgt.

IIL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS
Job Number: 231657

Date: 11/19/2004

ATTN: Eric Ellis

CUSTOMER: MKM Engineers, Inc.

Customer Sample ID: LNWsw-048-SW Date Sampled....: 11/03/2004 Time Sampled....: 09:10 Sample Matrix....: Water Laboratory Sample 10: 231657-5
Date Received.....: 11/04/2004
Time Received.....: 09:10

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	a FLAGS	30 E	RL	DILUTION	UNITS	BATCH O	DATEXTIME	TEC
8270C	Semivolatile Organics Phenol, Low Level Water Bis(2-chloroethyl)ether, Low Level Water 1,3-Dichlorobenzene, Low Level Water 1,4-Dichlorobenzene, Low Level Water 1,2-Dichlorobenzene, Low Level Water Benzyl alcohol, Low Level Water 2-Methylphenol (o-cresol), Low Level Water 2,-exybis (1-chloropropane), Low Level Water n-Nitroso-di-n-propylamine, Low Level Water Hexachloroethane, Low Level Water 4-Nethylphenol (m/p-cresol), Low Level Water Nitrobenzene, Low Level Water Nitrobenzene, Low Level Water 8is(2-chloroethoxy)methane, Low Level Water 1,2,4-Trichlorobenzene, Low Level Water 1,2,4-Trichlorobenzene, Low Level Water 2,4-Dimethylphenol, Low Level Water 2,4-Dimethylphenol, Low Level Water Naphthalene, Low Level Water 2,4-Oichlorophenol, Low Level Water 2,4-5-Trichlorophenol, Low Level Water 2,4,5-Trichlorophenol, Low Level Water 2,4,5-Trichlorophenol, Low Level Water 2,4,5-Trichlorophenol, Low Level Water 2,4,5-Trichlorophenol, Low Level Water 2-Nethylnaphthalene, Low Level Water 2-Nethylnaphthalene, Low Level Water 2-Nitroaniline, Low Level Water 2-Nitroaniline, Low Level Water 2-Chloronaphthalene, Low Level Water	4.9 1.9 1.9 1.9 1.9 1.9 1.9 0.49 4.9 1.9 4.9 1.9 4.9 7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	*	0.34 0.29 0.42 0.32 0.34 2.1 0.25 0.27 0.079 0.59 0.97 0.16 0.30 0.33 2.9 0.25 1.3 0.62 0.16 9.88 2.7 0.20 1.4 0.63 0.13	4.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 4.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1	1.00000 1.00000	09/L 09/L 09/L 09/L 09/L 09/L 09/L 09/L	134790 134790	11/18/04 1526 11/18/04 1526	5 dpk 5 dpk 5 dpk 6 dpk

PROJECT: USACE RVAAP 14 AGES

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 11/19/2004

Job Number: 231657

PROJECT: USACE RVAAP 14 AGES

ATTN: Eric Ellis

Customer Sample ID: LNWsw-048-SW . Date Sampled....: 11/03/2004 Fime Sampled....: 09:10 Laboratory Sample ID: 231657-5
Date Received.....: 11/04/2004
Time Received.....: 09:10

Fime Sampled....: U9:10 Sample Matrix....: Water

CUSTOMER: MKM Engineers, inc.

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	G FLAGS	MDL	RL	OILUTION	UNITS	BATCH	DT	DATE/TIME	TECH
	4-Chloro-3-methylphenol, Low Level Water 2,6-Dinitrotoluene, Low Level Water 3-Nitroaniline, Low Level Water 3-Nitroaniline, Low Level Water Dimethyl phthalate, Low Level Water 2,4-Dinitrophenol, Low Level Water Acenaphthylene, Low Level Water Acenaphthene, Low Level Water Acenaphthene, Low Level Water Acenaphthene, Low Level Water Acenaphthene, Low Level Water 4-Nitrophenol, Low Level Water 4-Nitrophenol, Low Level Water 4-Nitroaniline, Low Level Water 4-Bromophenyl phenyl ether, Low Level Water Hexachlorobenzene, Low Level Water 4-Chlorophenyl phenyl ether, Low Level Water 4-Chlorophenol, Low Level Water 4-6-Dinitro-2-methylphenol, Low Level Water Phenanthrene, Low Level Water Anthracene, Low Level Water Di-n-butyl phthalate, Low Level Water Fluoranthene, Low Level Water Fluoranthene, Low Level Water Butyl benzyl phthalate, Low Level Water Benzo(a)anthracene, Low Level Water Chrysene, Low Level Water	9.7 0.49 9.7 9.7 1.9 19 0.97 0.97 1.9 19 0.97 4.9 0.49 1.9 4.9 9.7 0.97 19 0.97 1.9 0.97	* *	2.3 0.11 0.80 2.0 0.20 3.2 0.12 0.13 0.12 0.13 3.6 0.13 2.2 0.18 0.094 0.15 0.73 1.7 0.13 2.3 0.14 0.15 0.28 0.35 0.14 0.15 0.35 0.14	9.7 0.49 9.7 9.7 1.9 19 0.97 0.97 1.9 9.7 4.9 0.49 1.9 4.9 9.7 0.97 0.97 0.97 1.9 0.97	1.00000 1.00000	08/L 09/L 09/L 09/L 09/L 09/L 09/L 09/L 09	134790 134790	The state of the s	11/18/04 152 11/18/04 152 11/18/04 152 11/18/04 152 11/18/04 152 11/18/04 152 11/18/04 152 11/18/04 152 11/18/04 152 11/18/04 152 11/18/04 153	26 dpk 26 dpk

^{*} In Description = Dry Wgt.

STL Chicago is part of Severn Trent Laboratories, Inc.

RESULTS TEST LABORATORY Job Number: 231657

Date: 11/19/2004

PROJECT: USACE RVAAP 14 AOCS CUSTOMER: MKM Engineers, inc.

ATTM: Pric Ellis

Customer Sample ID: LNWsw-048-SW Date Sampled....: 11/03/2004 Time Sampled....: 09:10 Sample Matrix....: Water

3.3-Dichlorobenzidine, Low Level Water Bis(2-ethylhexyl)phthalate, Low Level Water Di-n-octyl phthalate, Low Level Water Benzo(b)fluoranthene, Low Level Water Benzo(k)fluoranthene, Low Level Water Benzo(a)pyrene, Low Level Water Indemo(1,2,3-cd)pyrene, Low Level Water Dibenzo(a,h)anthracene, Low Level Water Dibenzo(a)phrylene, Low Level Water Dibenzo(b)phrylene, Low Lev	TEST METHOD	PARAMETER/IEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	HDL .	RL	DILUTION	200000000000000000000000000000000000000	ВАТСН	$\overline{}$	DATEATI	3 (3 C) (3 C)
		3.3-Dichlorobenzidine, Low Level Water Bis(2-ethylhexyl)phthalate, Low Level Water Di-n-octyl phthalate, Low Level Water Benzo(b)fluoranthene, Low Level Water Benzo(k)fluoranthene, Low Level Water Benzo(a)pyrene, Low Level Water Indeno(1,2,3-cd)pyrene, Low Level Water Dibenzo(a h)anthracene, Low Level Water	15 9.7 0.39 0.39 0.39 0.39	U * U U U U U W	3.8 2.4 0.065 0.070 0.082 0.083 0.13	15 9_7 0_39 0_39 0_39 0_39 0_39	1,00000 1,00000 1,00000 1,00000 1,00000 1,00000	ug/L ug/L ug/L ug/L ug/L ug/L	134790 134790 134790 134790 134790 134790		11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04	1526 dp 1526 dp 1526 dp 1526 dp 1526 dp 1526 dp 1526 dp

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS Job Number: 231657

Date: 11/18/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAP 14 ACCS ATTN: Eric ELLis

Customer Sample ID: LNWsw-048-SW Date Sampled....: 11/03/2004 Time Sampled....: 09:10 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	C	FLACS	MD1	RL	DILUTION	UNITS	BATCH	στ	DATEXTIME	TECH
8330 8332M	Explosives by 8330 (HPLC) HMX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Nitrobenzene 2,4,6-TNT Tetryl 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-Dinitrotoluene 4-Amino-2,6-Dinitrotoluene 4-Nitrotoluene 4-Nitrotoluene 3-Nitrotoluene MG/PEIN by 8332M'(HPLC) Nitroglycerine	0.20 0.20 0.20 0.16	ם טבטעטעטטטטטטט		0.069 0.065 0.059 0.056 0.045 0.079 0.17 0.12 0.15 0.12 0.11 0.095 0.10	0.32 0.20 0.20 0.20 0.16 0.25 0.79 0.37 0.44 0.37 0.34 0.32	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134706 134706 134706 134706 134706 134706 134706 134706 134706 134706 134706 134706 134706		11/06/04 054 11/06/04 054	6 san 6 san 6 san 6 san 6 san 6 san 6 san 6 san 6 san 6 san 6 san 6 san 6 san
										IA No.		

^{*} In Description = Dry Wgt.

STL CHICAGO

Client Sample ID: LNWsw-048-SW

Trace Level Organic Compounds

Lot-Sample #:	G4K040343-004	Work Order #:	GV9KH1AC	Matrix WATER
Date Sampled:	11/03/04 09:10	Date Received:	11/04/04	
Prep Date:	11/08/04	Analysis Date:	11/11/04	
1 "				

Prep Batch #...: 4313492

Dilution Factor: 1 Initial Wgt/Vol: 10 mL Final Wgt/Vol..: 10 mL

PARAMETER RESULT LIMIT UNITS METHOD
Nitroguanidine ND 20 ug/L NONE UV/HPLC per

STL CHICAGO

Client Sample ID: LNWsw-048-SW

General Chemistry

Lot-Sample #...: G4K040343-004 Work Order #...: GV9KH Matrix.....: WATER

Date Sampled...: 11/03/04 Date Received..: 11/04/04

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Nitrocellulose
 ND
 0.50
 mg/L
 MCAWW 353.2
 11/11-11/13/04
 4316571

MDL..... 0.12

LABORATORY TEST RESULTS

Job Number: 231657

Date:11/18/2004

CUSTOMER: MKM Ergineers, Inc. PROJECT: USACE RVAAP: 14 AGCS ATTW: Eric Ellis

Customer Sample ID: LNWsw-049-SW Date Sampled....: 11/03/2004 Time Sampled....: 14:35 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MD1_	N L	DILUTION	CHITS	BATCH	OT	DATEYTHNE	TECH
7041	Antimony (GFAA) Antimony	7.5	U	2.5	7.5	1	ug/L	133763		11/09/04 2151	1 daj
7060A	Arsenic (GFAA) Arsenic	1.0	В	0.51	2.0	1	ug/L	134121		11/11/04 2310	6 daj
7421	Lead (GFAA) Lead	3.0	u ·	0.79	3.0	1	ug/L	134350		11/12/04 225	6 daj
7841	Thallium (GFAA) Thallium	1.5	В	1.3	4.0	1	ug/L	134082		11/11/04 0334	4 daj
7470A	Mercury (CVAA) Mercury	0.050	В	0.049	0.20	1	ug/L	134293		11/12/04 135	9 gok
6010B	Metals Analysis (ICAP Trace) Aluminum Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium	390 36 2.0 2.0 38000 10 5.0 10 1600 8900 450 10 3500	ט ט ט ט ט ט	24 1.5 0.17 0.44 24 1.5 1.0 1.6 40 12 0.71 1.9	150 10 2.0 2.0 100 5.0 10 120 100 10 10 500	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134280 134280 134280 134280 134280 134280 134280 134280 134280 134280 134280		11/13/04 114 11/13/04 114 11/13/04 114 11/13/04 114 11/13/04 114 11/13/04 114 11/13/04 114 11/13/04 114 11/13/04 114 11/13/04 114 11/13/04 114 11/13/04 114 11/13/04 114	8 tds 8 tds 18 t

^{*} In Description = Dry Wgt.

Job Number: 231657	LABORATORY TEST RESULTS	Date:11/18/2004
CUSTOMER: MCM Engineers, Inc.	PROJECT: USACE RVAAP: 14 ACCS	NITHS Eric Ellis

Customer Sample ID: LNWsw-049-SW Date Sampled.....: 11/03/2004 Time Sampled.....: 14:35 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	q	FLAGS	ID L	RL	DILUTION	UNITS	BATCH	DΤ	DATE/TIME	ТЕСН
	Selenium Silver Sodium Yanadium Zinc	10 3100	ם ט		5.0 3.1 500 2.1 10	15 10 1500 10 30	1 1 1 1	ug/L ug/L ug/L ug/L	134280 134280 134280 134280 134280		11/13/04 1148 11/13/04 1148 11/13/04 1148 11/13/04 1148 11/13/04 1148	tds tds tds
									A DESCRIPTION OF THE PROPERTY			

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 11/28/2004

Job Number: 231657

CUSTOMER: MKM Englineers, Inc.

PROJECT: USACE RVAAP 14 AGES

ATTW: Eric Ellis

Customer Sample ID: LNWsw-049-SW Date Sampled....: 11/03/2004 Time Sampled....: 14:35 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	NOL	RL	DILUTION	UNITS	BATCH	DT DATE/FIME	TECH
8081A	Organochlorine Pesticide Analysis alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-ODE Endrin Endosulfan sulfate 4,4'-DDT Methoxychlor alpha-Chlordane gamma-Chlordane Endrin ketone Toxaphene			0.047 0.028 0.025 0.042 0.041 0.028 0.036 0.021 0.018 0.023 0.017 0.042 0.036 0.044 0.049 0.17 0.016 0.017	0.15 0.10 0.15 0.15 0.15 0.10 0.10 0.10 0.15 0.11 0.15 0.60 0.050 0.15 0.15	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511 135511	11/08/04 233 11/08/04 233	32 pig 32 pig 32 pig 32 pig 33 pig 33 pig 33 pig 33 pig 33 pig 34 pig 35 pig 36 pig 37 pig 38 pig 38 pig 39 pig 31 pig 32 pig 33 pig 33 pig 33 pig

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS
Job Number: 231657

Date:11/24/2004

CUSTOMER: NKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: LNWsw-049-SW Date Sampled.....: 11/03/2004 Time Sampled.....: 14:35 Laboratory Sample 10: 231657-3
Date Received.....: 11/04/2004

Sample Matrix....: Water

Time Received.....: 09:10

Aroctor 1221 1.3 U 0.42 1.3 1.00000 ug/L 135436 11/10, Aroctor 1232 1.3 U 0.35 1.3 1.00000 ug/L 135436 11/10, Aroctor 1242 1.3 U 0.43 1.3 1.00000 ug/L 135436 11/10, Aroctor 1248 1.5 U 0.48 1.5 1.00000 ug/L 135436 11/10, Aroctor 1254 1.3 U 0.35 1.3 1.00000 ug/L 135436 11/10, Aroctor 1254 1.3 U 0.35 1.3 1.00000 ug/L 135436 11/10,	EST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL I	DILUTION	LWITS	BATCH	DT	DATE/TIME	TECH
	A A A A	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	0.60 1.3 1.3 1.3 1.5	U U U U	0.18 0.42 0.35 0.43 0.48 0.35	1.3 1.3 1.3 1.5 1.5	1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L	135436 135436 135436 135436 135436	11	1/10/04 0303 1/10/04 0303 1/10/04 0303 1/10/04 0303 1/10/04 0303 1/10/04 0303 1/10/04 0303	9 bjt 9 bjt 9 bjt 9 bjt 9 bjt

^{*} In Description = Dry Wgt.

Page 3

LABORATORY TEST RESULTS

Date: 11/18/2004

CUSTOMER: MKM Bogineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: LNWsw-049-SW
Date Sampled.....: 11/03/2004
Time Sampled.....: 14:35
Sample Metrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOT	ŖL	DILUTION	UNITS	BATCH	or	DATE/TIME		ECH
	Volatile Organics Chloromethane Vinyl chloride Bromomethane Chloroethane 1,1-Dichloroethene Carbon disulfide Acetone Methylene chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 2-Butanome (MEK) Bromochloromethane Chloroform 1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Trichloroethene 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-pentanome (MIBK) Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene 2-Hexanome	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		0.080 0.080 0.10 0.080 0.12 0.20 1.8 0.35 0.14 0.11 0.090 1.2 0.10 0.11 0.080 0.13 0.090 0.090 0.19 0.12 0.12 0.12 0.15 0.15 0.15 0.090	1.0 1.0 1.0 1.0 1.0 5.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134097 134097		11/11/04 2: 11/11/04 2:	301 301 301 301 301 3301	idn jeh jeh jeh jeh jeh jeh jeh jeh jeh jeh

^{*} In Description = Dry Wgt.

Job Number: 231657 Date:11/18/2004

LABORATORY TEST RESULTS

CLISTOMER: MKM Engineers, Inc. PROJECT: USAGE RVAAP 14 AGCS ATTN: Eric Etuis

Customer Sample ID: LNWsw-049-SW Date Sampled....: 11/03/2004
Time Sampled....: 14:35
Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DIEUTION	UNITS	BATCH	DΤ	DATE/TIME	TECH
	Dibromochloromethane 1,2-Dibromoethane (EDB) Chlorobenzene Ethylbenzene m&p-Xylenes o-Xylene Styrene Bromoform 1,1,2,2-Tetrachloroethane 1,2-Dichloroethene (total) Xylenes (total)	1,0 1.0 1.0 1.0 2.0 1.0 1.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.060 0.13 0.080 0.070 0.18 0.080 0.13 0.11 0.090 0.23 0.28	1.0 1.0 1.0 2.0 1.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134097 134097 134097 134097 134097 134097 134097 134097 134097		11/11/04 2301 11/11/04 2301	jdn jdn jdn jdn jdn jdn jdn jdn jdn

^{*} In Description = Dry Wgt.

RESULTS LABORATORY TEST

Date: 11/19/2004

Job Number: 231657

PROJECT: USACE RVAAP 14 AGES

ATTN: Enic Ellis

CUSTOMER: #KM Engineers, Inc.

Customer Sample ID: LNWsw-049-SW Date Sampled....: 11/03/2004 Time Sampled....: 14:35 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	a	FLAGS	MDL	W L	DILUTION	UNITS	BATCH	DATE/TIME	TEC
8270c	Semivolatile Organics Phenol, Low Level Water Bis(2-chloroethyl)ether, Low Level Water 1,3-Dichlorobenzene, Low Level Water 1,4-Dichlorobenzene, Low Level Water 1,2-Dichlorobenzene, Low Level Water Benzyl alcohol, Low Level Water 2-Methylphenol (o-cresol), Low Level Water 2,2-oxybis (1-chloropropane), Low Level Water 1,2-oxybis (1-chloropropane), Low Level Water Nitroso-di-n-propylamine, Low Level Water Hexachloroethane, Low Level Water 4-Methylphenol (m/p-cresol), Low Level Water 2-chlorophenol, Low Level Water Nitrobenzene, Low Level Water Bis(2-chloroethoxy)methane, Low Level Water 1,2,4-Trichlorobenzene, Low Level Water 1,2,4-Trichlorobenzene, Low Level Water Isophorome, Low Level Water 2,4-Dimethylphenol, Low Level Water Hexachlorobutadiene, Low Level Water 4-Chloroaniline, Low Level Water 2,4-Dichlorophenol, Low Level Water 2,4,6-Trichlorophenol, Low Level Water 2,4,5-Trichlorophenol, Low Level Water Hexachlorocyclopentadiene, Low Level Water 2-Methylnaphthalene, Low Level Water 2-Nitroaniline, Low Level Water 2-Chloronaphthalene, Low Level Water	5.2 2.1 2.1 2.1 2.1 2.1 2.1 0.52 5.2 1.0 2.1 2.1 21 2.1 21 2.1 21 2.1 21 2.1 21 2.1 21 2.1 21 2.1 2.		*	0.36 0.31 0.44 0.34 0.36 2.3 0.27 0.29 0.084 0.63 0.10 0.12 0.16 0.32 0.35 3.1 0.27 1.3 0.66 0.16 0.94 2.9 0.22 1.4 0.67 0.13 0.27	5.2 2.1 2.1 2.1 2.1 2.1 2.1 0.52 5.2 2.1 5.2 1.0 2.1 2.1 2.1 10 5.2 1.0 10 5.2 1.0 10 5.2	1.00000 1.00000	ug/L ug/L ug/L ug/L	134790 134790	11/18/04 1440 11/18/04 1440 11/18/04 1440 11/18/04 1440 11/18/04 1441 11/18/04 1441 11/18/04 1441 11/18/04 1441 11/18/04 144	0 dpkkmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 11/19/2004

Job Number: 231657

CUSTOMER: MKM Engineers, inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Erid Ellis

Customer Sample ID: LNWsw-049-SW Date Sampled....: 11/03/2004 Time Sampled....: 14:35 Sample Matrix....: Water

	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL.	RL	DILUTION	CMITS	BATCH	(A) \$.000	ATE/TIME	<u> </u>
2 2 3 0 2 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	PARAMETER/TEST DESCRIPTION -Chloro-3-methylphenol, Low Level Water 2,6-Dinitrotoluene, Low Level Water -Nitrophenol, Low Level Water Dimethyl phthalate, Low Level Water 2,4-Dinitrotoluene, Low Level Water 2,4-Dinitrotoluene, Low Level Water 2,4-Dinitrotoluene, Low Level Water 2,4-Dinitrotoluene, Low Level Water 3,4-Dinitrotoluene, Low Level Water 4-Ritrophenol, Low Level Water 5-Iucrene, Low Level Water 4-Nitroaniline, Low Level Water 4-Ritroaniline, Low Level Water 4-Bromophenyl phenyl ether, Low Level Water Hexachlorobenzene, Low Level Water Diethyl phthalate, Low Level Water 4-Chlorophenyl phenyl ether, Low Level Water Pentachlorophenol, Low Level Water 4-Chlorophenyl phenyl ether, Low Level Water A-6-Dinitro-2-methylphenol, Low Level Water Phenanthrene, Low Level Water Carbazole, Low Level Water Carbazole, Low Level Water Di-n-butyl phthalate, Low Level Water Fluoranthene, Low Level Water Benzo(a)anthracene, Low Level Water Chrysene, Low Level Water	10 0.52 10 2.1 21 1.0 1.0 2.1 21 1.0 10 5.2 0.52 2.1 5.2 10 1.0 21 1.0 21 1.0 21 1.0 21 1.0 21 1.0 2.1	* * *	2.5 0.11 0.85 2.2 0.22 3.4 0.12 0.13 0.13 2.4 0.20 0.10 0.15 0.77 1.8 0.13 2.5 0.14 0.15 0.30 0.37 0.14 0.15 0.30 0.37 0.14	10 0.52 10 10 2.1 21 1.0 1.0 2.1 21 1.0 5.2 0.52 2.1 5.2 10 1.0 21 1.0 21 1.0 2.1 2.1 2.1 2.1	1.00000 1.00000		134790 134790	11/ 11/ 11/ 11/ 11/ 11/ 11/ 11/ 11/ 11/	18/04 14 (18/04	440 dp 440 dp

^{*} In Description = Dry Wgt.

LABORATORY YEST' RESULTS

Date: 11/19/2004

CUSTOMER: MKM Engineers, inc.

PROJECT: USACE RVAAP 14 AGES

ATTN: Eric Ellis

Customer Sample ID: LNWsw-049-SW Date Sampled....: 11/03/2004

Laboratory Sample ID: 231657-3 Date Received.....: 11/04/2004 Time Received.....: 09:10

Time Sampled....: 14:35 Sample Matrix....: Water

BATCH DT DATE/TIME JECH DILUTION UNITS MDL Q FLAGS SAMPLE RESULT PARAMETER/TEST DESCRIPTION TEST WETHER 11/18/04 1440 dpk 134790 ug/L 1.00000 5.2 0.74 5,2 11/18/04 1440 dpk 3.3-Dichlorobenzidine, Low Level Water 134790 15 1.00000 ug/L 4.0 Bis(2-ethylhexyl)phthalate, Low Level Water 15 11/18/04 1440 dpk 1.00000 ug/L 134790 10 2.6 10 11/18/04 1440 dok Di-n-octyl phthalate, Low Level Water 134790 ug/L 1.00000 0.41 0.069 11/18/04 1440 dpk 0.41 Benzo(b)fluoranthene, Low Level Vater 134790 ug/L 0.41 1.00000 0.074 lul 0.41 11/18/04 1440 dok Benzo(k)fluoranthene, Low Level Water 134790 1.00000 ug/L 0.41 0.087 lul 0.41 11/18/04 1440 dpk Benzo(a)pyrene, Low Level Water 134790 ug/L 1.00000 0.41 0.0890.41 Indeno(1,2,3-cd)pyrene, Low Level Water 11/18/04 1440 dok 134790 ug/L 1.00000 0.41 0.13 Dibenzo(a,h)anthracene, Low Level Water 0.41 11/18/04 1440 dok 134790 1.00000 ug/L 1.0 0.20 1.0 Benzo(ghi)perylene, Low Level Water

^{*} In Description = Dry Wgt.

Date: 11/20/2004

CUSTOMER: MKM Engineers. Inc. ATTN: Enis ELLis

Customer Sample ID: LNWsw-049-SW Date Sampled....: 11/03/2004 Time Sampled....: 14:35 Sample Matrix....: Water

TEST METHOD	PARAMETERYTEST DESCRIPTION	SAMPLE RESULT	Q F	LAGS	300 C	RC	CILUTION	UNITS	BATCH	DΤ	DATE/I	IME	TECH
8332M	Explosives by 8330 (HPLC) HMX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Nitrobenzene 2,4,6-INT Tetryt 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-Dinitrotoluene 4-Amino-2,6-Dinitrotoluene 2-Mitrotoluene 3-Nitrotoluene MG/PETN by 8332M (HPLC) Nitroglycerine	0.31 0.099 0.20 0.20 0.16 0.25 0.78 0.36 0.33 0.31 0.31	ח מממחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחחח	a	0.068 0.064 0.058 0.055 0.044 0.078 0.16 0.12 0.14 0.12 0.11 0.093 0.10 0.10	0.31 0.20 0.20 0.20 0.16 0.25 0.78 0.36 0.33 0.36 0.33 1.031	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134706 134706 134706 134706 134706 134706 134706 134706 134706 134706 134706 134706		11/06/04 11/06/04 11/06/04 11/06/04 11/06/04 11/06/04 11/06/04 11/06/04 11/06/04 11/06/04	0441 0441 0441 0441 0441 0441 0441 0441	san san san san san san san san san san

^{*} In Description = Dry Wgt.

STL CHICAGO

Client Sample ID: LNWsw-049-SW

Trace Level Organic Compounds

11400 10101 013											
Date Sampled: Prep Date: Prep Batch #:	11/02/04 14:35 11/08/04	Work Order #: Date Received: Analysis Date:	TT/04/04	Matrix	WATER						
Prep Batch #: Dilution Factor:	4313492 1	Initial Wgt/Vol:	10 mL	Final 1	Wgt/Vol: 10 mL						
PARAMETER Nitroguanidine		RESULT ND	DETECTION LIMIT 20	UNITS ug/L	METHOD NONE UV/HPLC per						

STL CHICAGO

Client Sample ID: LNWsw-049-SW

General Chemistry

Lot-Sample #...: G4K040343-003 Work Order #...: GV9KF Matrix....: WATER

Date Sampled...: 11/02/04 Date Received..: 11/04/04

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 Nitrocellulose
 ND
 0.50
 mg/L
 MCAWW 353.2
 11/11-11/13/04
 4316571

LABORATORY TEST RESULTS

Date:11/19/2004

CUSTOMER: MKH Engineers, Inc.

PROJECT: USACE RVAAP TA ADCS

ATTH: Eric Ellis

Customer Sample ID: LNWsW-050-SW Date Sampled.....: 11/02/2004 Time Sampled.....: 11:30 Sample Matrix....: Water Laboratory Sample ID: 231611-3
Date Received.....: 11/03/2004
Time Received.....: 09:10

SAMPLE RESULT Q FLACS MDL RL DILUTION UNITS BATCH OT DATE/TIME TECH TEST METHOD PARAMETER/TEST DESCRIPTION 7041 Antimony (GFAA) 11/09/04 2050 daj 7.5 2.5 7.5 ug/L 133763 Antimony 7060A Arsenic (GFAA) 134121 11/11/04 2208 daj 0.59 0.512.0 ug/L Arsenic 7421 Lead (GFAA) 134350 11/12/04 2141 daj 3.0 0.79 3.0 ug/L Lead 7841 Thallium (GFAA) 4.0 ug/L 134082 11/11/04 0203 daj 4.0 1.3 Thallium 7470A Mercury (CVAA) 0.0490.20 ug/L 134303 11/12/04 1309 gok 0.20 Mercury Metals Analysis (ICAP Trace) 6010B 133381 11/05/04 1649 tds 150 ug/L 110 24 Aluminum 11/05/04 1649 tds 37 1.5 10 ug/L 133381 Barium 0.17 ug/L 133381 11/05/04 1649 tds 2.0 2.0 Bervilium 133381 11/05/04 1649 tds 2.0 u 0.44 2.0 uq/L Cadmium 11/05/04 1649 tds 100 ug/L 133361 24 35000 Calcium 11/05/04 1649 tds 10 ug/L 133381 1.5 Chromium 10 11/05/04 1649 tds 133381 5.0 ug/L 5.0 1.0 Cobalt 11/05/04 1649 tds 10 ug/L 133381 10 lu 1.6 Copper 11/05/04 1649 tds 133381 40 120 ug/L 1300 Iron 133381 11/05/04 1649 tds 100 ug/L 8100 12 Magnesium 11/05/04 1649 tds 0.71 10 ug/L 133381 350 Manganese 11/05/04 1649 tds 133381 10 ug/L 10 1.9 Nickel 11/05/04 1649 tds 133381 500 ug/L 2800 110 Potassium

^{*} In Description = Dry Wgt.

Job Number: 231611	LABORATORY TEST RESULTS Date: 11/19/2004									
TOMER: MKM Englineere, Inc.	PROJECT: USAC	e Rvaap T& Ages		¥TTI	i: Eric El	tīs				
Customer Sample ID: LNWsw-050-SW Date Sampled: 11/02/2004 Time Sampled: 11:30 Sample Matrix: Water		Laboratory Sample ID: 231611-3 Date Received: 11/03/2004 Time Received: 09:10								
T METHOD PARAMETER/TEST DESCRIPTION	SAMPLE RESULT: 0 FLA	GS NOL	RL:	DILUTION UNIT	S BATCH	DT DATE	/TINE			
Setenium Sitver Sodium Vanadium Zinc	15 10 3000 10 30	5.0 3.1 500 2.1 10	15 10 1500 10 30	1 ug/L 1 ug/L 1 ug/L 1 ug/L 1 ug/L	133381 133381 133381	11/05/4 11/05/4 11/05/4	04 1649 04 1649 04 1649 04 1649 04 1649 04 1649			
		- Marie 12 - A - A - A - A - A - A - A - A - A -								
							7777			

LABORATORY TEST RESULTS

^{*} In Description = Dry Wgt.

Date: 11/28/2004

CUSTOMER: MKM Engineers, inc.

PROJECT: USACE RVAAP 14 AUGS

ATTM: Erfc Ellis

Customer Sample ID: LNWsw-050-SW Date Sampled.....: 11/02/2004 Time Sampled.....: 11:30

Laboratory Sample ID: 231611-3
Date Received.....: 11/03/2004
Time Received.....: 09:10

Sample Matrix....: Water

TEST METACO	PARAMETERYTEST DESCRIPTION	SAMPLE RESULT	O FLAGS	M OL	RL	DILUTION	UNITS	BATCH	OF CATE/TIME TEC
8081A	Organochlorine Pesticide Analysis alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDJ Methoxychlor alpha-Chlordane gamma-Chlordane Endrin aldehyde Endrin ketone Toxaphene	0.15 0.097 0.097 0.15 0.15 0.097 0.15 0.097 0.097 0.097 0.15 0.11 0.15 0.15 0.15 0.15 0.15 0.25 0.049 0.097 0.097		0.046 0.027 0.024 0.041 0.040 0.027 0.035 0.020 0.017 0.022 0.017 0.041 0.035 0.043 0.048 0.17 0.016 0.017 0.034 0.017	0.15 0.097 0.097 0.15 0.15 0.097 0.097 0.097 0.097 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.49 0.097 0.15	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507	11/07/04 0056 pig 11/07/04 0056 pig

^{*} In Description = Dry Wgt.

Page 4

Job Number: 231611 LABORATORY TEST RESULTS
Date: 11/24/2004
CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAP: 14 AGCS ATTAL Enc. ELT)s

Customer Sample ID: LNWsw-050-SW Date Sampled.....: 11/02/2004 Time Sampled.....: 11:30 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	a FLAGS	MDE	RL	DILUTIDA	LHITS	GATCH DI	DATE/TIME	TECH
8082	PCB Analysis Aroctor 1016 Aroctor 1221 Aroctor 1232 Aroctor 1242 Aroctor 1248 Aroctor 1254 Aroctor 1254 Aroctor 1260	1.3 1.3 1.5 1.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.17 0.41 0.34 0.42 0.47 0.34 0.17	0.58 1.3 1.3 1.3 1.5 1.5 0.58	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	09/L 09/L 09/L 09/L 09/L 09/L 09/L	135432 135432 135432 135432 135432 135432 135432	11/09/04 22 11/09/04 22 11/09/04 22 11/09/04 22 11/09/04 22 11/09/04 22 11/09/04 22	28 bjt 28 bjt 28 bjt 28 bjt 28 bjt
								THE PARTY OF THE P		

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:11/16/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE: RVAMP 14 ACCS ATTM: Eric Ellis

Customer Sample ID: LNWsw-050-SW Date Sampled....: 11/02/2004 Time Sampled....: 11:30 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/T	IME	TECH
8260B	Volatile Organics										********	1
	Chloromethane	1.0	u	0.080	1.0	1.00000	ug/L	134095		11/11/04		
	Vinyl chloride	1.0	u	0.080	1.0	1.00000	ug/L	134095	1 1	11/11/04	1732	jdn
	Bromomethane	1.0	u u	0.10	1.0	1.00000	ug/L	134095		11/11/04		
	Chloroethane	1.0	u	0.080	1.0	1.00000	ug/L	134095		11/11/04		
	1,1-DichLoroethene	1.0	u	0.12	1.0	1.00000	ug/L	134095	1 1	11/11/04	1732	jdn
	Carbon disulfide	5.0	u	0.20	5.0	1.00000	ug/L	134095	1	11/11/04	1732	jdn
	Acetone	10	u	1.8	10	1.00000	ug/L	134095		11/11/04		
	Methylene chloride	1.5	ម	0.35		1.00000	ug/L	134095		11/11/04		
	trans-1,2-Dichloroethene		U	0.14	1.0	1.00000	ug/L	134095		11/11/04	1732	jdn
	1,1-Dichloroethane	1.0	U	0.11	1.0	1.00000	ug/L	134095		11/11/04		
	cis-1,2-Dichloroethene	1.0	U	0.090	1.0	1.00000	ug/L	134095	1 1	11/11/04	1732	jdn
	2-Butanone (MEK)	10	U	1.2	10	1.00000	ug/L	134095		11/11/04		
	Bromochloromethane	1.0	U U	0.10	1.0	1.00000	ug/L	134095		11/11/04		
	Chloroform			0.11	1.0	1.00000	ug/L	134095		11/11/04		
	1,1,1-Trichloroethane		U	0.080	1.0	1.00000	ug/L	134095	1 1	11/11/04	1732	jan 1
	Carbon tetrachloride	1.0	U	0.13	1.0	1.00000	ug/L	134095		11/11/04	1732	jan
	Benzene	1.0	U	0.090	1.0	1.00000	ug/L	134095	1	11/11/04	1732	Jdn
	1,2-Dichloroethane	1.0	U	0.090	1.0	1.00000	ug/L	134095		11/11/04		
	Trichloroethene	1.0	u	0.10	1.0	1.00000	ug/L	134095		11/11/04		
	1,2-Dichtoropropane	1.0	Ų	0.12	1.0	1,00000	ug/L	134095		11/11/04	17321	john
	Bromodichtoromethane	1.0	u	0.11	1.0	1.00000	ug/L	134095		11/11/04		
	cis-1,3-Dichloropropene	1.0	u	0.12	1.0	1.00000	ug/L	134095		11/11/04		
	4-Methyl-2-pentanone (MIBK)	10	U	0.65	10	1.00000	ug/L	134095		11/11/04		
	Toluene	1.0	U	0.10	1.0	1.00000	ug/L	134095		11/11/04		
	trans-1,3-Dichloropropene	1.0	U	0.15	1.0	1.00000	ug/L	134095		11/11/04		
	1,1,2-Trichloroethane		u	0.15	1.0	1.00000	ug/L	134095		11/11/04		
	Tetrachloroethene	1.0	U	0.090	1.0	1.00000	ug/L	134095		11/11/04		
1	2-Hexanone	10	U	0.53	10	1.00000	ug/L	134095		11/11/04	1732	Jan
												ŀ

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS
Job Number: 231611

Date: 11/16/2004

COSTONER: MKM Engineers, Inc. PROJECT: USAGE RVAAP 14 ACCS ATTN: Enic Ellis

Customer Sample ID: LNWsw-05D-SW Date Sampled.....: 11/02/2004 Time Sampled.....: 11:30 Sample Matrix....: Water

JEST METHOD PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	? L	DILUTION	UNITS	BATCH	DΤ	DATE/TIME	Τ£ί
Dibromochloromethane 1,2-Dibromochtane (EDB) Chlorobenzene Ethylbenzene m&p-Xylenes o-Xylene Styrene Bromoform 1,1,2,2-Tetrachlorosthane 1,2-Dichloroethene (total) Xylenes (total)	1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0	ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	0.060 0.13 0.080 0.070 0.18 0.080 0.13 0.17 0.090 0.23 0.28	1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134095 134095 134095 134095 134095 134095 134095 134095		11/11/04 17 11/11/04 17 11/11/04 17 11/11/04 17 11/11/04 17 11/11/04 17 11/11/04 17 11/11/04 17 11/11/04 17	732 jdr 732 jdr 732 jdr 732 jdr 732 jdr 732 jdr 732 jdr 732 jdr 732 jdr

^{*} In Description = Dry Wgt.

Page 8

STL Chicago is part of Severn Trent Laboratories, Inc.

Job Number: 231611

LABORATORY TEST RESULTS

Date:11/29/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Etlis

Customer Sample ID: LNWsw-D50-SW Date Sampled.....: 11/02/2004 Time Sampled.....: 11:30 Laboratory Sample ID: 231611-3
Date Received.....: 11/03/2004
Time Received.....: 09:10

Sample Matrix....: Water

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT: Q FLAGS MOL: ŘĽ: DILUTION UNITS BATCH DT DATE/TIME TECH 8270C Semivolatile Organics 4.9 Phenol. Low Level Water 0.34 4.9 1.00000 ug/L 134790 11/18/04 1354 dpk U Bis(2-chloroethyl)ether, Low Level Water 2.0 0.29 2.0 1.00000 134790 11/18/04 1354 dpk ug/L 1,3-Dichlorobenzene, Low Level Water 2.0 0.42 2.0 1.00000 134790 og/L 11/18/04 1354 dpk 1.4-Dichlorobenzene, Low Level Water 2.0 0.32 2.0 1.00000 134790 11/18/04 1354 dok ug/L 1.2-Dichlorobenzene. Low Level Water 2.0 0.34 2_0 1.00000 11/18/04 1354 dok ug/L 134790 Benzyl alcohol, Low Level Water 20 2.2 20 1.00000 ug/L 134790 11/18/04 1354 dpk 11/18/04 1354 dok 2-Methylphenol (o-cresol), Low Level Water 2.0 0.25 2.0 1.00000 134790 ug/L 2,2-oxybis (1-chloropropane), Low Level Water 2.0 0.27 2.0 1.000000 11/18/04 1354 dpk ug/L 134790 0.49 n-Nitroso-di-n-propylamine, low Level Water 0.49 0.079 1.00000 ug/L 134790 11/18/04 1354 dok Mexachloroethane, Low Level Water 4.9 0.60 4.9 1.00000 134790 11/18/04 1354 dok ug/L 4-Methylphenol (m/p-cresol), Low Level Water 2.0 0.098 2.0 1.00000 134790 11/18/04 1354 dok ug/L 2-Chlorophenol, Low Level Water וטן 4.9 0.12 4.9 1.00000 ug/L 134790 11/18/04 1354 dpk Nitrobenzene, Low Level Water 0.98 0.16 0.98 1.00000 134790 11/18/04 1354 dpk ug/L Bis(2-chloroethoxy)methane, Low Level Water 2.0 0.30 1.00000 2.0 ug/L 134790 11/18/04 1354 dpk 1,2,4-Trichlorobenzene, Low Level Water U ug/L 2.0 0.33 2.0 1,00000 134790 11/18/04 1354 dok Benzoic scid, Low Level Water 20 2.9 1.00000 11/18/04 1354 dok 20 ug/L 134790 Isophorone, Low Level Water 2.0 0.25 2.0 11.00000 11/18/04 1354 dok ug/L 134790 2,4-Dimethylphenol, Low Level Water 9.8 1.3 9.8 1.00000 ug/L 134790 11/18/04 1354 dok Hexachlorobutadiene, Low Level Water 0.63 134790 4.9 4.9 1.00000 111/18/04 1354 dpk ug/L Naphthalene, Low Level Water 0.98 0.16 0.981.00000 ug/L 134790 i 11/18/04 1354 lobk 2,4-Dichlorophenol, Low Level Water 9.8 0.89 9.8 1.00000 ug/L 134790 11/18/04 1354 dipk 4-Chloroaniline, Low Level Water 9.8 U 2.7 9.8 1.00000 134790 11/18/04 1354 dok ug/L 2,4,6-Trichlorophenol, Low Level Water 4.9 4.9 0.21 1,00000 134790 11/18/04 1354 dpk ug/L 2.4.5-Trichlorophenol, Low Level Water 9.8 1.4 9.8 1.00000 ug/L 134790 11/18/04 1354 dok Hexachiorocyclopentadiene. Low Level Water 20 0.6420 1.00000 134790 11/18/04 1354 dpk ug/L 2-Methylnaphthalene, Low Level Water 0.49 0.130.491.00000 ug/L 134790 11/18/04 1354 dok 2-Nitroaniline, Low Level Water 4.9 0.22 4.9 1.00000 ug/L 134790 11/18/04 1354 dok 2-Chloronaphthalene, Low Level Water 2.0 0.25 2.0 1,00000 134790 11/18/04 1354 dpk ug/L

^{*} In Description = Dry Wgt.

Job Number: 231611

LABORATORY TEST RESULTS

Date:11/29/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Eltis

Customer Sample ID: LNWsw-050-SW Date Sampled....: 11/02/2004 Time Sampled....: 11:30 Sample Matrix....: Water

Laboratory Sample 1D: 231611-3 Date Received.....: 11/03/2004 Time Received.....: 09:10

2,6-Dinitrote 2-Nitropheno 3-Nitroanili	ethylphenol, Low Level Water oluene, Low Level Water l, Low Level Water ne, Low Level Water halate, Low Level Water	9.8 0.49 9.8 9.8	U U	2.4 0.11	9.8 0.49	1.00000	ug/L	134790	11/18	<u> 1000 47</u>	200	TECH
! 2-Nitropheno 3-Nitroanili	l, Low Level Water ne, Low Level Water halate, Low Level Water	9.8 9.8	Ü				I GS/L					
	ne, Low Level Water halate, Low Level Water	9.8				11.00000	ug/L	134790	111110	/04 13	354 J	dpk
3-Nitroanili Dimethyl phti	halate, Low Level Water			0.80	9.8	1.00000	ug/L	134790	11/18	/U4 13 /0/ 17)))4 1	арк
Dimethyl pht/	halate, Low Level Water		U;	2.1	9.8	1.00000	ug/L	134790		/04 13 /07 13		
1 10 4 10 10 10 10 10 10 10 10 10 10 10 10 10		2.0	u	0.21	2.0	1.00000	ug/L	134790		/04 13 /04 13		
2.4-Uinitropi	nenol, Low Level Water	20	u *	3.2	20	1.00000	ug/L	134790		/04 13		
Acenaphthyle	ne, Low Level Water	0.98	u	0.12	0.98	1.00000	ug/L	134790		/04 13 /04 13		
! 2,4-Dinitrot	oluene, Low Level Water	j 0.98	[U]	0.13	0.98	1.00000	ug/L	134790	11/18	/04 13 /04 13	104 K	apk.
Acenaphene	, Low Level Water	0.98	UÍ	0.12	0.98	1.00000	ug/L	134790	11/18	/04 13 /0/ 12)]4+ (25-	apok.
Dibenzoturan	Low Level Water	2.0	u	0.13	2.0	1.00000	Ug/L	134790	11/18	/04 13 /04 13	734 I 254	apx det
4-Mitropheno:	, Low Level Water	20	U	3.6	20	1.00000	ug/L	134790	11/18	/04 13	25	apr.
FLUORENE, LOI	Level Water	0.98	u	0.13	0.98	1.00000	ug/L	134790		/04 13		
4-Nitroaniii	ne, Low Level Water	9.8	¦u *	2.3	9.8	1.00000	ug/L	134790		/04 13		
4-Bromopheny	phenyl ether, Low Level Water	4.9	្រ ្	0.19	4.9	1.00000	ug/L	134790	11/18			
nexacht groper	ozene, Low Level Water	0.49	n n	0.095	0.49	1,00000	Ug/L	134790	11/18			
Ulethyt phtha	elate, Low Level Water	2.0	U	0.15	2.0	1.00000	ug/L	134790	11/18	04 13	(54)	alar Alar
n-thibitopheny	A phenyl ether, Low Level Water	4.9	וטן	0.74	4.9	1.00000	ug/L	134790	11/18			
i rentacht broph	menol, Low Level Water	9-8	!U	1.7	9.8	1.00000	ug/L	134790	11/18	/04 13	54	-apric Nok
i in with cost of project of	menylamine, Low Level Water	0.98	lu,	0.13	0.98	1.00000		134790	11/18	104 13	56	ipa Ink
Phononth cone	methylphenol, Low Level Water	20	미	2.4	20	1.00000		134790	11/18,	04 13	54	dok
Interior in the second	Low Level Water	0.98	u	0.14	0.98	1.00000	ug/L	134790	11/18,	'D4 13'	54	tok
Anthracene, L	ow Level Water	0.98	u	0.15	0.98	1.00000	ug/L	134790	11/18	04 13	54 6	kok i
Dispersion of	W Level Water	4.9	<u> </u> 0	0.28	4.9	1.00000	ug/L	134790	11/18,	04 13	54 0	drok
Flumonth	thalate, Low Level Water	4.9	ia;	0.35	4.9	1.00000	ug/L	134790	11/18,			
	Low Level Water	0.98	Ψį	0.14	0 .9 8	1.00000	ug/L	134790	11/18,	04 13	54 c	ink
Pyrene, Low L	evel water	0.98	U	0.12	0.98	1.00000	ug/L	134790	11/18	D4 13	54 6	nok j Mok i
Bucyt Denzyt	phthalate, Low Level Water	2.0	n	0.38	2.0	1.00000	ug/L	134790	11/18,			
Chrysona Lou	acene, Low Level Water	0.20	ĺΠ	0.048	0.20	1.00000	ug/L	134790	11/18/			
Chrysene, Low	rever water.	0.49	[U]	0.044	0.49	1.00000	ug/L i	134790	11/18/	04 13	54 c	ipk
i				;		!					i	

^{*} In Description = Dry Wgt.

Job Number: 231611

LABORATORY TEST RESULTS

Date: 11/29/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LNWsw-050-SW Date Sampled....: 11/02/2004 Time Sampled....: 11:30 Sample Matrix....: Water

Laboratory Sample ID: 231611-3 Oate Received.....: 11/03/2004 Fime Received.....: 09:10

TEST NETHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS MDL DILUTION UNITS BATCH DT DATE/TIME TECH 3,3-Dichlorobenzidine, Low Level Water 4.9 0.71 4.9 1.00000 134790 ug/L 11/18/04 1354 dok Bis(2-ethylhexyl)phthalate, Low Level Water 15 U 3.8 15 1.00000 ug/L 134790 11/18/04 1354 dpk Di-n-octyl phthalate, Low Level Water 9.8 2.5 9.8 1.00000 ug/L 134790 11/18/04 1354 dipk Benzo(b)fluorantheme, Low Level Water 0.39 0.066 0.39 1.00000 ug/L 134790 11/18/04 1354 dok Benzo(k)fluoranthene, Low Level Water 0.39 0.071 0.39 11/18/04 1354 dpk 1.00000 134790 ug/L Benzo(a)pyrene, Low Level Water 0.39 0.082 0.3911/18/04 1354 dpk 1.00000 134790 ug/L Indeno(1,2,3-cd)pyrene, Low Level Water 0.39 ប 0.084 0.39 1.00000 ug/L 134790 11/18/04 1354 dpk Dibenzo(a,h)anthracene, Low Level Water 0.390.13 0.39 1.00000 ug/L 134790 11/18/04 1354 dpk Benzo(ghi)perylene, Low Level Water 0.98 0.19 0.98 1.00000 ug/L 134790 11/18/04 1354 dpk

Page 10

^{*} In Description = Dry Wgt.

Job Number: 231611

LABORATORY TEST RESULTS

Date: 11/17/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AUCS

ATTN: Eric Ellis

Customer Sample ID: LNWsw-050-sw Date Sampled....: 11/02/2004 Time Sampled....: 11:30 Sample Matrix....: Water

TEST NETHOO	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O FLAGS	MOL	kt	DILUTION	UNITS	BATCH	Эτ	DATE/II	ME	TECH
8330 8332M	Explosives by 8330 (MPLC) HMX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Nitrobenzene 2,4,6-TNT Tetryl 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-Dinitrotoluene 4-Amino-2,6-Dinitrotoluene 4-Amirotoluene 3-Nitrotoluene 3-Nitrotoluene NG/PETN by 8332M (MPLC) Nitroglycerine		כ ככככממככנכ	0.099 0.093 0.084 0.080 0.064 0.11 0.24 0.18 0.21 0.17 0.16 0.13 0.15 0.15	0.45 0.29 0.29 0.29 0.23 0.36 1.1 0.52 0.62 0.52 0.48 0.45 0.45	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134563 134563 134563 134563 134563 134563 134563 134563 134563 134563 134563 134563		11/05/04 11/05/04 11/05/04 11/05/04 11/05/04 11/05/04 11/05/04 11/05/04 11/05/04 11/05/04 11/05/04 11/05/04	2316 2316 2316 2316 2316 2316 2316 2316	san san san san san san san san san
									77			

^{*} In Description = Dry Wgt.

Page 5

STL CHICAGO

Client Sample ID: LNWsw-050-SW

Trace Level Organic Compounds

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #: Dilution Factor:	11/02/04 11:30 11/08/04 4313492	Work Order #: Date Received: Analysis Date: Initial Wgt/Vol:	11/03/04 11/11/04		Wgt/Vol.: 10 mL
PARAMETER Nitroguanidine		RESULT ND	DETECTION LIMIT 20	UNITS ug/L	METHOD NONE UV/HPLC per

STL CHICAGO

Client Sample ID: LNWsw-050-SW

General Chemistry

Lot-Sample #...: G4K030251-002

Work Order #...: GV5WN

Date Received..: 11/03/04

Matrix....: WATER

PREPARATION-

PARAMETER RESULT Nitrocellulose ND

Date Sampled...: 11/02/04

RL UNITS
0.50 mg/L

METHOD MCAWW 353.2 <u>ANALYSIS DATE</u> <u>BATCH #</u> 11/11-11/13/04 4316571

PREP

MDL..... 0.12

LABORATORY TEST RESULTS

Job Number: 231611 Date: 11/19/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAP 14 AGCS ATTRO EFFC ELLIS

Customer Sample ID: LNWsw-051-SW Date Sampled....: 11/02/2004 Time Sampled....: 09:45

Time Sampled....: 09:45 Sample Matrix....: Water Laboratory Sample ID: 231611-1
Date Received.....: 11/03/2004
Time Received.....: 09:10

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS UNITS DILUTION MDL BATCH DI DATE/TIME TECH 7041 Antimony (GFAA) Antimony 7.5 u 2.5 7.5 133763 ug/L 11/09/04 2019 daj 7060A Arsenic (GFAA) larsenic 1.3 0.51 2.0 134121 ug/L 11/11/04 2146 dai 7421 Lead (GFAA) Lead 3.0 0.79 3.0 134350 ug/L 11/12/04 2106 daj 7841 Thallium (GFAA) Thallium 4.9 1.3 4.0 ug/L 134082 11/11/04 0137 daj 7470A Mercury (CVAA) Mercury 0.20 0.049 0.20 134303 11/12/04 1300 gok ug/L 6010B Metals Analysis (ICAP Trace) Aluminum 190 24 150 133381 11/05/04 1542 tds ug/L Barium 53 1.5 11/05/04 1542 tds 10 ug/L 133381 Beryllium 2.0 11/05/04 1542 tds 0.17 2.0 ug/L 133381 Cadmium 2.0 0.44 2.0 133381 11/05/04 1542 tds ug/L 32000 11/05/04 1542 tds Calcium 24 100 ug/L 133381 11/05/04 1542 tds Chromium 10 1.5 10 133381 ug/L Cobalt 5.0 11/05/04 1542 tds 1.0 5.0 ug/L 133381 Copper 10 1.6 10 11/05/04 1542 tds ug/L 133381 1ren 1800 40 120 133381 11/05/04 1542 tds ug/L Magnesium 8300 100 12 ug/L 133381 11/05/04 1542 tds Manganese 1700 0.71 10 133381 11/05/04 1542 tds ug/L Nickel 10 1.9 10 133381 11/05/04 1542 tds ug/L 2300 Potassium 110 500 11/05/04 1542 tds ug/L 133381

Page 2

^{*} In Description = Dry Wgt.

Job Number: 231611	LABORATORY	TEST	RESULTS	Date:11/19/2004
CUSTEMER: MKM Engineers, Inc. Customer Sample ID: LNHsw-051-SW Date Sampled: 11/02/2004 Time Sampled: 09:45 Sample Matrix: Water	PROJECT: U	Laborat Date Re	74 ADCS ory Sample ID: 2316 sceived: 11/1 sceived: 09:	03/2004

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	9	FLAGS	NO.	RL	DILUTION	UNITS	BATCH	DΤ	DATE/TI	HE	TECH
	Setenium Silver Sodium	10 3200	u U		5.0 3.1 500 2.1	15 10 1500	1 1 1	ug/L ug/L ug/L	133381 133381 133381		11/05/04 11/05/04 11/05/04 11/05/04	1542 1542 1542	tds tds tds
	Vanadium Zinc	10 30	U		2.1 10	10 30	1	ug/L	133381 133381		11/05/04 11/05/04	1542 1542	tds tds
			4										
					THE PARTY OF THE P								
				İ									
													ļ
										į			
							<u>] </u>	<u> </u>	<u> </u>		<u> </u>		<u></u>

^{*} In Description = Dry Wgt.

Job Number: 231611 LABORATORY TEST RESULTS

Date:11/28/2004

CUSTOMER: MKM Engineers; Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LNWsw-051-SW Date Sampled....: 11/02/2004 Time Sampled....: 09:45 Sample Matrix...: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL .	DIEUTION	UNITS	BATCH	br	DATE/TIME	TECH
8081A	Organochlorine Pesticide Analysis alpha-BHC beta-BHC delta-BHC gemma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Methoxychlor alpha-Chlordane gamma-Chlordane Endrin aldehyde Endrin ketone Toxaphene	0.15 0.097 0.097 0.15 0.15 0.097 0.15 0.097 0.097 0.097 0.15 0.15 0.15 0.15	פטעטעטעט פטעעעעעט	0.046 0.027 0.024 9.041 0.040 0.027 0.035 0.020 0.017 0.022 0.017 0.041 0.035 0.043 0.17 0.016 0.017 0.034 0.17	0.15 0.097 0.097 0.15 0.15 0.097 0.15 0.097 0.097 0.097 0.15 0.11 0.15 0.15	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507 135507		11/07/04 0005 11/07/04 0005	

^{*} In Description = Dry Wgt.

Page 2

	Job Number: 231611	LABORATORY 1	IEST RESUL	TS		Date: 11/	24/2004		
CUSTOMER: MKM	Engineers, Inc.	PROJECT∵ USAI	ce rvaap 14 aocs			ATIN: E	ris Elli		
Date Sam Time Sam	Sample ID: LNWsw-051-SW pled: 11/02/2004 pled: 09:45 latrix: Water		Laboratory Sample 1 Date Received Time Received	: 11/03/2004					
TEST METHOD:	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT Q FL	AGS MOL	P L	DILUTION	UNITS	BATCH D	DATE/TIM	IE TECH
8082	PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	0.58 U 1.3 U 1.3 U 1.5 U 1.3 U	0.17 0.41 0.34 0.42 0.47 0.34 0.17	1.3 1.3 1.3 1.5	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L 1 ug/L 1 ug/L 1 ug/L 1 ug/L 1	35432 35432 35432 35432 35432 (35432 (35432	11/09/04 2 11/09/04 2 11/09/04 2 11/09/04 2 11/09/04 2 11/09/04 2	118 bjt 118 bjt 118 bjt 118 bjt 118 bjt

^{*} In Description = Dry Wgt.

Page 3

Job Number: 231611

LABORATORY TEST RESULTS

Date:11/16/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTWO Eric Ellis

Customer Sample ID: LNWsw-051-SW Date Sampled....: 11/02/2004 Time Sampled....: 09:45 Sample Matrix....: Water Laboratory Sample ID: Z31611-1
Date Received.....; 11/03/2004
Time Received.....: 09:10

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O FLAGS	MDL	製具	DILUTION	LWITS	BATCH	DΤ	DATE/T	1 ME	TECH
82608	Volatile Organics						1				-	1
	Chloromethane	1.0	U	0.080	1.0	1.00000	ug/L	134095		11/11/04	1646	jdn
	Vinyl chloride	1.0	U	0.080	1.0	1.00000	ug/L	134095		11/11/04	1646	jdn
	Bromomethane	1.0	U	0.10	1.0	1.00000	ug/t	134095		11/11/04		
	Chloroathane	1.0	U	0.080	1.0	1.00000	ug/t	134095		11/11/04		
ļ	1,1-Dichloroethene	1.0	U	0.12	1.0	1.00000	ug/L	134095		11/11/04		
	Carbon disulfide	5.0	U	0.20	5.0	1.00000	ug/L	134095		11/11/04		
	Acetone	10	U	1.8	10	1.00000	ug/L	134095		11/11/04		
	Methylene chloride	1.5	u	0.35	1.5	1.00000	ug/L	134095		11/11/04		
	trans-1,2-Dichloroethene	1.0	U	0.14	1.0	1.00000	ug/L	134095		11/11/04		
•	1,1-Dichloroethane	1.0		0.11	1.0	1.00000	ug/L	134095		11/11/04	1646]din
	cis-1,2-Dichloroethene	1.0	[4]	0.090	1.0	1.00000	ug/L	134095		11/11/04		
	2-Butanone (MEK)	10	[2]	1.2	10	1.00000	ug/L	134095		11/11/04		
	Bromochloromethane Chloroform	1.0	121	0.10	1.0	1.00000	ug/L	134095		11/11/04		
	1.1.1-Trichloroethane	1.0 1.0	<u> </u>	0.11	1.0	1.00000	ug/L	134095 134095		11/11/04	1646	ign
	Carbon tetrachloride	1.0	[6]	0.13	1.0	1.00000	ug/L	134095		11/11/04		
	Senzene	1.0		0.090	1.0	1.00000	ug/L ug/L	134095		11/11/04 11/11/04		
	1.2-Dichloroethane	1.0	<u> </u>	0.090	1.0	1.00000	ug/L	134095		11/11/04		
	Trichloroethene	1.0	151	0.10	1.0	1.00000	ug/L	134095		11/11/04	1446	1
	1,2-Dichloropropane	1.0	<u> </u>	0.12	1.0	1.00000	ug/L	134095		11/11/04	1646	
	Bromodichloromethane	1.0	liil	0.11	1.0	1.00000	ug/L	134095		11/11/04		
	cis-1,3-Dichloropropene	1.0	lŭl	0.12	1.0	1.00000	ug/L	134095		11/11/04		
	4-Nethyl-2-pentanone (NIBK)	10	lŭl	0.65	10	1.00000	ug/L	134095		11/11/04		
	Toluene	1.0	lul	0.10	1.0	1.00000	ug/L	134095		11/11/04		
	trans-1,3-Dichloropropene	1.0	lūl	0.15	1.0	1.00000	ug/L	134095		11/11/04		
	1.1.2-Trichloroethane	1.0		0.15	1.0	1.00000	ug/L	134095		11/11/04		
	Tetrachloroethene	1.0		0.090	1.0	1.00000	ug/L	134095		11/11/04		
	2- Hexanone	10	ט	0.53	10	1.00000	ug/L	134095		11/11/04		
			[1			<u>.</u>					

^{*} In Description = Dry Wgt.

Date: 11/16/2004

STL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS

Job Number: 231611

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAF 14 ADCS ATIM: Eric Ellis

Customer Sample ID: 1NWsw-051-SH Date Sampled....: 11/02/2004 Time Sampled....: 09:45 Sample Matrix...: Water

TEST METROD PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL .	耿L	DILUTION	UNITS	BATCH	DI D	ATE/TIME	TECH
Dibromochloromethane 1,2-Dibromochlane (EDB) Chlorobenzene Ethyloenzene m&p-Xylenes o-Xylene Styrene Bromoform 1,1,2,2-Tetrachloroethane 1,2-Dichloroethene (total) Xylenes (total)	1.0		0.060 0.13 0.080 0.070 0.18 0.080 0.13 0.11 0.090 0.23 0.28	1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000		134095 134095 134095 134095 134095 134095 134095 134095 134095 134095	11/ 11/ 11/ 11/ 11/ 11/ 11/ 11/ 11/	11/04 1646 11/04 1646 11/04 1646 11/04 1646 11/04 1646 11/04 1646 11/04 1646 11/04 1646 11/04 1646	6 jdn 6 jdn 6 jdn 6 jdn 6 jdn 6 jdn 6 jdn 6 jdn 6 jdn 6 jdn

^{*} In Description = Dry Wgt.

 $\zeta \to$

Job Number: 231611

LABORATORY TEST RESULTS

Date: 11/29/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: LNWsw-051-SW Date Sampled....: 11/02/2004 Time Sampled....: 09:45 Sample Matrix....: Water

Laboratory Sample 10: 231611-1
Date Received.....: 11/03/2004
Time Received.....: 09:10

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	OATE/T	IME	TEC
8270c	Semivolatile Organics			1-1 : 11 <u>.1 :</u>	<u></u>	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			+	<u>u 100000</u>	::::()*:/	100
	Phenol, Low Level Water	5.0	lul	0.35 i	5.0	1.00000	ug/L	134790		44 444 40 (4776	
	Bis(2-chloroethyl)ether, Low Level Water	2.0	u	0.30	2.0	1.00000	ug/L ug/L	134790		11/18/04	1334	dok
	1,3-Dichlorobenzene, Low Level Water	2.0	lul	0.43	2.0	1.00000	ug/L	134790		11/18/04	1336	арк
	1,4-Dichlorobenzene, Low Level Water	2.0	ນ	0.33	2.0	1.00000	ug/L	134790		11/18/04 11/18/04		
	11,2-Dichlorobenzene, Low Level Water	i 2.0	, fil	0.35	2.0	1.00000 i	ug/L	134790		11/18/04		
	Benzyl alcohol, Low Level Water	20	įUi	2.2	20	1.00000	ug/L	134790		11/18/04		
	2-Methylphenol (o-cresol), Low Level Water	2.0	U	0.26	2,0	1.00000	ug/L	134790		11/18/04		
	2,2-exybis (1-chloropropane), Low Level Water	2.0	u	0.28	2.0	1.00000	ug/L	134790		11/18/04		
	n-Nitroso-di-n-propylamine, Low Level Water	0.50	u	0.081	0.50	1.00000	ug/L	134790	1 1	11/18/04	1222	dok
	Hexachloroethane, Low Level Water	5.0	u	0.61	5.0	1.00000	ug/L	134790	1 1	11/18/04	1332	dok
	4-Methylphenol (m/p-cresol), Low Level Water	2,0	U	0.10	2.0	1.00000	ug/L	134790		11/18/04		
	2-Chlorophenol, Low Level Water	5.0	U U U U U U U U U U	. 0.12	5.0	1.00000 i	ug/L	134790		11/18/04		
	Nitrobenzene, Low Level Water	1.0	U.	0.16	1.0	1.00000	ug/L	134790		11/18/04		
	8is(2-chloroethoxy)methane, Low Level Water	2.0	u	0.31	2.0	1.00000	ug/L	134790		11/18/04	1332	dest
	1,2,4-Trichlorobenzene, Low Level Water	2.0	u	0.34	2.0	1.00000	ug/L	134790		11/18/04	1332	dnk
	Benzoic acid, Low Level Water	20	u	3.0	20	1.00000	ug/L	134790		11/18/04	1332	dnk
	Isophorone, Low Level Water	2.0	u	0.26	2.0	1.00000	ug/L	134790		11/18/04	1332	dok
	2,4-Dimethylphenol, Low Level Water	10	u	1.3	10	1.00000	ug/L	134790	i l	11/18/04	1332	dok
	Hexachlorobutadiene, Low Level Water	5.0	U	0.64	5.0	1.00000	ug/L	134790		11/18/04	1332	dok
	Naphthalene, Low Level Water	1,0		0.16	1.0	1.00000	ug/L	134790	1 1	11/18/04	1332	dok
	2,4-Dichlorophenol, Low Level Water	10	iu.	0.91	10	1.00000	ug/L	134790		11/18/04	1332	dok
	4-Chloroaniline, Low Level Water	10	u	2.8	10	1.00000	ug/L	134790		11/18/04		
	2,4,6-Trichlorophenol, Low Level Water	5.0	u	0.21	5.0	1.00000	ug/L	134790		11/18/04		
	2,4,5-Trichlorophenol, Low Level Water	10	U	1.4	10	1.00000	ug/L	134790		11/18/04		
	Hexachlorocyclopentadiene, Low Level Water	20	u *	0.65	20	1.00000	ug/L	134790	1	11/18/04	1332	diok
	2-Methylnaphthalene, Low Level Water	0.50	וט	0.13	0.50	1.00000	ug/L	134790		11/18/04		
	2-Nitroaniline, Low Level Water	5.0	0	0.22	5.0	1.00000	ug/L	134790		11/18/04		
	2-Chloronaphthalene, Low Level Water	2.0	in;	0.26	2.0	11.00000	ug/L	134790		11/18/04	1332	dpk
						i		!				

^{* (}n Description = Dry Wgt.

Job Number: 231611

Date:11/29/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGCS

ATTN: Eric Ellis

Customer Sample ID: LNWsw-051-SW Date Sampled....: 11/02/2004 Fine Sampled....: 09:45 Sample Matrix...: Water

Laboratory Sample 1D: 231611-1 Date Received....: 11/03/2004 Time Received....: 09:10

TEST METHOD	PARAMETER/YEST DESCRIPTION	SAMPLE RESULT	O FLAG	MDL	RL.	DILUTION	UNITS	BATCH	от	DATE/T	IME	TECH
	4-Chloro-3-methylphenol, Low Level Water	10	u	2.4	10	1.00000	Ug/L	134790		1 * 410 404	477	. <u>12 11 1</u>
	2,6-Dinitrotoluene, Low Level Water	0.50	u]	0.11	0.50	1.00000	ug/L	134790		11/18/04		
	2-Nitrophenol, Low Level Water	10	U	0.82	10	1.00000	ug/L	134790		11/18/04	1332	арк
	3-Witroaniline, Low Level Water		ប្រា	. 2.1	10	1.00000 i	ug/L	134790	;	11/18/04 11/18/04	1332	OEDK
	Dimethyl phthalate, Low Level Water	2.0	ui	0.21	2.0	1.00000	ug/L	134790		11/18/04	1332	upk
	2,4-Dinitrophenol, Low Level Water	20	u *	3.3	20	1.00000	ug/L	134790		11/18/04	1777	upk
	Acenaphthylene, Low Level Water	1.0	n n	0.12	1.0	1.00000	ug/L	134790		11/18/04	1222	lupk
	2,4-Dinitrotoluene, Low Level Water	1.0	ļu	0.13	1.0	1.00000	ug/L	134790	¦	11/18/04	1777	upic
·	Acenaphthene, Low Level Water		U	0.12	1.0	1.00000	ug/L	134790	1 :	11/18/04	1777	CEDIC.
	Dibenzofuran, Low Level Water		ju l	, 0.13	2.0	1.00000		134790	1 1	11/18/04	1777	de la la la la la la la la la la la la la
	4-Nitrophenol, Low Level Water	! 20	и; и	3.7	20	1.00000	ug/L	134790		11/18/04	1332	dok
	fluorene, Low Level Water	1.0	u	0.13	1.0	1.00000	ug/L	134790		11/18/04		
	4-Nitroaniline, Low Level Water	10	U *	2.3	10	1.00000	ug/L	134790		11/18/04		
ļ	4-Bromophenyl phenyl ether, Low Level Water	5.0	บ	0.19	5.0	1.00000 !	ug/L	134790		11/18/04		
İ	Hexachlorobenzene, Low Level Water		U	0.097	0.50	1.00000	ug/L	134790	ĺĺ	11/18/04	1332	dok
	Diethyl phthalate, Low Level Water		u!	j 0.15	2.0	1.00000	ug/L	134790	1	11/18/04	1332	dnk
	4-Chlorophenyl phenyl ether, Low Level Water		U	0.75	5.0	1.00000	ug/L	134790		11/18/04	1332	dok
	Pentachlorophenol, Low Level Water	10	U	1.7	10	1.00000	ug/L	134790		11/18/04	1332	lupat i John
	n-Nitrosodiphenylamine, Low Level Water		η	0.13	1.0	1.00000	ug/L	134790	!	11/18/04	1332	deck
í.	4,6-Dinitro-2-methylphenol, Low Level Water		U	2.4	20	1.00000	ug/L .	134790	l i	11/18/04	1332	dok
	Phenanthrene, Low Level Water		II.	0.14	1.0	1.00000	ug/L	134790	1 1	11/18/04	1332	dok
	Anthracene, Low Level Water		U,	0.15	1.0	1.00000	ug/L	134790	ıl	11/18/04	1332	dok
	Carbazole, Low Level Water		U	0.29	5.0	1,00000	ug/L	134790		11/18/04		
į į	Di-n-butyl phthalate, Low Level Water		U	0.36	5.0	1.00000	ug/L	134790		11/18/04		
!	Fluoranthene, Low Level Water		บ	0.14	1.0	1.00000	ug/L	134790		11/18/04		
	Pyrene, Low Level Water		u	0.12	1.0	1.00000		134790	ı İ.	11/18/04	1772	dok
	Butyl benzyl phthalate, Low Level Water		u!	0.39	2.0	1.00000		134790		11/18/04	1772	dok
	Benzo(a)anthracene, Low Level Water		u;	0.049	0.20	1,00000		134790	, [11/18/04	1772	dok.
	Chrysene, Low Level Water	0.50	u	0.045	0.50	1.00000		134790		11/18/04	1337	inhr
ļ	İ					i	-0	-24174	. [,, .	1375	upr.
] '		1				

^{*} In Description = Dry Wgt.

Job Number: 231611

LABORATORY TEST RESULTS

Date: 11/29/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LNWsw-051-sw Date Sampled.....: 11/02/2004 Time Sampled.....: 09:45 Sample Matrix....: Water

Laboratory Sample ID: 231611-1
Date Received.....: 11/03/2004
Time Received.....: 09:10

TEST, METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS MD1 RL. DILUTION UNITS BATCH DT DATE/TIME 3,3-Dichlorobenzidine, Low Level Water 5.0 0.72 5.0 1.00000 Bis(2-ethylhexyl)phthalate, Low Level Water ug/L 134790 11/18/04 1332 dpk 15 lui 3.9 15 1.00000 ug/L 134790 11/18/04 1332 dpk Di-n-octyl phthalate, Low Level Water 10 2.5 10 1.00000 ¹134790 11/18/04 1332 dpk ug/L Benzo(b)fluoranthene, Low Level Water 0.40 0.9670.401.00000 ug/L Benzo(k)fluoranthene, Low Level Water 134790 11/18/04 1332 dpk 0.40 ΙuΙ 0.072 0.40 1_00000 ug/L 134790 Benzo(a)pyrene, Low Level Water 11/18/04 1332 dok 0.40 |u| 0.084 0.40 1.00000 ug/L 134790 11/18/04 1332 dpk Indeno(1,2,3-cd)pyrene, Low Level Water 0.40 iU! 0.086 0.40 1.00000 ug/L 134790 11/18/04 1332 dok Dibenzo(a,h)anthracene, Low Level Water 0.40 |u; 0.13 0.40 1.00000 ug/L 134790 11/18/04 1332 dpk Benzo(ghi)perylene, Low Level Water 1.0 0.19 1.0 1.00000 134790 ug/L 11/18/04 1332 dpk

Page 4

^{*} In Description = Dry Wgt.

Job Number: 231611

Date: 11/17/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE: RVAXP 14 AGGS ATTN: Eric Ellis

Customer Sample ID: LNWsw-051-SW Date Sampled....: 11/02/2004 Time Sampled....: 09:45 Sample Matrix...: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	G FLAGS	POL	£L.	DILUTION	LINITS	BATCH	рτ	DATE/TIME	тесн
8332M	Explosives by 8330 (HPLC) HMX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Nitrobenzene 2,4,6-INT Tetryl 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-Dinitrotoluene 4-Amino-2,6-Dinitrotoluene 2-Nitrotoluene 3-Nitrotoluene 3-Nitrotoluene NG/PEIN by 8332M (HPLC) Nitroglycerine	0.52 0.33 0.33 0.33 0.27 0.42 1.3 0.60 0.72 0.60 0.55 0.52 0.52 0.52 1.7	ם בכבכהה מים בב	0.11 0.11 0.097 0.092 0.073 0.13 0.27 0.20 0.24 0.20 0.19 0.16 0.17 0.17	0.52 0.33 0.33 0.33 0.27 0.42 1.3 0.60 0.72 0.60 0.55 0.52 0.52	F.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	134563 134563 134563 134563 134563 134563 134563 134563 134563 134563 134563 134563	## A C	11/05/04 221: 11/05/04 221: 11/05/04 221: 11/05/04 221: 11/05/04 221: 11/05/04 221: 11/05/04 221: 11/05/04 221: 11/05/04 221: 11/05/04 221: 11/05/04 221: 11/05/04 221: 11/05/04 221: 11/05/04 221: 11/05/04 221:	1 san 1 san 1 san 1 san 1 san 1 san 1 san 1 san 1 san 1 san 1 san 1 san 1 san

^{*} In Description = Dry Wgt.

Page 3

STL CHICAGO

Client Sample ID: LNWsw-051-SW

Trace Level Organic Compounds

	110	30			
Lot-Sample #: Date Sampled: Prep Date:	11/02/04 09:45 11/08/04	Work Order #: Date Received: Analysis Date:	11/03/04	Matrix	WATER
Prep Batch #: Dilution Factor:	4313492	Initial Wgt/Vol:	10 mL	Final Wgt/Vol:	10 mL
PARAMETER Nitroguanidine		RESULT ND	DETECTION LIMIT 20	UNITS METHOD UG/L NONE UV/H	PLC per

STL CHICAGO

Client Sample ID: LNWsw-051-SW

General Chemistry

Lot-Sample #...: G4K030251-001 Work Order #...: GV5WK Matrix....: WATER

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Nitrocellulose
 ND
 0.50
 mg/L
 MCAWW 353.2
 11/11-11/13/04
 4316571

LABORATORY TEST RESULTS
Job Number: 232497

Date:12/20/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AUCS

ATTNE Eric Ettis

Customer Sample ID: LNWsw-052-SW Date Sampled....: 12/06/2004 Time Sampled....: 10:15 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	TEC
7041	Antimony (GFAA) Antimony	7.5	u	2.5	7.5	1	ug/L	136643		12/08/04 2046	5 da j
7060A	Arsenic (GFAA) Arsenic	2.0	U	0.51	2.0	1	ug/L	136622		12/08/04 183	4 daj
7421	Lead (GFAA) Lead	3.0	U	0.79	3.0	1	ug/L	136730		12/09/04 182	4 daj
7841	Thallium (GFAA) Thallium	4.0	u	1.3	4.0	1	ug/L	136776		12/09/04 155	2 daj
7470A	Mercury (CVAA) Mercury	0.20	U	0.063	0.20	1	ug/L	137144		12/14/04 144	,5 gok
6010B	Metals Analysis (ICAP Trace) Aluminum Barium Beryllium Cadmium Catcium Chromium Cobalt Copper Iron Magnesium Mangsnese Nickel Potassium	71 23 2.0 2.0 28000 10 5.0 10 1900 6500 830 10	B 17 171 17	24 1.3 0.25 9.5 1.1 0.80 2.2 38 8.1 0.41 1.0	150 10 2.0 2.0 100 10 5.0 10 120 100 10 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	137508 137508 137508 137508 137508 137508 137508 137508 137508 137508 137508		12/19/04 062 12/19/04 062 12/19/04 062 12/19/04 063 12/19/04 063 12/19/04 063 12/19/04 063 12/19/04 063 12/19/04 063 12/19/04 063	29 td: 29 td: 29 td: 29 td: 29 td: 29 td: 29 td: 29 td: 29 td: 29 td: 29 td: 29 td:

^{*} In Description = Dry Wgt.

Page 12

LABORATORY TEST RESULTS

Job Number: 232497

PROJECT: USACE RVAAP 14 AOES

Date: 12/20/2004

ATTN: Eric Ellis

CUSTOMER: MICH Engineers, Inc.

Customer Sample ID: LNWsw-D52-SW Date Sampled....: 12/06/2004 Time Sampled....: 10:15 Sample Matrix....: Water Laboratory Sample ID: 232497-6 Date Received.....: 12/07/2004 Time Received.....: 10:00

DATE/TIME TECH BATCH DT DILUTION UNITS RL HDL SAMPLE RESULT Q FLAGS PARAMETER/TEST DESCRIPTION 12/19/04 0629 tds 12/19/04 0629 tds 12/19/04 0629 tds TEST METHOD ug/L 137508 15 3.0 15 137508 ug/L 10 0.72 Selenium 10 137508 ug/L 1500 Silver 490 12/19/04 0629 tds 2300 137508 ug/L 10 12/19/04 0629 tds 1.0 Spdium 10 3.5 137508 ug/L 30 1.6 Vanadium Zinc

Page 13

^{*} In Description = Dry Wgt.

Job Number: 232497

LABORATORY TEST RESULTS

PROJECT: USACE RVAAP 14 ACCS

Date: 12/21/2004

ATTN: Eric Ellis

COSTONER: MKM Engineers, Inc.

Customer Sample ID: LNWsw-052-SW Date Sampled.....: 12/06/2004 Time Sampled.....: 10:15 Sample Matrix....: Water Laboratory Sample ID: 232497-6 Date Received.....: 12/07/2004

Time Received.....: 10:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT Q	FLAGS	MOL	RL	DILUTION	UNITS	BATCH	DT DATE/TIME	TEC
8081A	Organochlorine Pesticide Analysis alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Nethoxychlor alpha-Chlordane gamma-Chlordane Endrin aldehyde Endrin ketone Toxaphene	0.095 0.14 0.095		0.045 0.027 0.024 0.040 0.039 0.027 0.034 0.020 0.017 0.022 0.016 0.040 0.034 0.042 0.047 0.16 0.015 0.016	0.14 0.095 0.095 0.14 0.14 0.095 0.14 0.095 0.095 0.14 0.10 0.14 0.14 0.157 0.048 0.095 0.14	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L	137734 137734 137734 137734 137734 137734 137734 137734 137734 137734 137734 137734 137734 137734 137734 137734	12/15/04 010 12/15/04 010 12/15/04 010 12/15/04 010 12/15/04 011 12/15/04 011 12/15/04 011 12/15/04 01 12/15/04 01 12/15/04 01 12/15/04 01 12/15/04 01 12/15/04 01 12/15/04 01 12/15/04 01 12/15/04 01 12/15/04 01 12/15/04 01	16 kdl 16 kdl 16 kdl 10 kdl

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS
Job Number: 232497

Date:12/20/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USAGE RVAAP 14 AGGS ATTM: Enic Ellis

Customer Sample ID: LNWsw-052-SW Date Sampled....: 12/06/2004 Time Sampled....: 10:15 Sample Matrix...: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	C FLAGS	MOL	RL	DILUTION	UNITS	BATCH	ai	DATE/TIME	TECH
	PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260	1.2 1.2 1.2 1.4 1.2	3 U U U U U U U U U U U U U U U	0.17 0.40 0.33 0.41 0.46 0.33 0.16	0.57 1.2 1.2 1.2 1.4 1.2 0.57	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L	137555 137555 137555 137555 137555 137555 137555 137555		12/14/04 1959 12/14/04 1959 12/14/04 1959 12/14/04 1959 12/14/04 1959 12/14/04 1959 12/14/04 1959	bjt bjt bjt bjt bjt
							776				

* In Description = Dry Wgt.

Job Number: 232497

LABORATORY TEST RESULTS

Date: 12/18/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LNWsw-052-SW Date Sampled....: 12/06/2004 Time Sampled....: 10:15 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q F	LAGS	MDL	8L	DILUTION	UNITS	BATCH	o r	DATE/TIME	TECH	
8260B	Volatile Organics Chloromethane Vinyl chloride Bromomethane Chloroethane 1,1-Dichloroethene Carbon disulfide Acetone Methylene chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 2-Butanone (MEK) Bromochloromethane Chloroform 1,1,1-Trichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Trichloroethene 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-pentanone (MIBK) Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethane Tetrachloroethane Tetrachloroethane Tetrachloroethane	1.0 1.0 1.0 1.0 1.0 5.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.			0.080 0.080 0.10 0.080 0.12 0.20 1.8 0.35 0.14 0.11 0.090 1.2 0.10 0.11 0.080 0.13 0.090 0.10 0.12 0.11 0.12 0.11 0.12 0.15 0.15 0.15 0.15 0.15	1.0 1.0 1.0 1.0 1.0 5.0 10 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	137286 137286		12/16/04 0331 12/16/04 0331	l jehn l	
1				L									Q.

^{*} In Description = Dry Wgt.

Job Number: 232497

LABORATORY TEST RESULTS

Date: 12/18/2004

CUSTOMER: MKM Engineers, Imc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: LNWsw-052-SW Date Sampled.....: 12/06/2004 Time Sampled.....: 10:15 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL.	RE	DILUTION	LINITS	BATCH D	<u> 14 1100 14</u>	E/TIME	TEC
	Dibromochloromethane 1,2-Dibromochlane (EDB) Chlorobenzene Ethylbenzene m&p-Xylenes o-Xylene Styrene Bromoform 1,1,2,2-Tetrachloroethane 1,2-Dichloroethene (total) Xylenes (total)	1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0		0.060 0.13 0.080 0.070 0.18 0.080 0.13 0.11 0.090 0.23 0.28	1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	137286 137286 137286 137286 137286 137286 137286 137286 137286	12/10 12/10 12/10 12/10 12/10 12/11 12/11 12/11	5/04 0331 5/04 0331 5/04 0333 6/04 0333 6/04 0333 6/04 0333 6/04 0333 6/04 0333 6/04 0333	l jelo l jelo l jelo l jelo l jelo l jelo l jelo l jelo l jelo
			Page 11		.1	<u></u>					

^{*} In Description = Dry Wgt.

STL Chicago is part of Severn Trent Laboratories, Inc.

RESULTS TEST LABORATORY

Date: 12/20/2004 Job Number: 232497

ATTN: Eric Ellis PROJECT: USACE RVAAP TA ACCS CUSTOMER: MKM Engineers, Inc.

Customer Sample ID: LNWsw-052-SW Date Sampled....: 12/06/2004 Time Sampled.....: 10:15 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST: DESCRIPTION	SAMPLE RESULT	Q FLAGS	101	RL	DILECTION	LMITS	BATCH	DT.	DATE/TIME	TEC
8270C	Semivolatile Organics Phenol, Low Level Water Bis(2-chloroethyl)ether, Low Level Water 1,3-Dichlorobenzene, Low Level Water 1,4-Dichlorobenzene, Low Level Water 1,2-Dichlorobenzene, Low Level Water Benzyl alcohol, Low Level Water 2-Methylphenol (o-cresol), Low Level Water 2,2-oxybis (1-chloropropane), Low Level Water n-Nitroso-di-n-propylamine, Low Level Water Hexachloroethane, Low Level Water 4-Nethylphenol (m/p-cresol), Low Level Water 2-Chlorophenol, Low Level Water Nitrobenzene, Low Level Water Nitrobenzene, Low Level Water Bis(2-chloroethoxy)methane, Low Level Water 1,2,4-Trichlorobenzene, Low Level Water 1,2,4-Trichlorobenzene, Low Level Water Isophorone, Low Level Water 2,4-Dimethylphenol, Low Level Water Waphthalene, Low Level Water 4-Chloroaniline, Low Level Water 2,4,6-Trichlorophenol, Low Level Water 2,4,5-Trichlorophenol, Low Level Water Hexachlorocyclopentadiene, Low Level Water 2-Methylnaphthalene, Low Level Water 2-Methylnaphthalene, Low Level Water 2-Mitroaniline, Low Level Water 2-Mitroaniline, Low Level Water 2-Mitroaniline, Low Level Water 2-Mitroaniline, Low Level Water 2-Mitroaniline, Low Level Water 2-Chloronaphthalene, Low Level Water 2-Chloronaphthalene, Low Level Water	4.7 1.9 1.9 1.9 1.9 1.9 1.9 0.47 4.7 0.94 1.9 1.9 1.9 1.9 9.4 4.7 0.94 9.4 4.7	*	0.33 0.28 0.41 0.31 0.33 2.1 0.25 0.26 0.076 0.58 0.094 0.11 0.15 0.29 0.32 2.8 0.25 1.2 0.60 0.15 0.86 2.6 0.20 1.3 0.61 0.12 0.21	4.7 1.9 1.9 1.9 1.9 1.9 0.47 4.7 1.9 4.7 0.94 1.9 1.9 1.9 9.4 4.7 0.94 9.4 4.7 9.4	1.00000 1.00000	ug/L ug/L	137499 137499		12/13/04 0733 12/13/04 0733 12/13/04 0733 12/13/04 0733 12/13/04 0733 12/13/04 0733 12/13/04 073	dpk dpk dpk dpk dpk dpk dpk dpk dpk dpk

^{*} In Description = Dry Wgt.

Page 11

Job Number: 232497

LABORATORY TEST RESULTS

Date: 12/20/2004

CUSTOMER: MKM Engineers, linc.

PROJECT: USACE RVAAP 14 AOES

ATTN: Enic Ellis

Customer Sample ID: LNWsw-052-SW Date Sampled.....: 12/06/2004 Time Sampled.....: 10:15 Sample Matrix....: Water

ST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MD12	RL	DILUTION	UNITS	SATCH			23.52.53
	Last Target Last Law Law Later	9.4	u	2.3	9.4	1.00000	ug/L	137499		12/13/04	0733
	4-Chloro-3-methylphenol, Low Level Water	0.47	u	0.10	0.47	1.00000	ug/L	137499		12/13/04	
	2,6-Dinitrotoluene, Low Level Water 2-Nitrophenel, Low Level Water	9.4	lul	0.77	9.4	1.00000	ug/L	137499		12/13/04	
	3-Nitroaniline, Low Level Water	9.4	lul	2.0	9.4	1.00000	ug/L	137499		12/13/04	
	Dimethyl phthalate, Low Level Water	1.9	lul	0.20	1.9	1.00000	ug/L	137499		12/13/04	
	2,4-Dinitrophenol, Low Level Water	19	u	3.1	19	1.00000	ug/L	137499		12/13/04	
	Acenaphthylene, Low Level Water	0.94	U	0.11	0.94	1.00000	ug/L	137499 137499		12/13/04	0733
	2,4-Dinitrotoluene, Low Level Water	0.94	u	0.12	0.94	1.00000	ug/L	137499		12/13/04	0733
	Acenaphthene, Low Level Water	0.94	u	0.11	0.94	1.00000	ug/L	137499		12/13/04	יצלח
	Dibenzofuran, Low Level Water	1.9	u	0.12	1.9	1.00000	ug/L ug/L	137499		12/13/04	0733
	4-Mitrophenol, Low Level Water	19	וטן	3.5	19	1.00000	ug/L	137499		12/13/04	0737
	Fluorene, Low Level Water	0.94	U	0.12	0.94	1.00000	ug/L ug/L	137499		12/13/04	073
	4-Nitroaniline, Low Level Water	9.4	U	2.2	9.4 4.7	1.00000	ug/L	137499		12/13/04	
	4-Bromophenyl phenyl ether, Low Level Water	4.7	U	0.18	0.47	1.00000	ug/L	137499		12/13/04	
	Hexachlorobenzene, Low Level Water	0.47	U	0.092	1.9	1.00000	ug/L	137499		12/13/04	073
	Diethyl phthalate, Low Level Water	1.9	∤u∣	0.14	4.7	1.00000	ug/L	137499		12/13/04	
	4-Chlorophenyl phenyl ether, Low Level Water	4.7	U	0.71	9.4	1.00000	ug/L	137499		12/13/04	073
	Pentachlorophenol, Low Level Water	9.4	191	1.6 0.12	0.94	1.00000	ug/L	137499		12/13/04	073
	n-Nitrosodiphenylamine, Low Level Water	0.94	0 U U	2.3	19	1.00000	ug/L	137499		12/13/04	
	4.6-Dinitro-2-methylphenol, Low Level Water	19	U	0.13	0.94	1.00000	ug/L	137499		12/13/04	
	Phenanthrene, Low Level Water	0.94	U U	0.14	0.94	1.00000	ug/L	137499		12/13/04	
	Anthracene, Low Level Water	0.94	U	0.27	4,7	1.00000	ug/L	137499	1	12/13/04	
	Carbazole, Low Level Water	4.7	U	0.34	4.7	1.00000	ug/L	137499	/]	12/13/04	073
	Di-n-butyl phthalate, Low Level Water	4.7	lul	0.13	0.94	1.00000	ug/L	137499	/	12/13/04	
	Fluoranthene, Low Level Water	0.94 0.94	u	0.11	0.94	1.00000	ug/L	137499	<i>,</i>	12/13/04	
	Pyrene, Low Level Water	1.9	Ü	0.37	1.9	1.00000	ug/L	137499		12/13/04	
	Butyl benzyl phthalate, Low Level Water	0.19	lul	0.046	0.19	1.00000	ug/L	137499		12/13/04	
	Benzo(a)anthracene, Low Level Water	0.47	lül	0.042	0.47	1_00000	ug/L	137499	'	12/13/04	073
	Chrysene, Low Level Water	V-41	~					1		1	

^{*} In Description = Dry Wgt.

Job Number: 232497

LABORATORY TEST RESULTS

Date: 12/20/2004

CUSTOMER: MKM Englineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTR: Edic Ellis

Customer Sample ID: LNWsw-052-SW Date Sampled.....: 12/06/2004 Time Sampled.....: 10:15 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DILUTION	UNITS	BATCH		<u>NYAHARIH BARRA</u>	TECH
TEST METHOD	3,3-Dichlorobenzidine, Low Level Water Bis(2-ethylhexyl)phthalate, Low Level Water Di-n-octyl phthalate, Low Level Water Benzo(b)fluoranthene, Low Level Water Benzo(k)fluoranthene, Low Level Water Benzo(a)pyrene, Low Level Water Indeno(1,2,3-cd)pyrene, Low Level Water Dibenzo(a,h)anthracene, Low Level Water Benzo(ghi)perylene, Low Level Water	4.7 14 9.4 0.38 0.38 0.38 0.38 0.38 0.39	U U U U U U U U U U U U U U U U U U U	0.68 3.7 2.4 0.063 0.068 0.079 0.081 0.12 0.18	4.7 14 9.4 0.38 0.38 0.38 0.38 0.38 0.38	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L	137499 137499 137499 137499 137499 137499 137499 137499	323	12/13/04 0733 12/13/04 0733 12/13/04 0733 12/13/04 0733 12/13/04 0733 12/13/04 0733 12/13/04 0733 12/13/04 0733 12/13/04 0733	dpk dpk dpk dpk dpk dpk dpk dpk
											1

^{*} In Description = Dry Wgt.

Page 13

LABORATORY TEST RESULTS

Job Number: 232497 Date:12/21/2004

CUSTOMER: MICH Engineers, Inc. ATTW: Eric Ellis

Customer Sample ID: LNWsw-052-SW Date Sampled....: 12/06/2004
Time Sampled....: 10:15
Sample Matrix....: Water

Laboratory Sample ID: 232497-6
Pate Received.....: 12/07/2004
Time Received.....: 10:00

SAMPLE RESULT Q FLAGS MDL RL DILUTION WITS BATCH DT DATE/TIME TECH PARAMETER/TEST DESCRIPTION TEST METHOD 8330 Explosives by 8330 (HPLC) 1.00000 137651 12/15/04 1922 bdw 0.61 0.13 0.61 ug/L HMX 0.39 1.00000 137651 12/15/04 1922 bdw 0.13 RDX 0.39 ÷ųug/L 12/15/04 1922 bdw 0.39 U 0.11 0.39 1.00000 ug/L 137651 1.3.5-Trinitrobenzene 0.39 1.00000 137651 12/15/04 1922 bdw 0.39 0.11 ug/L 1,3-Dinitrobenzene Ū 12/15/04 1922 bdw 0.31 1.00000 137651 Mitrobenzene 0.31 0.087ug/L 0.49 1.00000 137651 12/15/04 1922 bow 0.49 0.15ug/L 2,4,6-TMT 12/15/04 1922 bdw 1.5 1.00000 137651 1.5 0.32 ug/L Tetrvl 12/15/04 1922 bdw 0.24 0.71 1.00000 137651 0.71 ug/L 2,4-Dinitrotoluene 1.00000 137651 12/15/04 1922 bdw 0.85 0.28 0.85 ug/L 2.6-Dinitrotaluene 112/15/04 1922 bdw 0.71 0.23 0.71 1.00000 ug/L 137651 2-Amino-4,6-Dinitrotoluene 1.00000 137651 12/15/04 1922/bdw 0.65 0.22 0.65 ug/L 4-Amino-2,6-Dinitrotoluene 1.00000 137651 12/15/04 1922 bdw 0.18 0.61 ug/L 0.61 2-Nitrotoluene 12/15/04 1922 bow 1.00000 137651 0.61 0.20 0.61 ug/L 4-Witrotoluene 12/15/04 1922 bdw 0.20 0.61 1.00000 ug/L 137651 3-Nitrotoluene 0.61 8332M NG/PETH by 8332M (HPLC) 0.30 2.0 1.00000 ug/L 137646 12/09/04 0754 bdw 2.0 Nitroglycerine

^{*} In Description = Dry Wgt.

STL CHICAGO

Client Sample ID: LNWsw-052-SW

Trace Level Organic Compounds

Lot-Sample #: G4L070388-002 Date Sampled: 12/06/04 10:1 Prep Date: 12/13/04 Prep Batch #: 4348574	Work Order #: Date Received: Analysis Date:	12/07/04	Matrix: WATER
Dilution Factor: 1	Initial Wgt/Vol:	10 mL	Final Wgt/Vol: 10 mL
PARAMETER Nitroguanidine	RESULT ND	DETECTION LIMIT 20	UNITS METHOD ug/L NONE UV/HPLC per

STL CHICAGO

Client Sample ID: LNWsw-052-SW

General Chemistry

Lot-Sample #...: G4L070388-002

Work Order #...: GOGPX

Matrix..... WATER

Date Sampled...: 12/06/04

Date Received..: 12/07/04

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 PREPARATION-ANALYSIS DATE
 PREPARATION-BATCH # 12/16-12/17/04
 PREPARATION-4352362

MDL..... 0.12

STL Chicago is part of Severn Trent Laboratories, Inc.

RESULTS LABORATORY TEST

Date: 12/20/2004

Job Number: 232497

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

CUSTOMER: NKW Engineers, Inc.

Customer Sample 10: LNVsw-052-DUP Date Sampled....: 12/06/2004 Time Sampled....: 10:15 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DICUTION	UNITS	BATCH	DΤ	DATE/T	1000	TEC
7041	Antimony (GFAA) Antimony	7.5	U	2.5	7.5	1	ug/L	136643		12/08/04	2058	daj
7060A	Arsenic (GFAA) Arsenic	2.0	u	0.51	2.0	1	ug/L	136622		12/08/04	1846	daj
7421	Lead (GFAA) Lead	3.0	u	0.79	3.0	1	! ug/L	136730		12/09/04	1847	daj
7841	Thallium (GFAA) Thallium	4.0	u	1.3	4.0	1	ug/L	136776		12/09/04	1605	daj
7470A	Mercury (CYAA) Mercury	0-50	u	0.063	0.20	1	ug/L	137144		12/14/04	1447	'lgol
6010B	Metals Analysis (ICAP Trace) Aluminum Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium	71 22 2.0 2.0 27000 10 5.0 10 1900 6400 820 10	8 00 000	24 1.3 0.25 0.25 9.5 1.1 0.80 2.2 38 8.1 0.41 1.0	150 10 2.0 2.0 100 10 5.0 10 120 100 10 500	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	137508 137508 137508 137508 137508 137508 137508 137508 137508 137508 137508	3 3 3 3 8 8	12/19/04 12/19/04 12/19/04 12/19/04 12/19/04 12/19/04 12/19/04 12/19/04 12/19/04 12/19/04 12/19/04	4 0635 4 0635 4 0635 4 0635 4 0635 4 0635 4 0635 4 063 14 063	5 td 5 td 5 td 5 td 5 td 5 td 5 td 5 td
	* In Description = Dry Wgt.		Page 14	4								

^{*} In Description = Dry Wgt.

Page 14

Job Number: 232497

LABORATORY TEST RESULTS

Date:12/20/2004

CUSTOMER: NKW Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LNWsw-052-DUP
Date Sampled.....: 12/06/2004
Time Sampled.....: 10:15
Sample Matrix....: Water

TEST NETHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	G FLAGS	2	RL	DILUTION	UNITS	BATCH D		SP283
	Selenium Silver Sodium Vanadium Zinc	15 10 2300 10 4.8	n n	3.0 0.72 490 1.0 1.6	15 10 1500 10 30	1 1 1 1 1	ug/L ug/L ug/L ug/L ug/L	137508 137508 137508 137508 137508	12/19/04 0635 12/19/04 0635 12/19/04 0635 12/19/04 0635 12/19/04 0635	td td td

* In Description = Ory Wgt.

Page 15

ATTN: Eric Ellis

STL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS

Date: 12/21/2004 Job Number: 232497

PROJECT: USACE RVAAP 14 ACCS CUSTOMER: WICH Engineers, Inc.

Customer Sample ID: LMNsw-052-DUP Date Sampled....: 12/06/2004 Time Sampled....: 10:15 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOT	RL	DILUTION	UNITS	BATCH	DT	DATE/TIME	TECI
8081A	Organochlorine Pesticide Analysis alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4*-DDE Endrin Endosulfan II 4,4*-DDD Endosulfan sulfate 4,4*-DDT Methoxychlor alpha-Chlordane gamma-Chlordane Endrin aldehyde Endrin ketone Toxaphene	0.14 0.093 0.093 0.14 0.14 0.093 0.193 0.093 0.093 0.093 0.14 0.10 0.14 0.14 0.14 0.156 0.047 0.093 0.14	נננננננננננננננננננננננננ	0.044 0.026 0.023 0.039 0.038 0.026 0.034 0.020 0.017 0.021 0.016 0.039 0.034 0.041 0.046 0.16 0.015 0.015 0.016 0.033 0.027 0.13	0.14 0.093 0.093 0.14 0.193 0.093 0.093 0.093 0.093 0.10 0.14 0.16 0.14 0.56 0.047 0.093 0.14	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	137734 137734 137734 137734 137734 137734 137734 137734 137734 137734 137734 137734 137734 137734 137734 137734		12/15/04 0131 12/15/04 0131 12/15/04 0131 12/15/04 0131 12/15/04 0131 12/15/04 0131 12/15/04 0131 12/15/04 0131 12/15/04 013 12/15/04 013	kdi

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 232497 Date:12/20/2004

CUSTOMER: MKM Engineers, Inc. ATTW: Eric Ellis

Customer Sample ID: LNWsw-052-DUP Date Sampled.....: 12/06/2004 Time Sampled.....: 10:15 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	Pi	DILUTION	UNITS	BATCH	DT	DATE/TIME	IECH
	PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	1.2 1.2 1.2 1.4 1.2	טטטטטטט	0.17 0.39 0.33 0.40 0.45 0.33 0.16	0.56 1.2 1.2 1.2 1.4 1.2 0.56	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	137555 137555 137555 137555 137555 137555 137555		12/14/04 2023 12/14/04 2023 12/14/04 2023 12/14/04 2023 12/14/04 2023 12/14/04 2023 12/14/04 2023	bjt bjt bjt bjt bjt
											171,
										5	
		ė									1

^{*} In Description = Dry Wgt.

STL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS

Job Number: 232497

CUSTOMER: MKM Engineers, Inc. Attn: Eric Ellis

Customer Sample ID: LNWsW-052-DUP Date Sampled....: 12/06/2004 Time Sampled....: 10:15 Sample Matrix....: Water

ST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MO1.	RL	DIEUTION	LWITS	BATCH	DΤ	DATE/TIME	
8260B	Volatile Organics			0.080	1.0	1.00000	ug/L	137286	, I,	12/16/04 03	54 € J
02000	Chloromethane	1.0	ומו	0.080	1.0	1.00000	ug/L	137286	. 11	12/16/04 03	54
	Vinyt chloride	1.0		0.10	1.0	1.00000	ug/L	137286		12/16/04 03	
	Bromethane	1.0		0.080	1.0	1.00000	ug/L	137286		12/16/04 03	54
	Chloroethane	1.0	U	0.12	1.0	1.00000	ug/L	137286		12/16/04 03	
	1,1-Dichloroethene	5.0	iu	0.20	5.0	1.00000	ug/L	137286	, l'	12/16/04 03	54
	Carbon disulfide	10	u l	1.8	10	1.00000	ug/L	137286	i 1	12/16/04 03	.54
	Acetone	1.5	u	0.35	1.5	1.00000	ug/L	137286	i 11	12/16/04 03	54
	Methylene chloride	1.0	Ψ	0.14	1.0	1.00000	ug/L	137286	l l'	12/16/04 03	154
	trans-1,2-Dichloroethene	1.0	Ū	0.11	1.0	1.00000	ug/L	137286		12/16/04 03	
	1,1-Dichloroethane	1.0	lül	0.090	1.0	1.00000	ug/L	137286	1 1	12/16/04 03	<i>1</i> 24
	cis-1,2-Dichloroethene	10	انا	1.2	10	1.00000	ug/L	137286	ļ].	12/16/04 03	324
	2-Butanone (MEK)	1.0	lul	0.10	1.0	1.00000	ug/L	137286		12/16/04 03	
	Bromochloromethane	1.0	บ	0.11	1.0	1.00000	ug/L	137286		12/16/04 03	
	Chloreform	1.0	U	0.080	1.0	1.00000	ug/L	137286	1 1	12/16/04 03))4 75 /
	1,1,1-Trichloroethane Carbon tetrachloride	1.0	U	0.13	1.0	1_00000	ug/L	137286	1 1	12/16/04 03))4)(1
		1.0	ប	0.090	1.0	1.00000	ug/L	137286		12/16/04 03	
	Benzene 1,2-Dichloroethane	1.0	u	0.090	1.0	1.00000	ug/L	137286		12/16/04 03 12/16/04 03	
		1.0	U,	0.10	1.0	1.00000	ug/L	137286	1 1	12/16/04 0:	3.24 25.4
	Trichtoroethene	1.0	lui	0.12	1.0	1.00000	ug/L	137286	1 1	12/16/04 0	フノベ
		1.0	U	0.11	1.0	1.00000	ug/L	137286		12/16/04 0	
	cis-1,3-Dichteropropene	1.0	ט ט ט	0.12	1.0	1.00000	ug/L	137286 137286	1 1	12/16/04 0	35/
	4-Methyl-2-pentanone (MIBK)	10	u	0.65	10	1.00000	ug/L	137286	1 1	12/16/04 0	35/
	Toluene	1.0	u	0.10	1.0	1.00000	ug/L	137286		12/16/04 0	35/
	trans-1,3-Dichloropropene	1.0	U	0.15	1.0	1.00000	ug/L	137286		12/16/04 0	354
	1,1,2-Trichloroethane	1.0	U	0.15	1.0	1.00000	i ug/L l ug/L	137286		12/16/04 0	354
	Tetrachloroethene	1.0	U	0.090	1.0	1.00000	ug/L ug/L	137286		12/16/04 0	354
	2-Hexanone	10	ម	0.53	10	1.00000	ug/ L	137230			
	E Herminia		1 1	l	i	ĺ	1	l	1 '	l	

^{*} In Description = Dry Wgt.

Job Number: 232497

LABORATORY TEST RESULTS

PROJECT: USACE RVAAP 14 ACCS

Date: 12/18/2004

CUSTOMER: MKM Engineers, Inc.

Customer Sample ID: LMWsw-052-DUP Date Sampled....: 12/06/2004 Time Sampled....: 10:15 Sample Matrix....: Water

YEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	ġi.	DILUTION	. 1011111111111111	BATCH	خلتنا	DATE/TIME 12/16/04 0354	TECH
	Dibromochioromethane 1,2-Dibromochane (EDB) Chlorobenzene Ethylbenzene m&p-Xylenes o-Xylene Styrene Styrene ### The properties of the prop	1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.060 0.13 0.080 0.070 0.18 0.080 0.13 0.11 0.090 0.23 0.28	1.0 1.0 1.0 2.0 1.0 1.0 1.0	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	137286 137286 137286 137286 137286 137286 137286 137286 137286 137286		12/16/04 0354 12/16/04 0354 12/16/04 0354 12/16/04 0354 12/16/04 0354 12/16/04 0354 12/16/04 0354 12/16/04 0354 12/16/04 0354 12/16/04 0354	jdn jdin jdin jdin jdin jdin jdin
			Bana 13			<u> </u>					

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

PROJECT: USACE RVAAP TA ACCS

Date: 12/20/2004

ATTN: Eric Ellis

CUSTOMER: NXM Engineers, Inc.

Customer Sample ID: LNWsw-052-DUP
Date Sampled....: 12/06/2004
Time Sampled....: 10:15
Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	G FLACS	MOE	RE	DICUTION	UNITS	BATCH D	1 2	ATE/TI		TECH
8270C	Semivolatile Organics Phenol, Low Level Water Bis(2-chloroethyt)ether, Low Level Water 1,3-Dichlorobenzene, Low Level Water 1,4-Dichlorobenzene, Low Level Water 1,2-Dichlorobenzene, Low Level Water Benzyl alcohol, Low Level Water 2-Methylphenol (o-cresol), Low Level Water 2,2-oxybis (1-chloropropane), Low Level Water n-Nitroso-di-n-propylamine, Low Level Water Mexachloroethane, Low Level Water 4-Methylphenol (m/p-cresol), Low Level Water 2-Chlorophenol, Low Level Water Nitrobenzene, Low Level Water Bis(2-chloroethoxy)methane, Low Level Water 1,2,4-Trichlorobenzene, Low Level Water 1,2,4-Trichlorobenzene, Low Level Water 1,2,4-Dimethylphenol, Low Level Water 2,4-Dimethylphenol, Low Level Water Waphthalene, Low Level Water 2,4-Dichlorophenol, Low Level Water 2,4-Dichlorophenol, Low Level Water 4-Chloroaniline, Low Level Water 2,4,5-Trichlorophenol, Low Level Water Hexachlorocyclopentadiene, Low Level Water 2-Methylnaphthalene, Low Level Water 2-Methylnaphthalene, Low Level Water 2-Mitroaniline, Low Level Water 2-Mitroaniline, Low Level Water	4.7 1.9 1.9 1.9 1.9 1.9 1.9 0.47 4.7 0.93 1.9 1.9 1.9 9.3 4.7 0.93 9.3 4.7 9.3 9.3	*	0.33 0.28 0.40 0.31 0.33 2.1 0.24 0.26 0.076 0.57 0.093 0.11 0.15 0.29 0.32 2.8 0.24 1.2 0.60 0.15 0.85 2.6 0.20 1.3 0.61 0.12 0.21 0.24	4.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 4.7 0.93 1.9 1.9 1.9 9.3 4.7 0.93 9.3 9.3 4.7 9.3	1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	137499 137499	12/ 12/ 12/ 12/ 12/ 12/ 12/ 12/ 12/ 12/	/13/04 /13/04	0755 0755 0755 0755 0755 0755 0755 0755	de de de de de de de de de de de de de d

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

PROJECT: USACE RVAAP 14 ACCS

Date: 12/20/2004

ATTN: Eric Ellis

CUSTOMER: MKM Engineers, Inc.

Customer Sample ID: LNWsw-D52-DUP Date Sampled.....: 12/06/2004 Time Sampled.....: 10:15 Sample Matrix....: Water Laboratory Sample ID: 232497-7
Date Received....: 12/07/2004
Time Received....: 10:00

TECH DATE/TIME LINITS BATCH DT DILUTION SAMPLE RESULT G FLAGS HOL PARAMETER/TEST DESCRIPTION TEST METHOD 12/13/04 0755 dpk 137499 1_00000 ug/L 9.3 2.2 Q.34-Chloro-3-methylphenol, Low Level Water 12/13/04 0755 dpk 137499 1,00000 ug/L 0.47 D_10 0.47 2,6-Dinitrotoluene, Low Level Water 12/13/04 0755 dpk 137499 9.3 1.00000 uq/L 0.77 9.3 2-Nitrophenol. Low Level Water 12/13/04 0755 dpk 137499 1.00000 ug/L 9.3 lu' 2.0 9.3 3-Nitroaniline, Low Level Water 12/13/04 0755 dpk 137499 1.00000 ug/L 0.20 1.9 1.9 Dimethyl phthalate, Low Level Water 12/13/04 0755 dpk 137499 19 1.00000 ug/L 3.1 19 2.4-Dinitrophenol, Low Level Water 137499 12/13/04 0755 dpk 1.00000 0.93 ug/t. 0.11 0.93 12/13/04 0755 dok Acenaphthylene, Low Level Water 137499 1.00000 ug/L 0.93 0.12 0.93 2,4-Dinitrotoluene, Low Level Water 12/13/04 0755 dpk 137499 0.93 1.00000 ug/L 0.11 0.93 Acenaphthene, Low Level Water 12/13/04 0755 dpk 137499 1.00000 ug/L 1.9 lul D. 12 1.9 Dibenzofuran, Low Level Water 137499 12/13/04 0755 dpk 1.00000 ug/L 3.5 19 19 4-Mitrophenol, Low Level Water 12/13/04 0755 dpk 137499 1.00000 ug/L 0.93 0.12 0.93 Fluorene, Low Level Water 12/13/04 0755 dpk 137499 1.00000 ug/L 9.3 2.1 9.3 4-Nitroaniline, Low Level Water 12/13/04 0755 dpk 137499 1.00000 ug/L 4.7 0.18 4.7 4-Bromophenyl phenyl ether, Low Level Water 12/13/04 0755 dpk 137499 11.00000 ug/L 0.47 0.0910.47 Hexachlorobenzene, Low Level Water 137499 12/13/04 0755 dpk 11.00000 ug/L 1.9 u 0.14 1.9 12/13/04 0755 dpk Diethyl phthalate, Low Level Water 137499 4.7 1.00000 ug/L 0.70 u 4-Chlorophenyl phenyl ether, Low Level Water 4.7 12/13/04 0755 dpk 137499 9.3 1.00000 ug/L U 1.6 9.3 Pentachlorophenol, Low Level Water 137499 12/13/04 0755 dpk 1.00000 uq/L 0.93 u 0.12 0.93n-Nitrosodiphenylamine, Low Level Water 12/13/04 0755 dpk 137499 1.00000 ug/L 19 2.2 4.6-Dinitro-2-methylphenol, Low Level Water 19 12/13/04 0755 dpk 137499 ug/L 0.93 1.00000 0.130.93Phenanthrene, Low Level Water 12/13/04 0755 dok 137499 u 0.93 1.00000 ug/L 0.14 0.93Anthracene, Low Level Water 12/13/04 0755 dpk 1.00000 ug/L 137499 0.27 4.7 4.7 Carbazole, Low Level Water 137499 12/13/04 0755 dok 1.00000 ug/L 4.7 U 0.34 4.7 Di-n-butyl phthalate, Low Level Water 12/13/04 0755 dpk 137499 0.93 1.00000 uq/L 0.13 0.93Fluoranthene, Low Level Water 12/13/04 0755 dpk 137499 1.00000 ug/L 0.930.11 0.93 12/13/04 0755 dpk Pyrene, Low Level Water 137499 1.00000 ug/L 1.9 0.36 1.9 12/13/04 0755 dok Butyl benzyl phthalate, Low Level Water 137499 0.19 1.00000 ug/L 0.0460.19Senzo(a)anthracene, Low Level Water 12/13/04 0755 dpk 1.00000 ug/L 137499 0.47 0.042 0.47 Chrysene, Low Level Water

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 232497

Date: 12/20/2004

CUSTOMER: MKM Fogineers, Inc.

PROJECT: USACE RVAAP 14 AUCS

ATTH: Eric Ellis

Customer Sample ID: LNWsw-052-DUP Date Sampled....: 12/06/2004 Time Sampled....: 10:15 Sample Matrix....: Water

ST METHOD PARAMETER/JEST DESCRIPTION	SAMPLE RESULT OFLAGS	MO1.	Managaran (TEGETON CINT		DT DATE/TIME	<u>a waissi</u>
3,3-Dichlorobenzidine, Low Level Water Bis(2-ethylhexyl)phthalate, Low Level Water Di-n-octyl phthalate, Low Level Water Benzo(b)fluoranthene, Low Level Water Benzo(x)fluoranthene, Low Level Water Benzo(a)pyrene, Low Level Water Indeno(1,2,3-cd)pyrene, Low Level Water Dibenzo(a,h)anthracene, Low Level Water Benzo(ghi)perylene, Low Level Water	4.7 U 14 U 9.3 U 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U 0.37 U	0.67 3.6 2.3 0.063 0.067 0.079 0.080 0.12 0.18	14 9.3 0.37 1 0.37 1 0.37 1 0.37	.00000 ug/ .00000 ug/ .00000 ug/ .00000 ug/ .00000 ug/ .00000 ug/ .00000 ug/	137499 1 137499 1 137499 1 137499 1 137499 1 137499 1 137499 1 137499	12/13/04 075 12/13/04 075 12/13/04 075 12/13/04 075 12/13/04 075 12/13/04 075 12/13/04 075	55 dpl 55 dpl 55 dp 55 dp 55 dp 55 dp 55 dp
	i i						

^{*} In Description = Dry Wgt.

Page 16

Job Wumber: 232497	LABORATORY TEST RES	Date:12/21/2004
DUSTOMER: MKM Englineers, Inc.	PROJECT: USACE RVAAP: 14 AOCS	ATTHE Eric Ellis

Customer Sample ID: LNWsw-052-DUP Date Sampled.....: 12/06/2004 Time Sampled.....: 10:15 Sample Matrix....: Water

TEST METHOD	PAKAMETER/TEST DESCRIPTION	SAMPLE RESULT	G FLAGS	MCL	RL	DILUTION	UNITS	BATCH	DΤ	DATE/T	1 ME	TECH
8330 8332M	Explosives by 8330 (MPLC) HMX RDX 1,3,5-Irinitrobenzene 1,3-Dinitrobenzene Nitrobenzene 2,4,6-TNT Tetryl 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Amino-4,6-Dinitrotoluene 4-Amino-2,6-Dinitrotoluene 2-Nitrotoluene 4-Nitrotoluene 3-Nitrotoluene NG/PETN by 8332M (MPLC) Nitroglycerine	0.37 0.37	ט טטטטטטטטטטטטט	0.13 0.12 0.11 0.10 0.082 0.15 0.31 0.23 0.27 0.22 0.21 0.17 0.19 0.19	0.58 0.37 0.37 0.37 0.30 0.47 1.5 0.67 0.67 0.62 0.58 0.58	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	137651 137651 137651 137651 137651 137651 137651 137651 137651 137651 137651 137651		12/15/04 12/15/04 12/15/04 12/15/04 12/15/04 12/15/04 12/15/04 12/15/04 12/15/04 12/15/04 12/15/04	1954 1954 1954 1954 1954 1954 1954 1954	bdw bdw bdw bdw bdw bdw bdw bdw bdw bdw
			7,00	*/a.								

^{*} In Description = Dry Wgt.

Client Sample ID: LNWsw-052-DUP

Trace Level Organic Compounds

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #: Dilution Factor:	12/06/04 10:15 12/13/04 4348574	Work Order #: Date Received: Analysis Date: Initial Wgt/Vol:	12/07/04 12/14/04	• • • • • • • • • • • • • • • • • • • •	Wgt/Vol: 10 mL
PARAMETER Nitroguanidine		RESULT ND	DETECTION LIMIT 20	UNITS ug/L	METHOD NONE UV/HPLC per

Client Sample ID: LNWsw-052-DUP

General Chemistry

Matrix..... WATER Work Order #...: GOGPO Lot-Sample #...: G4L070388-003

Date Received..: 12/07/04 Date Sampled...: 12/06/04

PREP PREPARATION-ANALYSIS DATE BATCH # RL UNITS METHOD RESULT PARAMETER 12/16-12/17/04 4352362 MCAWW 353.2 0.50 mg/L ND Nitrocellulose MDL..... 0.12

Job Number: 232095

LABORATORY TEST RESULTS

Date: 12/03/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: PIRsw-001-SW Date Sampled.....: 11/17/2004 Time Sampled....: 14:21 Sample Matrix....: Water

Chromium

Magnesium

Manganese

Potassium

Cobalt

Copper

Nickel

Iron

Laboratory Sample ID: 232095-15 Date Received.....: 11/18/2004 Time Received.....: 09:45

1.1

0.80

2.2

8,1

1.0

0.41

38

10

10

120

100

10

10

500

5.0

ug/L

ug/l

ug/t

ug/L

ug/L

ug/L

ug/L

ug/L

135885

135885

135885

135885

135885

135885

135885

135885

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT G FLAGS HE)L RL. DICUTION UNITS BATCH DT DATE/TIME TECH 7041 Antimony (GFAA) Ant imony 7.5 2.5 7.5 ug/L 135231 11/22/04 1335 daj 7060A Arsenic (GFAA) Arsenic 0.69 0.51 2.0 ug/L 135115 11/21/04 1335 da] 7421 Lead (GFAA) Lead 3.0 0.79 3,0 ug/L 135 155 11/22/04 1144 daj 7841 Thallium (GFAA) Thallium 4.0 1.3 4.0 ug/L 135201 11/23/04 0003 daj 7470A Mercury (CVAA) Mercury 0.20 0.049 0.20 135633 ug/L 11/29/04 1445 gok 6010B Metals Analysis (ICAP Trace) Aluminum 58 24 150 :1 ug/L 135885 12/01/04 1844 tds Barium 30 1.3 10 ug/L 135885 12/01/04 1844 tds Bery(Lium 2.0 0.25 2.0 ug/L 135885 12/01/04 1844 tds Cadmium 2.0 0.25 2.0 135885 ug/L 12/01/04 1844 tds Calcium 35000 9.5 100 ug/L 135885 12/01/04 1844 tds

* In Description = Dry Wgt.

Page 25

10

10

1500

9000

1400

190

10

5.0

12/01/04 1844 tds

12/01/04 1844 tds

12/01/04 1844 tds

12/01/04 1844 tds

12/01/04 1844 tds

12/01/04 1844 tds

12/01/04 1844 tds

12/01/04 1844 tds

LABORATORY TEST RESULTS

Date: 12/03/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAXP 14 ADCS ATTN: Eric Ellis

Customer Sample ID: PIRsw-001-SW Date Sampled....: 11/17/2004
Time Sampled....: 14:21
Sample Matrix....: Water

Laboratory Sample ID: 232095-15 Date Received.....: 11/18/2004 Time Received.....: 09:45

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS MOL DILUTION UNITS BATCH DATE/TIME TECH Setenium 15 3.0 15 135885 12/01/04 1844 tds 12/01/04 1844 tds 12/01/04 1844 tds ug/L Silver 10 0.72 10 135885 ug/L \$odium. 4000 490 1500 ug/L 135885 Vanadium 10 1.0 10 ug/L 135885 12/01/04 1844 tds Zinc 5.2 1.6 30 ug/L 135885 12/01/04 1844 tds

^{*} In Description = Dry Wgt.

Job Number: 232095

LABORATORY TEST RESULTS

Date:12/14/2004

DUSTOMER: MICH Engineers, Imc. PROJECT: USAGE RVAAP 14 ACCS ATTN: Erfc Elis

Customer Sample ID: PIRsw-001-SW Date Sampled.....: 11/17/2004 Time Sampled.....: 14:21

Laboratory Sample ID: 232095-15 Date Received.....: 11/18/2004 Time Received.....: 09:45

Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FL	igs MDL	ŔĹ	DILUTION	UNITS	BATCH	PT	DATE/TIME	TECH
8081A	Organochlorine Pesticide Analysis alpha-BHC beta-BHC delta-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Methoxychlor alpha-Chlordane gamma-Chlordane Endrin ketone Toxaphene	0.15 0.098 0.098 0.15 0.15 0.098 0.15 0.098 0.098 0.098 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.49 0.098 0.49	נפטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	0.046 0.027 0.025 0.041 0.040 0.027 0.035 0.023 0.017 0.041 0.035 0.043 0.17 0.016 0.017 0.016 0.017	0.098 0.098 0.15 0.15 0.098 0.15 0.098 0.098 0.098 0.15 0.11	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	136547 136547 136547 136547 136547 136547 136547 136547 136547 136547 136547 136547 136547 136547 136547 136547 136547 136547	1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1	1/28/04 1908 1/28/04 1908	kdl kdl kdl kdl kdl kdl kdl kdl kdl kdl

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:12/06/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USAGE RVAAP 14 ADCS

ATTH: Eric Ellis

Customer Sample ID: PIRsw-001-SW Date Sampled.....: 11/17/2004 Time Sampled.....: 14:21 Laboratory Sample ID: 232095-15 Date Received.....: 11/18/2004 Time Received.....: 09:45

Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DŦ	DATE/TIM	E TI
	PCB Analysis Arcolor 1016 Arcolor 1221 Arcolor 1232 Arcolor 1242 Arcolor 1248 Arcolor 1254 Arcolor 1260	0.59 L 1.3 L 1.3 L 1.3 L 1.5 L 1.5 L] 	0.18 0.41 0.34 0.42 0.47 0.34 0.17	0.59 1.3 1.3 1.3 1.5 1.5 1.3	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	136116 136116 136116 136116 136116 136116 136116		11/24/04 1 11/24/04 1 11/24/04 1 11/24/04 1 11/24/04 1 11/24/04 1	519 b 519 b 519 b 519 b 519 b
						7 9 4					
į			E .	3							
									1,111		

^{*} In Description = Dry Wgt.

Page 15

LABORATORY TEST RESULTS

Job Number: 232095 Date:11/30/2004

CUSTOMER: MKM Erigineers, Inc. PROJECT: USACE RVAAP T4 AGCS ATTN: Eric Ellis

Customer Sample ID: PIRsw-001-SW Date Sampled.....: 11/17/2004 Time Sampled.....: 14:21 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q F	LAGS	MOL	RL	DICUTION	UNITS	BATCH	DΠ	DATE/T	IMB	TEC
8260B	Volatile Organics										***************************************		
	Chloromethane	1.0]u	*	0.080	1.0	1.00000	ug/L	135563		11/24/04	0338	jdn
	Vinyl chloride	1.0	U		0.080	1.0	1.00000	ug/L	135563		11/24/04	033B	jdn
	Bromomethane	1.0	U		0.10	1.0	1.00000	ug/L	135563		11/24/04	0338	jdn
	Chloroethane	1.0	U		0.080	1.0	1.00000	ug/L	135563		11/24/04	0338	jdn
	1,1-Dichloroethene	1.0	U		0.12	1.0	1.00000	ug/L	135563		11/24/04	0338	jdn
	Carbon disulfide	5.0			0.20	5.0	1.00000	ug/L	135563		11/24/04		
	Acetone	10	U		1.8	10	1.00000	ug/L	135563		11/24/04	0338	jdn
	Methylene chloride	1.5	U		0_35	1.5	1.00000	ug/L	135563		11/24/04		
	trans-1,2-Dichloroethene	1.0	U		0_14	1.0	1.00000	ug/L	135563		11/24/04	0338	jdn
	1,1-Dichloroethane	1.0	u		0.11	1.0	1.00000	ug/L	135563		11/24/04	0338	jdn
	cis-1,2-Dichloroethene	1.0	U		0.090	1.0	1.00000	ug/L	135563		11/24/04		
	2-Butanone (MEK)	10	u		1.2	10	1.00000	ug/L	135563		11/24/04		
	Bromochloromethane	1.0	U .		0.10	1.0	1.00000	ug/L	135563		11/24/04		
	Chloroform	1.0	U .		0,11	1.0	1.00000	ug/L	135563		11/24/04		
	1,1,1-Trichloroethane	1.0	U.		0.080	1.0	1.00000	ug/L	135563		11/24/04		
	Carbon tetrachloride	1.0	u		0.13	1.0	1.00000	ug/L	135563		11/24/04		
	Benzene	1.0	u		0.090	1.0	1.00000	ug/L	135563		11/24/04		
	1,2-Dichloroethane	1.0	u		0.090	1.0	1.00000	ug/L	135563		11/24/04		
	Trichloroethene	1.0	U		0.10	1.0	1.00000	ug/L	135563		11/24/04	0338	jdn
	1,2-Dichloropropane	1.0	U		0.12	1.0	1,00000	ug/L	135563		11/24/04		
	BromodichLoromethane	1.0	U		0.11	1.0	1.00000	ug/L	135563		11/24/04		
	cis-1,3-Dichloropropene	1.0	ם ב ב כ כ ב		0.12	1.0	1.00000	ug/L	135563		11/24/04	0338	john
	4-Methyl-2-pentanone (MIBK)	10	U		0.65	10	1.00000	ug/L	135563		11/24/04	0338	jobn
	Toluene	1.0	u		0.10	1.0	1.00000	ug/L	135563		11/24/04		
	trans-1,3-Dichloropropene	1.0	u		0.15	1.0	1.00000	ug/L	135563		11/24/04		
	1,1,2-Trichloroethane	1.0			0.15	1.0	1.00000	ug/L	135563		11/24/04		
	Tetrachloroethene	1.0	u		0.090	1.0	1.00000	ug/L	135563		11/24/04		
	2- Hexanone	10	[U]		0.53	10	1.00000	ug/L	135563		11/24/04	0338	join
		1					<u> </u>						

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:11/30/2004

CUSTOMER: MCM Engineers, Inc. PROJECT: USACE RVAAP 14 AOCS ATTAL Enic ELLIS

Customer Sample ID: PIRsw-001-SW Laboratory Sample ID: 232095-15
Date Sampled....: 11/17/2004 Date Received....: 11/18/2004
Time Sampled....: 14:21 Time Received....: 09:45

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DILUTION	UNITS	BATCH	ÐΤ	DATE/TIME	TECH
	Dibromochloromethane 1,2-Dibromoethane (EDB) Chlorobenzene Ethylbenzene m&p-Xylenes o-Xylene Styrene Bromoform 1,1,2,2-Tetrachloroethane 1,2-Dichloroethene (total) Xylenes (total)		0 0 0 0 0 0 0 0 0 0	0.060 0.13 0.080 0.070 0.18 0.080 0.13 0.11 0.090 0.23 0.28	1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	135563 135563 135563 135563 135563 135563 135563 135563 135563 135563	11 11 11 11 11 11 11 11 11 11 11 11 11	11/24/04 0338 11/24/04 0338 11/24/04 0338 11/24/04 0338 11/24/04 0338 11/24/04 0338 11/24/04 0338 11/24/04 0338 11/24/04 0338 11/24/04 0338	8 jdn 8 jdn 8 jdn 8 jdn 8 jdn 8 jdn 8 jdn 8 jdn 8 jdn 8 jdn

^{*} In Description = Dry Wgt.

Page 21

LABORATORY TEST RESULTS

Job Number: 232095 Date: 12/08/2004

CUSTOMER: MKM Engineers, Inc. ATTW: Eric Ellis

Customer Sample ID: PIRsw-001-SW
Date Sampled....: 11/17/2004
Time Sampled....: 14:21
Sample Matrix....: Water

TEST METROD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	0	FLAGS	NOT	RL	DILUTION	UNITS	BATCH	CI	DATE/T	(ME	TECH
8270c	Semivolatile Organics		П										
	Phenol, Low Level Water	4.8	[U]		0.34	4.8	1.00000	ug/L	136498	1 .	12/02/04	0029	dpk
	Bis(2-chloroethyl)ether, Low Level Water	1.9	[U	*	0.29	1.9	1.00000	ug/L	136498		12/02/04		
	1.3-Dichlorobenzene, Low Level Water	1.9	ļυ		0.41	1.9	1.00000	ug/L	136498	1 .	12/02/04	0029	dpk
	1,4-Dichlorobenzene, Low Level Water	1.9	U		0.32	1.9	1.00000	ug/L	136498	1 2	12/02/04	0029	dpk
	1,2-Dichlorobenzene, Low Level Water	1.9	U		0.34	1.9	1.00000	ug/L	136498		12/02/04		
	Benzyl alcohol, Low Level Water	19	U		2.1	19	1.00000	ug/L	136498		12/02/04		
	2-Methylphenol (o-cresol), Low Level Water	1.9	U		0.25	1.9	1.00000	ug/L	136498		12/02/04		
	2,2-oxybis (1-chloropropane), Low Level Water	1.9	υ		0.27	1.9	1.00000	ug/L	136498		12/02/04		
	n-Nitroso-di-n-propylamine, Low Level Water	0.48	υ		0.078	0.48	1.00000	ug/L	136498		12/02/04	0029	dpk
	Hexachloroethane, Low Level Water	4.8	U		0.59	4.8	1.00000	ug/L	136498		12/02/04		
	4-Methylphenol (m/p-cresol), Low Level Water	1.9	U		0.096	1.9	1.00000	ug/L	136498		12/02/04		
	2-Chlorophenol, Low Level Water	4.8	טטטטטט		0.12	4.8	1.00000	ug/L	136498		12/02/04		
	Nitrobenzene, Low Level Water	0.96	U		0.15	0.96	1.00000	ug/L	136498		12/02/04		
	Bis(2-chloroethoxy)methane, Low Level Water	1.9	U		0.30	1.9	1.00000	ug/L	136498		12/02/04		
	1,2,4-Trichlorobenzene, Low Level Water	1.9	U		0.33	1.9	1.00000	ug/L	136498		12/02/04		
	Benzoic acid, Low Level Water	19	U		2.9	19	1.00000	ug/L	136498		12/02/04		
	isophorone, Low Level Water	1.9	U		0.25	1.9	1.00000	ug/L	136498		12/02/04		
	2,4-Dimethylphenol, Low Level Water	9.6	U		1.2	9.6	1.00000	ug/L	136498		12/02/04		
	Hexachlorobutadiene, Low Level Water	4.8	U		0.62	4.8	1.00000	ug/L	136498		12/02/04		
	Naphthalene, Low Level Water	0.96	U		0.15	0.96	[1.00000	ug/L	136498		12/02/04		
	2,4-Dichlorophenol, Low Level Water	9.6	U		0.87	9.6	1.00000	ug/L	136498		12/02/04		
	4-Chloroaniline, Low Level Water	9.6	U		2.7	9.6	1.00000	ug/L	136498		12/02/04		
	2,4,6-Trichlorophenol, Low Level Water	4.8	U		0.20	4.8	1.00000	ug/L	136498		12/02/04		
	2,4,5-Trichlorophenol, Low Level Water	9.6	U		1.3	9.6	1.00000	ug/L	136498		12/02/04		
	Hexachlorocyclopentadiene, Low Level Water	19	U	*	0.62	19	1.00000	ug/L	136498		12/02/04		
	2-Methylnaphthalene, Low Level Water	0.48	U		0.12	0.48	1.00000	ug/L	136498		12/02/04		
	2-Nitrosniline, Low Level Water	4.8	U		0.21	4.8	1.00000	ug/L	136498		12/02/04		
	2-Chioronaphthalene, Low Level Water	1.9	U		0.25	1.9	1.00000	ug/L	136498		12/02/04	0029	dpk
	<u> </u>	<u> </u>	1_1		<u> </u>				<u> </u>	1 1			_

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 12/08/2004

CUSTOMER: MKW Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTM: Eric Ellis

Customer Sample ID: PIRsw-001-SW Date Sampled....: 11/17/2004 Time Sampled....: 14:21 Sample Matrix....: Water

TEST METHOD PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	G FLACS	XO L	RL	CILUTION	UNITS	BATCH	DT DATE/TIME TECH
4-Chloro-3-methylphenol, Low Level Water	9.6	u	2.3	9.6	1.00000	ug/L	136498	12/02/04 0029 dpk
2,6-Dinitrotoluene, Low Level Water	0.48	u	0.11	0.48	1.00000	ug/L	136498	12/02/04 0029 dpk
2-Nitrophenol, Low Level Water	9,6	ม ม	0.79	9.6	1.00000	ug/L	136498	12/02/04 0029 dpk
3-Nitroaniline, Low Level Water	9.6	U	2.0	9.6	1.00000	ug/L	136498	12/02/04 0029 dpk
Dimethyl phthalate, Low Level Water	1.9	u	0.20	1.9	1.00000	ug/L	136498	12/02/04 0029 dpk
2,4-Dinitrophenol, Low Level Water	19	u	3.2	19	1.00000	ug/L	136498	12/02/04 0029 dpk
Acenaphthylene, Low Level Water	0.96	u	0.12	0.96	1.00000	ug/L	136498	12/02/04 0029 dpk
2,4-Dinitrotoluene, Low Level Water	0.96	u	0.12	0.96	1.00000	ug/L	136498	12/02/04 0029 dpk
Acenaphthene, Low Level Water	0.96	u	0.12	0.96	1.00000	ug/L	136498	12/02/04 0029 dpk
Dibenzofuran, Low Level Water	1.9	u	0.12	1.9	1.00000	ug/L	136498	12/02/04 0029 dpk
4-Nitrophenol, Low Level Water	19	u	3.6	19	1.00000	ug/L	136498	12/02/04 0029 dpk
Fluorene, Low Level Water	0.96	U	0.12	0.96	1.00000	ug/L	136498	12/02/04 0029 dpk
4-Mitroaniline, Low Level Water	9-6	U U U U U U	2.2	9.6	1.00000	ug/L	136498	12/02/04 0029 dpk
4-Bromophenyl phenyl ether, Low Level Water	4.8	U	0.18	4.8	1.00000	ug/L	136498	12/02/04 0029 dpk
Hexachlorobenzene, Low Level Water	0.48	<u> </u>	0.093	0.48	1.00000	ug/L	136498	12/02/04 0029 dpk
Diethyl phthalate, Low Level Water	1.9	U	0.14	1.9	1.00000	ug/L	136498	12/02/04 0029 dpk
4-Chlorophenyl phenyl ether, Low Level Water	4.8	191	0.72	4.8	1.00000	ug/L	136498	12/02/04 0029 dpk
Pentachlorophenol, Low Level Water	9.6	U	1.6	9.6	1.00000	ug/L	136498	12/02/04 0029 dpk
n-Nitrosodiphenylamine, Low Level Water	0.96	lu i	0.12	0.96	1.00000	ug/L	136498	12/02/04 0029 dpk
4,6-Dinitro-2-methylphenol, Low Level Water		U *	2.3	19	1.00000	ug/L	136498	12/02/04 0029 dpk
Phenanthrene, Low Level Water	0.96	U	0.13	0.96	1.00000	ug/L	136498	12/02/04 0029 dpk
Anthracene, Low Level Water	0.96	<u> </u>	0.14	0.96	1.00000	ug/L	136498	12/02/04 0029 dpk
Carbazole, Low Level Water	4.8	U I	0.28	4.8	1.00000	ug/L	136498	12/02/04 0029 dpk
Di-n-butyl phthalate, Low Level Water	4.8	U U U	0.35	4.8	1.00000	ug/L	136498	12/02/04 0029 dpk
Fluoranthene, Low Level Water	0.96	U	0.13	0.96	1.00000	ug/L	136498	12/02/04 0029 dpk
Pyrene, Low Level Water	0.96	U	0.12	0.96	1.00000	ug/L	136498	12/02/04 0029 dpk
Butyl benzyl phthalate, Low Level Water	1.9	U	0.37	1.9	1.00000	ug/L	136498	12/02/04 0029 dpk
Benzo(a)anthracene, Low Level Water	0.19	U	0.047	0.19	1.00000	ug/L	136498	12/02/04 0029 dpk
Chrysene, Low Level Water	0.48	וטן	0.043	0.48	1.00000	ug/L	136498	12/02/04 0029 dpk
	l .			-				
		<u> </u>	<u> </u>	<u> </u>		<u> </u>	J	<u> </u>

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 232095 Date: 12/08/2004

CUSTOMER: NKM Engineers, Inc. PROJECT: USACE RVANP: 14 ADCS. ATTN: Enic Elias

Customer Sample 1D: PIRsw-001-SW Date Sampled....: 11/17/2004 Time Sampled....: 14:21 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	o FLAGS	F	31	DILUTION	UNITS	BATCH	DT	DATE/TIME	TEC
	3,3-Dichlorobenzidine, Low Level Water Bis(2-ethylhexyl)phthalate, Low Level Water Di-n-octyl phthalate, Low Level Water Benzo(b)fluoranthene, Low Level Water Benzo(a)pyrene, Low Level Water Benzo(a)pyrene, Low Level Water Indeno(1,2,3-cd)pyrene, Low Level Water Dibenzo(a,h)anthracene, Low Level Water Benzo(ghi)perylene, Low Level Water	9.6		0.69 3.7 2.4 0.064 0.069 0.081 0.083 0.12 0.18	4.8 14 9.6 0.38 0.38 0.38 0.38 0.38	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	136498 136498 136498 136498 136498 136498 136498 136498		12/02/04 002 12/02/04 002 12/02/04 002 12/02/04 002 12/02/04 002 12/02/04 002 12/02/04 002 12/02/04 002 12/02/04 002	29 dipk 29 dipk 29 dipk 29 dipk 29 dipk 29 dipk 29 dipk

^{*} In Description = Dry Wgt.

LABORATORY 1EST RESULTS Job Number: 232095

Date: 12/06/2004

CLISTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAP 14:AGCS ATTW: Eric Ellis

Customer Sample ID: PIRsw-001-SW Date Sampled....: 11/17/2004 Time Sampled....: 14:21 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q	FLAGS	MOL	RE	DILUTION	UNITS	BATCH	DΤ	DATE/T	ĮME.	тесн
8330	Explosives by 8330 (HPLC) HMX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene Nitrobenzene 2,4,6-TNT Tetryl 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2-Amino-4,6-Dinitrotoluene 4-Amino-2,6-Dinitrotoluene 2-Nitrotoluene 4-Nitrotoluene 3-Nitrotoluene	0.31 0.20 0.20 0.20 0.16 0.25 0.78 0.36 0.43 0.36 0.33 0.31	טטטטטטטטטטטטטטטטט	*	0.068 0.064 0.058 0.055 0.044 0.078 0.16 0.12 0.14 0.12 0.11 0.093 0.10	0.31 0.20 0.20 0.20 0.25 0.78 0.36 0.43 0.36 0.33 0.31 0.31	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L	136193 136193 136193 136193 136193 136193 136193 136193 136193 136193 136193 136193 136193	, , , , , , , , , , , , , , , , , , ,	11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04	1011 1011 1011 1011 1011 1011 1011 101	san san san san san san san san san
8332M	NG/PEIN by 8332M (HPLC) Nitroglycerine	1.0	U		0.15	1.0	1.00000	ug/L	136195	This is it is a construction of the constructi	11/21/04	1147	san

^{*} In Description = Dry Wgt.

Client Sample ID: PIRsw-001-SW

Trace Level Organic Compounds

Lot-Sample #: G4K180473-003 Date Sampled: 11/17/04 14:21 Prep Date: 11/30/04 Prep Batch #: 4335319 Dilution Factor: 1	Work Order #: Date Received: Analysis Date: Initial Wgt/Vol:	11/18/04 11/30/04	Matrix: WATER Final Wgt/Vol.: 10 mL
PARAMETER Nitroquanidine	RESULT ND	DETECTION LIMIT 20	UNITS METHOD ug/L NONE UV/HPLC per

Nitroguanidine

Client Sample ID: PIRsw-001-SW

General Chemistry

Lot-Sample #...: G4K180473-003 Work Order #...: GXC90 Matrix....: WATER

Date Sampled...: 11/17/04 14:21 Date Received..: 11/18/04

PARAMETER	RESULT	RL_	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrocellulose		0.50		MCAWW 353.2 Initial Wgt/Vol: 100 mL	11/20-11/23/04 Final Wgt/Vol	

Job Number: 232497

Date:01/04/2005

CUSTOMER: MKM Engineers, Enc. PROJECT: USACE RVAAP 14 AGCS ATIN: Engineers

Customer Sample ID: LL5sw-007-SW
Date Sampled....: 12/06/2004
Time Sampled....: 09:30
Sample Matrix....: Water

Laboratory Sample ID: 232497-3
Date Received.....: 12/07/2004
Time Received.....: 10:00

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS MDL RL DILUTION BATCH DT DATE/TIME UNITS TECH 353.2 Nitrogen, NO2, NO3 (Auto Ed Red.) Nitrate as N (NO3-N) 2600 110 400 2000 137399 mg/L 12/17/04 1443 kd

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 12/20/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LL5sw-007-SW
Date Sampled....: 12/06/2004
Time Sampled....: 09:30
Sample Matrix...: Water

Laboratory Sample IO: 232497-3
Date Received.....: 12/07/2004
Time Received.....: 10:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q I	LAGS	3006	₹L	DILUTION	UNITS	BATCH	ĐΤ	DATE/TI	ME .	TEC
7041	Antimony (GFAA) Antimony	7.5	IJ		2.5	7.5	1	ug/L	136643		12/08/04	1548	daj
7060A	Arsenic (GFAA) Arsenic	2.0	U		0.51	2.0	1	ug/L	136622		12/08/04	1723	daj
7421	Lead (GFAA) Lead	3.0	U		0.79	. 30	ī	ug/L	136730		12/09/04	1709	daj
7841	Thallium (GFAA) Thallium	4.0	U		1.3	4.0	1	ug/L	136776		12/09/04	1429	daj
7470A	Mercury (CYAA) Mercury	0.20	ŋ		0.063	0.20	1	ug/L	137144		12/14/04	1434	gok
6010B	Metals Analysis (ICAP Trace) Aluminum Barīum Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Nickel Potassium	620 28 2.0 2.0 33000 1.2 5.0 10 530 1800 63 10			24 1.3 0.25 0.25 9.5 1.1 0.80 2.2 38 8.1 0.41 1.0	150 10 2.0 2.0 100 10 5.0 10 120 100 10 10 500	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	137508 137508 137508 137508 137508 137508 137508 137508 137508 137508 137508 137508		12/19/04 12/19/04 12/19/04 12/19/04 12/19/04 12/19/04 12/19/04 12/19/04 12/19/04 12/19/04 12/19/04	0521 0521 0521 0521 0521 0521 0521 0521	tds tds tds tds tds tds tds tds tds tds

^{*} In Description = Dry Wgt.