

Appendix G

Soil Boring Analytical Data

Landfill North of Winklepeck Burning Grounds Anchor Test Area

LABORATORY TEST RESULTS

Job Number: 231877

Date:11/29/2004

QUSTOMER: MKM: Engineers, Inc. ATTN: Eric Ettis

Customer Sample ID: LNWsb-053-S0
Date Sampled....: 11/09/2004
Time Sampled....: 12:00
Sample Matrix....: Soil

TEST: METROD	PARAMETER/TEST DESERIPTION	SAMPLE RESULT	Q FLAGS	MDŁ	RL	DILUTION	UNITS	BATCH DT	DATE/TI	VE	ТЕСН
Method	% Solids Determination % Solids, Solid % Moisture, Solid	86.9 13.1	, A & . V	0.10 0.10	0.10 0.10	1	% %	134212 134212	11/13/04		
7041	Antimony (GFAA) Antimony, Solid*	0.47	B	0.44	1.4	: 1 	mg/Kg	134864	11/18/04	2112	daj
7841	Thallium (GFAA) Thallium, Solid*	0.28	В	0.19	0.60	1	mg/Kg	134716	11/17/04	2115	daj
7471A	Mercury (CVAA) Solids Mercury, Solid*	0.019	U	0.0049	0.019	1	mg/Kg	135018	11/18/04	1619	gok
6010B	Metals Analysis (ICAP Trace) Aluminum, Solid* Barium, Solid* Arsenic, Solid* Beryllium, Solid* Cadmium, Solid* Calcium, Solid* Chromium, Solid* Cobalt, Solid* Copper, Solid* Iron, Solid* Iron, Solid* Magnesium, Solid* Magnesium, Solid* Nickel, Solid* Lead, Solid* Potassium, Solid*	12000 67 13 0.75 0.26 2100 18 13 21 25000 3900 490 31 12 1800		2.6 0.16 0.52 0.045 0.082 3.2 0.14 0.99 3.1 1.7 0.13 0.26 0.44	16 1.0 1.5 0.41 0.26 10 1.0 0.51 3.3 10 10 1.0 1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/Kg	135366 135030 135030 135030 135030 135030 135030 135030 135030 135030 135030 135030 135030 135030	11/23/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04	1654 1654 1654 1654 1654 1654 1654 1654	Lmr Lmr Lmr Lmr Lmr tds Lmr Lmr Lmr

^{*} In Description = Dry Wgt.

Job Number: 231877

LABORATORY TEST RESULTS

Date:11/29/2004

CUSTOMER:: MKM Engineers, Inc. PROJECT: USAGE RVAAP 14 AOES

ATTN: Eric Ellis

Customer Sample ID: LNWsb-053-SD Date Sampled....: 11/09/2004 Time Sampled....: 12:00 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAG	s wor	RL	DILUTION	UNITS	BATCH	OΤ	DATE/TI	ME	TECH
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadium, Solid* Zinc, Solid*	0.56 1.0 410 18 61	В	0.44 0.32 95 0.22 0.41	1.6 1.0 330 1.0 2.1	1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135366 135030 135366 135030 135030		11/23/04 11/20/04 11/23/04 11/20/04 11/20/04	1645 1654 1645 1654 1654	tds lar tds lar lmr

^{*} In Description = Dry Wgt.

STL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS

Job Number: 231877 Date:12/02/2004

CUSTOMER: MKM Engineers, Inc. ATTN: Eric Ellis

Customer Sample ID: LNWsb-053-S0
Date Sampled.....: 11/09/2004
Time Sampled.....: 12:00
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL.	DILUTION	UNITS	BATCH	DΤ	DATE/T	IME	TECH
8270C	Semivolatile Organics		!								-	
	Phenol, 3541 Low Solid*	190	lu (8.2	190	1.00000	ug/Kg	135942		11/30/04	2323	dok
	Bis(2-chloroethyl)ether, 3541 Low Solid*	77	u	10	77	1.00000	ug/Kg	135942		11/30/04	2323	dok
	1,3-Dichlorobenzene, 3541 Low Solid*	190	u	15	190	1.00000	ug/Kg	135942		11/30/04	2323	dok
	1,4-Dichlarobenzene, 3541 Low Solid*	190	u	18	190	1.00000	ug/Kg	135942	!	11/30/04	2323	dpk
	1,2-Dichlarabenzene, 3541 Low Solid*	190	U	16	190	1.00000	ug/Kg	135942		11/30/04	2323	dpk
	Benzyl alcohol, 3541 Low Solid*	770	U	. 85	770	1.00000	ug/Kg	135942		11/30/04	2323	dpk
	2-Methylphenol (o-cresol), 3541 Low Solid*	77	U	12	77	1.00000	ug/Kg	135942		11/30/04	2323	dpk
	2,2-oxybis (1-chloropropane), 3541 Low So*id	190	ļu ļ	18	190	1.00000	ug/Kg	135942		11/30/04		
	n-Nitroso-di-n-propylamine, 3541 Low Soli*	j 77	Įu;	15	77	1.00000	ug/Kg	135942		11/30/04		
İ	Hexachloroethane, 3541 Low Solid*	190	[0]	9.9	190	1.00000	ug/Kg	135942		11/30/04		
	4-Methylphenol (m/p-cresol), 3541 Low Sol*d	77	u	14	77	1.00000	ug/Kg	135942		11/30/04		
	2-Chlorophenol, 3541 Low Solid*	190	U	16	190	1.00000	ug/Kg	135942		11/30/04		
	Nitrobenzene, 3541 Low Solid*	38	u	9.9	38	1.00000	ug/Kg	135942		11/30/04		
	Bis(2-chloroethoxy)methane, 3541 Low Soli*	77	U U U *	10	77	1.00000	ug/Kg	135942		11/30/04		
	1,2,4-Trichlorobenzene, 3541 Low Solid*	190	U	16	190	1.00000	ug/Kg	135942		11/30/04		
	Benzoic acid, 3541 Low Solid*	. 770		230	770	1,00000	ug/Kg	135942	1	11/30/04		
	Isophorone, 3541 Low Solid*		(u l	23	190	1.00000	ug/Kg	135942	'	11/30/04	2323	dok
	2,4-Dimethylphenol, 3541 Low Solid*	380	U	19	380	1.00000	ug/Kg	135942		11/30/04	2323	dpk
İ	Hexachlorobutadiene, 3541 Low Solid*	190	u	10	190	1.00000	ug/Kg	135942] ;	11/30/04	2323	dpk
	Naphthalene, 3541 Low Solid*	38	u	9.7	38	1.00000	ug/Kg	135942		11/30/04		
	2,4-Dichlorophenol, 3541 Low Solid*	380	u	18	380	1.00000	ug/Kg	135942		11/30/04	2323	dpk
	4-Chloroaniline, 3541 Low Solid*	770	<u>η</u>	62	7 70	1_00000	ug/Kg	135942	1	11/30/04	2323	dipk
	2,4,6-Trichlorophenol, 3541 Low Solid*	190	U	43	190	1.00000	ug/Kg	135942		11/30/04		
	2,4,5-Trichlorophenol, 3541 Low Solid*	380	U	51	380	1.00000	ug/Kg	135942		11/30/04	. 2323	dok
	Mexachlorocyclopentadiene, 3541 Low Solid*	1100	(u l	350	1100	1.00000	ug/Kg	135942		11/30/04	2323	dpk
	2-Nethylnaphthalene, 3541 Low Solid*	38	luf	11	38	1.00000	ug/Kg	135942		11/30/04	2323	dpk
ļ	2-Nitroaniline, 3541 Low Solid*	190	[u]	12	190	1.00000	ug/Kg	135942		11/30/04	, 2323	dpk
}	2-Chloronaphthalene, 3541 Low Solid*	190	U	18	190	1.00000	ug/Kg	135942		11/30/04		
	į						! !					
	1				L		L	1				ــــــــــــــــــــــــــــــــــــــ

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:12/02/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ADCS

ATTN: Eric Ellis

Customer Sample 1D: LNWsb-053-S0
Date Sampled....: 11/09/2004
Time Sampled....: 12:00
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DILUTION	LINETS	BATCH	ĐΤ	DATE/T	IME	TECH
	4-Chloro-3-methylphenol, 3541 Low Solid*	380	U	40	380	1.00000	ug/Kg	135942		11/30/04	2323	dok
	2,6-Dinitrotoluene, 3541 Low Solid*	38	u	11	38	1.00000	ug/Kg	135942		11/30/04		
	2-Mitrophenol, 3541 Low Solid*	380	u	17	380	1.00000	ug/Kg	135942		11/30/04		
	3-Nitroaniline, 3541 Low Solid*	770	u	; 160	770	1_00000	ug/Kg	135942		11/30/04		
	Dimethyl phthalate, 3541 Low Solid*	77	u	10	77	1.00000	ug/Kg	135942		11/30/04		
	[2,4-Dinitrophenol, 3541 Low Solid*	770	U *	120	770	1.00000	ug/Kg	135942		11/30/04		
	Acenaphthylene, 3541 Low Solid*	38	U	9.5	; 38	1.00000	ug/Kg	135942		11/30/04		
ŀ	2,4-Dinitrotoluene, 3541 Low Salid*	38	U	12	38	1.00000	ug/Kg	135942		11/30/04		
	Acenaphthene, 3541 Low Solid*	38	U	9.5	38	1.00000	ug/Kg	135942		11/30/04		
	Dibenzofuran, 3541 Low Solid*	77	u)	10	77	1.00000	ug/Kg	135942		11/30/04	2323	dpk
	4-Nitrophenal, 3541 Low Salid*	770	lu j	240	770	1.00000	ug/Kg	135942		11/30/04		
	Fluorene, 3541 Low Solid*	38	U	10	38	1.00000	ug/Kg	135942	1 1	11/30/04	2323	dpk
	4-Nitroaniline, 3541 Low Solid*	770	u	52	770	1.00000	ug/Kg	135942	1 1	11/30/04	2323	dpk
	4-Bromophenyl phenyl ether, 3541 Low Soli*	190	U	11	190	j1.00000	ug/Kg	135942		11/30/04		
	Hexachlorobenzene, 3541 Low Solid*	38	U	11	38	1.00000	ug/Kg	135942		11/30/04		
	Diethyl phthalate, 3541 Low Solid*	77		11	77	1.00000	ug/Kg	135942		11/30/04	2323	dok
	4-Chlorophenyl phenyl ether, 3541 Low Sol*d	190	U	11	190	1.00000	ug/Kg	135942	ĺ	11/30/04	2323	dpk
	Pentachlorophenol, 3541 Low Solid*	380	u	130	380	1.00000	ug/Kg	135942		11/30/04	2323	dpk
	n-Mitrosodiphenylamine, 3541 Low Solid*	38	U,	12	38	1_00000	ug/Kg	135942	1 1	11/30/04	2323	dpk
	4,6-Dinitro-2-methylphenol, 3541 Low Soli*	770	u	190	770	1.00000	ug/Kg	135942		11/30/04		
	Phenanthrene, 3541 Low Solid*	57	U	į 1 7	57	1.00000	ug/Kg	135942	1 1	11/30/04	2323	dok
	Anthracene, 3541 Low Solid*	38	U	13	38	1.00000	ug/Kg	135942		11/30/04		
	Carbazole, 3541 Low Solid*	190	U	14	190	1.00000	ug/Kg	135942		11/30/04	. 2323	dok
	Di-n-butyl phthalate, 3541 Low Solid*	190	U	13	190	1.00000	ug/Kg	135942	†	11/30/04	2323	dok
	Fluoranthene, 3541 Low Solid*	38	U	12	38	1.00000	ug/Kg	135942		11/30/04	2323	dpk
	Pyrene, 3541 Low Solid*	57	U	14	57	1.00000	ug/Kg	135942		11/30/04	2323	dpk
•	Butyl benzyl phthalate, 3541 Low Solid*	77	u	12	77	1.00000	ug/Kg	135942		11/30/04	2323	dpk
	Benzo(a)anthracene, 3541 Low Solid*	38	lu¦	11	38	1.00000	ug/Kg	135942		11/30/04	. 2323	dpk
	Chrysene, 3541 Low Solid*	38	U	12	38	1.00000	ug/Kg	135942	1	11/30/04	2323	dok
	 			ı								'

^{*} In Description = Dry Wgt.

LABORATORY YEST RESULTS

Job Number: 231877 Date:12/02/2004

CUSTOMER: MKM Engineers, Inc. ATTM: Eric Ellis

Customer Sample ID: LNWsb-053-S0
Date Sampled....: 11/09/2004
Time Sampled....: 12:00
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	PL PL	DILUTION	UNITS	BATCH	DΤ	DATE/TI	ME.	TECH
	3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Solid* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(k)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghi)perylene, 3541 Low Solid*	190 190 380 38 38 38 38 38 38	טטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	17 37 12 10 11 11 12 11	190 190 380 38 38 38 38 38 38	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	135942 135942 135942 135942 135942 135942 135942 135942 135942		11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04	2323 2323 2323 2323 2323 2323 2323	dipk dipk dipk dipk dipk dipk
Method	% Solids Determination % Solids, Solid % Moisture, Solid	86.9 13.1		0.10 0.10	0.10 0.10	1	* % %	134212 134212		11/13/04 11/13/04		

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:11/24/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-053-S0 Date Sampled....: 11/09/2004 Time Sampled....: 12:00 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	HeD1	RL	DILUTION	UNITS	BATCH	DΤ	DATE/T	IME	TECH
	Explosives by 8330 (MPLC) HMX, Solid 1,3,5-Irinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-TNT, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.20 0.10 0.10 0.10 0.10 0.40 0.40		0.056 0.063 0.033 0.024 0.021 0.024 0.12 0.026 0.049 0.046 0.094 0.048 0.050 0.053	0.20 0.10 0.10 0.10 0.10 0.40 0.30 0.20 0.20 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135440 135440 135440 135440 135440 135440 135440 135440 135440 135440 135440	V	11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04	0036 0036 0036 0036 0036 0036 0036 0036	bdw bdw bdw bdw bdw bdw bdw bdw bdw

^{*} In Description = Dry Wgt.

Job Number: 231877

LABORATORY TEST RESULTS

Date: 11/29/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-054-S0
Date Sampled.....: 11/09/2004
Time Sampled.....: 12:30
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAG	S POL	RL	DILUTION	UNITS	BATCH	рτ	DATEAT	IME	TECH
Method	% Solids Determination % Solids, Solid % Moisture, Solid	86.0 14.0		0.10 0.10	0.10 0.10	1	X X	134212 134212		11/13/04 11/13/04		
7041	Antimony (GFAA) Antimony, Solid*	1.6	u	0.49	1.6	1	mg/Kg	134864		11/19/04	0426	daj
7841	Thallium (GFAA) Thallium, Solid*	0.30	В	0.21	0.67	t	mg/Kg	134716		11/18/04	0422	da j
7471A	Mercury (CVAA) Solids Mercury, Solid*	0.0092	В	0.0050	0.019	1	mg/Kg	135018		11/18/04	1608	gok
6010B	Metals Analysis (ICAP Trace) Alumīnum, Solid* Barium, Solid* Arsenic, Solid* Beryllium, Solid* Cadmium, Solid* Chromium, Solid* Chromium, Solid* Cobalt, Solid* Copper, Solid* Iron, Solid* Magnesium, Solid* Nickel, Solid* Lead, Solid*	11000 79 13 0.77 0.28 4500 17 12 19 26000 4300 380 32 15	C	2.7 0.18 0.57 0.049 0.090 3.5 0.25 0.16 1.0 3.4 1.9 0.15 0.28 0.48	17 1.1 1.7 0.45 0.28 11 1.1 0.56 3.4 11 11 1.1 1.1 1.7 56	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135366 135030 135030 135030 135030 135030 135030 135030 135030 135030 135030 135030		11/23/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04	1545 1545 1545 1545 1545 1545 1545 1545	5 Lmr 5 Lmr

^{*} In Description = Dry Wgt.

Job Number: 231877

Date: 11/29/2004

CUSTOMER: MKM Ergineers, Inc. ATTN: Eric Elis

Customer Sample ID: LNVsb-054-S0
Date Sampled....: 11/09/2004
Time Sampled....: 12:30
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLACS	MD1.	Pi.	DILUTION	UNITS	BATCH D	DATE/TIME T
	Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadium, Solid* Zinc, Solid*		U U	0.45 0.35 97 0.24 0.45	1.7 1.1 340 1.1 2.2	1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135030 135030 135060 135030 135030	11/20/04 1545 11/20/04 1545 11/22/04 0039 11/20/04 1545 11/20/04 1545
		· « ·					•		

^{*} In Description = Dry Wgt.

Job Number: 231877 LABORATORY TEST RESULTS

Date:12/02/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 16 ACCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-054-SD Date Sampled....: 11/09/2004 Time Sampled....: 12:30 Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	2000.EE	Kunt	1:::	W4W18.00000	arte.
	Semivolatile Organics Phenol, 3541 Low Solid* Bis(2-chloroethyl)ether, 3541 Low Solid* 1,3-Dichlorobenzene, 3541 Low Solid* 1,4-Dichlorobenzene, 3541 Low Solid* 2,2-Dichlorobenzene, 3541 Low Solid* 2-Methylphenol (o-cresol), 3541 Low Solid* 2,2-oxybis (1-chloropropane), 3541 Low Solid* 2,2-oxybis (1-chloropropane), 3541 Low Solid* Hexachloroethane, 3541 Low Solid* 4-Methylphenol (m/p-cresol), 3541 Low Solid* 4-Methylphenol (m/p-cresol), 3541 Low Solid* Nitrobenzene, 3541 Low Solid* Nitrobenzene, 3541 Low Solid* Bis(2-chlorophenol, 3541 Low Solid* Isophorone, 3541 Low Solid* 1,2,4-Trichlorobenzene, 3541 Low Solid* Benzoic acid, 3541 Low Solid* 1,2,4-Dichlorophenol, 3541 Low Solid* Naphthalene, 3541 Low Solid* 2,4-Dichlorophenol, 3541 Low Solid* 4-Chloroaniline, 3541 Low Solid* 2,4,6-Trichlorophenol, 3541 Low Solid* 2,4,5-Trichlorophenol, 3541 Low Solid* 2-Methylnaphthalene, 3541 Low Solid* 2-Methylnaphthalene, 3541 Low Solid* 2-Chloronaphthalene, 3541 Low Solid*	190 76 190 190 190 760 76 190 76 190 38 76 190 760 190 380 190 38 380 760 190 380 190 380 190	+	8.1 10 15 17 16 84 12 18 15 9.8 14 15 9.8 10 16 220 22 18 10 9.6 18 61 43 51 350 11	190 76 190 190 190 760 76 190 76 190 38 76 190 380 190 38 380 760 190 38 380 760 190 38 380 760 190 38 380 190 38 380 380 190 38 380 390 390 390 390 390 390 390 39	1.00000 1.00000	ug/Kg ug/Kg	135942 135942		11/30/04 2123 11/30/04 2123	THE CONTRACT OF THE CONTRACT O

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:12/02/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AUCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-054-S0
Date Sampled....: 11/09/2004
Time Sampled....: 12:30
Sample Matrix...: Soil

Laboratory Sample ID: 231877-16
Date Received.....: 11/11/2004
Time Received.....: 10:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SANPLE RESULT	Q FLAGS	MOL	RL	DICUTION	UNITS	BATCH	01	DATE/TIME		TEC
	4-Chloro-3-methylphenol, 3541 Low Solid*	380	11	39			144440000000000000000000000000000000000	<u> </u>				<u>::::</u>
	2,6-Dinitrotaluene, 3541 Low Solid*	38	lŭl	10	380 38	1.00000	ug/Kg	135942	ĺ	11/30/04 21	123	.lpl
	2-Nitrophenol, 3541 Low Salid*	380	Ū	17	380	1.00000	ug/Kg	135942	ΙI	11/30/04 21	123	tqt.
	3-Nitroaniline, 3541 Low Solid*	760	Ιŭ	160	760	1.00000	ug/Kg	135942		11/30/04 21	123	lqt:
	Dimethyl phthalate, 3541 Low Solid*	76	iŪ [!]	10	76	1.00000	ug/Kg	135942		11/30/04 21	123	lqk
	2,4-Dinitrophenol, 3541 Low Solid*	760	u +	120	760	1.00000	ug/Kg	135942		11/30/04 21	123 (qk
	Acenaphthylene, 3541 Low Solid*	38		9.5	38	11.00000 11.00000	ug/Kg	135942		11/30/04 21	123	þ
	2,4-Dinitrotoluene, 3541 Low Solid*	38	ט ט ט	12	38	1.00000	ug/Kg	135942		11/30/04 21	23	Įρ!
	Acenaphthene, 3541 Low Solid*	38	lūl i	9.5	38 38	1.00000	ug/Kg	135942		11/30/04 21	23	lqi.
	Dibenzofuran, 3541 Low Solid*	76	lul l	10	76	1.00000	ug/Kg	135942		11/30/04 21	123 c	lqt
	4-Nitrophenol, 3541 Low Solid*	760	u	240	760	1.00000	ug/Kg	135942		11/30/04 21	23 c	lqk
	Fluorene, 3541 Low Solid*	38	E.	10 i	38	1.00000	ug/Kg	135942		11/30/04 21	123 j d	i pi
	4-Witroaniline, 3541 Low Solid*	760	Uj	51	760	1.00000	ug/Kg	135942		11/30/04 21	23 c	þ
	4-Bromophenyl phenyl ether, 3541 Low Soli*	190	ul I	11	190	1.00000		135942]	11/30/04 21	23 0	P
	Hexachtorobenzene, 3541 Low Solid*	38	U U	l ii l	38		ug/Kg	135942	l	11/30/04 21	23	Įрі
	Diethyl phthalate, 3541 Low Solid*	76	lŭl .	ii	76	1.00000	ug/Kg	135942		11/30/04 21	23 c	ĮрІ
	4-Chlorophenyl phenyl ether, 3541 Low Sol*d	i 190	Ū	ii l	190	1.00000	ug/Kg	135942		11/30/04 21	23 Jc	lpl
	Pentachlorophenol, 3541 Low Solid*	380	ŭ	130	380	1.00000	ug/Kg	135942		11/30/04 21	23 c	Įр
	n-Nitrosodiphenylamine, 3541 Low Solid*	38	<u> </u>	12		1.00000	ug/Kg	135942		11/30/04 21:	23 c	р
	4,6-Dinitro-2-methylphenol. 3541 Law Soli*		ŭ	190		1.00000		135942		11/30/04 21:	23 c	Р
	Phenanthrene, 3541 Low Solid*		ŭ l	17	760	1.00000	ug/Kg	135942		11/30/04 21		
	Anthracene, 3541 Low Solid*	38	U U	12	57	1.00000	ug/Kg	135942	- 1	11/30/04 21:	23 c	ы
	Carbazole, 3541 Low Solid*	190	ĭil i	13	38	1.00000	ug/Kg	135942		11/30/04 21:		
	Di-n-butyl phthalate, 3541 Low Solid*	190	ŭ	13	190	1.00000		135942	- 1	11/30/04 21:	23 a	p
Ī	Fluoranthene, 3541 Low Solid*	38	ŭ		190	1.00000		135942	- 1	11/30/04 21:	23 d	Þ
ŀ	Pyrene, 3541 Low Solid*	II .	ŭ!	12	38	1.00000	ug/Kg	135942	-	11/30/04 21:	23 d	D
ŀ	Butyl benzyl phthalate, 3541 Low Solid*		ui	14	57	1.00000	ug/Kg	135942	. !	11/30/04 21:	23 ld	o
ŀ	Benzo(a)anthracene, 3541 Low Solid*		u	12		1.00000		135942		11/30/04 21:		
ŀ	Chrysene, 3541 Law Solid*	38	:: [11	38	1.00000	ug/Kg	135942	- 1	11/30/04 21:	23 ^l d	p
ŀ	· · · · · · · · · · · · · · · · ·	i 20	' ا	12	38	1.00000	ug/Kg	135942	- 1	11/30/04 21:	23 l d	D

^{*} In Description = Dry Wgt.

Page 28

STL Chicago

Job Number: 231877

Date:12/02/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-054-S0
Date Sampled....: 11/09/2004
Time Sampled....: 12:30
Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	NL.	DILUTION	UNITS	BATCH	пт	DATE/I		TECH
	3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Solid* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(k)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghi)perylene, 3541 Low Solid* % Solids Determination	38 38		17 37 12 10 11 11 12 11	190 190 380 38 38 38 38 38 38 38	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	135942 135942 135942 135942 135942 135942 135942 135942 135942	11 11 11 11 11 11 11 11 11 11 11 11 11	11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04	2123 2123 2123 2123 2123 2123 2123 2123	dipk dipk dipk dipk dipk dipk dipk
	% Solids, Solid % Moisture, Solid	86.0 14.0		0.10 0.10	0.10 0.10	1	% ¥4	134212 134212	111	1/13/04 1/13/04	1149	daj daj

^{*} In Description = Dry Wgt.

SIL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS

Job Number: 231877 Date:11/24/2004

CUSTOMER: MKM Engineers, Inc. ATTM: Eric Ellis

Customer Sample 1D: LNWsb-054-\$0
Date Sampled....: 11/09/2004
Time Sampled....: 12:30
Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	0 FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT (DATE/TI	ME T	ECH
8330	Explosives by 8330 (NPLC) HMX, Solid RDX, Solid 1,3,5-Trinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-INI, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.10 0.10 0.10 0.10 0.40		0.056 0.063 0.033 0.023 0.021 0.024 0.12 0.026 0.049 0.045 0.094 0.050 0.053	0.20 0.20 0.10 0.10 0.10 0.40 0.10 0.20 0.20 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135440 135440 135440 135440 135440 135440 135440 135440 135440 135440 135440	11, 11, 11, 11, 11, 11, 11, 11, 11, 11,	/17/04 2 /17/04 2 /17/04 2 /17/04 3 /17/04 3 /17/04 3 /17/04 3 /17/04 3 /17/04 3 /17/04 3	2153 b 2153 b	(1) 1 (1) 1

^{*} In Description = Dry Wgt.

Date: 11/29/2004

Job Number: 231877

LABORATORY TEST RESULTS

CUSTOMER: MON Engineers; Inc. ATTN: Enic Ellis

Customer Sample ID: LNWsb-055-S0
Date Sampled.....: 11/09/2004
Time Sampled.....: 13:30
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	# FLAGS	MOL	ŔĹ	DILUTION	UNITS	BATCH	DT	DATE/T IN	E	TECH
Ħethoď	% Solids Determination % Solids. Solid	87.3		0.10	0.10	1	*	134212		11/13/04 1	154	da i
	% Moisture, Solid	12.7		0.10	0.10	i	x x	134212		11/13/04 1		
7041	Antimony (GFAA) Antimony, Solid*	1.4	u	0.45	1.4	1	mg/Kg	134864		11/19/04 0	502	daj
7841	Thallium (GFAA) Thallium, Solid*	0.22	8	0.19	0.61	1	mg/Kg	134716		11/18/04 0	448	daj
7471A	Mercury (CVAA) Salids Mercury, Solid*	0.019	 u	0.0049	0.019	1	mg/Kg	135018		11/18/04 1	612	gok
6010B	Metals Analysis (ICAP Trace)				1-		414	475744				İ., .
	Aluminum, Solid*	11000		2.4 0.16	15	11	mg/Kg	135 36 6 135030		11/23/04 1: 11/20/04 1:		
	Barium, Solid*	57 10		0.16	1.0 1.5	14	mg/Kg mg/Kg	: 135030		11/20/04 1:		
	Arsenic, Solid*	0.66	1 1	0.045	0.41	14	mg/Kg	135030		11/20/04 1		
	Beryllium, Solid* Cadmium, Solid*	0.25	lul -	0.081	0.25	1	mg/Kg	135030		11/20/04 1		
	Catcium, Sotid*	9300	"	3.2	10	li	mg/Kg	135030		11/20/04 1		
	Chromium, Solid*	16	11	0.22	1.0	li	mg/Kg	135030		11/20/04 1		
	Cobalt, Solid*	9,8		0.14	0.51	1	mg/Kg	135030		11/20/04 1		
	Copper, Solid*	16		0.92	3.1	:1	mg/Kg	135060		11/22/04 0		
	Iron, Solid*	22000		3.1	10	· 1	mg/Kg	135030		11/20/04 1		
	Magnesium, Solid*	5700		1.7	10	: 1	mg/Kg	135030		11/20/04 1		
	Manganese, Solid*	300	1	0.13	1.0	:1	ng/Kg	135030		11/20/04 1		
	Nickel, Solid*	24		0.25	1.0	11	mg/Kg	135030		11/20/04 1		
	Lead, Solid*	9.7	:	0.44	1.5 51	1:	mg/Kg	135030 135060		11/20/04 1 11/22/04 0		
	Potassium, Solid*	1400		14) >1	1'	mg/Kg	133000		11/22/04 0	() C ()	: ::
											i	í

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 11/29/2004

CUSTOMER: NKM Engineers, Inc. PROJECT: USAGE RVARP 14 ACCS

ATTR: Eric Ellis

Customer Sample ID: LNWsb-055-S0
Date Sampled....: 11/09/2004
Time Sampled....: 13:30
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST: DESCRIPTION	Sample Result	Q FLAGS	MOT.	RL	DICUTION	UNITIS	BATCH	DT	DATE/T1	ME	TECH
***************************************	Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadium, Solid* Zinc, Solid*		บ ช บ	0.41 0.32 88 0.21 0.41	1.5 1.0 310 1.0 2.0	111111111111111111111111111111111111111	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	135030 135030 135060 135030 135030		11/20/04 11/20/04 11/22/04 11/20/04 11/20/04	1557 0051 1557	lmr tds lmr
			Victor openio 11 Wilson									

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 231877 Date: 12/02/2004

CUSTOMER: MXM Engineers, Inc. ATTN: Eric Ellis

Customer Sample ID: LNWsb-055-SO
Date Sampled....: 11/09/2004
Time Sampled....: 13:30
Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOE	RL	OTEUTION	UNITS	BATCH	07	DATE/TIM	Æ	TECH
8270C	Semivolatile Organics				* * * * * * * * * * * * * * * * * * *				i			
1	Phenol, 3541 Low Solid*	190	U	8.1	190	1.00000	ug/Kg	135942	Ì	11/30/04 2	2211	dpk f
ļ	Bis(2-chloroethyl)ether, 3541 Low Solid*	76	.U	10	76	1.00000	ug/Kg	135942		11/30/04 2	2211	dpk
•	1,3-Dichlorobenzene, 3541 Low Solid*	190	U	15	190	1.00000	ug/Kg	135942	1 1	11/30/04 2	2211	dpk
	1,4-Dichlorobenzene, 3541 Low Solid*	190	u	17	190	1.00000	ug/Kg	135942		11/30/04 2	2211	dpk
Ì	1,2-Dichlorobenzene, 3541 Low Solid*	190	U	16	190	1.00000	ug/Kg	135942		11/30/04 8		
	Benzyl alcohol, 3541 Low Solid*	760	U	84	760	1.00000	ug/Kg	135942		11/30/04 2		
	2-Methylphenol (o-cresol), 3541 Low Salid*	76	U	12	76	1.00000	∪g/Kg	135942		11/30/04 2		
	2,2-oxybis (1-chloropropane), 3541 Low So*id	190	U	18	190	1.00000	ug/Kg	135942		11/30/04 2		
	n-Nitroso-di-n-propylamine, 3541 Low Soli*	76	U	15	76	1.00000	ug/Kg	135942		11/30/04 2		
	Hexachloroethane, 3541 Low Solid*	190	U	9.8	190	1.00000	ug/Kg	135942		11/30/04 2		
<u> </u>	4-Methylphenol (m/p-cresol), 3541 Low Sol*d	76	u j	14	76	1.00000	ug/Kg	135942		11/30/04 2		
	2-Chlorophenol, 3541 Low Solid*	190	Ui	15	190	1.00000	ug/Kg	135942		11/30/04 2		
	Nitrobenzene, 3541 Low Solid*	38	u	9.8	38	1.00000	ug/Kg	135942		11/30/04		
	Bis(2-chloroethoxy)methane, 3541 Low Soli*	76	U	10	76	1.00000	ug/Kg	135942		11/30/04 2		
	1,2,4-Trichlorobenzene, 3541 Low Salid*	190	u	15	190	1.00000	ug/Kg	135942		11/30/04 2		
	Benzoic acid, 3541 Low Solid*	760	u *	220	760	1.00000	ug/Kg	135942		11/30/04 2		
	Isophorone, 3541 Low Solid*	190	U	22	190	1.00000	ug/Kg	135942		11/30/04 2		
	2,4-Dimethylphenol, 3541 Law Solid*		U	18	380	1.00000	ug/Kg	135942		11/30/04 2		
	Mexachlorobutadiene, 3541 Low Solid*	190	U	10	190	1.00000	ug/Kg	135942		11/30/04 2		
	Maphthalene, 3541 Low Solid*	38	u	9.6	38	1.00000	ug/Kg	135942		11/30/04		
	2,4-Dichlorophenol, 3541 Low Solid*	380	U	18	380	1.00000	ug/Kg	135942		11/30/04		
	4-Chloroaniline, 3541 Low Solid*		uj	61	760	1.00000	ug/Kg	135942		11/30/04		
	2,4,6-Trichlorophenol, 3541 Low Solid*	190	U	43	190	1.00000	ug/Kg	135942		11/30/04		
	2,4,5-Trichlorophenol, 3541 Low Salid*	380	u	51	380	1.00000	ug/Kg	135942		11/30/04 2		
	Hexachlorocyclopentadiene, 3541 Low Solid*	1100	ш	350	1100	1.00000	ug/Kg	135942		11/30/04		
	2-Methylnaphthalene, 3541 Low Solid*	38	U	11	38	1.00000	ug/Kg	135942		11/30/04		
	2-Nitroaniline, 3541 Low Solid*	190	U	12	190	1.00000	ug/Kg	135942		11/30/04		
	2-Chloronaphthalene, 3541 Low Solid*	190	U	18	190	1.00000	ug/Kg	135942		11/30/04	2211	dpk
		; [ļ							!	

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 231877 Date:12/02/2004

CUSTOMER: MKM Engineers, Inc.: ATTN: Eric Ellis

Customer Sample ID: LNWsb-055-SO
Date Sampled....: 11/09/2004
Time Sampled....: 13:30
Sample Matrix...: Soil

ST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT	DATE/TI	ME
	4-Chloro-3-methylphenol, 3541 Low Solid*	380	U	39	380	1_00000	ug/Kg	135942		11/30/04 2	2211
	2,6-Dinitrotoluene, 3541 Low Salid*	38	ju!	10	38	1.00000	ug/Kg	135942		11/30/04 2	
	2-Nitrophenol, 3541 Low Solid*	380	u	17	380	1.00000	ug/Kg	135942		11/30/04 2	
	3-Nitroaniline, 3541 Low Solid*	760	u	160	760	1.00000	ug/Kg	135942		11/30/04 2	
	Dimethyl phthalate, 3541 Low Solid*	76	u	10	76	1.00000	⊔g/Kg	135942		11/30/04 2	
	2.4-Dinitrophenol, 3541 Low Solid*	760	u *	120	760	1.00000	ug/Kg	135942		11/30/04 2	
	Acenaphthylene, 3541 Low Solid*	38	U	9.5	j 38	1.00000	ug/Kg	135942		11/30/04 2	
	2,4-Dinitrataluene, 3541 Low Solid*	38	[u]	12	38	1.00000	ug/Kg	135942		11/30/04 2	
	Acenaphthene, 3541 Low Solid*	38	(U	9.5	38	1.00000	ug/Kg	135942		11/30/04 2	
	Dibenzofuran, 3541 Low Solid*	76	[U]	10	76	1.00000	ug/Kg	135942		11/30/04 7	
	4-Nitrophenol, 3541 Low Solid*	760	[u _i	240	760	1.00000	ug/Kg	135942		11/30/04 2	
	Fluorene, 3541 Low Solid*	38	u	10	38	1.00000	ug/Kg	135942		11/30/04 2	
	4-Mitroaniline, 3541 Low Solid*	760	u	51	760	1.00000	ug/Kg	135942		11/30/04 2	
	4-Bromophenyl phenyl ether, 3541 Low Soli*	190	4	11	190	1.00000	ug/Kg	135942		11/30/04 2	
	Hexachtorobenzene, 3541 Low Solid*	38	u	11	38	1.00000	ug/Kg	135942		11/30/04 2	
	Diethyl phthalate, 3541 Low Solid*	76	U U	<u>†</u> 11	76	1.00000	ug/Kg	135942		11/30/04 2	
	4-Chlorophenyi phenyl ether, 3541 Low Sol*d	190	'U	į 11	190	1.00000	ug/Kg	135942		11/30/04 2	2211
	Pentachlorophenol, 3541 Low Solid*	380	įū!	130	380	11.00000	ug/Kg	135942		11/30/04 2	
	n-Nitrosodiphenylamine, 3541 Low Solid*	38	lu į	12	38	1.00000	ug/Kg	135942	ÌΪ	11/30/04 2	2211
	4.6-Dinitro-2-methylphenol, 3541 Low Soli*	760	u	190	760	1.00000	ug/Kg	135942	1	11/30/04 7	2211
	Phenanthrene, 3541 Low Solid*	57	u	17	57	1.00000	ug/Kg	135942		11/30/04 2	
	Anthracene, 3541 Low Solid*	38	U	12	38	1.00000	l ug/Kg	135942		11/30/04 3	
	Carbazole, 3541 Low Solid*	190	u	13	190	1.00000	ug/Kg	135942	1 1	11/30/04 2	2211
	Di-n-butyl phthalate, 3541 Low Solid*	190	n l	13	190	1.00000	ug/Kg	135942		11/30/04 7	2211
	Fluoranthene, 3541 Low Solid*	j 38	/U	12	38	1.00000	ug/Kg	135942	1	11/30/04	2211
	Pyrene, 3541 Low Solid*	57	ju!	14	57	1.00000	ug/Kg	135942	1	11/30/04	2211
	Butyl benzyl phthalate, 3541 Low Solid*	76	Uj	12	76	1.00000	ug/Kg	135942		11/30/04	
	Benzo(a)anthracene, 3541 Low Solid*	38	u	11	38	1.00000	ug/Kg	135942		11/30/04	
	Chrysene, 3541 Low Solid*	38	lul	12	38	1.00000	ug/Kg	135942	1 1	11/30/04	2211

^{*} In Description = Dry Wgt.

LABORAFORY TEST RESULTS

Date:12/02/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGES

ATTN: Eric Etlis

Customer Sample 10: LNWsb-055-S0 Date Sampled....: 11/09/2004 Time Sampled....: 13:30 Laboratory Sample ID: 231877-18
Date Received....: 11/11/2004
Time Received....: 10:00

Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	o FLAGS	MDL	RL	DITUTION	UNITS	BATCH	DT	DATE/T	IME	TEC
	3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Solid* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(k)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghi)perylene, 3541 Low Solid*	190 190 380 38 38 38 38 38 38	ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	17 36 12 10 11 11 12 11	190 190 380 38 38 38 38 38 38	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	135942 135942 135942 135942 135942 135942 135942 135942 135942	1 1 1 1 1 1	1/30/04 1/30/04 1/30/04 1/30/04 1/30/04 1/30/04 1/30/04 1/30/04	2211 2211 2211 2211 2211 2211 2211	dpk dpk dpk dpk dpk dpk dpk
Method	% Solids Determination % Solids, Solid % Moisture, Solid	87.3 12.7		0.10 0.10	0.10 0.10	1	% %	134212 134212	1 1	1/13/04 1/13/04	1154 1154	daj daj
												No.

^{*} In Description = Dry Wgt.

Date:11/24/2004

STL Chicago is part of Severn Trent Laboratories, Inc.

Job Number: 231877

LABORATORY TEST RESULTS

CUSTOMER: WOM Engineers; Inc. ATTMs: Enjoy ELLI's

Customer Sample ID: LMWsb-055-S0
Date Sampled....: 11/09/2004
Time Sampled....: 13:30
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FEAGS	MOE	Rt.	DILUTION	UNITS	BATCH	CT	DATE/TI	離	TECH
8330	Explosives by 8330 (RPLC) HMX, Solid ROX, Solid 1,3,5-Trinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-TNT, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.20 0.20 0.10 0.10 0.10 0.10 0.20 0.20		0.056 0.063 0.033 0.023 0.021 0.024 0.12 0.026 0.049 0.045 0.094 0.048 0.050 0.053	0.20 0.20 0.10 0.10 0.10 0.40 0.20 0.20 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135440 135440 135440 135440 135440 135440 135440 135440 135440 135440 135440	, n V.	11/17/04 11/17/04 11/17/04 11/17/04 11/17/04 11/17/06 11/17/04 11/17/04 11/17/04 11/17/04 11/17/04 11/17/04	2258 2258 2258 2258 2258 2258 2258 2258	bdw bdw bdw bdw bdw bdw bdw bdw bdw bdw

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:11/29/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATIN: Eric Ellis

Customer Sample ID: LNWsb-056-S0
Date Sampled....: 11/09/2004
Time Sampled....: 14:00
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DILUTION	LNITS	BATCH	DΤ	DATE/1	INE	TEC
Method	% Solids Determination % Solids, Solid % Moisture, Solid	85.3 14.7		0.10 0.10	0.10 0.10	1	% %	134212 134212		11/13/04 11/13/04		
7041	Antimony (GFAA) Antimony, Solid*	1.5	υ	0.46	1.5	1	mg/Kg	134864		11/19/04	0514	daj
7841	Thallium (GFAA) Thallium, Solid*	0.63	U	0.20	0.63	1	mg/Kg	134716		11/18/04	0513	daj
74 71 A	Mercury (CVAA) Solids Mercury, Solid*	0.019	U	0.0050	0.019	1	mg/Kg	135018		11/18/04	1615	gok
6010B	Metals Analysis (ICAP Trace) Aluminum, Solid* Barium, Solid* Arsenic, Solid* Beryllium, Solid* Cadmium, Solid* Calcium, Solid* Chromium, Solid* Chromium, Solid* Choper, Solid* Iron, Solid* Magnesium, Solid* Magnesium, Solid* Nickel, Solid* Lead, Solid* Potassium, Solid*	10000 57 13 0.71 0.11 11000 16 12 18 25000 4900 360 26 11 1400	В	2.7 0.18 0.57 0.049 0.090 3.5 0.25 0.16 1.0 3.4 1.9 0.15 0.28 0.48	17 1.1 1.7 0.45 0.28 11 1.1 0.56 3.4 11 11 1.1 1.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135366 135030 135030 135030 135030 135030 135030 135030 135030 135030 135030 135030 135030		11/23/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04	1603 1603 1603 1603 1603 1603 1603 1603	Lmr Lmr Lmr Lmr Lmr tds Lmr Lmr Lmr Lmr

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

PROJECT: USACE RVAAP 14 AOCS

Date:11/29/2004

ATTN: Eric Ellis

CUSTOMER: MKM Engineers, Inc.

Job Number: 231877

Customer Sample ID: LNWsb-056-50 Date Sampled.....: 11/09/2004

Time Sampled....: 14:00 Sample Matrix....: Soil

Laboratory Sample ID: 231877-19
Date Received.....: 11/11/2004
Time Received.....: 10:00

RL DILUTION BATCH DTE DATE/TIME TECH SAMPLE RESULT Q FLAGS MDL UNITS PARAMETER/TEST DESCRIPTION TEST METHOD 11/20/04 1603 Emr 11/20/04 1603 Emr mg/Kg 135030 0.57 0.45 1.7 Selenium, Solid* 135030 0.35 1.1 mg/Kg 1.1 Silver, Solid* 135060 11/22/04 0057 tds Sodium, Solid* 340 97 340 mg/Kg 11/20/04 1603 Lmr 17 0.24 1.1 mg/Kg 135030 vanadium, Solid* 2.2 135030 11/20/04 1603 lmr 60 0.45 mg/Kg Zinc, Solid*

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 231877 Date:12/02/2004

CUSTOMER: MKM Engineers, Inc. ATTN: Eric Ellis

Customer Sample ID: LNWsb-056-SO
Date Sampled.....: 11/D9/2004
Time Sampled.....: 14:00
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DILUTION	UNITS	BATCH	DΤ	DATE/T1	ME	TECH
8270C	Semivolatile Organics					· · · · · · · · · · · · · · · · · · ·					, : 	
	Phenol, 3541 Low Solid*	190	U	8.3	190	1.00000	ug/Kg	135942		11/30/04	2235	dnk
	Bis(2-chloroethyl)ether, 3541 Low Solid*	78	lul	10	78	1.00000	ug/Kg	135942		11/30/04		
	1,3-Dichlorobenzene, 3541 Low Solid*	190	lui	16	190	1.00000	ug/Kg	135942		11/30/04		
	1,4-Dichtorobenzene, 3541 Low Solid*	190	lu	18	190	1.00000	ug/Kg	135942		11/30/04		
	1,2-Dichtorobenzene, 3541 Low Solid*	190	П	16	190	1.00000	ug/Kg	135942		11/30/04		
	Benzyl alcohol, 3541 Low Solid*	780	u	86	780	1.00000	Ug/Kg	135942		11/30/04		
	2-Methylphenol (o-cresol), 3541 Law Solid*	78	ti l	12	78	1_00000	ug/Kg	135942		11/30/04		
	2,2-oxybis (1-chloropropane), 3541 Low So*id	190	U	. 19	190	1.00000	ug/Kg	135942		11/30/04		
	n-Nitroso-di-n-propylamine, 3541 Low Soli*	78	,ប	15	78	1.00000	ug/Kg	135942	'	11/30/04	2235	dok
	Hexachloroethane, 3541 Low Solid*	190	ju!	10	190	1.00000	ug/Kg	135942	li	11/30/04	2235	dpk
	4-Methylphenol (m/p-cresol), 3541 Low Sol*d	78	U,	14	78	1.00000	ug/Kg	135942		11/30/04		
	2-Chlorophenol, 3541 Low Solid*	190	u	16	190	1.00000	ug/Kg	135942	1 1	11/30/04	2235	dpk
	Nitrobenzene, 3541 Low Solid*	39	U U	10	39	1.00000	⊔g/Kg	135942		11/30/04		
	Bis(2-chloroethoxy)methane, 3541 Low Soli*	78	u	10	! 78	1.00000	ug/Kg	135942		11/30/04	2235	dpk
	1,2,4-Trichlorobenzene, 3541 Law Salid*	190	U	16	i 190	1.00000	ug/Kg	135942		11/30/04		
	Benzoic acid, 3541 Low Solid*	780	U *	230	780	1.00000	ug/Kg	135942	!	11/30/04	2235	dipk
	Isophorone, 3541 Low Solid*	190	u	j 23	190	1.00000	ug/Kg	135942	Ιí	11/30/04	2235	dok
	2,4-Dimethylphenol, 3541 Low Solid*	390	lu!	19	390	1.00000	ug/Kg	135942	}	11/30/04	2235	dpk
	Hexachlorobutadiene, 3541 Low Solid*	190	U	11	190	1.00000	ug/Kg	135942	1 1	11/30/04	2235	dpk
	Naphthalene, 3541 Low Solid*	39	וטן	9.8	39	1.00000	ug/Kg	135942		11/30/04		
	2,4-Dichlorophenol, 3541 Low Solid*	390	U	18	390	1.00000	ug/Kg	135942	1 1	11/30/04	2235	dpk
	4-Chloroaniline, 3541 Low Solid*	780	U	63	780	1.00000	ug/Kg	135942		11/30/04		
	2,4,6-Trichlorophenol, 3541 Low Solid*	190	U	44	190	1.00000	ug/Kg	135942		11/30/04		
	2,4,5-Trichlorophenol, 3541 Low Solid*	390	lu	. 52	390	1.00000	ug/Kg	135942		11/30/04		
	Hexachtorocyclopentadiene, 3541 Low Solid*		U	360	1200	1.00000	ug/Kg	135942		11/30/04		
	2-Methylnaphthalene, 3541 Low Solid*		lu¦	12	39	1.00000	ug/Kg	135942		11/30/04		
	2-Nitroaniline, 3541 Low Solid*	190	lu!	13	190	1.00000	ug/Kg	135942		11/30/04		
	2-Ehloronaphthalene, 3541 Low Solid*	190	U	18	190	1.00000	ug/Kg	135942		11/30/04	2235	dpk
			1		!							

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:12/02/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAP 14 ADCS ATTN: Eric Ellis

Customer Sample ID: LNWsb-056-S0
Date Sampled....: 11/09/2004
Time Sampled....: 14:00
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	6 FLAGS	MOL	RL	DILUTION	UNITS	BATCH	DT	DATE/I	IME	TECH
}	4-Chloro-3-methylphenol, 3541 Low Solid*	390	u	40	390	1.00000	ug/Kg	135942		11/30/04	2235	dok
1	2,6-Dinitrataluene, 3541 Law Salid*	39	u	11	39	1.00000	ug/Kg	135942		11/30/04		
	2-Nitrophenol, 3541 Low Solid*	390	u	17	390	1.00000	ug/Kg	135942	1 1	11/30/04	2235	dpk
	3-Nitroaniline, 3541 Law Solid*	780	u	160	780	1.00000	ug/Kg	135942	1	11/30/04	2235	dok
	Dimethyl phthalate, 3541 Low Solid*	78	U ,	10	78	1.00000	ug/Kg	135942	1	11/30/04	2235	dok
	2,4-Dinitrophenol, 3541 Low Solid*	780	U *	120	780	1.00000	ug/Kg	135942	1 1	11/30/04	2235	dok
	Acenaphthylene, 3541 Low Solid*	39	U	9.7	39	1.00000	ug/Kg	135942		11/30/04	2235	dpk
	2,4-Dinitrotoluene, 3541 Low Solid*		Uį	12	39	1.00000	ug/Kg	135942	1 1	11/30/04	2235	dpk
	Acenaphthene, 3541 Low Solid*	39	u	9.7	39	1.00000	ug/Kg	135942		11/30/04	2235	dpk
	Dibenzofuran, 3541 Low Solid*	78	U	10	78	1.00000	ug/Kg	135942		11/30/04		
1	4-Nitrophenol, 3541 Low Solid*	780	u	250	780	1,00000	ug/Kg	135942	1	11/30/04	2235	dok
•	Fluorene, 3541 Low Solid*	39	וטן	11	39	1.00000	ug/Kg	135942		11/30/04		
	4-Nitroamiline, 3541 Low Solid*	780	U .	52	780	1.00000	ug/Kg	135942		11/30/04		
	4-Bromophenyl phenyl ether, 3541 Law Soli*	190	U	j 12	190	1.00000	ug/Kg	135942		11/30/04	2235	dpk
	Hexachlorobenzene, 3541 Low Solid*	39	[U]	11	39	1.00000	ug/Kg	135942		11/30/04	2235	dpk
	Diethyl phthalate, 3541 Low Solid*	78	U	11	78	1.00000	ug/Kg	135942		11/30/04	2235	dpk
	4-Chlorophenyl phenyl ether, 3541 Low Sol*d		ti.	12	190	1.00000	ug/Kg	135942		11/30/04	2235	dpk
	Pentachlorophenol, 3541 Low Solid*	390	u	130	390	1.00000	ug/Kg	135942	1 1	11/30/04	2235	dok
	n-Nitrosodiphenylamine, 3541 Low Solid*	39	U	12	39	1.00000	ug/Kg	135942	ĺ	11/30/04	2235	dipk
i	4,6-Dinitro-2-methylphenol, 3541 Low Soli*	780	U	200	780	1.00000	ug/Kg	135942		11/30/04	2235	dpk i
	Phenanthrene, 3541 Low Solid*	58	U	! 18	58	1.00000	ug/Kg	135942	1	11/30/04	2235	dpk
	Anthracene, 3541 Low Solid*	39	u	13	39	1.00000	ug/Kg	135942		11/30/04	2235	dpk
	Carbazole, 3541 Low Solid*	190	บ	14	190	1.00000	ug/Kg	135942		11/30/04	2235	dpk
	Di-n-butyl phthalate, 3541 Low Solid*	190	U	13	190	1.00000	ug/Kg	135942		11/30/04		
	fluoranthene, 3541 Low Solid*	39	(U	12	39	1.00000	ug/Kg	135942		11/30/04	2235	joopk
	Pyrene, 3541 Low Solid*	58	ពៈ	14	58	1.00000	ug/Kg	135942		11/30/04		
	Butyl benzyl phthalate, 3541 Low Solid*	78	u	12	78	1.00000	ug/Kg	135942		11/30/04		
1	Benzo(a)anthracene, 3541 Low Solid*	39	u	12	39	1.00000	ug/Kg	135942		11/30/04		1 ' 1
	Chrysene, 3541 Low Solid*	39	u	12	39	1.00000	ug/Kg	135942	1 (11/30/04	2235	dpk
ļ i				! L						l .		

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS
Job Number: 231877

Date:12/02/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LWWsb-056-S0
Date Sampled....: 11/09/2004
Time Sampled....: 14:00
Sample Matrix....: Soil

TEST METHOS	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	NOL	RL	OTCUTION	UNITS	BATCH D	J DATE/T1	ме тесн
	3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Solid* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(k)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghi)perylene, 3541 Low Solid*	198 390 39 39 39 39	8 U U U U U U U U U U U U U U U U U U U	17 37 12 10 11 11 12 11	190 190 390 39 39 39 39 39 39	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	135942 135942 135942 135942 135942 135942 135942 135942 135942	11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04 11/30/04	2235 dpk 2235 dpk 2235 dpk 2235 dpk 2235 dpk 2235 dpk 2235 dpk 2235 dpk 2235 dpk
Method	% Solids Determination % Solids, Solid % Moisture, Solid	85.3 14.7		0.10 0.10	0.10 0.10	1	X X	134212 134212	11/13/04 11/13/04	
77.					·					

^{*} In Description = Dry Wgt.

STL Chicago is part of Severn Trent Laboratories, inc.

LABORATORY TEST RESULTS

Date: 11/24/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAMP 14 AGGS ATTN: Eric Ellis

Customer Sample ID: LNWsb-056-S0
Date Sampled....: 11/09/2004
Time Sampled....: 14:00
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT G FLAGS	MD1	RL	DILLITION	UNITS	BATCH	ρŗ	DATE/TIME	TECH
	Explosives by 8330 (MPLC) HMX, Solid RDX, Solid 1,3,5-Trinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-TNT, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 2-Nitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.20 U 0.20 U 0.099 U 0.099 U 0.099 U 0.099 U 0.099 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U	0.056 0.062 0.033 0.023 0.021 0.024 0.12 0.025 0.048 0.045 0.093 0.047 0.050 0.053	0.099 0.099 0.099 0.099	f.00000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135440 135440 135440 135440 135440 135440 135440 135440 135440 135440		11/17/04 233 11/17/04 233	t bdw t bdw t bdw t bdw t bdw t bdw t bdw t bdw t bdw t bdw t bdw t bdw t bdw t bdw

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

PROJECT: USACE RVAAP 14 ACCS

Date: 11/29/2004

ATTR: Eric Ellis

CUSTOMER: MKM Engineers, Inc.

Customer Sample ID: LNWsb-056-DUP Date Sampled....: 11/09/2004 Time Sampled....: 14:00 Sample Matrix....: Soil Laboratory Sample ID: 231877-17 Date Received.....: 11/11/2004 Time Received.....: 10:00

DILUTION UNITS BATCH DT DATEYTIME TECH SAMPLE RESULT Q FLAGS HOL RE: PARAMETER/TEST DESCRIPTION: TEST METHOD % Solids Determination **Hethod** 11/13/04 1151 daj 0.10 0.10 X 134212 86.2 % Solids, Solid X 134212 11/13/04 1151 daj 13.8 0.10 0.10 % Moisture, Solid 7041 Antimony (GFAA) 134864 11/19/04 0450 daj 0.51 1.6 mg/Kg Antimony, Solid* 1.6 7841 Thallium (GFAA) 0.70 mg/Kg 134716 (11/18/04-0435 daji 0.22 0.70 Thallium, Solid* 7471A Mercury (CVAA) Solids 0.019 mg/Kg 135018 11/18/04 1610 gok 0.019 0.0050 Mercury, Solid* Metals Analysis (ICAP Trace) 60108 135366 11/23/04 1459 tds 17 mg/Kg 2.7 11000 Aluminum, Solid* 11/20/04 1551 Lmr mg/Kg 135030 0.18 1.1 87 Barium, Solid* 135030 11/20/04 1551 [mr 0.58 1.7 mg/Kg 14 Arsenic, Solid* 135030 11/20/04 1551 (mr 0.45 mg/Kg 0.93 0.050 Beryllium, Solid* 11/20/04 1551 Lmr 0.28mg/Kg 135030 0.091 0.20 Cadmium, Solid* 11/20/04 1551 Lmr 135030 11 mg/Kg 3.5 Calcium, Solid* 3300 11/20/04 1551 Lmr mg/Kg 135030 16 0.25 1.1 Chromium, Solid* 135030 11/20/04 1551 Lmr 0.16 0.57 mg/Kg 12 Cobalt, Solid* 11/22/04 0045 tds 3.4 mg/Kg 135060 18 1.0 Copper, Solid* 11/20/04 1551 Lmr 135030 3.4 11 mg/Kg 26000 Iron, Solid* 11/20/04 1551 Lmr 135030 11 mg/Kg 1.9 3700 Magnesium, Solid* 11/20/04 1551 Lmr 135030 0.15 1.1 mg/Kg 420 Manganese, Solid* 11/20/04 1551 lmr mg/Kg 135030 1.1 33 0.28 Nickel Solid* 135030 11/20/04 1551 Lmr mg/Kg 0.491.7 10 Lead. Solid* 11/22/04 0045 tds 135060 57 mg/Kg 1200 16 Potassium, Solid*

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 11/29/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-056-DUP Date Sampled.....: 11/09/2004 Time Sampled.....: 14:00

Sample Matrix....: Soil

Laboratory Sample ID: 231877-17 Date Received.....: 11/11/2004

Time Received.....: 10:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT 4	ELAGS	100	RL	DILUTION	UNITS	BATCH	DΤ	DATE/TI	ME	TECH
	Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadium, Solid* Zinc, Solid*	0.51 B 1.1 U 340 U 17 62	and the second s	0.45 0.35 98 0.24 0.45	1.7 1.1 340 1.1 2.3	1 1 1	mg/Kg	135030 135030 135060 135030 135030		11/20/04 11/20/04 11/22/04 11/20/04 11/20/04	1551 0045 1551	lmr tds lmr
			n. (d. 1.)									27
	:											
	-							:				

^{*} In Description = Dry Wgt.

LABORATORY IEST RESULTS

Date:12/02/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USAGE RYAAP 14 ADCS

ATTM: Eric Ellis

Customer Sample ID: LNWsb-056-DUP Date Sampled....: 11/09/2004 Time Sampled....: 14:00 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT		FLAGS	MDL	RL.	DILUTION	UNITS	BATCH	рт	DATE/T	IME	TECH
8270C	Semivolatile Organics		†			[<u>N] </u>					1011111199	111000	1186
	Phenol, 3541 Low Solid*	190	lu		8.2	190	1.00000		14700/7	ļļ	40 404 404		1
	Bis(2-chloroethyl)ether, 3541 Low Solid*	78	11		10	78	1.00000	ug/Kg	135942 135942		12/01/04		
	1,3-Dichlorobenzene, 3541 Low Solid*	190	יט ^י		16	190	1.00000	ug/Kg ug/Kg	135942		12/01/04		
	1.4-Dichlorobenzene, 3541 Low Solid*	190	iU	i	18	190	1.00000	ug/kg	135942		12/01/04 12/01/04		
	1,2-Dichlorobenzene, 3541 Low Solid*	190	u		16	190	1.00000	ug/Kg	135942				
	Benzyl alcohol, 3541 Low Solid*	780	u		85	780	1.00000	ug/Kg	135942		12/01/04 12/01/04		
	2-Methylphenol (o-cresol), 3541 Low Solid*	78	U		12	78	1.00000	ug/Kg	135942		12/01/04		
	2,2-exybis (1-chloropropane), 3541 Low So*id	190	U		18	190	1.00000	ug/Kg	:135942]	12/01/04	1628	dok
	n-Nitroso-di-n-propylamine, 3541 Low Soli*	78	U		15	78	1.00000	ug/Kg	135942		12/01/04		
	Hexachloroethane, 3541 Low Solid*	190	U		10	190	1.00000	ug/Kg	135942		12/01/04		
	4-Methylphenol (m/p-cresol), 3541 Low Sol*d	78	U		14	78	1.00000	ug/Kg	135942		12/01/04		
	2-Chlorophenol, 3541 Low Solid*	1 9 0	U		16	190	1.00000	ug/Kg	135942		12/01/04	1628	ldok
	Nitrobenzene, 3541 Low Solid*	38	UU		10	38	1.00000	ug/Kg	135942	1 1	12/01/04	1628	dok
	Bis(2-chloroethoxy)methane, 3541 Low Soli*	78	U		10		1.00000	ug/Kg	135942	H	12/01/04	1628	dok
	1,2,4-Trichlorobenzene, 3541 Low Solid*	190	u		16	190	1.00000	ug/Kg	135942		12/01/04		
	Benzoic acid, 3541 Low Solid*	780	u	*	230	780	1.00000	ug/Kg	135942		12/01/04		
	Isophorone, 3541 Low Solid*	190			23	190	1.00008	ug/Kg	135942		12/01/04		
	2,4-Dimethylphenol, 3541 Low Solid*	380	IJ		19	380	1.00000	ug/Kg	135942		12/01/04	1628	dpk
	Hexachlorobutadiene, 3541 Low Solid*	190	U		10	190	1.00000	ug/Kg	135942		12/01/04		
	Naphthalene, 3541 Low Solid*	38	¡u'	l	9.7	38	1.00000	ug/Kg	135942		12/01/04		
	2,4-Dichlorophenol, 3541 Low Solid*	380	U:		18	380	1.00000	ug/Kg	135942		12/01/04	1628	dok
	4-Chloroaniline, 3541 Low Solid*	780	U		62	780	1.00000	ug/Kg	135942	1 1	12/01/04	1628	dok
	2,4,6-Trichlorophenol, 3541 Low Solid*	190	ΙΨ		43	190	1.00000	ug/Kg	135942		12/01/04	1628	dok
	2,4,5-Trichlorophenol, 3541 Low Solid*	380			52	380	1.00000	ug/Kg	135942		12/01/04		
	Rexachlorocyclopentadiene, 3541 Low Solid*	1200			350	1200	1.00000	ug/Kg	135942		12/01/04	1628	dpk
	2-Methylnaphthalene, 3541 Low Solid*	38	101		12	38	1.00000	ug/Kg	135942		12/01/04	1628	dipk
	2-Nitroaniline, 3541 Low Solid*	190	U		13	1 9 8	1.00000	ug/Kg	135942		12/01/04		
	2-Chloronaphthalene, 3541 Low Solid*	190	:0		18	190	1.00000	ug/Kg	135942		12/01/04	1628	dipk
	;		ľ						1			ļ	
			Lі				L		1				

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 231877 Date:12/02/2004

CUSTOMER: MKM Engineers, Inc. Attn: Eric Elits

Customer Sample ID: LNWsb-056-DUP Date Sampled.....: 11/09/2004 Time Sampled.....: 14:00 Sample Matrix....: Soil

TEST METROD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	1014	N.	DILUTION	UNITS	BATCH	DΤ	DATE/TIM	E TECI
	4-Chloro-3-methylphenol, 3547 Low Solid*	380	U	40	380	1,00000	ug/Kg	135942		12/01/04 1	628 dpk
	2,6-Dinitrotoluene, 3541 Low Solid*	38	u	11	38	1.00000	ug/Kg	135942		12/01/04 1	628 dpk
	2-Nitrophenol, 3541 Low Solid*	380	u	17	380	.1.00000	ug/Kg	135942	!	12/01/04 1	628 dpk
	3-Witroaniline, 3541 Low Solid*	780	וטן	160	780	1.00000	ug/Kg	135942		12/01/04 1	628 dok
	Dimethyl phthalate, 3541 Low Solid*	78	U *	10	78	1.00000	ug/Kg	135942	!	12/01/04 1	628 dok
	2,4-Dinitrophenol, 3541 Low Solid*	780	U *	120	780	1.00000	ug/Kg	135942	li	12/01/04 1	628 dok
	Acenaphthylene, 3541 Low Solid*	38	U	9.6	38	1.00000	ug/Kg	135942		12/01/04 1	
	2,4-Dinitrotoluene, 3541 Low Solid*	38	jul	12	38	1.00000	ug/Kg	135942	l	12/01/04 1	628 dpk
	Acenaphthene, 3541 Low Solid*	38	lu:	9.6	38	1.00000	ug/Kg	135942		12/01/04 1	
	Dibenzofuran, 3541 Low Solid*	78	U	10	78	1.00000	ug/Kg	135942		12/01/04 1	628 dok
	4-Nitrophenol, 3541 Low Solid*	780	u	250	780	1.00000	ug/Kg	135942		12/01/04 1	
	Fluorene, 3541 Low Solid*	38	u	į to	38	1.00000	ug/Kg	135942		12/01/04 1	
	4-Mitroaniline, 3541 Law Solid*	780	u	52	780	1.00000	ug/Kg	135942		12/01/04 1	628 dpk
	4-Bromophenyl phenyl ether, 3541 Low Soli*	190	U	12	190	1.00000	ug/Kg	135942	li	12/01/04 1	628 dpk
	Hexachlorobenzene, 3541 Law Solid*	Į 38	U	11	j 38	1.00000	ug/Kg	135942		12/01/04 1	
	Diethyl phthalate, 3541 Low Solid*	78	լՄ∣	11	78	1.00000	ug/Kg	135942		12/01/04 1	
	4-Chlorophenyl phenyl ether, 3541 Low Sol*d	190	lu¦	11	190	1.00000	ug/Kg	135942		12/01/04 1	628 dopk
	Pentachlorophenol, 3541 Low Solid*	380	u	130	380	1.00000	ug/Kg	135942		12/01/04 1	
	n-Nitrosodiphenylamine, 3541 Low Solid*	38	U	12	38	1.00000	ug/Kg	135942	!	12/01/04 1	628 dpk
	4,6-Dinitro-2-methylphenol, 3541 Low Soli*	780	u	200	780	1.00000	ug/Kg	135942	li	12/01/04 1	628 dpk
	Phenanthrene, 3541 Low Solid*	58	U	17	58	1.00000	ug/Kg	135942		12/01/04 1	628 dpk
	Anthracene, 3541 Low Solid*	38	U	13	38	1.00000	ug/Kg	135942		12/01/04 1	628 dpk
	Carbazole, 3541 Low Solid*	190	/U	14	190	1.00000	ug/Kg	135942		12/01/04 1	
	Di-n-butyl phthalate, 3541 Low Solid*	190	U	13	190	1.00000	ug/Kg	135942	1 1	12/01/04 1	628 dipk
	Fluorantheme, 3541 Low Solid*	38	lu/	12	38	1.00000	ug/Kg	135942		12/01/04 1	628 depk
	Pyrene, 3541 Low Salid*	58	U	14	58	1.00000	ug/Kg	135942		12/01/04 1	628 dpk
	Butyl benzyl phthalate, 3541 Low Solid*	78	U	12	78	1.00000	ug/Kg	135942	(12/01/04 1	
	Benzo(a)anthracene, 3541 Low Solid*	38	U	<u>†</u> 11	38	1.00000	ug/Kg	135942	1	12/01/04 1	
	Chrysene, 3541 Low Solid*	38	u	12	! 38	1.00000	ug/Kg	135942		12/01/04 1	628 dpk
		!									Ĺ

^{*} In Description = Dry Wgt.

Job Number: 231877

LABORATORY TEST RESULTS

Date:12/02/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ettis

Customer Sample ID: LNWsb-056-DUP Date Sampled.....: #1/09/2004 Time Sampled.....: 14:00 Laboratory Sample ID: 231877-17
Date Received.....: 11/11/2004
Time Received.....: 10:00

Time Sampled....: 14:00 Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL .	RL	DILUTION	UNITS	BATCH.	DT	DATE/TI	ME	тесн
	3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Solid* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(k)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghi)perylene, 3541 Low Solid*	190 190 380 38 38 38 38 38 38	U U U U U U U U U U U U U U U U U U U	17 37 12 10 11 11 12 11	190 190 380 38 38 38 38 38 38	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	135942 135942 135942 135942 135942 135942 135942 135942 135942	1; 1; 1; 1; 1;	2/01/04 2/01/04 2/01/04 2/01/04 2/01/04 2/01/04 2/01/04 2/01/04 2/01/04	1628 1628 1628 1628 1628 1628 1628	dpk dpk dpk dpk dpk dpk
Method	% Solids Determination % Solids, Solid % Moisture, Solid	86.2 13.8		0.10 0.10	0.10 0.10	1	% %	134212 134212		1/13/04 1/13/04		

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS
Job Number: 231877

Date:11/24/2004

CUSTOMER: MKM Engineens, Inc. PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-056-DUP Date Sampled....: 11/09/2004 Time Sampled....: 14:00 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST: DESCRIPTION	SAMPLE RESULT	q	FLAGS	MDL	RL	DILUTION	UNITS	BATCH	CT	DATE/T	ME	TECH
8330	Explosives by 8330 (HPLC) HMX, Solid RDX, Solid 1,3,5-Irinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Kitrobenzene, Solid 2,4,6-TNT, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 2-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.20 0.099 0.099 0.099 0.099 0.39 0.099			0.056 0.062 0.032 0.023 0.023 0.12 0.025 0.048 0.045 0.093 0.047 0.050	0.20 0.20 0.099 0.099 0.099 0.39 0.20 0.20 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135440 135440 135440 135440 135440 135440 135440 135440 135440 135440		11/17/04 11/17/04 11/17/04 11/17/04 11/17/04 11/17/04 11/17/04 11/17/04 11/17/04 11/17/04	2226 2226 2226 2226 2226 2226 2226 222	bdir bdir bdir bdir bdir bdir bdir bdir

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:11/29/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USAGE RVAAP 14 ADCS

ATTN: Eric Etlis

Customer Sample ID: LNWsb-057-S0 Date Sampled....: 11/09/2004 Time Sampled....: 15:00 Sample Matrix....: Soil Laboratory Sample ID: 231877-20 Date Received.....: 11/11/2004

Time Received.....: 10:00

TEST NETROD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	q FLAGS	MECL	RL	DITALION	UNITS	BATCH	DΤ	DATE/TI	IHE	TEC
Method	% Salids Determination							474045				Ι
	% Solids, Solid % Moisture, Solid	86.1 13.9		0.10 0.10	0.10 0.10	1	* *	134212 134212		11/13/04 11/13/04		
7041	Antimony (GFAA)	4.5			4 5			471041		44.440.004	ara-	
	Antimony, Solid*	1.5	الا	0.46	1.5	1	mg/Kg	134864		11/19/04	0527	Gal
7841	Thatlium (GFAA)							47174				
	Thallium, Solid*	0.62	וט	0.20	0.62)	mg/Kg	134716		11/18/04	0525	· da j
7471A	Mercury (CVAA) Solids											┛.
	Mercury, Solid*	0.019	ប	0.0050	0.019	1	mg/Kg	135018		11/18/04	1617	gak
60108	Metals Analysis (ICAP Trace)					i i						
	Aluminum, Solid*	9800	ė į	2.6	16	1	mg/Kg	135366		11/23/04		
	Barium, Solid*	47	.	0.17	1.1	[1	mg/Kg	135030	1	11/20/04		
	Arsenic, Solid*	15		0.55	1.6	1	mg/Kg	135030		11/20/04		
	Beryllium, Solid*	0.68	i i	0.048	0.43	1	mg/Kg	135030	ı	11/20/04		
	Cadmium, Solid*	0.15	B.	0.087	0.27	1	mg/Kg	135030	1 :	11/20/04		
	Calcium, Solid*	11000		3.4	11	1	mg/Kg	135030		11/20/04		
	Chromium, Solid*	16	li	0.24	1.1	1	mg/Kg	135030		11/20/04		
	Cobalt, Solid*	10	1	0.15	0.54	1	mg/Kg	135030		11/20/04		
	Copper, Solid*	18		0.98	3.3	1	mg/Kg	135060	1	11/22/04		
	1ron, Solid*	28000		3.3	11	1	mg/Kg	135030		11/20/04		
	Magnesium, Solid*	4600	1. 1	1.8	11	1	mg/Kg	135030	ĺ	11/20/04		
	Manganese, Solid*	390	1 1	0.14	1.1	ī	mg/Kg	135030		11/20/04		
	Nickel, Solid*	26		0.27	1.1	1	mg/Kg	135030	1	11/20/04		
	Lead, Solid*	12		0.47	1.6	1	mg/Kg	135030		11/20/04		
	Potassium, Solid*	1300	1	j 15	54	11	mg/Kg	135060	1	11/22/04	0104	• tds

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS
Job Number: 231877

Date: 11/29/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAP 14 ACCS ATTN: Eric Ellis

Customer Sample ID: LNWsb-057-S0
Date Sampled.....: 11/09/2004
Time Sampled.....: 15:00
Sample Matrix....: Soil

Laboratory Sample ID: 231877-20 Date Received.....: 11/11/2004 Time Received.....: 10:00

MOL **₽**L DILUTION Q FLAGS SAMPLE RESULT UNITS BATCH DATE/TIME TEST METHOD PARAMETER/TEST DESCRIPTION TECH 11/20/04 1610 lmr 11/20/04 1610 lmr 0.53 0.43 135030 Selenium, Solid* 1.6 mg/Kg 135030 0.34 Silver, Solid* 1.1 1.1 mg/Kg Sodium, Solid* 330 94 330 mg/Kg 135060 11/22/04 0104 tds 17 11/20/04 1610 tmr Vanadium, Solid* 0.23 1.1 135030 mg/Kg 11/20/04 1610 Lmr 60 2.2 Zinc, Solid* 0.43 135030 mg/Kg

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 231877 Date:12/02/2004

CUSTOMER: MKM Engineers, Inc. ATTN: Enic Ellis

Customer Sample ID: LNWsb-057-S0
Date Sampled....: 11/09/2004
Time Sampled....: 15:00
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	٥	FLAGS	MDL	RL	DILUTION	UNITS	BATCH DT		DATE/T	IME .	TECH
8270€	Semivolatile Organics		İ				† ' 		1	† **	· · · · · · · · · · · · · · · · · · ·		
	Phenol, 3541 Low Solid*	190	lui	ĺ	8.2	190	1.00000	ug/Kg	135942	111	/30/04	2259	dok
	Bis(2-chloroethyl)ether, 3541 Low Solid*	78	u		10	78	1.00000	ug/Kg	135942		/30/04		
	1,3-Dichlorobenzene, 3541 Low Solid*	190	U		16	190	1.00000	ug/Kg	135942		/30/04		
	1,4-Dichlorobenzene, 3541 Low Solid*	190	u		i 18	190	1.00000	ug/Kg	135942		/30/04		
	1,2-Dichlorobenzene, 3541 Low Solid*	190	U		16	190	1.00000	ug/Kg	135942		/30/04		
	Senzyl alcohol, 3541 Low Solid*	780	∮u		85	780	1.00000	ug/Kg	135942		/30/04		
	2-Methylphenol (o-cresol), 3541 Low Solid*	78	į U	ļ	12	78	1.00000	ug/Kg	135942	<u>†</u> 11	/30/04	2259	dopk
	2,2-oxybis (1-chloropropane), 3541 Low So*id	190	U:	i	18	190	1.00000	ug/Kg	135942		/30/04		
	n-Mitroso-di-n-propylamine, 3541 Low Soli*	78	U		15	78	1.00000	ug/Kg	135942	111	/30/04	2259	dpk
	Hexachloroethane, 3541 Low Solid*	190	u		ļ 10	190	1.00000	ug/Kg	135942		/30/04		
	4-Methylphenol (m/p-cresol), 3541 Low Sol*d	78	U	Ì	14	78	1.00000	ug/Kg	135942	11	/30/04	2259	dpk
	2-Chlorophenol, 3541 Low Solid*	j 190	U		16	190	1.00000	ug/Kg	135942	11	/30/04	2259	dpk
	Nitrobenzene, 3541 Low Solid*	38	U		10	38	1.00000	ug/Kg	135942	11	/30/04	2259	dpk
	Bis(2-chloroethoxy)methane, 3541 Low Soli*	78	\\ U		10	78	1.00000	ug/Kg	135942	!11	/30/04	2259	dipk
	1,2,4-Trichlorobenzene, 3541 Low Solid*	190	u		16	1 9 0	1.00000	ug/Kg	135942	į 11	/30/04	2259	dok
	Benzoic acid, 3541 Low Solid*	780	u	, * 	230	780	1.00000	ug/Kg	135942	11	/30/04	2259	dpk
	Isophorone, 3541 Low Solid*	190	U		23	190	1.00000	ug/Kg	135942	11	/30/04	2259	dpk
	2,4-Dimethylphenol, 3541 Low Solid*	380	U		l 19	380	1.00000	ug/Kg	135942	11	/30/04	2259	dpk
	Hexachlorobutadiene, 3541 Low Solid*	190	U	ŀ	10	190	1.00000	ug/Kg	135942	11	/30/04	Z259	dpk
	Naphthalene, 3541 Low Solid*	j 38	Ü		9.7	38	1.00000	ug/Kg	135942	111	/30/04	2259	dipk
	2,4-Dichlorophenol, 3541 Low Solid*	380	JU		18	380	1.00000	ug/Kg	135942	¦11	/30/04	2259	dok
	4-Chtoroaniline, 3541 Low Solid*	780	U		62	780	1.00000	ug/Kg	135942 ;	111	/30/04	2259	dpk
	2,4,6-Trichlorophenol, 3541 Low Solid*	190	U	1	43	190	1.00000	ug/Kg	135942	11	/30/04	2259	dpk
	2,4,5-Trichlorophenol, 3541 Low Solid*	380	U	ĺ	52	380	1.00000	ug/Kg	135942	11	/30/04	2259	dpk
	Mexachlorocyclopentadiene, 3541 Low Solid*	1200	u	<u> </u>	350	1200	1_00000	ug/Kg	135942	11	/30/04	2259	dpk
	2-Nethylnaphthalene, 3541 Low Solid*	38	u		12	38	1.00000	ug/Kg	135942		/30/04		
	2-Nitroaniline, 3541 Low Solid*	} 190	U		13	190	1.00000	ug/Kg	135942	11	/30/04	2259	dok
	2-Chloronaphthalene, 3541 Low Solid*	190	U		18	f 90	1.00000	ug/Kg	135942	¦11	/30/04	2259	dok
			İ		1		İ						<u> </u>

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 231877 Date:12/02/2004

CUSTOMER: MKM Engineers, Inc. ATTN: Eric Ellis

Customer Sample ID: LNWsb-057-S0
Date Sampled.....: 11/09/2004
Time Sampled.....: 15:00
Sample Matrix....: Soil

	4-Chloro-3-methylphenol, 3541 Low Solid*			,		N 1	DILUTION	UNITS	BATCH	1 1	DATE/T	175 ·	TEC
	A DISCOLA A WASHINGTON AND STATE FOR ACTION	380	u		40	380	1.00000	ug/Kg	135942		11/30/04	2259	dpi
	2,6-Dinitrotoluene, 3541 Low Solid*	38	u		11	38	1.00000	ug/Kg	135942		11/30/04	2259	dpl
	2-Nitrophenol, 3541 Low Solid*	380	U		17	380	1.00000	ug/Kg	135942		11/30/04		
	3-Nitroaniline, 3541 Low Solid*	780	U		160	780	j1.00000	ug/Kg	135942		11/30/04		
	Dimethyl phthalate, 3541 Low Solid*	78	U		10	78	1.00000	ug/Kg	135942		11/30/04		
	2,4-Dinitrophenol, 3541 Low Solid*	780	U	*	120	780	1.00000	ug/Kg	135942		11/30/04		
	Acenaphthylene, 3541 Law Solid*	38	ם ם ם		9.6	38	1.00000	ug/Kg	135942		11/30/04		
	2,4-Dinitrotoluene, 3541 Low Solid*	38 38	U		12	1 38	1_00000	ug/Kg	135942		11/30/04		
	Acenaphthene, 3541 Low Solid*	! 38	u		9.6	38	1.00000	ug/Kg	135942		11/30/04		
	Dibenzofuran, 3541 Low Solid*	78			<u>.</u> 10 j	78	1.00000	ug/Kg	135942		11/30/04		
	4-Nitrophenol, 3541 Low Solid*	780	u		250	780	1.00000	ug/Kg	135942		11/30/04		
	Fluorene, 3541 Low Solid*	38	U		10	38	1.00000	ug/Kg	135942		11/30/04		
	4-Nitroaniline, 3541 Low Solid*	780	U	ŀ	52	780	1.00000	ug/Kg	135942		11/30/04		
	4-Bromophenyl phenyl ether, 3541 Low Sali*	190	U U		12	190	1.00000	ug/Kg	135942		11/30/04		
	Hexachlorobenzene, 3541 Low Solid*	38	U		11	38	1.00000	ug/Kg	135942		11/30/04		
	Diethyl phthalate, 3541 Low Solid*	78	Ü		11	78	1.00000	ug/Kg	135942		11/30/04		
	4-Chlorophenyl phenyl ether, 3541 Low Sol*d	190	U		11	190	11.00000	ug/Kg	135942		11/30/04		
	Pentachlorophenol, 3541 Low Solid*	380	ln		130	380	1.00000	ug/Kg	135942		11/30/04		
	n-Nitrosodiphenylamine, 3541 Low Solid*	38	U		12	38	1.00000	ug/Kg	135942		11/30/04		
	4,6-Dinitro-2-methylphenol, 3541 Low Soli*	780	U		200	780	1.00000	ug/Kg	135942		11/30/04		
	Phenanthrene, 3541 Low Solid*	58	U.	•	18	58	1.00000	ug/Kg	135942	, ,	11/30/04		
ŀ	Anthracene, 3541 Low Solid*	38	U		13	38	1.00000	ug/Kg	135942		11/30/04		
ł	Carbazole, 3541 Low Solid*	190	u		14	190	1.00000	ug/Kg	135942		11/30/04		
	Di-n-butyl phthalate, 3541 Low Solid*	190	U		13	190	1.00000	ug/Kg	135942	1 1	11/30/04		1 4
İ	Fluoranthene, 3541 Low Solid*	38	ln,		12	38	1.00000	ug/Kg	135942		11/30/04		
1	Pyrene, 3541 Low Solid*	58	LI.		14	58	1.00000	ug/Kg	135942		11/30/04		
!	Butyl benzyl phthalate, 3541 Low Solid*	78			12	78	1.00000	ug/Kg	135942		11/30/04		
	Benzo(a)anthracene, 3541 Low Solid*	38 38	U		11	38	1.00000	ug/Kg	135942		11/30/04		
	Chrysene, 3541 Low Solid*	38	'υ	!	12	38	1.00000	ug/Kg	135942		11/30/04	2259	abi

^{*} In Description = Ory Wgt.

Date:12/02/2004

ATTN: Eric Ellis

Job Number: 231877

CUSTOMER: MKM Engineers, Inc.

Sample Matrix....: Soil

LABORATORY TEST RESULTS

PROJECT: USACE RVAAP 14 ACCS

Customer Sample ID: LNWsb-057-SO Laboratory Sample ID: 231877-20

 Date Sampled.....: 11/09/2004
 Date Received.....: 11/11/2004

 Time Sampled.....: 15:00
 Time Received.....: 10:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	NDL	RL	DILUTION	UNETS	BATCH	DΤ	DATE/TIME	TECH
	3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Soli* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(k)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghi)perylene, 3541 Low Solid*	190 190 380 38 38 38 38 38 38	ם ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב	17 37 12 10 11 11 12 11	190 190 380 38 38 38 38 38 38	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	135942 135942 135942 135942 135942 135942 135942 135942		11/30/04 225: 11/30/04 225: 11/30/04 225: 11/30/04 225: 11/30/04 225: 11/30/04 225: 11/30/04 225: 11/30/04 225: 11/30/04 225:	9 dpk 9 dpk 9 dpk 9 dpk 9 dpk 9 dpk 9 dpk
Method	% Solids Determination % Solids, Solid % Moisture, Solid	86.1 13.9		0.10 0.10	0.10 0.10	1	% %	134212 134212		11/13/04 115 11/13/04 115	
			V., 4								

^{*} In Description = Dry Wgt.

Page 41

STL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS
Job Number: 231877

Date: 11/24/2004

CUSTOMER: WKK Engineers, Inc. ATTN: Enic ELLIS

Customer Sample ID: LNWsb-057-S0 Date Sampled.....: 11/09/2004 Time Sampled.....: 15:00 Sample Matrix....: Soit

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DIEUTION	UNITS	SATCH	DT	DATE/T	ME	TECH
8330	Explosives by 8330 (HPLC) HMX, Solid RDX, Solid 1,3,5-Trinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-TNT, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.098 0.098 0.098 0.098 0.39 0.098 0.20 0.20 0.20 0.29 0.20		0.055 0.062 0.032 0.023 0.023 0.12 0.025 0.048 0.045 0.093 0.047 0.049 0.052	0.20 0.20 0.998 0.098 0.098 0.39 0.098 0.20 0.20 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135440 135440 135440 135440 135440 135440 135440 135440 135440 135440 135440		11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04	0003 0003 0003 0003 0003 0003 0003 000	bdie bdie bdie bdie bdie bdie bdie bdie

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 11/29/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTHE EFFC Ellis

Customer Sample ID: LNWsb-058-SO
Date Sampled.....: 11/09/2004
Time Sampled.....: 15:30
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLA	GS MDL	RL	DILUTION	UNITS	BATCH	DΤ	DATE/TI	ME	TECH
Method	% Solids Determination % Solids, Solid % Moisture, Solid	87.7 12.3		0.10 0.10	0.10 0.10	1	% %	134212 134212		11/13/04 11/13/04		
7041	Antimony (GFAA) Antimony, Solid*	1.5	u	0.48	1.5	1	mg/Kg	134864		11/19/04	0324	ďaj
7841	Thallium (GFAA) Thallium, Solid*	0.65	u	0.21	0.65	1	mg/Kg	134716		11/18/04	0320	daj
7471A	Mercury (CVAA) Solids Mercury, Solid*	0.019	U	0.0049	0.019	1	mg/Kg	135018		11/18/04	1556	gok
6010B	Metals Analysis (ICAP Trace) Aluminum, Solid* Barium, Solid* Arsenic, Solid* Beryllium, Solid* Cadmium, Solid* Calcium, Solid* Chromium, Solid* Chromium, Solid* Copper, Solid* Iron, Solid* Iron, Solid* Magnesium, Solid* Nickel, Solid* Lead, Solid*	8800 49 11 0.65 0.28 3400 15 9.6 20 23000 3500 280 24 9.8 1500	F	2.7 0.18 0.57 0.090 3.5 0.25 0.16 1.0 3.4 1.9 0.15 0.28 0.48	17 1.1 1.7 0.45 0.28 11 1.1 0.56 3.4 11 11 1.1 1.1	111111111111111111111111111111111111111	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135060 135030 135030 135030 135030 135030 135030 135030 135030 135030 135030 135030		11/21/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04	1418 1418 1418 1418 1418 1418 2314 1418 1418 1418	Imr Imr Imr Imr Imr Imr Imr Imr Imr Imr

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 11/29/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-058-S0 Date Sampled....: 11/09/2004 Time Sampled....: 15:30 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL J	SILUTION	UNITS	BATCH			
	Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadium, Solid* Zinc, Solid*	1.1	B บ บ	0.45 0.35 98 0.24 0.45	1.7 1.1 340 1.1 2.3	1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135030 135030 135060 135030 135030	11/20/04 11/20/04 11/21/04 11/20/04 11/20/04	1418 2314 1418	lmr tds lmr
										The second secon	
						í					
		1	:								9

^{*} In Description = Dry Wgt.

STL Chicago is part of Severn Trent Laboratories, Inc.

Date:12/02/2004

CUSTOMER: MKM Engineers, Inc. ATTW: Eric Ellis

Customer Sample ID: LNWsb-058-S0
Date Sampled....: 11/09/2004
Time Sampled....: 15:30
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL .	et.	DIEUTION	UNITS	BATCH	DT	DATE/1	TIME:	TECH
8270c	Semivolatile Organics	<u> </u>	7 1 7 1 7 1 7 1 2 7 1 2 7 1	1 . P 2 1 2 1 4 2 2 1 2 1 4 1 2 1 2 1 2 1 2 1		[eschilatetet	1				11700	
	Phenol, 3541 Low Solid*	190	u	7.9	190	1.00000	um flem	1250/2		14 /20 /0	, 307F	
•	Bis(2-chloroethyl)ether, 3541 Low Solid*		វិបី	9.9	75	1.00000		135942 135942		11/30/04		
	1,3-Dichlorobenzene, 3541 Low Solid*	190	u	15	190	1.00000	ug/Kg	135942		11/30/04 11/30/04		
	1,4-Dichlorobenzene, 3541 Low Salid*	190	u/	17	190	1.00000	ug/Kg	135942		11/30/04		
	1,2-Dichlorobenzene, 3541 Low Solid*	190	u	16	190	1.00000	ug/Kg	135942		11/30/04		
	Benzyl alcohol, 3541 Low Solid*	750	lu	82	750	1.00000	ug/Kg	135942		11/30/04	2033;	dpk
	2-Methylphenol (o-cresol), 3541 Low Solid*	75	u	12	75	1.00000	ug/Kg	135942		11/30/04	, 2033; 2035;	dept :
	2,2-oxybis (1-chloropropane), 3541 Low So*id		U	^l 18 i	190	1.00000	ug/Kg	135942		11/30/04		
	n-Nitroso-di-n-propylamine, 3541 Low Soli*		U	: 15	75	1.00000	ug/Kg	135942		11/30/04		
<u> </u>	Hexachloroethane, 3541 Low Solid*	190	U	9.6	190	1.00000	ug/Kg	135942		11/30/04	2035	dok
1 1	4-Methylphenoi (m/p-cresol), 3541 Low Soi*d	75	u	13	75	1.00000	ug/Kg	135942		11/30/04		
	2-Chlorophenol, 3541 Law Solid*	190	Ψį	15	190	1.00000	ug/Kg	135942		11/30/04		
	Nitrobenzene, 3541 Low Solid*	37	u	9.6	37	1.00000	ug/Kg	135942		11/30/04		
	Bis(2-chloroethoxy)methane, 3541 Low Soli*	75	υ	9.8	75	1.00000	ug/Kg	135942		11/30/04		
	1,2,4-Trichlorobenzene, 3541 Low Solid*	19 0	u	15	190	1.00000	ug/Kg	135942		11/30/04		
	Benzoic acid, 3541 Low Solid*	750	บ *	220	750	1.00000	ug/Kg	135942		11/30/04		
	Isophorone, 3541 Low Solid*	1 9 0	U	22	190	1.00000 }		135942		11/30/04		
	2,4-Dimethylphenol, 3541 Low Solid*	370	U	18	370	1.00000		135942		11/30/04		
j	Mexachlorobutadiene, 3541 Low Solid*	190	uj	10	190	1.00000	ug/Kg	135942		11/30/04		
	Naphthalene, 3541 Low Solid*	37	υį	9.3	37	1.00000		135942		11/30/04		
	2,4-Dichlorophenol, 3541 Low Solid*	370	П	17	370	1.00000		135942		11/30/04	2035	dok
	4-Chloroaniline, 3541 Low Solid*	75 0	U	60	750	1.00000	ug/Kg	135942		11/30/04	2035	dank i
	2,4,6-Trichlorophenol, 3541 Low Salid*	190	U	42	190	1.00000	ug/Kg	135942		11/30/04		
	2,4,5-Trichlorophenol, 3541 Low Solid*		U	50 j	370	1.00000	ug/Kg	135942		11/30/04		
	Hexachlorocyclopentadiene, 3541 Low Solid*		U	340	1100	1.00000	ug/Kg	135942		11/30/04		
	2-Methylnaphthalene, 3541 Low Solid*		U	11	37	1.00000	ug/Kg	135942	ļ ļ.	11/30/04	2035	ldak
	2-Nitroaniline, 3541 Low Solid*		U	12	190	1.00000	ug/Kg	135942	l 1	11/30/04	2035	dpk
	2-Chloronaphthalene, 3541 Low Solid*	190	u¦	17	190	1.000000	ug/Kg	135942		11/30/04		
							_			• •	j	ı İ
	<u> </u>								1 1		,	, 1

^{*} In Description = Dry Wgt.

Job Number: 231877 LABORATORY TEST RESULTS

Date:12/02/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ettis

Customer Sample ID: LNWsb-058-S0
Date Sampled....: 11/09/2004
Time Sampled....: 15:30
Sample Matrix...: Soil

TEST METHOD	PARAMETER/FEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	81	DILUTION	UNITS	BATCH	οτ	DATE/T	IME	TECH
	4-Chloro-3-methylphenol, 3541 Low Solid*	370	iu	39	370	1.00000	.30x1x3x1x3	1750/3	100		1000	(Y711)
ļ	2,6-Dinitrotoluene, 3541 Law Solid*	37	լս ս	10	37	1.00000	ug/Kg	135942		11/30/04		
	2-Mitrophenol, 3541 Low Solid*	370	lui .	16	370	1.00000	ug/Kg ug/Kg	135942		11/30/04		
	3-Nitroaniline, 3541 Low Solid*	750	u	150	750	1.00000	ug/Kg ug/Kg	135942		11/30/04	2033	COCK
	Dimethyl phthalate, 3541 Low Solid*	75	u	9.9	75	1.00000	ug/Kg	135942	l i	11/30/04	2000	opk.
	2,4-Dinitrophenol, 3541 Low Solid*	750	u *	120	750	1.00000	ug/Kg	135942	1 1	11/30/04	2033	арк
	Acenaphthylene, 3541 Low Solid*	37 .	U	9,2	37	1.00000	ug/Kg	135942		11/30/04 11/30/04		
	2,4-Dinitrotoluene, 3541 Low Solid*		i U	12	37	1,00000	ug/Kg	135942		11/30/04		
	Acenaphthene, 3541 Low Solid*	37	U	9.2	37	1.00000	ug/Kg	135942]	11/30/04	2033	dipk.
	Dibenzofuran, 3541 Low Solid*	75	U:	9.8	75	1.00000	ug/Kg	135942		11/30/04		
	4-Nitrophenol, 3541 Low Solid*		u	240	750	1.00000	ug/Kg	135942		11/30/04		
	Fluorene, 3541 Low Salid*	! 37	וט	10	37	1.00000	ug/Kg	135942		11/30/04		
	4-Nitroaniline, 3541 Low Solid*		u	50	750	1.00000	ug/Kg	135942		11/30/04		
	4-Bromophenyl phenyl ether, 3541 Low Soli#		u	11	190	1.00000	ug/Kg	135942	1	11/30/04	2035	dok
	Hexachlorobenzene, 3541 Low Solid*	37	u	11	37	1.00000	ug/Kg	135942		11/30/04	2035	dok
	Diethyl phthalate, 3541 Low Solid*	75	U	11	75	1.00000	ug/Kg	135942		11/30/04	2035	CEPIK
	4-Chlorophenyl phenyl ether, 3541 Low Sol*d		υ¦	11	190	1 00000 i	ug/Kg	135942		11/30/04		
	Pentachlorophenol, 3541 Low Solid*	370	Uį	120	370	1.00000	ug/Kg	135942		11/30/04		
; !	n-Nitrosodiphenylamine, 3541 Low Solid*	37	ш	12	37	1.00000	ug/Kg	135942		11/30/04	2022	dek
1	4,6-Dinitro-2-methylphenol, 3541 Low Soli*	750	U	1 9 0	750	1.00000	ug/Kg	135942		11/30/04		
	Phenanthrene, 3541 Low Solid*	56	υl	17	56	1.00000	ug/Kg	135942		11/30/04		
	Anthracene, 3541 Low Solid*	37	υ	12	37	1.00000	ug/Kg	135942		11/30/04		
	Carbazole, 3541 Low Solid*	190	u	13	190	1.00000	ug/Kg	135942		11/30/04		
	Di-n-butyl phthalate, 3541 Low Solid*		U	13	190	1.00000	ug/Kg	135942		11/30/04		
	Fluoranthene, 3541 Low Solid*	37	ប ៉	12	37	1.00000	ug/Kg	135942		11/30/04	2035	dok
	Pyrene, 3541 Low Solid*	56	u	13	56	1.00000	ug/Kg	135942		11/30/04	2035	dok
į	Butyl benzyl phthalate, 3541 Low Solid*	75	U	11	75	1.00000		135942		11/30/04		
	Benzo(a)anthracene, 3541 Low Solid*		υ	11	37	1.00000	ug/Kg	135942		11/30/04		
	Chrysene, 3541 tow Solid*	37	U	12	37	1.00000	ug/Kg	135942		11/30/04	2035	dpk
		<u> </u>		į	!	. ! ! !			ı !			

^{*} In Description = Dry Wgt.

Date:12/02/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AUCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-058-S0
Date Sampled....: 11/09/2004
Time Sampled....: 15:30
Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DILUTION	UNITS	BATCH	DТ	DATE/TIME	TECH
Method	3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Solid* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(x)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghi)perylene, 3541 Low Solid* Solids Determination % Solids, Solid % Moisture, Solid	190 190 370 37 37 37 37 37 37 37 37	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16 36 12 9.9 10 11 11 11 12 0.10	190 190 370 37 37 37 37 37 37 37 37 37	1_00000 1_00000 1_00000 1_00000 1_00000 1_00000 1_00000 1_00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	135942 135942 135942 135942 135942 135942 135942 135942 135942 134212		11/30/04 2035 11/30/04 2035 11/30/04 2035 11/30/04 2035 11/30/04 2035 11/30/04 2035 11/30/04 2035 11/30/04 2035 11/30/04 2035 11/30/04 1141	dpk dpk dpk dpk dpk dpk dpk dpk
			· · · · · · · · · · · · · · · · · · ·						7,		To a contract of the contract

^{*} In Description = Dry Wgt.

Page 21

LABORATORY TEST RESULTS

Date:11/24/2004

CUSTONER: WKM Engineers, Inc. PROJECT: USAGE RYAAP 14 ACCS ATTN: Eric Ellis.

Customer Sample ID: LNWsb-058-SD Date Sampled....: 11/09/2004 Time Sampled....: 15:30 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O FLAGS	MOL	AL	DILUTION	UNITS	BATCH	DT	DATE/TI	ME .	TECH
8330	Explosives by 8330 (HPLC) HMX, Solid RDX, Solid 1,3,5-Trinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-TMT, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.10	טפטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	0.056 0.063 0.033 0.023 0.024 0.12 0.026 0.049 0.045 0.094 0.048 0.050 0.053	0.20 0.20 0.10 0.10 0.10 0.40 0.10 0.20 0.20 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	135429 135429 135429 135429 135429 135429 135429 135429 135429 135429 135429		11/17/04 11/17/04 11/17/04 11/17/04 11/17/04 11/17/04 11/17/04 11/17/04 11/17/04 11/17/04 11/17/04 11/17/04	1236 1236 1236 1236 1236 1236 1236 1236	bdw bdw bdw bdw bdw bdw bdw bdw bdw bdw

^{*} In Description = Dry Wgt.

STL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS

Date: 12/01/2004

CLISTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTM: Eric Ellis

Customer Sample ID: LNWsb-059-SO Date Sampled.....: 11/10/2004 Time Sampled....: 09:00 Sample Matrix....: Soil

Laboratory Sample ID: 231912-23 Date Received.....: 11/12/2004

Time Received....: 09:15

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DILLITION	LINITS	BATCH	DΤ	DATE/T	1ME	TECH
Method	% Solids Determination % Solids, Solid % Moisture, Solid	83.1 16.9		0.10 0.10	0.10 0.10	1	X X	134487 134487		11/16/04 11/16/04		
7041	Antimony (GFAA) Antimony, Solid*	1.6	U	0.51	1.6	ī	mg/Kg	135006		11/19/04	1855	daj
7841	Thallium (GFAA) Thallium, Solid*	0.69	u	0.22	0.69	1	mg/Kg	135008		11/19/04	2246	daj
7471A	Mercury (CVAA) Solids Mercury, Solid*	0.015	В	0.0052	0.020	1	mg/Kg	135393		11/23/04	1651	gak
6010B	Metals Analysis (ICAP Trace) Aluminum, Solid* Barium, Solid* Arsenic, Solid* Beryllium, Solid* Cadmium, Solid* Catcium, Solid* Chromium, Solid* Cobalt, Solid* Copper, Solid* Iron, Solid* Magnesium, Solid* Magnesium, Solid* Micket, Solid* Nicket, Solid* Lead, Solid* Potassium, Solid*	7400 23 12 0.47 0.29 490 9.9 8.8 20 20000 1800 320 14 11	D	2.8 0.18 0.59 0.051 0.092 3.6 0.25 0.16 1.0 3.5 2.0 0.15 0.29 0.49	17 1.2 1.7 0.46 0.29 12 1.2 0.58 3.5 12 12 1.2 1.2 1.7 58	111111111111111111111111111111111111111	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04	1714 1714 1714 1714 1714 1714 1714 1714	tds tds tds tds tds tds tds tds tds tds

^{*} In Description = Dry Wgt.

Page 47

Job Number: 231912	LABORATORI	TEST	RESULI	S	Date:	12/01/2004	
JSTOMER: NKM Englineers, Inc.	PROJECT:	USACE RVAAI	14 AOCS		ATTN	Eric Ellik	
Customer Sample ID: LNWsb-059-S0 Date Sampled: 11/10/2004 Time Sampled: 09:00 Sample Matrix: Soil		Date F	etory Sample [[Received	: 11/12/2004	,		
TEST METHOD PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	HOL	RL D	TEUTION UNITS	BATCH OT	DATE/TIME TE
Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadium, Solid* Zinc, Solid*	1.2	B U B	0.46 0.36 100 0.24 0.46	1.7 1 1.2 1 350 1 1.2 1 2.3 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536	11/24/04 1714 td 11/24/04 1714 td 11/24/04 1714 td 11/24/04 1714 td 11/24/04 1714 td
	negocial in		77			PARTIES.	
				W Tanana			

^{*} In Description = Dry Wgt.

Page 48

STL Chicago is part of Severn Trent Laboratories, Inc.

Date:12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVARP 14 ACCS

ATTHE Eric Ellis

Customer Sample 1D: LNWsb-059-S0
Date Sampled....: 11/10/2004
Time Sampled....: 09:00
Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAG	S MOL	RL	DILUTION	UNITS	BATCH	or	DATE/TH	ile iii	TECH
8270C	Semivolatile Organics		12:12:22:22	***	<u> </u>	::::::::::::::::::::::::::::::::::::::		13000007			#(J)	<u> 3888)</u>
	Phenol, 3541 Low Solid*	190	ย	8.0	190	1.00000	185	47/700				
	Bis(2-chloroethyl)ether, 3541 Low Solid*	76	ŭ	10	76	1.00000	ug/Kg	136309 136309		11/29/04		
	1,3-Dichlorobenzene, 3541 Low Solid*	190	lŭ!	15	190	1.00000	tig/Kg	136309		11/29/04		
	1,4-Dichlorobenzene, 3541 Low Solid*	190	اتا	17	190	1.00000	ug/Kg	136309	1 1	11/29/04	1037	dpk
	1,2-Dichlorobenzene, 3541 Low Solid*	190	اتا	16	190	1.00000	ug/Kg ug/Kg	136309	1 1	11/29/04	1031	орк
	Benzyl alcohol, 3541 Low Solid*	760	ŭ	83	760	1.00000	ug/Kg	136309		11/29/04	1037	opk.
,	2-Methylphenol (o-cresol), 3541 Low Solid*	76	ū	12	76	1.00000	ug/Kg	136309		11/29/04 1	1037	apk.
	(2,2-oxybis (1-chloropropane), 3541 Low So*id	190	Ū	18	190	1.00000	ug/Kg	136309		11/29/04 1 11/29/04 1	1037	арк J_1.
	n-Nitroso-di-n-propylamine, 3541 Low Soli*	76	บ	15	76	1.00000	ug/Kg	136309	3	11/29/04	1027	ops.
	Hexachloroethane, 3541 Low Solid*	190	U U	9.7	190	1.00000	ug/Kg	136309		11/29/04	1037	ops.
	4-Methylphenol (m/p-cresol), 3541 Low Sol*d	76	U	13	76	1.00000	ug/Kg	136309		11/29/04		
	2-Chlorophenol, 3541 Law Solid*	190	U.	15	190	1.00000	ug/Kg	136309		11/29/04		
	Nitrobenzene, 3541 Low Solid*	37	lu]	9.7	37	1.00000	ug/Kg	136309		11/29/04		
	Bis(2-chloroethoxy)methane, 3541 Low Soli*	76	luí	10	76	1.00000	ug/Kg	136309		11/29/04 1		
	1,2,4-Trichlorobenzene, 3541 Low Solid*	190	u	15	190	1.00000	ug/Kg	136309		11/29/04 1		
	Benzoic acid, 3541 Low Solid*	760	u *	220	760	1.00000	ug/Kg	136309		11/29/04 1		
	(sophorone, 3541 Low Solid*	190	u	22	190	1.00000	ug/Kg	136309		11/29/04 1		
	2,4-Dimethylphenol, 3541 Low Solid*	370	U	18	370	1.00000	ug/Kg	136309		11/29/04 1	037	dok
	Hexachlorobutadiene, 3541 Low Solid*	190	(U	10	190	1.00000	ug/Kg	136309		11/29/04 1		
	Naphthalene, 3541 Low Solid*		U	9.5	37	1.00000	ug/Kg	136309		11/29/04 1		
	2,4-Dichtorophenol, 3541 Low Solid*	370	u	18	370	1.00000	∪g/Kg	136309		11/29/04 1		
	4-Chloroaniline, 3541 Low Solid*	760	U	61	760	1.00000	ug/Kg	136309		11/29/04 1		
	2,4,6-Trichlorophenol, 3541 Low Solid*	190	ш	42	190	1.00000	ug/Kg	136309		11/29/04 1		
i	2,4,5-Trichlorophenol, 3541 Low Solid*	370	U	51	370	1.00000	ug/Kg	136309		11/29/04 1		
	Hexachlorocyclopentadiene, 3541 Low Solid*	1100	u	350	1100	1.00000	⊔g/Kg	136309		11/29/04 1	037	dok
	2-Nethylnaphthalene, 3541 Low Solid*	37	U	11	37	1.00000	ug/Kg	136309		11/29/04 1		
	2-Nitroaniline, 3541 Low Solid*	190	U	12	190	1.00000	ug/Kg	136309		11/29/04 1		
	2-Chloronaphthalene, 3541 Low Solid*	190	U	18	190	1.00000	ug/Kg	136309		11/29/04 1	037	dok
i											į	•
		l	LL	<u> </u>	L	.]		<u></u>				

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RYAMP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-059-s0
Date Sampled....: 11/10/2004
Time Sampled....: 09:00
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SANPLE RESULT	Q FLAGS	NOT	RL	DILUTION	UNITS	BATCH	DΤ	DATE/T	IME TECH
	4-Chloro-3-methylphenol, 3541 Low Solid*	370	IJ	39	370	1.00000	ug/Kg	136309	0203	11/20/04	1037 dpk
	2,6-Dinitrotoluene, 3541 Low Solid*	37	U	10	37	1.00000	ug/Kg	136309			1037 dpk
	2-Nitrophenol, 3541 Low Solid*	370	0	17	370	1.00000	ug/Kg	136309			1037 dpk
	3-Nitrosniline, 3541 Low Solid*	760	(u)	160	760	1.00000	ug/Kg	136309			1037 dpk
	Dimethyl phthalate, 3541 Low Solid*	76	u	10	76	1.00000	ug/Kg	136309			1037 dpk
	2,4-Dinitrophenol, 3541 Low Solid*	760	u	120	760	1.00000	ug/Kg	136309	Į Į	11/20/04	1037 dpk
	Acenaphthylene, 3541 Low Solid*	37	u	9.4	37	1.00000	ug/Kg	136309	ĺΙ	11/29/04	1037 dpk
	2,4-Dinftrataluene, 3541 Law Salid*	37 37	u	12	37	1.00000	ug/Kg	136309	1	11/20/04	1037 dpk
	Acenaphthene, 3541 Low Solid*	37	u	9.4	37	1.00000	ug/Kg	136309	1	11/20/04	1037 dpk
	Dibenzofuran, 3541 Low Solid*	76		10	76	1.00000	ug/Kg	136309			1037 dpk
	4-Nitrophenol, 3541 Low Solid*	760	U	240	760	1.00000	ug/Kg	136309			1037 dpk
	Fluorene, 3541 Low Solid*	37	ju	10	37	1.00000	ug/Kg	136309		11/29/04	1037 dpk
	4-Nitroaniline, 3541 Low Solid*	760	(U)	51	760	1.00000	ug/Kg	136309			1037 dpk
	4-Bromophenyl phenyl ether, 3541 Low Solf*	190	u	11	190	1.00000	ug/Kg	136309			1037 dok
	Hexachlorobenzene, 3541 Low Solid*	37		11	37	1.00000	ug/Kg	136309			1037 dpk
	Diethyl phthalate, 3541 Low Solid*	76	u	11	76	1.00000	ug/Kg	136309			1037 dpk
	4-Chlorophenyl phenyl ether, 3541 Low Sol*d	190	u	11	190	1.00000	ug/Kg	136309			1037 dpk
-	Pentachlorophenol, 3541 Law Solid*	370	U	130	370	1.00000	ug/Kg	136309			1037 dok
	n-Nitrosodiphenylamine, 3541 Low Solid*	37	U	12	37	1.00000	ug/Kg	136309			1037 dpk
]	4,6-Dinitro-2-methylphenol, 3541 Low Soli*	760	U	190	760	1.00000	ug/Kg	136309			1037 dpk
	Phenanthrene, 3541 Low Solid*	57	U	17	57	1.00000	ug/Kg	136309			1037 dok
	Anthracene, 3541 Low Solid*	37	U	12	37	1.00000	ug/Kg	136309			1037 dok
	Carbazole, 3541 Low Solid*	190	U	13	190	1.00000	ug/Kg	136309	1	11/29/04	1037 dpk
	Di-n-butyl phthalate, 3541 Low Solid*	190	u	13	190	1.00000	ug/Kg	136309			1037 dok
	Fluoranthene, 3541 Low Solid*	37	U	12	37	1.00000	ug/Kg	136309	ıl	11/29/04	1037 dpk
	Pyrene, 3541 Low Solid*	57	U	14	57	1.00000	ug/Kg	136309			1037 dpk
	Butyl benzyl phthalate, 3541 Low Solid*	76	[U]	12	76	1.00000	ug/Kg	136309			1037 dpk
	Benzo(a)anthracene, 3541 Low Solid*	37	U	11	37	1.00000	ug/Kg	136309	ıl	11/29/04	1037 dpk
	Chrysene, 3541 Low Solid*	37	յսի ի	12	37	1.00000	ug/Kg	136309	, 1	11/29/04	1037 dok
					f 				.		•

^{*} In Description = Dry Wgt.

Job Number: 231912 LABORATORY TEST RESULTS

Date:12/07/2004

CUSTOMER: MICH Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-059-S0
Date Sampled.....: 11/10/2004
Time Sampled.....: 09:00
Sample Matrix....: Soil

TEST METH C C	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	G FLAGS	HDL	RL	DILUTION	UNITS	BATCH	DT	EATE/T		TECH
Method	3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Soli* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(k)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghī)perylene, 3541 Low Solid* W Solids Determination	190 190 370 37 37 37 37 37 37	U U U U U U U U	17 36 12 10 11 11 12 11	190 190 370 37 37 37 37 37 37	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309 136309 136309 136309	74.84	11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04	1037 1037 1037 1037 1037 1037 1037	2000000000000000000000000000000000000
	% Solids, Solid % Moisture, Solid	83.1 16.9		0.10 0.10	0.10 0.10	1 1	% %	134487 134487		11/16/04 11/16/04	1211 1211	daj daj
			1864						g. Hard			
					i	-						į
		· .										
					•							ļ

^{*} In Description = Dry Wgt.

Page 34

Date: 11/30/2004

COSTOMER: MICH Engineers, Inc.

PROJECT: USACE RVAAP 14 AUCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-059-SO
Date Sampled.....: 11/10/2004
Time Sampled.....: 09:00
Sample Matrix....: Soil

TEST METHOD	PARAMETER/YEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	ioi.	RE	DILUTION	UNITS	BATCH	nor.	DATE/T	T MNC	TECH
8330	Explosives by 8330 (HPLC) HMX, Solid RDX, Solid 1,3,5-Trinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-TMT, Solid Tetryt, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 4-Nitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.20 0.099 0.099 0.099 0.099 0.40 0.099 0.20 0.20 0.20 0.20 0.20		0.056 0.062 0.033 0.023 0.021 0.024 0.12 0.025 0.048 0.045 0.093 0.047 0.050 0.053	0.20 0.20 0.099 0.099 0.099 0.099 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135657 135657 135657 135657 135657 135657 135657 135657 135657 135657 135657 135657		11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04	1608 1608 1608 1608 1608 1608 1608 1608	san san san san san san san san san san

^{*} In Description ≈ Dry Wgt.

Page 25

LABORATORY TEST RESULTS

Job Wumber: 231912 Date:12/01/2004

CUSTONER: MKM Engineers, Inc. PROJECT: USACE RVAMP 14 AOCS ATIM: Eric Ellis

Customer Sample ID: LNWsb-060-S0
Date Sampled.....: 11/10/2004
Time Sampled.....: 09:30
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q F	LAGS	MDT.	R L	DICUTION	UNITS	BATCH	DT	DATE/1	1#E	TECH
Method	% Solids Determination % Solids, Solid % Moisture, Solid	87.2 12.8	****		0.10 0.10	0.10 0.10	1	% %	134235 134235		11/14/04		
7041	Antimony (GFAA) Antimony, Solid*	1.5	u		0.49	1.5	1	mg/Kg	135006		11/19/04	1636	daj
7841	Thallium (GFAA) Thallium, Solid*	0.66	U į		0.21	0.66	1	mg/Kg	135008		11/19/04	2041	daj
7471A	Mercury (CVAA) Solids Mercury, Solid*	0.021			0.0049	0.019	4	mg/Kg	135664		11/24/04	1521	gok
6010B	Metals Analysis (ICAP Trace) Aluminum, Solid* Barium, Solid* Arsenīc, Solid* Beryllium, Solid* Cadmium, Solid* Catcium, Solid* Chromium, Solid* Chromium, Solid* Copper, Solid* Tron, Solid* Iron, Solid* Manganese, Solid* Mickel, Solid* Lead, Solīd* Potassium, Solid*	9600 46 12 0.65 0.27 15000 15 8.2 20 23000 5400 220 21 10 1800	Ш		2.6 0.17 0.55 0.047 0.086 3.3 0.24 0.15 0.97 3.2 1.8 0.14 0.27 0.46	16 1.6 0.43 0.27 11 1.1 0.54 3.2 11 11 1.1 1.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536	10 mm	11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04	1525 1525 1525 1525 1525 1525 1525 1525	tds tds tds tds tds tds tds tds tds tds

^{*} In Description = Dry Wgt.

Job Number: 231912 LABORATORY TEST RESULTS
Date:12/01/2004

CUSTOMER: NOW Engineers, Inc.: AFTN: Eric Elits

Customer Sample ID: LNWsb-060-S0
Date Sampled....: 11/10/2004
Time Sampled....: 99:30
Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT G FL	AGS MOL	RL DILUTIO	UNITS BA	TCH DT	DATE/TIME I	rech
	Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadium, Solid* Zinc, Solid*	0.66 B 1.1 U 360 16 57	0.43 0.33 93 0.23 0.43	1.6 1 1.1 1 320 1 1.1 1 2.2 1	mg/Kg 135 mg/Kg 135 mg/Kg 135 mg/Kg 135 mg/Kg 135	536 536 536	11/24/04 1525 t 11/24/04 1525 t 11/24/04 1525 t 11/24/04 1525 t 11/24/04 1525 t	tds tds tds
		The second secon					70	
						7, 71, 48		

^{*} In Description = Dry Wgt.

Job Number: 231912

LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTONER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGCS

ATIN: Eric Ellis

Customer Sample ID: LNWsb-060-S0 Date Sampled.....: 11/10/2004 Time Sampled.....: 09:30 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	C FLAGS	MDL	RI.	DILLUTION	UHITS	BATCH	DT DATE/TIME TEX
8270C	Semivolatile Organics				2124	**********	<u> </u>	53Y1.353535	
	Phenol, 3541 Low Solid*	190	lul	8.1	190	1.00000	ug/Kg	136309	11/30/0/ 0007 45
	Bis(2-chloroethyl)ether, 3541 Low Solid*	76	lül	10	76	1.00000	ug/Kg ug/Kg	136309	11/29/04 0823 dpl
	1,3-Dichtorobenzene, 3541 Low Solid*	190	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15	190	1.00000	ug/Kg	136309	11/29/04 0823 dpk
	1,4-Dichlorobenzene, 3541 Low Solid*	190	lūl	17	190	1.00000	ug/Kg ug/Kg	136309	11/29/04 0823 dpk
	1,2-Dichlorobenzene, 3541 Low Solid*	190	lŭl :	16	190	1.00000	ug/Kg ug/Kg	136309	11/29/04 0823 dpk
	Benzyl alcohol, 3541 Low Solid*	760	lŭ l	84	760	1.00000	ug/Kg	136309	11/29/04 0823 dpk
	2-Methylphenol (o-cresol), 3541 Low Solid*	76	lõl	12	76	1.00000	ug/Kg	136309	11/29/04 0823 dpk
	2,2-oxybis (1-chloropropane), 3541 Low So*id	190	liil	18	190	1.00000	ug/Kg	136309	11/29/04 0823 dpt
	n-Nitroso-di-n-propylamine, 3541 Low Soli*	76	iu!	15	76	1.00000		136309	11/29/04 0823 dpl
	Hexachloroethane, 3541 Low Solid*	190	lul	9.8	190	1.00000	ug/Kg ug/Kg	136309	11/29/04 0823 dpl
	4-Methylphenol (m/p-cresol), 3541 Low Sol*d	76	lül	14	76	1.00000	∪g/Kg ∪g/Kg	136309	11/29/04 0823 dpk
	2-Chlorophenol, 3541 Low Solid*	190	U U U	15	190	1.00000	ug/Kg ug/Kg	136309	11/29/04 0823 dpk
	Nitrobenzene, 3541 Low Solid*	38	lul	9.8	38	1.00000	ug/Kg ug/Kg	136309	11/29/04 0823 dpk
	Bis(2-chloroethoxy)methane, 3541 Low Soli*	76	lul ,	10	76	1.00000	ug/Kg ug/Kg	136309	11/29/04 0823 dpk
	1,2,4-Trichlorobenzene, 3541 Low Solid*	190	lŭl i	16	190	1.00000	ug/Kg	136309	11/29/04 0823 dipk
	Benzoic acid, 3541 Low Solid*	760	ŭ *	220	760	1,00000	ug/Kg ug/Kg	136309	11/29/04 0823 dpk
	Isophorone, 3541 Low Solid*	190	וַט	22	190	1.00000	ug/Kg ug/Kg	136309	11/29/04 0823 dpk
	2,4-Dimethylphenol, 3541 Low Solid*	380	u	18	380	1.00000	ug/Kg ug/Kg	136309	11/29/04 0823 dpk
	Hexachlorobutadiene, 3541 Low Solid*	190	الآا	10	190	1.00000	ug/Kg	136309	
	Naphthalene, 3541 Low Solid*	38	lul I	9.6	38	1.00000	⊔g/Kg	136309	11/29/04 0823 dpk
	2,4-Dichlorophenol, 3541 Low Solid*	380	ם ם	18	380	1.00000	ug/kg	136309	11/29/04 0823 dpk
	4-Chloroaniline, 3541 Low Solid*	760	lul	61	760	1.00000	ug/Kg	136309	11/29/04 0823 dok 11/29/04 0823 dok
	2,4,6-Trichtorophenol, 3541 Low Solid*	190	U U	43	190	1.00000	ug/Kg	136309	11/29/04 0823 dpk
	2,4,5-Trichlorophenol, 3541 Low Solid*	380	lŭi l	51	380	1.00000	ug/Kg	136309	11/29/04 0823 dpk
	Hexachlorocyclopentadiene, 3541 Low Solid*	1100	liil l	350	1100	1.00000	ug/kg ug/Kg	136309	
	2-Methylnaphthalene, 3541 Low Solid*	38	101	11	38	1.00000	ug/Kg	136309	11/29/04 0823 dpk 11/29/04 0823 dpk
	2-Nitroaniline, 3541 Low Solid*	190	U	12	190	1.00000	ug/Kg ug/Kg	136309	
	2-Chioronaphthalene, 3541 Low Solid*	190	lūl l	18	190	1.00000	ug/Kg ug/Kg	136309	11/29/04 0823 dpk
		""	-	"		1.00000	491 vA	130303	11/29/04 0823 dipk
]

^{*} In Description = Dry Wgt.

Job Number: 231912

LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USACE RVAAP 14 AGCS ATTN: Enic Elias

Customer Sample ID: LNWsb-060-S0
Date Sampled....: 11/10/2004
Time Sampled....: 09:30
Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESIALT	Q FLAGS	NOT	RL.	DILUTION	UNITS	BATCH	DT	DATE/T	IME	TECH
	4-Chioro-3-methylphenol, 3541 Low Solid*	380	u	39	380	1.00000	ug/Kg	136309		11/29/04	0823	dok
	2,6-Dinitrotoluene, 3541 Low Solid*	38	lul	10	38	1.00000	ug/Kg	136309		11/29/04		
1	2-Nitrophenol, 3541 Low Solid*	380	u	17	380	1.00000	ug/Kg	136309		11/29/04		
	3-Nitroaniline, 3541 Low Solid*	760	כככככככככככ	160	760	1.00000	ug/Kg	136309		11/29/04		
	Dimethyl phthalate, 3541 Low Solid*	76	u	10	76	1.00000	ug/Kg	136309		11/29/04		
	2,4-Dinitrophenol, 3541 Law Solid*	760	U	120	760	1.00000	ug/Kg	136309		11/29/04	0823	dok
	Acenaphthylene, 3541 Low Solid*	38	U	9.5	38	1.00000	ug/Kg	136309		11/29/04		
	2,4-Dinitrotoluene, 3541 Low Solid*	38	U	12	38	1.00000	ug/Kg	136309		11/29/04		
	Acenaphthene, 3541 Low Solid*	38	וטן	9.5	38	1.00000	ug/Kg	136309		11/29/04	0823	dack
	Dibenzofuran, 3541 Low Solid*	76	U	10	76	1.00000	ug/Kg	136309		11/29/04	0823	dipk
	4-Nitrophenol, 3541 Low Solid*	760	U	240	760	1.00000	ug/Kg	136309		11/29/04	0823	dok
	Fluorene, 3541 Low Solid*	38	U	10	3B	1.00000	ug/Kg	136309		11/29/04	0823	dok
	4-Nitroaniline, 3541 Low Solid*	760	U	51	760	1.00000	ug/Kg	136309		11/29/04	0823	dipk
	4-Bromophenyl phenyl ether, 3541 Low Soli*	190	U	11	190	1.00000	ug/Kg	136309		11/29/04		
	Hexachlorobenzene, 3541 Low Solid*	38	Įυ	11	38	1.00000	ug/Kg	136309	1 1	11/29/04	0823	dok
	Diethyl phthalate, 3541 Low Solid*	76	U	11	76	1.00000	ug/Kg	136309		11/29/04		
	4-Chiorophenyl phenyl ether, 3541 Low Sol*d	190	U	11	190	1.00000	ug/Kg	136309	!	11/29/04	0823	dok
	Pentachlorophenol, 3541 Low Solid*	380	U	130	380	1.00000	ug/Kg	136309		11/29/04	0823	dok
	n-Nitrosodiphenylamine, 3541 Low Solid*	38	U	12	38	1.00000	ug/Kg	136309		11/29/04		
	4,6-Dinitro-2-methylphenol, 3541 Low Soli*	760	U	190	760	1.00000	ug/Kg	136309		11/29/04	0823	dok
	Phenanthrene, 3541 Low Solid*	57	U	17	57	1.00000	ug/Kg	136309		11/29/04		
	Anthracene, 3541 Low Solid*	38	U	12	38	1.00000	ug/Kg	136309		11/29/04	0823	dpk
	Carbazole, 3541 Low Solid*	190	U	13	190	1.00000	ug/Kg	136309		11/29/04	0823	dpk
	Di-n-butyl phthalate, 3541 Low Solid*	190	u	13	190	1.00000	ug/Kg	136309		11/29/04	0823	dpk
	Fluorantheme, 3541 Low Solid*	38	U	12	38	1.00000	ug/Kg	136309	1	11/29/04	0823	dpk
	Pyrene, 3541 Low Solid*	57	u	14	57	1.00000	ug/Kg	136309		11/29/04	0823	dok
	Butyl benzyl phthalate, 3541 Low Solid*	76	u	12	76	1.00000	ug/Kg	136309		11/29/04		
	Benzo(a)anthracene, 3541 Low Solid*	38	u	11	38	1.00000	ug/Kg	136309		11/29/04	0823	dopk
	Chrysene, 3541 Low Solid*	38	u	12	38	1.00000	ug/Kg	136309		11/29/04		

^{*} In Description = Dry Wgt.

Job Number: 231912

Date: 12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGES

ATTME Eric Ellis.

Customer Sample ID: LNWsb-060-S0
Date Sampled.....: 11/10/2004
Time Sampled.....: 09:30
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	FLAGS	MDT.	RL	DILUTION	UNITS	BATCH	DT DATE/T	HE	TECH
	3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Solid* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(c)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghi)perylene, 3541 Low Solid*	190 190 380 38 38 38 38 38 38 1 38		17 37 12 10 11 11 12 11	190 190 380 38 38 38 38 38 38	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309 136309 136309 136309	11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04	0823 0823 0823 0823 0823 0823 0823	dok dok dok dok dok
Method	% Solids Determination % Solids, Solid % Moisture, Solid	87.2 12.8		0.10 0.10	0.10 0.10	1	*	134235 134235	11/14/04	1956 1956	clb

^{*} In Description = Dry Wgt.

LABORATORY YEST RESULTS

Date:11/30/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGES

ATTM: Eric Ellis

Customer Sample ID: LNWsb-060-S0
Date Sampled....: 11/10/2004
Time Sampled....: 09:30
Sample Matrix....: Soil

TEST METHOS	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	HDE	RL	DILUTION	UNITS	BATCH	in a	DATE/T		JECH
8330	Explosives by 8330 (HPLC) HMM, Solid RDX, Solid 1,3,5-Irinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-INI, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 2-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.20 0.20 0.098 0.098 0.098 0.098 0.39 0.20 0.20 0.20 0.22 0.22	טטפטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	0.055 0.062 0.032 0.023 0.021 0.023 0.12 0.025 0.048 0.045 0.093 0.047 0.049	0.20 0.20 0.098 0.098 0.098 0.098 0.39 0.20 0.20 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135657 135657 135657 135657 135657 135657 135657 135657 135657 135657 135657 135657		11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04	1358 1358 1358 1358 1358 1358 1358 1358	sen san san san san san san san san san

^{*} In Description = Dry Wgt.

Job Mumber: 231912

LABORATORY TEST RESULTS

Date: 12/02/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USAGE RYAAP 14 ACCS ATTN: Enic Ellis

Customer Sample ID: LNWsb-061-S0
Date Sampled....: 11/10/2004
Time Sampled....: 10:00
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	OFLA	GS MDL	RL	DILUTION	UNITS	BATCH	ĐΤ	DATE/T	THE	TECH
Method	% Solids Determination					2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	288666		7.22	**************************************	<u> </u>	200000
	% Solids, Solid % Moisture, Solid	84.3	1	0.10	0.10	1	*	134235		11/14/04		
	w moisture, sortu	15.7		0.10	0.10	1	× ×	134235		11/14/04	1920	ctb
7041	Antimony (GFAA)											
	Antimony, Solid*	1.6	U	0.49	1.6	1	mg/Kg	135006		11/19/04	1209	daj
¹ 7841	Thallium (GFAA)									ĺ		
1	Thallium, Solid*	0.67	u	0.21	0.67	1	mg/Kg	135008		11/19/04	1259	daʃ
7471A	Mercury (CVAA) Solids											
	Mercury, Solid*	0.031		0.0051	0.020	1	mg/Kg	135664		11/24/04	1442	gok
6010B	Metals Analysis (ICAP Trace)											
	Aluminum, Solid*	8100		2.7	17	1	mg/Kg	135536		11/24/04	1252	tds
	Barium, Solid*	47		0.18	1.1	1	mg/Kg	135536	!	11/24/04	1252	tds
	Arsenic, Solid*	12		0.58	1.7	1	mg/Kg	135536		11/24/04	1252	tds
	Beryllium, Solid*	0.53		0.050	0.45	1	mg/Kg	135536		11/24/04	1252	tds
	Cadmium, Solid*	0.28	u	0.091	0,28	1	mg/Kg	135536	'	11/24/04	1252	tds
	Calcium, Solid*	1500	11	3.5	11	1	mg/Kg	135536	1 !	11/24/04	1252	tds
•	Chromium, Solid*	12		0.25	1.1	1	mg/Kg	135536	1	11/24/04	1252	tds
	Cobalt, Solid*	8.5		0.16	0.57	1	mg/Kg	135536]]	11/24/04	1252	tds
	Copper, Solid*	22		1.0	3.4	1	mg/Kg	135536	1 1	11/24/04	1252	tds
	Iron, Solid*	22000		3.4	11	1	mg/Kg	135536		11/24/04		
	Magnesium, Solid*	2500		1.9	11	1	mg/Kg	135536		11/24/04	1252	tds
	Manganese, Solid*	350		0.15	1.1	1	mg/Kg	135536		11/24/04		
	Nickel, Solid*	19		0.28	1.1	1	mg/Kg	135536		11/24/04	1252	tds
	Lead, Solid*	11		0.49	1.7	1	mg/Kg	135536		11/24/04		
	Potassium, Solid*	1000		16	57	1	mg/Kg	135536	1	11/24/04	1252	tds
										Í		

^{*} In Description = Dry Wgt.

Job Number: 231912

Date: 12/02/2004

CUSTOMER: NKM Engineers, Inc. PROJECT: USACE RVAAP 14 ACCS ATTN: Fric ELLIS

LABORATORY TEST

Customer Sample ID: LNWsb-061-SO Date Sampled....: 11/10/2004 Time Sampled....: 10:00 Sample Matrix....: Soil

Laboratory Sample ID: 231912-6 Date Received.....: 11/12/2004 Time Received.....: 09:15

RESULTS

SAMPLE RESULT TEST METHOD PARAMETER/TEST DESCRIPTION G FLAGS DILUTION LNITS BATCH OI DATE/TIME TECH Selenium, Solid* 1.7 0.45 1.7 135536 11/24/04 1252 mg/Kg Silver, Solid* 11/24/04 1252 tds 11/24/04 1252 tds U 1.1 0.35 1.1 mg/Kg 135536 Sodium, Solid* 320 В 99 340 135536 mg/Kg Vanadium, Solid* 14 0.24 1.1 11/24/04 1252 tds ng/Kg 135536 Zinc, Solid* 63 0.45 2.3 mg/Kg 135536 11/24/04 1252 tds

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:12/07/2004

CUSTOMER: HKM Engineers, Inc.

PROJECT: USACE RVAAP T4 ACCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-061-S0
Date Sampled....: 11/10/2004
Time Sampled....: 10:00
Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST: DESCRIPTION	SAMPLE RESULT	Q F	LAGS	MD1	RL	DILUTION	CNITS	BATCH	DT.	DATE/I	I HE	TECH
8270C	Semivolatile Organics								**********	1	*********	2930,2553.	12323320
	Phenol, 3541 Low Solid*	1 9 0	Įυ		8.0	190	1.00000	ug/Kg	136309	1	11/29/04	0636	dek
	Bis(2-chloroethyl)ether, 3541 Low Solid*	76	U		10	76	1.00000	ug/Kg	136309		11/29/04		
	1,3-Dichlorobenzene, 3541 Low Solid*	190	įυ		15	190	1,00000	ug/Kg	136309		11/29/04		
	1,4-Dichtorobenzene, 3541 Low Solid*	190	U		17	190	1.00000	ug/Kg	136309		11/29/04		
	1,2-Dichlorobenzene, 3541 Low Solid*	j 190	u		16	190	1.00000	ug/Kg	136309		11/29/04		
	Benzyl alcohol, 3541 Low Solid*	760	U		83	760	1.00000	ug/Kg	136309	lf	11/29/04	0636	depk
	2-Methylphenol (o-cresol), 3541 Low Solid*	76	u[12	76	1.00000	ug/Kg	136309		11/29/04		
	2,2-oxybis (1-chloropropane), 3541 Low So*id	190	U		18	190	1.00000	ug/Kg	136309		11/29/04	0636	dok
	n-Nitroso-di-n-propylamine, 3541 Low Soli*	76	U		15	76	1.00000	ug/Kg	136309		11/29/04	0636	dpk
	Hexachloroethane, 3541 Low Solid*	190	u		9.7	190	1.00000	ug/Kg	136309		11/29/04		
	4-Methylphenol (m/p-cresol), 3541 Low Sol*d	76	л п		13	76	1.00000	ug/Kg	136309	1	11/29/04	0636	dpk
	2-Chlorophenol, 3541 Low Solid*	190	u		15	190	1.00000	ug/Kg	136309		11/29/04	0636	dok
	Nitrobenzene, 3541 Low Solid*	37	11		9.7	37	1.00000	ug/Kg	136309		11/29/04		
	Bis(2-chloroethoxy)methane, 3541 Low Soli*	76			10	76	1.00000	ug/Kg	136309		11/29/04	0636	dpk
	1,2,4-Trichlorobenzene, 3541 Low Solid*	190	u		15	190	1.00000	ug/Kg	136309		11/29/04		
	Benzoic acid, 3541 Low Solid*	760	u	*	220	760	1.00000	ug/Kg	136309		11/29/04	0636	dpk
	Isophorone, 3541 Law Solid*	190	u		22	190	1.00000	ug/Kg	136309		11/29/04	0636	dpk
	2,4-Dimethylphenol, 3541 Law Solid*	370	u		18	370	1.00000	ug/Kg	136309		11/29/04	0636	dpk
'	Rexachlorobutadiene, 3541 Low Solid*	190	U		10	190	[1.00000	ug/Kg	136309		11/29/04	0636	dpk
	Naphthalene, 3541 Low Solid*	37	u		9.5	37	1.00000	ug/Kg	136309		11/29/04	0636	dok
	2,4-Dichlorophenol, 3541 Low Solid*	370	u		18	370	1.00000	ug/Kg	136309		11/29/04	0636	dok
	i4-Chloroaniline, 3541 Low Solid*	760	[0]		61	760	1.00000]	ug/Kg	136309	1	11/29/04	0636	dok
	2,4,6-Trichlorophenol, 3541 Low Solid*	190	U U U		42	190	1.00000 }	ug/Kg	136309		11/29/04	0636	dok
İ	[2,4,5-Trichlorophenol, 3541 Low Solid*	370	U		51	370	1.00000	ug/Kg	136309		11/29/04	0636	dok
	Hexachlorocyclopentadiene, 3541 Low Solid*	1100	U		350	1100	1.00000	ug/Kg	136309	1 1	11/29/04	0636	dok
1	2-Methylnaphthalene, 3541 Low Solid*	37	ĮU		. 11	37	1.00000	ug/Kg	136309		11/29/04	0636	dok
	2-Nitroaniline, 3541 Low Solid*	190	U		12	190	1.00000	ug/Kg	136309		11/29/04		
	2-Chloronaphthalene, 3541 Low Solid*	190	U		18.	190	1.00000	ug/Kg	136309		11/29/04		
								_					

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Elijs

Customer Sample ID: LNWsb-061-S0 Date Sampled.....: 11/10/2004 Time Sampled.....: 10:00 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESUL	T Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH D	T CATE/TIME TE
	4-Chioro-3-methylphenol, 3541 Low Solid*	370	U	39	370	1.00000	ug/Kg	136309	11/29/04 0636 dp
	2,6-Dinitrotoluene, 3541 Low Solid*	37		10	37	1.00000	ug/Kg	136309	11/29/04 0636 dp
	2-Nitrophenol, 3541 Low Solid*	370	ย	17	370	1.00000	ug/Kg	136309	11/29/04 0636 dp
	3-Nitroaniline, 3541 Low Solid*	760	ן טן	160	760	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Dimethyl phthalate, 3541 Low Solid*	76	u	10	76	1.00000	ug/Kg	136309	11/29/04 0636 dp
	2,4-Dinitrophenol, 3541 Low Solid*	760	u	120	760	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Acenaphthylene, 3541 Low Solid*	37	u	9.4	37	1.00000	ug/Kg	136309	11/29/04 0636 dp
	2,4-Dinitrotoluene, 3541 Low Solid*	37	เบ	12	37	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Acenaphthene, 3541 Low Solid*	37	u	9.4	37	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Dibenzofuran, 3541 Low Solid*	76	Ju	10	76	1.00000	ug/Kg	136309	11/29/04 0636 dp
	4-Nitrophenol, 3541 Low Solid*	760	[0]	240	760	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Fluorene, 3541 Low Solid*	37	U	10	37	1.00000	ug/Kg	136309	11/29/04 0636 dp
	4-Nitroaniline, 3541 Low Solid*	760	U	51	760	1.00000	ug/Kg	136309	11/29/04 0636 dp
	4-Bromophenyl phenyl ether, 3541 Low Soli*	190	U U	11	190	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Hexachiorobenzene, 3541 Low Solid*	37	u[11	37	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Diethyl phthalate, 3541 Low Solid*	76		11	76	1.00000	ug/Kg	136309	11/29/04 0636 dp
	4-Chlorophenyl phenyl ether, 3541 Low Sol*d	190	U	11	190	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Pentachlorophenol, 3541 Low Solid*	370	u	130	370	1.00000	ug/Kg	136309	11/29/04 0636 dp
	n-Nitrosodiphenylamine, 3541 Low Solid*	37		12	37	1.00000	ug/Kg	136309	11/29/04 0636 dp
	4,6-Dinitro-2-methylphenol, 3541 Low Soli*	760	lu	190	760	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Phenanthrene, 3541 Low Solid*	57	[U]	17	57	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Anthracene, 3541 Low Solid*	37	U	12	37	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Carbazole, 3541 Low Solid*	190	lui i	13	190	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Di-n-butyl phthalate, 3541 Low Solid*	190	u	13	190	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Fluoranthene, 3541 Low Solid*	37	lul l	12	37	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Pyrene, 3541 Low Solid*	57	iul I	14	57	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Butyl benzyl phthalate, 3541 Low Solid*	76	ב ב ב ב	12	76	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Benzo(a)anthracene, 3541 Low Solid*	37	lul l	11	37	1.00000	ug/Kg	136309	11/29/04 0636 dp
	Chrysene, 3541 Low Solid*	37	u l	12	37	1.00000	ug/Kg	136309	11/29/04 0636 dp
					-		Gr 1-3		1.17 E27 04 0030 Up

^{*} In Description = Dry Wgt.

Job Number: 231912

LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

Atin: Eric Ellis

Customer Sample ID: LNWsb-061-SO Date Sampled....: 11/10/2004 Time Sampled....: 10:00 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	G FLAGS	9DL	RL	DILUTION	UNITS	BATCH	DT	DATE/T	I ME	TECH
Method	3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Solid* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(k)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghi)perylene, 3541 Low Solid* X Solids Determination X Solids, Solid X Moisture, Solid	190 190 370 37		17 36 12 10 11 11 12 11 12 11 12	190 190 370 37 37 37	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	Ug/Kg Ug/Kg Ug/Kg Ug/Kg Ug/Kg Ug/Kg Ug/Kg Ug/Kg Ug/Kg	136309 136309 136309 136309 136309 136309 136309 136309 136309		11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04	0636 0636 0636 0636 0636 0636 0636	cpk dpk dpk dpk dpk dpk dpk
									The state of the s		- W	7 (0.1.)

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:11/30/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGES

ATTM: Eric Ellis

Customer Sample ID: LNWsb-061M-SO Date Sampled....: 11/10/2004 Time Sampled....: 10:00 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT C	FLAGS	NET	RL.	DILUTION	UNITS	BATCH	ρī	DATE/TI	ME .	TECH
8330	Explosives by 8330 (HPLC) HMX, Solid RDX, Solid 1,3,5-Trinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-TNI, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.20 L 0.10 L 0.10 L 0.10 L 0.10 L 0.20 L 0.20 L 0.20 L 0.20 L	1	0.056 0.063 0.033 0.023 0.024 0.12 0.026 0.049 0.045 0.094 0.050 0.050	0.20 0.20 0.10 0.10 0.10 0.10 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135654 135654 135654 135654 135654 135654 135654 135654 135654 135654 135654 135654		11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04	0916 0916 0916 0916 0916 0916 0916 0916	san san san san san san san san san

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 231912

CUSTOMER: MKM Engineers, Inc.:

PROJECT: USACE RVAP: 14 ADCS

ALINE Eric ELLIS

Customer Sample ID: LNWsb-062-S0
Date Sampled.....: 11/10/2004
Time Sampled.....: 10:30
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH	рт	DATE/T	I ME	TECH
Method	% Solids Determination % Solids, Solid % Moisture, Solid	75.0 25.0		0.10 0.10	0.10 0.10	1	*	134235 134235		11/14/04 11/14/04		
7041	Antimony (GFAA) Antimony, Solid*	1.6	U	0.52	1.6	1	mg/Kg	135006		11/19/04	1334	daj
7841	Thallium (GFAA) Thallium, Solid*	0.70	U	0.22	0.70	1	mg/Kg	135008		11/19/04	1708	daj
7471A	Mercury (CVAA) Solids Mercury, Solid*	0.022		0.0057	0_022	1	mg/Kg	135664		11/24/04	1454	gok
6010B	Metals Analysis (ICAP Trace) Aluminum, Solid* Barium, Solid* Arsenic, Solid* Beryllium, Solid* Cadmium, Solid* Chromium, Solid* Chromium, Solid* Choper, Solid* Iron, Solid* Iron, Solid* Magnesium, Solid* Magnesium, Solid* Magnesium, Solid* Magnesium, Solid* Nickel, Solid* Lead, Solid* Potassium, Solid*	4900 23 3.7 0.37 0.27 1600 8.4 6.5 17 14000 2000 150 15 9.8 830	BU	2.6 0.17 0.56 0.048 0.087 3.4 0.24 0.15 0.98 3.3 1.9 0.14 0.27	16 1.1 1.6 0.44 0.27 11 1.1 0.54 3.3 11 11 1.1 1.1		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536		11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04	1359 1359 1359 1359 1359 1359 1359 1359	tds tds tds tds tds tds tds tds tds tds

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS
Job Number: 231912

Date: 12/01/2004

CUSTOMER: NOM Engineers, Inc. ATTN: Eric ELLIs

Customer Sample 1D: LNWsb-062-S0 Date Sampled....: 11/10/2004 Time Sampled....: 10:30 Laboratory Sample 1D: 231912-9
Date Received....: 11/12/2004
Time Received....: 09:15

Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	@ FLAGS	MOL	RL	DILUTION	UNITS	BATCH C	T DATE/III	E TECH
	Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadium, Solid* Zinc, Solid*		B U B	0.44 0.34 94 0.23 0.44	1.6 1.1 330 1.1 2.2	1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536	11/24/04 1 11/24/04 1 11/24/04 1 11/24/04 1 11/24/04 1	359 tds 359 tds 359 tds 359 tds
					·					
			1.00							
					i	-				

^{*} In Description = Dry Wgt.

Page 20

LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

AITN: Eric Ellis

Customer Sample ID: LWWsb-062-SQ Date Sampled....: 11/10/2004 Time Sampled....: 10:30 Sample Matrix....: Soil

TEST METHOD	PARAMETERY TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDE .	RL	DILUTION	UNITS	BATCH	pπ	DATE/TI	ME	TECH
8270c	Semivolatile Organics Phenol, 3541 Low Solid* Bis(2-chloroethyl)ether, 3541 Low Solid* 1,3-Dichlorobenzene, 3541 Low Solid* 1,4-Dichlorobenzene, 3541 Low Solid* 1,2-Dichlorobenzene, 3541 Low Solid* Benzyl alcohol, 3541 Low Solid* 2-Methylphenol (o-cresol), 3541 Low Solid* [2,2-oxybis (1-chloropropane), 3541 Low So*id*	210 85 210 210 210 850 85 210		9.0 11 17 19 18 93 13	210 85 210 210 210 210 850 85	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309		11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04	1345 1345 1345 1345 1345 1345 1345	ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф
	n-Nitroso-di-n-propylamine, 3541 Low Soli* Hexachloroethane, 3541 Low Solid* 4-Methylphenol (m/p-cresol), 3541 Low Sol*d 2-Chlorophenol, 3541 Low Solid* Nitrobenzene, 3541 Low Solid* Bis(2-chloroethoxy)methane, 3541 Low Soli* 1,2,4-Trīchlorobenzene, 3541 Low Solid* Benzoic acid, 3541 Low Solid*	85	*	20 17 11 15 17 11 11	210 85 210 85 210 42 85 210	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309 136309		11/29/04 1 11/29/04 1 11/29/04 1 11/29/04 1 11/29/04 1 11/29/04 1 11/29/04 1	1345 1345 1345 1345 1345 1345 1345	라
	Isophorone, 3541 Low Solid* 2,4-Dimethylphenol, 3541 Low Solid* Hexachlorobutadiene, 3541 Low Solid* Naphthalene, 3541 Low Solid* 2,4-Dichlorophenol, 3541 Low Solid* 4-Chloroaniline, 3541 Low Solid* 2,4,6-Trichlorophenol, 3541 Low Solid*	420 210 420 210 42 420 850 210	1	250 25 21 11 11 20 68 47	850 210 420 210 42 42 420 850 210	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309 136309	- The state of the	11/29/04 1 11/29/04 1 11/29/04 1 11/29/04 1 11/29/04 1 11/29/04 1 11/29/04 1	1345 1345 1345 1345 1345	dipk dipk dipk dipk dipk dipk
	2,4,5-Trichlorophenol, 3541 Low Solid* Hexachlorocyclopentadiene, 3541 Low Solid* 2-Methylnaphthalene, 3541 Low Solid* 2-Nitroaniline, 3541 Low Solid* 2-Chloronaphthalene, 3541 Low Solid*	420 1300 42 210 210		57 390 13 14 20	420 1300 42	1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309		11/29/04 1 11/29/04 1 11/29/04 1 11/29/04 1 11/29/04 1	1345 (1345 (1345 (1345 (dipk dipk dipk dipk

^{*} In Description = Dry Wgt.

Page 11

LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: NKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-062-S0
Date Sampled....: 11/10/2004
Time Sampled....: 10:30
Sample Matrix....: Soil

METHOD: PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	NOTEUTION	CHITS	BATCH	DT	DATE/T	LME
4-Chloro-3-methylphenol, 3541 Low Solid*	420	U.	44	420	1.00000	ug/Kg	136309	1	11/20/04	1818) 477
2,6-Dinitrotoluene, 3541 Low Solid*	42	U	12	42	1.00000	ug/Kg	136309		11/29/04 11/29/04	
2-Nitrophenol, 3541 Low Solid*	420	u	19	420	1.00000	ug/Kg	136309		11/29/04	12
3-Mitroaniline, 3541 Low Solid*	850	u	170	850	1.00000	ug/Kg	136309	1	11/29/04	124
Dimethyl phthalate, 3541 Low Solid*	85	u	11	85	1.00000	ug/Kg	136309	1	11/29/04	13
2,4-Dinitrophenol, 3541 Low Solid*	850	U	130	850	1.00000	ug/Kg	136309		11/29/04	
Acenaphthylene, 3541 Low Solid*	42	ļu	11	42	1.00000	ug/Kg	136309	ll	11/29/04	17.
2,4-Dinitrotoluene, 3541 Low Solid*	42	lαj	13	42	1.00000	ug/Kg	136309		11/29/04	
Acenaphthene, 3541 Low Solid*	42	u	11	42	1.00000	ug/Kg	136309		11/29/04	13
Dibenzofuran, 3541 Low Solid*	85	0 0 0	11	85	1.00000	ug/Kg	136309		11/29/04	
4-Nitrophenol, 3541 Low Solid*	850	וטן	270	850	1.00000	ug/Kg	136309		11/29/04	13
Fluorene, 3541 Low Solid*	42	U	- 11	42	1.00000	ug/Kg	136309		11/29/04	
4-Nitroaniline, 3541 Low Solid*	850	U	57	850	1.00000	ug/Kg	136309		11/29/04	13
4-Bromophenyl phenyl ether, 3541 Low Soli*	210	ju j	13	210	1.00000	ug/Kg	136309		11/29/04	13
Hexachlorobenzene, 3541 Low Solid*	42	טן	12	42	1.00000 [ug/Kg	136309		11/29/04	
Diethyl phthalate, 3541 Low Solid*	85	U	12	85	1.00000	ug/Kg	136309		11/29/04	13
4-Chlorophenyl phenyl ether, 3541 Low Sol*d	210	u	13	210	1.00000	ug/Kg	136309		11/29/04	
Pentachlorophenol, 3541 Low Solid*	420	u	140	420	1.00000	ug/Kg	136309		11/29/04	13.
n-Nitrosodiphenylamine, 3541 Low Solid*	42	lu	13	42	1.00000	ug/Kg	136309	ļ	11/29/04	13
4,6-Dinitro-2-methylphenol, 3541 Low Soli*	850	U -	210	850	1.00000	ug/Kg	136309		11/29/04	13
Phenanthrene, 3541 Low Solid*	63	U ;	19	63	1.00000	ug/Kg	136309		11/29/04	
Anthracene, 3541 Low Solid*	42	u	14	42	1.00000	ug/Kg	136309		11/29/04	134
Carbazole, 3541 Low Solid*	210	[U]	15	210	1.00000	ug/Kg	136309		1/29/04	134
Di-n-butyl phthalate, 3541 Low Solid*	210	U	14	210	1.00000	ug/Kg	136309	-	1/29/04	134
Fluoranthene, 3541 Low Solid*	42	u	- 14	42	1.00000	ug/Kg	136309	<u> </u> .	11/29/04	13
Pyrene, 3541 Low Solid*	63	ย	15	63	1.00000	ug/Kg	136309		11/29/04	
Butyl benzyl phthalate, 3541 Low Solid*	85	비	13 .	85	1.00000	ug/Kg	136309		11/29/04	
Benzo(a)anthracens, 3541 Low Solid*	42	וטן	13	42	1.00000	ug/Kg	136309	- }.	11/29/04	134
Chrysene, 3541 Low Solid*	42	U	13	42	1.00000	ug/Kg	136309	- [-	1/29/04	134

^{*} In Description = Dry Wgt.

Page 12

Job Number: 231912

Date:12/07/2004

CUSTOMER: Mich Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-062-S0
Date Sampled.....: 11/10/2004
Time Sampled.....: 10:30
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	kor	RL.	DILUTION	UNITS	BATCH	DΤ	DATE/II	ME	TECH
Hethod	3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Soli* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghi)perylene, 3541 Low Solid* 8 Solids Determination 8 Solids, Solid		20000000	19 41 13 11 12 12 13 12 14	210 210 420 42 42 42 42 42 42 42	1.00000 F.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309 136309 136309		11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04	1345 1345 1345 1345 1345 1345 1345	dok dok dok dok dok dok dok dok
	% Moisture, Solid	25.0		a.10	0.10		%	134235		11/14/04		

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS Job Number: 231912

Date: 11/30/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Etlis

Customer Sample ID: LNWsb-062-SO Date Sampled....: 11/10/2004 Time Sampled....: 10:30 Sample Matrix....: Soil

Laboratory Sample ID: 231912-9 Date Received.....: 11/12/2004

Time Received.....: 09:15

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	o Flags	₩DL	RL	DILUTION	UNITS	BATCH	рT	DATE/T	IME	TECH
8330	Explosives by 8330 (HPLC) HMX, Solid 1,3,5-Trinitrobenzene, Solid 1,3-Dinitrobenzene, Solid 1,3-Dinitrobenzene, Solid 2,4,6-TNT, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.098 0.098 0.39	מבככככככ	0.055 0.062 0.032 0.023 0.021 0.023 0.12 0.025 0.048 0.045 0.045 0.047 0.049	0.20 0.20 0.098 0.098 0.098 0.39 0.098 0.20 0.20 0.20 0.20	1_00000 F_00000 F_00000 1_00000 1_00000 1_00000 1_00000 1_00000 1_00000 1_00000 1_00000 1_00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135654 135654 135654 135654 135654 135654 135654 135654 135654 135654 135654 135654		\$1/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04 11/18/04	1304 1304 1304 1304 1304 1304 1304 1304	san san san san san san san san san

^{*} In Description = Dry Wgt.

Page 11

Job Number: 231912

LABORATORY TEST RESULTS

Date: 12/01/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGES

ATTN: Eric Ellis

Customer Sample ID: LNWsb-063-SD Date Sampled....: 11/10/2004 Time Sampled....: 11:15 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	юс	RL	DILUTION	UNITS	BATCH	DТ	DATE/1	IME	TECH
Method	% Solids Determination % Solids, Solid % Moisture, Solid	86.6 13.4		0.10 0.10	0.10 0.10	1	% %	134235 134235		11/14/04 11/14/04		
7041	Antimony (GFAA) Antimony, Solid*	1.5	U	0.47	1.5	ī	mg/Kg	135006		11/19/04	1524	daj
7841	Thallium (GFAA) Thallium, Solid*	0.65	U	0.20	0.65	1	mg/Kg	135008		11/19/04	1850	daj
7471A	Mercury (CVAA) Solids Mercury, Solid*	0.030		0.0050	0.019	1	mg/Kg	135664		11/24/04	1512	gok
6010B	Netals Analysis (ICAP Trace) Aluminum, Solid* Barium, Solid* Arsenic, Solid* Beryllium, Solid* Cedmium, Solid* Calcium, Solid* Chromium, Solid* Cobalt, Solid* Copper, Solid* Iron, Solid* Magnesium, Solid* Magnesium, Solid* Nickel, Solid* Lead, Solid* Potassium, Solid*	10000 56 13 0.73 0.27 17000 16 13 21 25000 4900 520 28 12 1900	U	2.6 0.17 0.55 0.048 0.087 3.4 0.15 0.97 3.2 1.8 0.14 0.27 0.47	16 1.1 1.6 0.43 0.27 11 1.1 0.54 3.2 11 11 1.1 1.1 1.6 54	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536	The state of the s	11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04	1500 1500 1500 1500 1500 1500 1500 1500	tds tds tds tds tds tds tds tds tds tds

^{*} In Description = Dry Wgt.

Page 31

Date: 12/01/2004

CUSTONER: MKM Engineers, Inc. PROJECT: USACE RVAAP 14 AGCS

Alinz Eric Ellis

Customer Sample ID: LNWsb-063-S0
Date Sampled....: 11/10/2004
Time Sampled....: 11:15
Sample Matrix....: Soil

TEST METAGE	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MD1	RL	DILUTION	LMITS	BATCH	DT	DATE/119	4	TECH
	Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadium, Solid* Zinc, Solid*	0.62 1.1 370 18 61	BU	0.43 0.34 94 0.23 0.43	1.6 1.1 320 1.1 2.2	1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536		11/24/04 1 11/24/04 1 11/24/04 1 11/24/04 1 11/24/04 1	1500 1500 1500 1500	tds tds tds tds
								T. W. A town constraints				
			N. P. LEAN. J.								11.16.7	
·			Re Communication of the Commun						Trus.			,

^{*} In Description = Dry Wgt.

Page 32

LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGES

ATTN: Eric Ellis

Customer Sample ID: LWWsb-063-S0 Date Sampled.....: 11/10/2004 Time Sampled.....: 11:15 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILLITION	UNITS	BATCH	DT DATE/TIME TE
8270C	Semivolatile Organics Phenol, 3541 Low Solid* Bis(2-chloroethyl)ether, 3541 Low Solid* 1,3-Dichlorobenzene, 3541 Low Solid* 1,4-Dichlorobenzene, 3541 Low Solid* 1,2-Dichlorobenzene, 3541 Low Solid* 2-Nethylphenol (o-cresol), 3541 Low Solid* 2-Nethylphenol (o-cresol), 3541 Low Solid* 2,2-oxybis (1-chloropropane), 3541 Low Solid* 2,2-oxybis (1-chloropropane), 3541 Low Solid* 4-Nethylphenol (m/p-cresol), 3541 Low Solid* 4-Methylphenol (m/p-cresol), 3541 Low Solid* 4-Methylphenol, 3541 Low Solid* Nitrobenzene, 3541 Low Solid* Nitrobenzene, 3541 Low Solid* Bis(2-chloroethoxy)methane, 3541 Low Solid* 1,2,4-Irichlorobenzene, 3541 Low Solid* 1,2,4-Irichlorobenzene, 3541 Low Solid* 1,2,4-Dimethylphenol, 3541 Low Solid* 4-ADimethylphenol, 3541 Low Solid* 2,4-Dichlorophenol, 3541 Low Solid* 4-Chloroanitine, 3541 Low Solid* 2,4,5-Trichlorophenol, 3541 Low Solid* 2,4,5-Trichlorophenol, 3541 Low Solid* 2,4,5-Trichlorophenol, 3541 Low Solid* 2-Methylnaphthalene, 3541 Low Solid* 2-Methylnaphthalene, 3541 Low Solid* 2-Nitroaniline, 3541 Low Solid* 2-Nitroaniline, 3541 Low Solid* 2-Chloronaphthalene, 3541 Low Solid* 2-Chloronaphthalene, 3541 Low Solid* 2-Chloronaphthalene, 3541 Low Solid* 2-Chloronaphthalene, 3541 Low Solid* 2-Chloronaphthalene, 3541 Low Solid*	190 76 190 190 190 760 76 190 76 190 38 76 190 380 190 380 190 380 190 380 190 380 190	*	8.1 10 15 17 16 84 12 18 15 9.8 14 15 9.8 10 220 22 18 10 9.6 18 61 43 51 350 11	190 76 190 190 190 760 76 190 76 190 38 76 190 380 190 380 190 380 190 380 190	1.00000 1.00000	ug/Kg ug/Kg	136309 136309	11/29/04 0756 dpl 11/29/04 0756 dpl

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-063-S0
Date Sampled....: 11/10/2004
Time Sampled....: 11:15
Sample Matrix....: Soil

4-Chloro-3-methylphenol, 3541 Low Solid* 2,6-Dinitrotoluene, 3541 Low Solid* 2-Nitrophenol, 3541 Low Solid* 3-Nitroaniline, 3541 Low Solid* Dimethyl phthalate, 3541 Low Solid* 2,4-Dinitrophenol, 3541 Low Solid* Acenaphthylene, 3541 Low Solid* 2,4-Dinitrotoluene, 3541 Low Solid* Acenaphthene, 3541 Low Solid* Acenaphthene, 3541 Low Solid* 4-Nitrophenol, 3541 Low Solid* 4-Nitrophenol, 3541 Low Solid* 4-Nitroaniline, 3541 Low Solid* 4-Nitroaniline, 3541 Low Solid* 4-Bromophenyl phenyl ether, 3541 Low Soli*	380 38 380 760 76 760 38 38 38 76 760 38	ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	39 10 17 160 10 120 9.5 12 9.5 10 240 10	380 38 380 760 76 760 38 38 38 38 76 760	f_00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309 136309 136309 136309 136309	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0
2,6-Dinitrotoluene, 3541 Low Solid* 2-Nitrophenol, 3541 Low Solid* 3-Nitroaniline, 3541 Low Solid* Dimethyl phthalate, 3541 Low Solid* 2,4-Dinitrophenol, 3541 Low Solid* Acenaphthylene, 3541 Low Solid* 2,4-Dinitrotoluene, 3541 Low Solid* Acenaphthene, 3541 Low Solid* Acenaphthene, 3541 Low Solid* 4-Nitrophenol, 3541 Low Solid* Fluorene, 3541 Low Solid* 4-Nitroaniline, 3541 Low Solid*	38 380 760 76 760 38 38 38 76 760		10 17 160 10 120 9.5 12 9.5 10 240	38 380 760 76 760 38 38 38 76 760 38	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309 136309 136309 136309 136309	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11/29/04 C 11/29/04 C 11/29/04 C 11/29/04 C 11/29/04 C 11/29/04 C 11/29/04 C 11/29/04 C
3-Nitroaniline, 3541 Low Solid* Dimethyl phthalate, 3541 Low Solid* 2,4-Dinitrophenol, 3541 Low Solid* Acenaphthylene, 3541 Low Solid* 2,4-Dinitrotoluene, 3541 Low Solid* Acenaphthene, 3541 Low Solid* Dibenzofuran, 3541 Low Solid* 4-Nitrophenol, 3541 Low Solid* Fluorene, 3541 Low Solid* 4-Nitroaniline, 3541 Low Solid*	760 76 760 38 38 38 38 76 760	ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	17 150 10 120 9.5 12 9.5 10 240	380 760 76 760 38 38 38 76 760 38	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309 136309 136309 136309	1 1	11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0
Dimethyl phthalate, 3541 Low Solid* 2,4-Dinitrophenol, 3541 Low Solid* Accraphthylene, 3541 Low Solid* 2,4-Dinitrotoluene, 3541 Low Solid* Accraphthene, 3541 Low Solid* Dibenzofuran, 3541 Low Solid* 4-Nitrophenol, 3541 Low Solid* Fluorene, 3541 Low Solid* 4-Nitroaniline, 3541 Low Solid*	760 76 760 38 38 38 38 76 760	ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	160 10 120 9.5 12 9.5 10 240	760 76 760 38 38 38 76 760 38	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309 136309	1 1	11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0
2,4-Dinitrophenol, 3541 Low Solid* Acenaphthylene, 3541 Low Solid* (2,4-Dinitrotoluene, 3541 Low Solid* Acenaphthene, 3541 Low Solid* Dibenzofuran, 3541 Low Solid* 4-Nitrophenol, 3541 Low Solid* Fluorene, 3541 Low Solid* 4-Nitroaniline, 3541 Low Solid*	760 38 38 38 38 76 760 38	ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	10 120 9.5 12 9.5 10 240	76 760 38 38 38 76 760 38	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309	1 1	11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0
Acenaphthylene, 3541 Low Solid* (2,4-Dinitrotoluene, 3541 Low Solid* Acenaphthene, 3541 Low Solid* Dibenzofuran, 3541 Low Solid* 4-Nitrophenol, 3541 Low Solid* Fluorene, 3541 Low Solid* 4-Nitroaniline, 3541 Low Solid*	38 38 38 76 760 38	n n	120 9.5 12 9.5 10 240	760 38 38 38 38 76 760 38	1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309	1	11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0 11/29/04 0
2,4-Dinitrotoluene, 3541 Low Solid* Acenaphthene, 3541 Low Solid* Dibenzofuran, 3541 Low Solid* 4-Nitrophenol, 3541 Low Solid* Fluorene, 3541 Low Solid* 4-Nitroaniline, 3541 Low Solid*	38 38 76 760 38	U	9.5 12 9.5 10 240	38 38 38 76 760 38	1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309		1/29/04 0 1/29/04 0 1/29/04 0 1/29/04 0
Acenaphthene, 3541 Low Solid* Dibenzofuran, 3541 Low Solid* 4-Nitrophenol, 3541 Low Solid* Fluorene, 3541 Low Solid* 4-Nitroaniline, 3541 Low Solid*	38 76 760 38	U	12 9.5 10 240 10	38 38 76 760 38	1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309		11/29/04 0 11/29/04 0 11/29/04 0
Acenaphthene, 3541 Low Solid* Dibenzofuran, 3541 Low Solid* 4-Nitrophenol, 3541 Low Solid* Fluorene, 3541 Low Solid* 4-Nitroaniline, 3541 Low Solid*	38 76 760 38	U	9.5 10 240 10	38 76 760 38	1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg	136309 136309 136309	1	11/29/04 0 11/29/04 0
4-Nitrophenol, 3541 Low Solid* Fluorene, 3541 Low Solid* 4-Nitroaniline, 3541 Low Solid*	76 760 38	U	10 240 10	76 760 38	1.00000 1.00000	ug/Kg ug/Kg	136309 136309	1	1/29/04 0
4-Nitrophenol, 3541 Low Solid* Fluorene, 3541 Low Solid* 4-Nitroaniline, 3541 Low Solid*	760 38	U	240 10	760 38	1.00000	ug/Kg	136309		1/29/04 (1/20/04 (
Fluorene, 3541 Low Solid* 4-Nitroaniline, 3541 Low Solid*	38	U	10	38				12	ነገ/ውዕ/በፈ ሰ
4-Nitroaniline, 3541 Low Solid*					T.UUUUU			1 1 7	1/23/44 0
A-Description of the second section 75 (4)	100			7/6	1	ug/Kg	136309	1	1/29/04 0
14"DIVANDRENYI DNENYI ETNER, 3041 IAU SALIM	190	lui l	11	760	1.00000	ug/Kg	136309	1	1/29/04 0
Hexachlorobenzene, 3541 Low Solid*	38	u l	11	190	1.00000	ug/Kg	136309	1	1/29/04 0
Diethyl phthalate, 3541 Low Solid*	76	Ü	11	38	1.00000	ug/Kg	136309	1	1/29/04 0
4-Chlorophemyl phenyl ether, 3541 Low Sol*d	190	Ü	11	76	1.00000	ug/Kg	136309	1	1/29/04 0
Pentachlorophenol, 3541 Low Solid*	380	Ŭ	11	190	1.00000 [ug/Kg	136309]1	1/29/04 0
n-Nitrosodiphenylamine, 3541 Low Solid*	38		130	380	1.00000	ug/Kg	136309	[1	1/29/04 0
4,6-Dinitro-2-methylphenol, 3541 Low Soli*	760	U	12	38	1.00000	ug/Kg	136309	1	1/29/04 0
Phenanthrene, 3541 Low Solid*		U	190	760	1.00000	ug/Kg	136309	1	1/29/04 0
Anthracene, 3541 Low Solid*	57 38		17	57	1.00000	ug/Kg	136309	1	1/29/04 0
Carbazole, 3541 Low Solid*	190		12	38	1.00000	ug/Kg	136309	1	1/29/04 0
Di-n-butyl phthalate, 3541 Low Solid*			13	198	1.00000	ug/Kg	136309	<u> </u>	1/29/04 0
Fluoranthene, 3541 Low Solid*	190		13	190	1.00000	ug/Kg	136309	1	1/29/04 0
Pyrene, 3541 Low Solid*	38		12	38	1.00000	ug/Kg	136309	1	1/29/04 0
	57		14	57	1.00000	ug/Kg	136309	1	1/29/04 0
Butyl benzyl phthalate, 3541 Low Solid*	76	0 0 0	12	76	1.00000	ug/Kg	136309	1	1/29/04 0
Benzo(a)anthracene, 3541 Low Solid*	38	U	11	38	1.00000	ug/Kg	136309	1	1/29/04 0
Chrysene, 3541 Low Solid*	38	u	12	38	1.00000	ug/Kg	136309	1	1/29/04 0

^{*} In Description = Dry Wgt.

Page 18

LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: MKM Englineers, Inc.

PROJECT: USACE RVAAP 14 AUGS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-063-S0
Date Sampled.....: 11/10/2004
Time Sampled.....: 11:15
Sample Matrix....: Soil

3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Solid* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(k)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Benzo(a)pyrene, 3	EST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UKLTS	BATCH	DT DATE/TH	ME TE
Method		Bis(2-ethylhexyl)phthalate, 3541 Low Soli* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid*	190 380 38 38 38 38 38	[8]	37 12 10 11 11 12 11	190 380 38 38 38 38 38	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309 136309 136309	11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04	0756 dp 0756 dp 0756 dp 0756 dp 0756 dp 0756 dp
	Method	% Solids, Solid					1 1	*		11/14/04 11/14/04	1945 cl
									THE PART AND ADDRESS OF THE PA		

^{*} In Description = Dry Wgt.

Page 19

STL Chicago is part of Severn Trent Laboratories, Inc.

LABORATORY TEST RESULTS Job Number: 231912

Date: 11/30/2004

CUSTOMER: MKW Engineers, inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-063-SQ Date Sampled....: 11/10/2004 Time Sampled....: 11:15

Laboratory Sample !D: 231912-15 Date Received.....: 11/12/2004 Time Received..... 09:15

Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SANPLE RESULT	Q FLAGS	MOL	RL	DILUTION	ONLIS	BATCH	DT DATE/FINE	TEC
8330	Explosives by 8330 (HPLC) HMX, Solid RDX, Solid 1,3,5-Irinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-TMI, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.20 0.20 0.098 0.098 0.098 0.39 0.098 0.20 0.20 0.22 0.22		0.055 0.062 0.032 0.023 0.021 0.023 0.12 0.025 0.048 0.045 0.093 0.047 0.049 0.052	0.20 0.20 0.98 0.098 0.098 0.39 0.20 0.20 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135654 135654 135654 135654 135654 135654 135654 135654 135654 135654 135654	11/18/04 1725 11/18/04 1725	san san san san san san san san san

^{*} In Description = Dry Wgt.

Page 17

Job Number: 231912

LABORATORY TEST RESULTS

PROJECT: USACE RVAAP 14 ACCS

Date: 12/01/2004

ATTING EFFICIENTS

Customer Samole ID: LNWsb-064-SO

CUSTOMER: Wor Engineers, Inc.

Date Sampled....: 11/10/2004 Time Sampled....: 12:45

Sample Matrix....: Soil

Laboratory Sample ID: 231912-8
Date Received.....: 11/12/2004
Time Received.....: 09:15

SAMPLE RESULT O FLAGS PARAMETER/TEST DESCRIPTION TEST METHOD NDL RL DILUTION UNITS BATCH DT DATEXTINE TECH % Solids Determination Method % Solids. Solid 87.6 0.10 0.10 X 134235 11/14/04 1925 clb % Moisture, Solid 12.4 0.10 0.10 134235 × 11/14/04 1925 clb 7041 Antimony (GFAA) Antimony, Solid* 1.5 0.48 1.5 135006 mg/Kg 11/19/04 1310 dai 7841 Thallium (GFAA) Thellium, Solid* 0.21 0.21 0.65mg/Kg 135008 11/19/04 1402 dai 7471A Mercury (CVAA) Solids Mercury, Solid* 0.027 0.0049 0.019 135664 mg/Kg 11/24/04 1451 gok 60108 Metals Analysis (ICAP Trace) Aluminum, Solic* 10000 2.6 17 135536 11/24/04 1353 tds mg/Kg Barium, Solid* 49 0.18 1.1 135536 11/24/04 1353 tds mg/Kg Arsenic, Solid* 17 0,56 11/24/04 1353 tds 1.7 mg/Kg 135536 Beryllium, Solid* 0.74 0.0490.44mg/Kg 135536 11/24/04 1353 tds Cadmium, Solid* 0.28 0.088 0.28 135536 11/24/04 1353 tds mg/Kg Calcium, Solid* 11000 11/24/04 1353 tds 3.4 11 mg/Kg 135536 Chromium, Solid* 17 0.24 1.1 mg/Kg 135536 11/24/04 1353 tds Cobalt, Solid* 13 0.15 0.5511/24/04 1353 tds mg/Kg 135536 Copper, Solid* 24 0.99 3.3 mg/Kg 135536 11/24/04 1353 tds Iron, Solid* 26000 3.3 11 135536 11/24/04 1353 tds mg/Kg 5000 Magnesium, Solid* 1.9 135536 11 mg/Kg 11/24/04 1353 tds Manganese, Solid* 330 0.14 1.1 135536 11/24/04 1353 tds mg/Kg Hickel, Solid* 26 0.28 1.1 mg/Kg 135536 11/24/04 1353 tds Lead, Solid* 15 0.47 1.7 mg/Kg 135536 11/24/04 1353 tds 1900 Potassium, Solid* 15 55 135536 11/24/04 1353 tds mg/Kg

^{*} In Description = Dry Wgt.

Job Number: 231912

Date:12/01/2004

CUSTOMER: MKM Engineers, Inc. ATTN: Eric ELLIS

ATTN: Eric ELLIS

LABORATORY TEST RESULTS

Customer Sample ID: LNWsb-064-S0
Date Sampled.....: 11/10/2004
Time Sampled.....: 12:45
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q F	FLAGS	MOL	RL	DILUTION	UNITS	BATCH	ĐΊ	DATE/TIM		ECH
	Selenium, Solid* Sīlver, Solid* Sodium, Solid* Vanadium, Solid* Zīnc, Solid*	0.59 1.1 370 18 66	B		0.44 0.34 96 0.23 0.44	1.7 1.1 330 1.1 2.2	1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536		11/24/04 13 11/24/04 13 11/24/04 13 11/24/04 13	353 t 353 t 353 t	ids ids ids
					The second secon								
													-

^{*} In Description = Dry Wgt.

Page 18

LABORATORY TEST RESULTS

Date:12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AUCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-064-SD Date Sampled....: 11/10/2004 Time Sampled....: 12:45 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O FLACS	MOL	RL	DILUTION	UNITS	BATCH	эr	DATE/T	IME	TECH
8270C	Semivolatile Organics											
	Phenol, 3541 Low Solid*	180	lu lu	7.7	180	1,00000	ug/Kg	136309		11/29/04	0703	dok
	Bis(2-chloroethyl)ether, 3541 Low Solid*	73	(u	9.7	73	1.00000	ug/Kg	136309		11/29/04		
	1,3-Dichlorobenzene, 3541 Low Solid*	180	U	15	180	1.00000	ug/Kg	136309		11/29/04	0703	dok
	1,4-Dichlorobenzene, 3541 Low Solid*	180	U	17	180	1.00000	ug/Kg	136309		11/29/04	0703	dok
	1,2-Dichlorobenzene, 3541 Low Solid*	180	U	15	180	1.00000	ug/Kg	136309		11/29/04		
-	Benzyl alcohol, 3541 Low Solid*	730	ប	80	730	1.00000	ug/Kg	136309		11/29/04	0703	dpk
	2-Nethylphenol (a-cresol), 3541 Low Solid*	73	เข	11	73	1.00000	ug/Kg	136309		11/29/04	. 0703	dpk
	2,2-oxybis (1-chloropropene), 3541 Low So*id	180	U	17	180	1.00000	ug/Kg	136309		11/29/04	. 0703	dok
	n-Nitroso-di-n-propylamine, 3541 Low Soli*	73	U	14	73	1.00000	⊔g/Kg	136309	1	11/29/04	, 0703	dpk
	Hexachloroethane, 3541 Low Solid*	180	U	9.4	180	1.00000	ug/Kg	136309	1	11/29/04	0703	dpk
	4-Methylphenol (m/p-cresol), 3541 Low Sol*d	73	U	13	73	1.00000	ug/Kg	136309	1	11/29/04	0703	dpk
	2-Chlorophenol, 3541 Low Solid*	180	U	15	180	1.00000	ug/Kg	136309		11/29/04	, 0703	dpk
	Nitrobenzene, 3541 Low Solid*	36	U	9.4	36	1.00000	ug/Kg	136309	1	11/29/04	. 0703	dok
	Bis(2-chloroethoxy)methane, 3541 Low Soli*	73	U	9.6	73	1,00000	ug/Kg	136309		11/29/04		
	1,2,4-Trichlorobenzene, 3541 Low Solid*	180	ย	j 15	180	1.00000	ug/Kg	136309		11/29/04		
	Benzoic acid, 3541 Low Solid*	730	U *	210	730	1.00000	ug/Kg	136309		11/29/04	0703	dpk
	Isophorone, 3541 Low Solid*	180	u	21	180	1,00000	ug/Kg	136309		11/29/04		
	2,4-Dimethylphenal, 3541 Low Solid*	360	000000000000000000000000000000000000000	18	360	1.00000	ug/Kg	136309	1 1	11/29/04	. 0703	dpk
	Hexachlorobutadiene, 3541 Low Solid*	180	U	9.8	180	1.00000	ug/Kg	136309		11/29/04	0703	dpk
	Naphthalene, 3541 Low Solid™	36	U	9.1	36	1.00000	ug/Kg	136309		11/29/04	· 0703 /	dpk
	2,4-Dichlorophenol, 3541 Low Solid*	360	U	17	360	1.00000	ug/Kg	136309		11/29/04	0703	dpk
	4-Chloroanitine, 3541 Low Solid*	730	u	59	730	1.00000	ug/Kg	136309		11/29/04	• 0703	dpk
	2,4,6-Trichlorophenol, 3541 Low Solid*	180	U	41	180	1.00000	ug/Kg	136309		11/29/04	0703	dok
	2,4,5-Trichlorophenol, 3541 Low Solid*	360	u	49	360	1.00000	ug/Kg	136309		11/29/04	0703	dok
	Mexachlorocyclopentadiene, 3541 Low Solid*	1100	u	330	1100	1.00000	ug/Kg	136309		11/29/04	0703	dok
	2-Methylnaphthalene, 3541 Low Solid*	36	lul	11	36	1.00000	ug/Kg	136309		11/29/04	0703	dok
	2-Nitroeniline, 3541 Low Solid*	180	u	12	180	1.00000	ug/Kg	136309		11/29/04	0703	dok
	2-Chloronaphthalene, 3541 Low Solid*	180	u	17	180	1.00000	ug/Kg	136309		11/29/04		
												-
		<u> </u>							┸╻			

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:12/07/2004

CUSTOMER: NKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTH: Eric Ellis

Customer Sample ID: LNWsb-064-SO
Date Sampled....: 11/10/2004
Time Sampled....: 12:45
Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	a FLAGS	HD)L	P 61	DILUTION	UNITS	BATCH	DT DATE/TIME TE
	4-Chloro-3-methylphenol, 3541 Low Solid*	360	U.	38	360	1.00000	ug/Kg	136309	11/29/04 0703 de
	2,6-Dinitrotoluene, 3541 Low Solid*	36	U	10	36	1.00000	ug/Kg	136309	11/29/04 0703 dp
	2-Nitrophenol, 3541 Low Solid*	360	U U	16	360	1.00000	ug/Kg	136309	11/29/04 0703 dp
	3-Nitroaniline, 3541 Low Solid*	730	u	150	730	1.00000	⊔g/Kg	136309	11/29/04 0703 dp
	Dimethyl phthalate, 3541 Low Solid*	73	u u	9.7	73	1.00000	ug/Kg	136309	11/29/04 0703 dp
	2,4-Dinitrophenol, 3541 Low Solid*	730	u	110	730	1.00000	ug/Kg	136309	11/29/04 0703 dp
	Acenaphthylene, 3541 Low Solid*	36	U U U U U U	9.0	36	1.00000	ug/Kg	136309	11/29/04 0703 dp
	2,4-Dinitrotoluene, 3541 Low Solid*	36	U	11	36	1.00000	ug/Kg	136309	11/29/04 0703 dp
	Acenaphthene, 3541 Low Solid*	36 73	U	9.0	36	1.00000	ug/Kg	136309	11/29/04 0703 dp
	Dibenzofuran, 3541 Low Solid*	73	U	9.6	73	1.00000	ug/Kg	136309	11/29/04 0703 db
	4-Nitrophenol, 3541 Low Solid*	730	U	230	730	1.00000	ug/Kg	136309	11/29/04 0703 dp
	Fluorene, 3541 Low Solid*	36	U	9.8	36	1.00000	ug/Kg	136309	11/29/04 0703 dp
	4-Nitroaniline, 3541 Low Solid*	730	u	49	730	1.00000	ug/Kg	136309	11/29/04 0703 dp
	4-Bromophenyl phenyl ether, 3541 Low Soli*	180	u	11	180	1.00000	ug/Kg	136309	11/29/04 0703 dp
	Hexachtorobenzene, 3541 Low Solid*	36	u	10	36	1.00000	ug/Kg	136309	11/29/04 0703 dp
	Diethyl phthalate, 3541 Low Solid*	73	u	10	73	1.00000	ug/Kg	136309	11/29/04 0703 da
:	4-Chlorophenyl phenyl ether, 3541 Low Sol*d	180	u	11	180	1.00000	ug/Kg	136309	11/29/04 0703 do
i	Pentachlorophenol, 3541 Low Solid*	360	0 0 0	120	360	1.00000	ug/Kg	136309	11/29/04 0703 dp
·	n-Nitrosodiphenylamine, 3541 Low Solid*	36	U	11	36	1.00000	ug/Kg	136309	11/29/04 0703 dp
	4,6-Dinitro-2-methylphenol, 3541 Low Soli*	730	[U]	180	730	1.00000	ug/Kg	136309	11/29/04 0703 dp
	Phenanthrene, 3541 Low Solid*	54	ប	16	54	1.00000	ug/Kg	136309	11/29/04 0703 dp
	Anthracene, 3541 Low Solid*	36	u	12	36	1.00000	ug/Kg	136309	11/29/04 0703 dp
	Carbazole, 3541 Low Solid*	180	u u	13	180	1.00000	ug/Kg	136309	11/29/04 0703 dp
	Di-n-butyl phthalate, 3541 Low Solid*	180	u	12	180	1.00000	ug/Kg	136309	11/29/04 0703 dp
	Fluoranthene, 3541 Low Solid*	36	u	12	36	1.00000	ug/Kg	136309	11/29/04 0703 dp
	Pyrene, 3541 Low Solid*	54	U U	13	54	1.00000	ug/Kg	136309	11/29/04 0703 dp
ŀ	Butyl benzyl phthalate, 3541 Low Solid*	73	[0]	11	73	1.00000	ug/Kg	136309	11/29/04 0703 dp
	Benzo(a)anthracene, 3541 Low Solid*	36	U	11	36	1.00000	ug/Kg	136309	11/29/04 0703 dp
ŀ	Chrysene, 3541 Low Solid*	36	U	11	36	1.00000	ug/Kg	136309	11/29/04 0703 dp

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 231912

Date: 12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AUES

ATTN: Enic Ellis

Customer Sample ID: LNWsb-064-50
Date Sampled....: 11/10/2004
Time Sampled....: 12:45
Sample Matrix....: Soil

Laboratory Sample ID: 231912-8 Date Received.....: 11/12/2004 Time Received.....: 09:15

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS MOL DILUTION UNITS BATCH DT DATE/TIME 3.3-Dichlorobenzidine, 3541 Low Solid* 180 16 180 1.00000 ug/Kg 136309 11/29/04 0703 dok Bis(2-ethylhexyl)phthalate, 3541 Low Soli* 180 35 180 1.00000 ug/Kg 136309 11/29/04 0703 dok Di-n-octyl phthalate, 3541 Low Solid* 360 11 360 1.00000 136309 ug/Kg 11/29/04 0703 dpk Benzo(b)fluoranthene, 3541 Low Solid* 36 9.7 36 1.00000 ug/Kg 136309 11/29/04 0703 dpk Benzo(k)fluoranthene, 3541 Low Solid* 36 10 36 1.00000 ug/Kg 136309 11/29/04 0703 dpk Benzo(a)pyrene, 3541 Low Solid* 36 10 36 1.00000 ug/Kg 136309 11/29/04 0703 dpk Indeno(1,2,3-cd)pyrene, 3541 Low Solid* 36 36 11 1.00000 ug/Kg 136309 11/29/04 0703 dpk Dibenzo(a,h)anthracene, 3541 Low Solid* 36 10 36 1.00000 136309 11/29/04 0703 dpk ug/Kg Benzo(ghi)perylene, 3541 Low Solid* 36 12 36 1.00000 ug/Kg 136309 11/29/04 0703 dok Method % Solids Determination % Solids, Solid 87.6 0.10 0.10 % 134235 11/14/04 1925 ctb % Moisture, Solid 12.4 0.10 0.10 134235 11/14/04 1925 clb

Page 10

^{*} In Description = Dry Wgt.

Job Number: 231912

LABORATORY TEST RESULTS

Date:11/30/2004

CUSTOMER: MKM: Engineers; Thic. ATTN: Eric Ellis

Customer Sample ID: LNWsb-064-SO
Date Sampled....: 11/10/2004
Time Sampled....: 12:45
Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DILUTION	UNITS	BATCH	DΤ	DATE/TI	ME	TECH
8330	Explosives by 8330 (HPLC) HMX, Solid 1,3,5-Irinitrobenzene, Solid 1,3-Dinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-TNI, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.20 0.20 0.10 0.10 0.10 0.40 0.10 0.20 0.20 0.20 0.20 0.20	פבטפטפטפט	0.056 0.063 0.023 0.024 0.024 0.12 0.026 0.049 0.049 0.048 0.050 0.053	0.20 0.20 0.10 0.10 0.10 0.40 0.10 0.20 0.20 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135654 135654 135654 135654 135654 135654 135654 135654 135654 135654 135654 135654	111111111111111111111111111111111111111	1/18/04 1/18/04 1/18/04 1/18/04 1/18/04 1/18/04 1/18/04 1/18/04 1/18/04 1/18/04 1/18/04	1231 1231 1231 1231 1231 1231 1231 1231	sen san san san san san san san san san

^{*} In Description = Dry Hgt.

LABORATORY TEST RESULTS

PROJECT: USACE RVAAP 14 AOCS

Date:12/01/2004 ATTN: Eric Ellis

Customer Sample ID: LNWsb-064-DUP

CUSTOMER: MKM Engineers, Inc.

Date Sampled....: 11/10/2004 Time Sampled....: 12:45 Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAG	S MOL	RL	DILUTION	LINITS	BATCH	DT	DATE/T	IHE .	TECH
Method	% Solids Determination % Solids, Solid % Moisture, Solid	86.0 14.0		0.10 0.10	0.10 0.10	1	% %	134235 134235		11/14/04 11/14/04		
7041	Antimony (GFAA) Antimony, Solid*	1.5	u	0.48	1.5	1	mg/Kg	135006		11/19/04	1511	daj
7841	Thallium (GFAA) Thallium, Solid*	0.66	u	0.21	0.66	1	mg/Kg	135008		11/19/04	1838	daj
7471A	Mercury (CVAA) Solids Mercury, Solid*	0.034		0.0050	0.019	1	mg/Kg	135664		11/24/04	1509	gok
6 0 10B	Metals Analysis (ICAP frace) Aluminum, Solid* Barium, Solid* Arsenic, Solid* Beryllium, Solid* Cadmium, Solid* Calcium, Solid* Chromium, Solid* Cobper, Solid* Copper, Solid* Iron, Solid* Magnesium, Solid* Magnesium, Solid* Mickel, Solid* Lead, Solid* Lead, Solid*	11000 57 11 0.83 0.28 4500 18 13 27 28000 4500 540 29 12 1800	U	2.7 0.18 0.57 0.049 0.089 3.4 0.24 0.16 1 3.3 1.9 0.14 0.28 0.48	17 1.1 1.7 0.44 0.28 11 1.1 0.55 3.3 11 11 1.1 1.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536		11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04	1454 1454 1454 1454 1454 1454 1454 1454	tds tds tds tds tds tds tds tds tds tds

^{*} In Description = Dry Wgt.

LABORATORY, TEST Job Number: 231912 Date: 12/01/2004

CUSTOMER: MXM Engineers, Inc. PROJECT: USACE RVAAP 14 AOCS ATTN: Eric Ellis

Customer Sample IO: LNWsb-064-DUP Date Sampled....: 11/10/2004 Time Sampled....: 12:45 Sample Matrix....: Soil

Laboratory Sample ID: 231912-14 Date Received.....: 11/12/2004 Time Received.....: 09:15

RESULTS

TEST METHOD PARAMETER/TEST DESCRIPTION	SAMPLE RESULT (P FLAGS	MDL	RŁ	CILUTION	UNITS	BATCH	DΤ	DATE/I	IME T
Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadium, Solid* Zinc, Solid*		B	0.44 0.34 96 0.23 0.44	1.7 1.1 330 1.1 2.2	1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536		11/24/04 11/24/04 11/24/04 11/24/04 11/24/04	1454 t
		L						قريق ساط الماسية		And the second s
		NAME OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER O					and the same of th			
					The state of the s		A-4-114-11-11-11-11-11-11-11-11-11-11-11-	7		
			in the state of th					,		

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:12/07/2004

CUSTOMER: MKM Engineess, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-064-DUP Date Sampled.....: 11/10/2004 Time Sampled.....: 12:45 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESUL	T Q FLAGS	MOL	RL	DILUTION	UNITS	BATCH	DΤ	DATE/T	IME	TECH
8270C	Semivolatile Organics	<u> </u>							33333	<u> </u>	21923233	
	Phenol, 3541 Low Solid*	190	U	7.9	190	1.00000	ug/Kg	136309		11/29/04	0770	ماحه
	Bis(2-chloroethyl)ether, 3541 Low Solid*	75	ļυ	9.9	75	1.00000	ug/Kg	136309		11/29/04		
	1,3-Dichlorobenzene, 3541 Low Solid*	190	U-	15	190	1.00000	ug/Kg	136309		11/29/04		
	1,4-Dichlorobenzene, 3541 Low Solid*	190	Πţ	17	190	1.00000	ug/Kg	136309		11/29/04		
	1,2-Dichlorobenzene, 3541 Low Solid*	190	U	16	190	1.00000	ug/Kg	136309		11/29/04		
	Benzyl alcohol, 3541 Low Solid*	750		82	750	1.00000	ug/Kg	136309		11/29/04		
	2-Methylphenol (o-cresol), 3541 Low Solid*	75	U	12 18	75	1.00000	ug/Kg	136309		11/29/04	0729	rink
	2,2-exybis (1-chloropropane), 3541 Low So*id	190	וטן		190	1.00000	ug/Kg	136309		11/29/04		
i	n-Nitroso-di-n-propylamine, 3541 Low Soli*	75	U	15	75	1.00000	⊔g/Kg	136309		11/29/04		
	Hexachloroethame, 3541 Low Solid*	190	ᄖ	9.6	190	1.00000	ug/Kg	136309		11/29/04		
	4-Methylphenol (m/p-cresol), 3541 Low Sol*d	75	ម	13	75	1.00000	ug/Kg	136309		11/29/04		
	2-Chilorophenol, 3541 Low Solid*	190	0	15	190	1.00000	ug/Kg	136309		11/29/04		
	Nitrobenzene, 3541 Low Solid*	37	U	9.6	37	1.00000	ug/Kg	136309	1	11/29/04	0729	dok
	Bis(2-chloroethoxy)methane, 3541 Low Soli*	75	U	9.8	75	1.00000	ug/Kg	136309	Ιİ	11/29/04	0729	dok
	1,2,4-Trichlorobenzene, 3541 Low Solid*	190		15	190	1.00000	ug/Kg	136309		11/29/04		
	Benzoic acid, 3541 Low Solid*	750	[U] *	220	750	1.00000	ug/Kg	136309		11/29/04	0729	dok
	Isophorone, 3541 Low Solid*	190	0 0 0 0	22	190	1.00000	ug/Kg	136309		11/29/04		
	2,4-Dimethylphenol, 3541 Low Solid*	370	u	18	370	1.00000	ug/Kg	136309	1	11/29/04	0729	dok
	Hexachlorobutadiene, 3541 Low Solid*	190	U	10	190	1.00000	ug/Kg	136309		11/29/04	0729	dpk
	Naphthalene, 3541 Low Solid*	37	U	9.4	37	1.00000	ug/Kg	136309		11/29/04		
	2,4-Dichlorophenol, 3541 Low Solid*	370	U	17	370	1.00000	ug/Kg	136309		11/29/04		
	4-Chloroaniline, 3541 Low Solid*	750	U	60	750	1.00000	ug/Kg	136309	<u> </u>	11/29/04	0729	dok
	2,4,6-Trichlorophenol, 3541 Low Solid*	190	U	42	190	1.00000	ug/Kg	136309		11/29/04	0729	dok
	2,4,5-Trichlorophenol, 3541 Low Solid*	370	U	50	370	1.00000	ug/Kg	136309		11/29/04	0729	dok
	Hexachlorocyclopentadiene, 3541 Low Solid*	1100	U.	340	1100	1.00000	ug/Kg	136309		11/29/04		
	2-Methylnaphthalene, 3541 Low Solid*	37	[ជ]	11	37	1.00000	ug/Kg	136309		11/29/04		
	2-Nitroaniline, 3541 Low Solid*	190	u	12	190	1.00000	ug/Kg	136309				
	2-Chloronaphthatene, 3541 Low Solid*	190	u	17	190	1.00000	ug/Kg	136309		11/29/04	0729	dok
-	2-Nitroaniline, 3541 Low Solid* 2-Chloronaphthalene, 3541 Low Solid*	190 190	U U	12 17								

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-064-DUP Date Sampled.....: 11/10/2004 Time Sampled.....: 12:45 Sample Matrix....: Soil

ST METHOD PARAMET	ER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	AL	DILUTION	UNITS	BATCH C	T DATE/TIME	ŀ
4-Chloro-3-methy/	phenot, 3541 Low Solid*	370	U	39.	370	1.00000	ug/Kg	136309	11/29/04 07	720
2,6-Dinitrotoluer	ne, 3541 Low Solid*	37	U I	10	37	1.00000	ug/Kg	136309	11/29/04 07	770
2-Nitrophenol, 35		370	u	16	370	1.00000	ug/Kg	136309	11/29/04 07	201
3-Nitroaniline, 3	541 Low Solid*	750	U	150	750	1.00000	ug/Kg	136309	11/29/04 07	
	e, 3541 Low Solid*	75	0	9.9	75	1.00000	ug/Kg	136309	11/29/04 07	
	, 3541 Low Solid*	750	lui l	120	750	1.00000	ug/Kg	136309	11/29/04 07	27
Acenaphthylene, 3		37	u	9.3	37	1.00000	ug/Kg	136309	11/29/04 07	
	e, 3541 Low Solid*	37	lul l	12	37	1.00000	ug/Kg	136309	11/29/04 07	
Acenaphthene, 354		37	lu	9.3	37	1.00000	ug/Kg	136309	11/29/04 07	
Dibenzofuran, 354		75	ü	9.8	75	1.00000	ug/Kg	136309	11/29/04 07	
4-Nitrophenol, 35		750	u	240	750	1.00000	ug/Kg	136309	11/29/04 07	
Fluorene, 3541 Lo		37	U	10	37	1.00000	ug/Kg	136309	11/29/04 07	
4-Nitroaniline, 3	541 Low Salid*	750	U	50	750	1.00000	ug/Kg	136309	11/29/04 07	
4-Bromophenyl phe	nyl ether, 3541 Low Soli*	190	[0]	11	190	1.00000	ug/Kg	136309	11/29/04 07	
Hexach Lorobenzene		37	lu l	11	37	1.00000	ug/Kg	136309	11/29/04 07	
Diethyl phthalate		75	u	11	75	1.00000	ug/Kg	136309	11/29/04 07	
[4-Chlorophenyl ph	enyl ether, 3541 Low Sol*d	190	lu l	11	190	1.00000	ug/Kg	136309	11/29/04 07	
Pentachlorophenol	, 3541 Low Solid*	370	U	120	370	1.00000	ug/Kg	136309	11/29/04 07	
n-Nitrosodiphenyl	amine, 3541 Low Solid*	37	U	12	37	1.00000 (ug/Kg	136309	11/29/04 07	
4,6-Dinitro-2-met	hylphenol, 3541 Low Soli*	750	u	190	750	1,00000	ug/Kg	136309	11/29/04 07	
Phenanthrene, 354		5 6	u	17	56	1.00000	ug/Kg	136309	11/29/04 07/	
Anthracene, 3541		37	U	12	37	1.00000	ug/Kg	136309	11/29/04 07	
Carbazole, 3541 L		190	[v]	13	190	1.00000	ug/Kg	136309	11/29/04 07/	20
	ate, 3541 Low Solid*	190	u	13	190	1.00000	ug/Kg	136309	11/29/04 07	
Fluoranthene, 354		37	iui l	12	37	1.00000	ug/Kg	136309	11/29/04 07	20
Pyrene, 3541 Low		56	U	13	56	1.00000	ug/Kg	136309	11/29/04 07	20
	alate, 3541 Low Solid*	75	u -	11	75	1.00000	ug/Kg	136309	11/29/04 07	20
	e, 3541 Low Solid*	37	u	11	37	1.00000	ug/Kg	136309	11/29/04 07	
Chrysene, 3541 Lo	и Solid*	37	U	12	37	1.00000	ug/Kg	136309	11/29/04 07	201

^{*} In Description = Dry Wgt.

Job Number: 231912

Date: 12/07/2004

CUSTOMER: NKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: LWWsb-064-DUP Date Sampled.....: 11/10/2004 Time Sampled.....: 12:45 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	CILUTION	UHITS	BATCH	01	DATE/TI	ME	TECH
Method	3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Solid* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(k)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghi)perylene, 3541 Low Solid* X Solids Determination X Solids, Solid X Moisture, Solid	190 190	ח חח חח חח חח חח חח חח חח חח חח חח חח ח	16 36 12 9.9 10 11 11 11 12 0.10 0.10	190 190 370 37 37 37 37 37 37 37 0.10	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309 136309 136309 136309		11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04	0729 0729 0729 0729 0729 0729 0729 0729	######################################

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS Job Number: 231912

Date: 11/30/2004

CUSTOMER: MKW Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTRE Eric Ellis

Customer Sample ID: LNWsb-064-DUP Date Sampled....: 11/10/2004 Time Sampled....: 12:45 Sample Matrix....: Soil

TEST METROD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O FLAGS	MOL	æL	DILUTION	UKITS	BATCH	DT	DATE/TIME	TEC
8330	Explosives by 8330 (HPLC) HMX, Solid RDX, Solid 1,3,5-Trinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-TNT, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 2-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.20 0.20 0.098 0.098 0.098 0.098 0.20 0.20 0.20 0.20 0.20	UU UU UU UU UU UU UU UU UU UU UU UU UU	0.055 0.061 0.032 0.023 0.021 0.023 0.12 0.025 0.048 0.045 0.092 0.047 0.049 0.052	0.20 0.20 0.098 0.098 0.098 0.39 0.20 0.20 0.20 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135654 135654 135654 135654 135654 135654 135654 135654 135654 135654 135654	And the state of t	11/18/04 165; 11/18/04 165; 11/18/04 165; 11/18/04 165; 11/18/04 165; 11/18/04 165; 11/18/04 165; 11/18/04 165; 11/18/04 165; 11/18/04 165; 11/18/04 165; 11/18/04 165; 11/18/04 165; 11/18/04 165;	2 san 2 san 2 san 2 san 2 san 2 san 2 san 2 san 2 san 2 san 2 san 2 san 2 san 2 san 2 san 2 san

^{*} In Description = Dry Wgt.

Job Number: 231912

LABORATORY TEST RESULTS

Date: 12/01/2004

CUSTOMER: MKM Bagineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTH: Eric Ellis

Customer Sample ID: LNWsb-065-S0 Date Sampled....: 11/10/2004 Time Sampled....: 11:45

Laboratory Sample ID: 231912-25 Date Received.....: 11/12/2004 Time Received.....: 09:15

Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	a	FLACS	YO L	\$ 0,	BILUTION	UNITS	BATCH	ρŢ	DATE/T	FIME	TECH
Method	% Solids Determination % Solids, Solid % Moisture, Solid	81.5 18.5		************	0.10 0.10	0.10 0.10	1	% %	134487 134487	:334	11/16/04 11/16/04	1216	daj
7041	Antimony (GFAA) Antimony, Solid*	1.6	U		0.49	1.6	1	mg/Kg	135006	4	11/19/04		
7841	Thallium (GFAA) Thallium, Solid*	0.66	U		0.21	0-66	1	mg/Kg	135008		11/19/04	2324	daj
7471A	Mercury (CVAA) Solids Mercury, Solid*	0.020	u		0.0053	0.020	1	mg/Kg	135393		11/23/04	1656	gok
6010в	Metals Analysis (ICAP Trace) Aluminum, Solid* Barium, Solid* Arsenic, Solid* Beryllium, Solid* Catrium, Solid* Catrium, Solid* Chromium, Solid* Chromium, Solid* Cobalt, Solid* Copper, Solid* Iron, Solid* Magnesium, Solid* Magnesium, Solid* Nickel, Solid* Lead, Solid* Potassium, Solid*	9300 59 10 0.56 0.29 1400 13 8.1 17 19000 2200 400 17 13 1100			2.8 0.18 0.59 0.051 0.092 3.6 0.25 0.16 1.0 3.5 2.0 0.15 0.29 0.49	17 1.2 1.7 0.46 0.29 12 1.2 0.58 3.5 12 12 1.2 1.2 1.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536		11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04	1750 1750 1750 1750 1750 1750 1750 1750	tds tds tds tds tds tds tds tds tds tds

^{*} In Description = Dry Wgt.

Page 51

LABORATORY TEST RESULTS

Date: 12/01/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGES

ATTN: Eric Ellis

Customer Sample ID: LNWsb-065-SD Date Sampled....: 11/10/2004 Time Sampled....: 11:45

Laboratory Sample ID: 231912-25 Date Received.....: 11/12/2004

Sample Matrix....: Soil

Time Received.....: 09:15

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	ADL	RL	DILUTION	UNITS	BATCH	ÐΤ	DATE/T	IME	TECH
	Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadīum, Solid* Zinc, Solid*	0.63 1.2 360 17 56	B	0.46 0.36 100 0.24 0.46	1.7 1.2 350 1.2 2.3	1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536		11/24/04 11/24/04 11/24/04 11/24/04 11/24/04	1750 1750 1750	tds tds tds
			17 m/s.c			- 181 - 1		The state of the s				
						7 17						
											- The second second	
				a c								

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: MICH Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-065-SD Date Sampled....: 11/10/2004 Time Sampled....: 11:45

Laboratory Sample ID: 231912-25 Date Received.....: 11/12/2004 Time Received.....: 09:15

Sample Matrix....: Soil

TEST METHOD	PARAMETER/JEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	KDL	RL	DILUTION	UNITS	BATCH	ВŒ	DATEZTIME	
8270C	Semivolatile Organics Phenol, 3541 Low Solid* Bis(2-chloroethyl)ether, 3541 Low Solid* 1,3-Dichlorobenzene, 3541 Low Solid* 1,4-Dichlorobenzene, 3541 Low Solid* 1,2-Dichlorobenzene, 3541 Low Solid* Benzyl alcohol, 3541 Low Solid* 2-Methylphenol (o-cresol), 3541 Low Solid* 2,2-oxybis (1-chloropropane), 3541 Low Solid* 1,2-Dichlorobenzene, 3541 Low Solid* 1-Nitroso-di-n-propylamine, 3541 Low Solid* 1-Methylphenol (m/p-cresol), 3541 Low Solid* 1-Methylphenol (m/p-cresol), 3541 Low Solid* 1-Methylphenol (m/p-cresol), 3541 Low Solid* 1-Chlorophenol, 3541 Low Solid* 1,2,4-Trichlorobenzene, 3541 Low Solid* 1,2,4-Trichlorobenzene, 3541 Low Solid* 1,2,4-Dimethylphenol, 3541 Low Solid* 1-A-Dichlorophenol, 3541 Low Solid* 1-A-Dichlorophenol, 3541 Low Solid* 1-A-Chlorophenol, 3541 Low Solid*	390 800 200 390 1200 39	*	8.5 11 16 18 17 88 13 19 16 10 14 16 10 10 16 230 23 19 11 10 18 64 45 53 360 12 13	200 80 200 200 200 800 80 200 80 200 80 200 39 80 200 390 200 39 390 200 39 390 200 39 390 200 39 200	1.00000 1.00000	Ug/Kg Ug/Kg	136309 136309		11/29/04 113 11/29/04 113	in dpilin

^{*} In Description = Dry Wgt.

TECH

Job Number: 231912

LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: MIXY Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-065-S0
Date Sampled.....: 11/10/2004
Time Sampled.....: 11:45
Sample Matrix....: Soil

Laboratory Sample ID: 231912-25 Date Received.....: 11/12/2004 Time Received.....: 09:15

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS MOL RL DILUTION UNITS BATCH DIS DATE/TIME 4-Chloro-3-methylphenol, 3541 Low Solid* 390 41 390 1.00000 ug/Ka 136309 2.6-Dinitrotoluene, 3541 Low Solid* 39 11

11/29/04 1131 dok 39 1.00000 ug/Kg 136309 11/29/04 1131 dok 2-Nitrophenol, 3541 Low Solid* 390 18 390 1.00000 136309 ug/Kg 11/29/04 1131 dok 3-Nitroaniline, 3541 Low Solid* 800 160 800 1.00000 ug/Kg 136309 11/29/04 1131 dpk Dimethyl phthalate, 3541 Low Solid* 80 11 80 1.00000 Ug/Kg 136309 11/29/04 1131 dok 2.4-Dinitrophenol, 3541 Low Solid* 800 120 800 1.00000 ug/Kg 136309 11/29/04 1131 dpk Acenaphthylene, 3541 Low Solid* 39 9.9 39 1.00000 ug/Kg 136309 11/29/04 1131 dok 2,4-Dinitrotoluene, 3541 Low Solid* 39 12 39 1.00000 ug/Kg 136309 11/29/04 1131 dok Acenaphthene, 3541 Low Solid* 39 9.9 39 1.00000 ug/Kg 136309 Dibenzofuran, 3541 Low Solid* 11/29/04 1131 dok 80 10 80 1.00000 ug/Kg 136309 11/29/04 1131 dok 4-Nitrophenol, 3541 Low Solid* 800 250 800 1.00000 ug/Kg 136309 11/29/04 1131 dpk Fluorene, 3541 Low Solid* 39 11 39 1.00000 ug/Kg 136309 11/29/04 1131 dok 4-Nitroaniline, 3541 Low Solid* 800 53 800 1.00000 ug/Kg 136309 11/29/04 1131 dok 4-Bromophenyl phenyl ether, 3541 Low Soli* 200 12 200 1.00000 ug/Kg 136309 11/29/04 1131 dok Hexachlorobenzene, 3541 Low Solid* iui 39 11 39 1.00000 ug/Kg 136309 11/29/04 1131 dpk Diethyl phthalate, 3541 Low Solid* 80 lu l 11 80 1.00000 4-Chlorophenyl phenyl ether, 3541 Low Sol*d ug/Kg 136309 11/29/04 1131 dok Ų 200 12 200 1.00000 ug/Kg 11/29/04 1131 dpk 136309 Pentachlorophenol, 3541 Low Solid* 390 Ü 130 390 1.00000 ug/Kg 136309 11/29/04 1131 dok n-Nitrosodiphenylamine, 3541 Low Solid* U 39 12 39 1,00000 11/29/04 1131 dok 4,6-Dinitro-2-methylphenol, 3541 Low Soli* ug/Kg 136309 800 U 200 800 1.00000 ug/Kg 136309 11/29/04 1131 dpk Phenanthrene, 3541 Low Solid* 60 u 18 60 1.00000 ug/Kg 136309 11/29/04 1131 dpk Anthracene, 3541 Low Solid* 39 U 13 39 1.00000 ug/Kg 136309 11/29/04 1131 Carbazole, 3541 Low Solid* dok u 200 14 200 1.00000 ug/Kg 136309 11/29/04 1131 dok Di-n-butyl phthalate, 3541 Low Solid* 200 14 200 1.00000 ug/Kg 136309 11/29/04 1131 Fluoranthene, 3541 Low Solid* dok 22 J 13 39 1.00000 ug/Kg 136309 11/29/04 1131 dok Pyrene, 3541 Low Solid* 60 U 14 60 1.00000 ug/Kg 136309 11/29/04 1131 dok Butyl benzyl phthalate, 3541 Low Solid* ļυ 80 12 80 1.00000 ug/Kg 136309 11/29/04 1131 dpk Benzo(a)anthracene, 3541 Low Solid* 39 u 12 39 1.00060 ug/Kg 136309 11/29/04 1131 dick Chrysene, 3541 Low Solid* .1 14 13 39 1.00000 ug/Kg 136309 11/29/04 1131 dpk

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

AITN; Eric ELLIs

Customer Sample ID: LNWsb-065-S0 Date Sampled....: 11/10/2004 Time Sampled....: 11:45 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	MITS	RATCH	NT MATES		¥4.0
Method	3,3-Dichtorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Solid* Dinnoctyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(k)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghi)perylene, 3541 Low Solid* % Solids Determination % Solids, Solid % Moisture, Solid	200 200 390 17 39 39 39 39		18 38 12 11 11 11 12 11 13 0.10 0.10	200 200 390 39 39 39 39 39 39 39	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309 136309 136309 136309	01 0ATE/0 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/16/04	1131 1131 1131 1131 1131 1131 1131 113	dpk dpk dpk dpk dpk dpk dpk dpk
						<u>.</u>	ı				

^{*} In Description = Dry Wgt.

Page 37

Job Number: 231912

Date:11/30/2004

CUSTOMER: MKM Engineers, Inc.: PROJECT: USACE RVKAP 14 ACCS ATTH: Eric Ellis

Customer Sample ID: tNWsb-065-S0
Date Sampled....: 11/10/2004
Time Sampled....: 11:45
Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	C FLAGS	MDL	RL	DILUTION	UNITS	BATCH	QΤ	DATE/TIME	TECH
8330	Explosives by 8330 (HPLC) HMX, Solid RDX, Solid 1,3,5-Trinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-TNY, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.20 0.20 0.10 0.10 0.10 0.40 0.20 0.20 0.20 0.20 0.20	טטעטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	0.056 0.063 0.033 0.024 0.021 0.024 0.12 0.026 0.049 0.046 0.094 0.048 0.050 0.053	0.20 0.20 0.10 0.10 0.10 0.40 0.10 0.20 0.20 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135657 135657 135657 135657 135657 135657 135657 135657 135657 135657 135657 135657 135657		11/20/04 1818 11/20/04 1818 11/20/04 1818 11/20/04 1818 11/20/04 1818 11/20/04 1818 11/20/04 1818 11/20/04 1818 11/20/04 1818 11/20/04 1818 11/20/04 1818 11/20/04 1818	8 san 8 san 8 san 8 san 8 san 8 san 8 san 8 san 8 san 8 san 8 san 8 san

^{*} In Description = Dry Wgt.

Page 27

Job Number: 231912

LABORATORY TEST RESULTS

Date: 12/01/2004

ATTN: Eric Ellis

CUSTOMER: MKM Engineers, Inc. PROJECT: USAGE RVAAP 14 AGGS

Customer Sample ID: LNWsb-066-S0
Date Sampled.....: 11/10/2004
Time Sampled.....: 14:15
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	C	FLAGS	PO L	RL	DILUTION	UNITS	BATCH	OΥ	DATE/T	IME	TECH
Method	% Solids Determination % Solids, Solid % Moisture, Solid	84.3 15.7			0.10 0.10	0.10 0.10	1	% %	134235 134235		11/14/04 11/14/04		
7041	Antimony (GFAA) Antimony, Solid*	1.6	U.S.		0.50	1.6	# 1 1 1	mg/Kg	135006		11/19/04	1132	daj
7841	Thallium (GFAA) Thallium, Solid*	0.68	U		0.22	0.68	[1	mg/Kg	135008		11/19/04	1222	daj
7471A	Mercury (CVAA) Solids Mercury, Solid*	0.036			0.0051	0.020	1	mg/Kg	135664		11/24/04	1427	gok
6010B	Metals Analysis (ICAP Trace) Aluminum, Solid* Barium, Solid* Arsenic, Solid* Beryllium, Solid* Cadnium, Solid* Chromium, Solid* Chromium, Solid* Cobalt, Solid* Copper, Solid* Iron, Solid* Manganese, Solid* Mickel, Solid* Lead, Solid* Potassium, Solid*	10000 61 14 0.69 0.28 1800 15 10 20 25000 3400 400 25 12	U		2.6 0.18 0.56 0.049 0.088 3.4 0.24 0.15 0.99 3.3 1.9 0.14 0.28 0.47	17 1.1 1.7 0.44 0.28 11 1.1 0.55 3.3 11 11 1.1 1.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536		11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04	1234 1234 1234 1234 1234 1234 1234 1234	tds tds tds tds tds tds tds tds tds tds

^{*} In Description = Dry Wgt.

	Job Number: 231912	LABORATOR	Y. TES	ST RESUL	TS		Date:1	2/01/2004		
CUSTOMER: MICH	Engineers, Inc.	PROJEC	T: USACE R	VAAP 14 ADCS			ATTN:	Eric Ell	ī s	
Date Sa Time Sa	r Sample ID: LNWsb-066-S0 mpled: 11/10/2004 mpled: 14:15 Natrīx: Soil		Dar	boratory Sample : te Received me Received	: 11/12/2004					
TEST HETHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	© FLAGS	MOL	RL	DILUTION	UNITS	BATCH	DT DATE/I	IME TECH
	Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadium, Solid* Zinc, Solid*	0.54 1.1 340 16 65	BU	0.44 0.34 96 0.23 0.44	1.7 1.1 330 1.1 2.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536	11/24/04 11/24/04 11/24/04	1234 tds 1234 tds 1234 tds 1234 tds 1234 tds

^{*} In Description = Dry Wgt.

Page 8

LABORATORY TEST RESULTS

Date:12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-066-S0
Date Sampled.....: 11/10/2004
Time Sampled.....: 14:15
Sample Matrix....: Soit

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLACS	MOL	RL	DILUTION	UNITS	BATCH	DΤ	DATE/T	IME	TECH
8270C	Semivolatile Organics						Market					1
	Phenol, 3541 Low Solid*	200	U	8.3	200	1,00000	ug/Kg	136309		11/29/04	0609	dok
-	Bis(2-chloroethyl)ether, 3541 Low Solid*	79	U	10	79	1.00000	ug/Kg	136309		11/29/04	0609	dok
	1,3-Dichlorobenzene, 3541 Low Solid*	200	U U	16	200	1.00000	ug/Kg	136309		11/29/04	0609	dok
	1,4-Dichlorobenzene, 3541 Low Solid*	200	U	18	200	1.00000	⊔g/Kg	136309	-	11/29/04	0609	dok
	1,2-Dichlorobenzene, 3541 Low Solid*	200	U	17	200	1.00000	ug/Kg	136309		11/29/04	0609	dpk
	Benzyl alcohol, 3541 Low Solid*	790	U U U	87	790	1.00000	ug/Kg	136309	1	11/29/04	0609	dpk
	2-Methylphenol (o-cresol), 3541 Low Solid*	79	U	12	79	1.00000	ug/Kg	136309		11/29/04	0609	dpk
	2,2-oxybis (1-chloropropane), 3541 Low So*id	200	U	19	200	1.00000	ug/Kg	136309		11/29/04		
	n-Nitroso-di-n-propylamine, 3541 Low Soli*	79	U	16	79	1.00000	ug/Kg	136309		11/29/04		
	Hexachloroethane, 3541 Low Solid*	200	U U	10	200	1.00000	ug/Kg	136309		11/29/04		
	4-Methylphenol (m/p-cresol), 3541 Łow Sal*d	79]U	14	79	1.00000	ug/Kg	136309		11/29/04		
	2-Chlorophenol, 3541 Low Solid*	200	U	16	200	1.00000	ug/Kg	136309		11/29/04		
	Nitrobenzene, 3541 Low Solid*	39]U	10	39	1.00000	ug/Kg	136309		11/29/04		
	Bis(2-chloroethoxy)methane, 3541 Low Soli*	79	U	10	79	1.00000	ug/Kg	136309		11/29/04		
	1,2,4-Trichtorobenzene, 3541 Low Solid*	200	[8]	16	200	1.00000	ug/Kg	136309		11/29/04		
	Benzoic acid, 3541 Low Solid*	790	U *	230	790	1.00000	ug/Kg	136309		11/29/04		
	Isophorone, 3541 Law Solid*	200]0	23	200	1.00000	ug/Kg	136309		11/29/04		
	2,4-Dimethylphenol, 3541 Low Solid*	39 0	U	19	390	1.00000	ug/Kg	136309		11/29/04		
	Hexachlorobutadiene, 3541 Low Solid*	200	įu	11	200	1.00000	ug/Kg	136309		11/29/04		
	Naphthalene, 3541 Low Solid*	39	[U]	9.9	39	1.00000	ug/Kg	136309		11/29/04		
	2,4-Dichlorophenol, 3541 Low Solid*	390	U	18	390	1.00000	ug/Kg	136309		11/29/04		
	4-Chloroaniline, 3541 Low Solid*	79 0	U	63	790	1.00000	ug/Kg	136309		11/29/04		
	2,4,6-Trichtorophenol, 3541 Low Solid*	200	[U]	44	200	1.00000	ug/Kg	136309		11/29/04		
	2,4,5-Trichlorophenal, 3541 Law Solid*	3 9 0	пį	53	390	1.00000	ug/Kg	136309		11/29/04		
	Hexachlorocyclopentadiene, 3541 Low Solid*	1200	U	360	1200	1.00000	ug/Kg	136309	1 1	11/29/04	0609	dpk
	2-Methylnaphthalene, 3541 Low Solid*	39	* U U U U U U U U U U U U U U U U U U U	12	39	1.00000	ug/Kg	136309		11/29/04		
	2-Nitroaniline, 3541 Low Solid*	200	u	13	200	1.00000	ug/Kg	136309		11/29/04		
	2-Chloronaphthalene, 3541 Low Solid*	200	u	18	200	1.00000	ug/Kg	136309		11/29/04	0609	dopk

^{*} In Description = Dry Wgt.

Job Number: 231912

LABORATORY TEST RESULTS

Date:12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ADCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-066-S0
Date Sampled....: 11/10/2004
Time Sampled....: 14:15
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	H W)L	RL	DILUTION	UNITS	BATCH	рτ	DATE/F	IHE T	ECH
	4-Chloro-3-methylphenol, 3541 Low Solid*	390	U	41	390	1.00000	ug/Kg	136309	32.22	11/29/04	DANO A	المتعددة العامة
	2,6-Dinitrotoluene, 3541 Low Solid*	39		11	39	1.00000	ug/Kg	136309		11/29/04		
	2-Nitrophenol, 3541 Low Solid*	390	U	17	390	1.00000	ug/Kg	136309		11/29/04		
	3-Nitroaniline, 3541 Low Solid*	790	U	160	790	1.00000	ug/Kg	136309	1 1	11/29/04	0609 4	nsk.
	Dimethyl phthalate, 3541 Low Solid*	79	U	10	79	1.00000	ug/Kg	136309	1	11/29/04	0609 d	rak
	2,4-Dinitrophenol, 3541 Low Solid*	790	[U]	120	790	1.00000	ug/Kg	136309		11/29/04		
	Acenaphthylene, 3541 Low Solid*	39	U.	9.8	39	1.00000	ug/Kg	136309		11/29/04		
	2,4-Dinitrotoluene, 3541 Low Solid*	39	U	12	39	1.00000	ug/Kg	136309		11/29/04		
	Acenaphthene, 3541 Low Solid*	39	u	9.8	39	1.00000	ug/Kg	136309		11/29/04		
	Dibenzofuran, 3541 Low Solid*	79	u	10	79	1.00000	ug/Kg	136309		11/29/04		
	j4-Nitrophenol, 3541 Low Solid*	790	u	250	790	1.00000	ug/Kg	136309		11/29/04	0609 d	ok
•	Fluorene, 3541 Low Solid*	39	n	11	39	1.00000	ug/Kg	136309		11/29/04	0609 d	рķ
	4-Nitroaniline, 3541 Low Solid*	790	u	53	790	1.00000	ug/Kg	136309		11/29/04		
	4-Bromophenyl phenyl ether, 3541 Low Soli*	200	υ	12	200	1.00000	ug/Kg	136309		11/29/04		
	Hexachlorobenzene, 3541 Low Solid*	39	U	11	39	1.00000	ug/Kg	136309		11/29/04		
	Diethyl phthalate, 3541 Low Solid*	79	U	11	79	1.00000	ug/Kg	136309		11/29/04		
	4-Chlorophenyl phenyl ether, 3541 Low Sol*d	200	U	12	200	1.00000	ug/Kg	136309	1 1	11/29/04	0609 di	ok
	Pentachlorophenol, 3541 Low Solid*	390	U U	130	390	1.00000	ug/Kg	136309		11/29/04	0609 da	ok
	n-Nitrosodiphenylamine, 3541 Low Solid*	39	U	12	39	1.00000	ug/Kg	136309		11/29/04		
	4,6-Dinitro-2-methylphenol, 3541 Low Soli*	790	U	200	790	1.00000	ug/Kg	136309		11/29/04	0609 di	ρk
	Phenanthrene, 3541 Low Solid*	59	U	18	59	1.00000	ug/Kg	136309		11/29/04	0609 di	ρk
	Anthracene, 3541 Low Solid*	39	U	13	39	1.00000	ug/Kg	136309		11/29/04		
	Carbazole, 3541 Low Solid*	200	u	14	200	1.00000	ug/Kg	136309		11/29/04	0609 di	ρk
	Di-n-butyl phthalate, 3541 Low Solid*	200	u[13	200	1.00000	ug/Kg	136309		11/29/04	0609 di	ok
	Fluoranthene, 3541 Low Solid*	39	u	13	39	1.00000	ug/Kg	136309		11/29/04	0609 di	ρk
	Pyrene, 3541 Low Solid*	59	u	14	59	1.00000	ug/Kg	136309		11/29/04	0609 dt	ok
	Butyl benzyl phthalate, 3541 Low Solid*	79	u	12	79	1.00000	ug/Kg	136309		11/29/04	0609 d	ok
	Benzo(a)anthracene, 3541 Low Solid*	39	U	12	39	1,00000	ug/Kg	136309		11/29/04	0609 da	ok
	Chrysene, 3541 Low Solid*	39	υ	12	39	1.00000	ug/Kg	136309		11/29/04		

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS
Job Number: 231912

Date: 12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVARP 14 AGES

ATTN: Eric Ellis

Customer Sample ID: LNWsb-066-S0
Date Sampled....: 11/10/2004
Time Sampled....: 14:15
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MBL	RL	DILUTION	LINITS	BATCH	DT	DATE/TI	ME	TECH
Nethod	3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Solid* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(c)pyrene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghi)perylene, 3541 Low Solid* % Solids Determination % Solids, Solid % Moisture, Solid	200 200 390 39 39 39 39 39 39 39 39 37 39 39 39	U U U U U U U U U U U U U U U U U U U	17 38 12 10 11 11 12 11 13 0.10 0.10	200 200 390 39 39 39 39 39 39 39 0.10	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	UB/Kg UB/Kg UB/Kg UB/Kg UB/Kg UB/Kg UB/Kg UB/Kg UB/Kg UB/Kg	136309 136309 136309 136309 136309 136309 136309 136309 134235 134235		11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/14/04 11/14/04	0609 0609 0609 0609 0609 0609 0609 0609	ਲੇ ਦੇ ਦੇ ਦੇ ਦੇ ਦੇ ਦੇ ਦੇ ਦੇ ਦੇ ਦੇ ਦੇ ਦੇ ਦੇ

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS
Job Number: 231912

Date: 11/30/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAMP 14 AUGS

ATTRI COTO ELLIS

Customer Sample ID: LNWsb-066-SO
Date Sampled....: 11/10/2004
Time Sampled....: 14:15
Sample Matrix...: Soil

Laboratory Sample ID: 231912-3
Date Received.....: 11/12/2004
Time Received.....: 09:15

TEST METHOD SAMPLE RESULT G FLAGS MOL PARAMETER/TEST DESCRIPTION DILUTION UNITS BATCH DT DATE/TIME TECH 8330 Explosives by 8330 (HPLC) HMX, Solid 0.20 0.0560.20 1.00000 mg/Kg 135654 11/18/04 0738 san RDX, Solid 0.20 lul 0.0630.20 1.00000 135654 11/18/04 0738 san mg/Kp 1,3,5-Trinitrobenzene, Solid 0.10 0.033 įυ 0.10 1.00000 135654 mg/Kg 11/18/04 0738 san 1.3-Dimitrobenzene, Solid 0.10 U 0.0230.10 1.00000 mg/Kg 135654 11/18/04 0738 san Nitrobenzene, Solid 0.10 0.021 0.10 1.00000 mg/Kg 135654 11/18/04 0738 san 2,4,6-TNT, Solid 0.10 0.024 0.10 1.00000 135654 11/18/04 0738 san mg/Kg Tetryl, Solid 0.400.12 0.40 1.00000 135654 mg/Kg 11/18/04 0738 san 0.10 2,4-Dinitrotaluene, Solid 0.026 0.10 1.00000 mg/Kg 135654 11/18/04 0738 san 2,6-Dinitrotoluene, Solid 0.20 įυ 0.0490.20 1.00000 135654 11/18/04 0738 san mg/Kg 2-Amino-4,6-Dinitrotoluene, Solid 0.20 ĺυ 0.045 0.20 1.00000 11/18/04 0738 san mg/Kg 135654 4-Amino-2,6-Dinitrotoluene, Solid 0.30 ŧU. 0.094 0.30 1.00000 mg/Kg 135654 11/18/04 0738 san 2-Nitrotoluene, Solid 0.20 įυ 0.0480.20 1.00000 mg/Kg 135654 11/18/04 0738 san 4-Nitrotoluene, Solid 0.20 ĮU. 0.0500.20 1.00000 mg/Kg 135654 11/18/04 0738 san 0.20 Ü 3-Nitrotoluene, Solid 0.053 0.20 1.00000 mg/Kg 135654 11/18/04 0738 san

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 231912

Date: 12/01/2004

CUSTOMER: MCM Engineers, Inc. PROJECT: USAGE RVAAP 14 AUGS ATTM: Enic Ellis

Customer Sample ID: LNWsb-067-S0
Date Sampled....: 11/10/2004
Time Sampled....: 13:40
Sample Matrix...: Soil

TEST MET#00	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	HOL	RL	DILUTION	UNITS	BATCH	от	DATE/T	ri ME	TECH
Method	% Solids Determination % Solids, Solid	77.0				***********	****************	2020,000	123.4	24414444	<u> </u>	77777
	% Moisture, Solid	73.9 26.1		0.10 0.10	0.10 0.10	1	% %	134235 134235		11/14/04 11/14/04		
7041	Antimony (GFAA)											
	Antimony, Solid*	1.6	U	0.51	1.6	1	mg/Kg	135006		11/19/04	ı 1701	daj
7841	Thellium (GFAA) Thallium, Solid*		 				f			! É		
		0.70		0.22	8.70	3	mg/Kg	135008		11/19/04	2054	da j
7471A	Mercury (CVAA) Solids Mercury, Solid*	0.022	D	0.0058	0.022			475441				
		7.022		0.0036	0.022	•	mg/Kg	135664		11/24/04	1523	gok
6010B	Metals Analysis (ICAP Trace)									l		Ì
	Aluminum, Solid*	5600		2.6	16 1.1	1	mg/Kg	135536		11/24/04	1532	tds
	Barium, Solid*	16		0.17		[1	mg/Kg	135536		11/24/04		
	Arsenic, Solid*	9.6	1_1	0.55	1.6	[1	meg/Kg	135536		11/24/04		
•	Beryllium, Solid*	0.38	В	0.048	0.44	11	mg/Kg	135536		11/24/04		
	Cadmium, Solid* Calcium, Solid*	0.27		0.087	0.27	11	mg/Kg	135536		11/24/04		
	Chromium, Solid*	870 10		3.4	11	17	mg/Kg	135536		11/24/04		
	Cobalt, Solid*	5.7		0.24 0.15	1.1	11	mg/Kg	135536		11/24/04		
	Copper, Solid*	21.			0.54	11	mg/Kg	135536		11/24/04		
	Iron, Solid*	18000		0.98 3.3	3.3	11	mg/Kg	135536		11/24/04		
	Magnesium, Solid*	2100		1.8	11 11	11	mg/Kg	135536		11/24/04	1532	tds
	Manganese, Solid*	120		0.14			mg/Kg	135536		11/24/04		
	Wickel, Solid*	15		0.14	1.1		mg/Kg	135536		11/24/04		
	Lead, Solid*	9.8		0.47	1.6		rig/Kg	135536		11/24/04		
	Potassium, Solid*	810		15	54		mg/Kg	135536		11/24/04		
		1		"-"	"4	'	mg/Kg	135536		11/24/04	1332	rds
										ı		

^{*} In Description = Dry Wgt.

Page 41

	Job Number: 231912	LABORATORY	TES	T RESUL	TS		Date:1	2/01/200	ıć,		
CLISTOMER: NIKN	Engineers, Inc.	PROJECT	USACE RV	AAP 14 AOCS			ATTN:	Eric El	lis		
Date San Time San	Sample ID: LNWsb-067-SD mpled: 11/10/2004 mpled: 13:40 Matrix: Soil		Dat	oratory Sample e Received e Received	: 11/12/2004						
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT (FLAGS	FD L	RL	DILUTION	UNITS	BATCH	DΤ	DATE/TIME	TECH
	Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadium, Solid* Zinc, Solid*	0.78 1.1 240 9.9 51	<u>ا</u> ار	0.44 9.34 94 0.23 0.44	1.6 1.1 330 1.1 2.2	11111	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536	11 11 11	1/24/04 153 1/24/04 153 1/24/04 153 1/24/04 153 1/24/04 153	32 tds 32 tds 32 tds 32 tds 52 tds
	·										

^{*} In Description = Dry Wgt.

Page 42

LABORATORY TEST RESULIS

Date: 12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USAGE RVAAP 14 AGES

ATTN: Eric Elijs

Customer Sample ID: LNWsb-067-50 Date Sampled....: 11/10/2004 Time Sampled....: 13:40 Sample Matrix....: Soil

Laboratory Sample ID: 231912-20 Date Received.....: 11/12/2004

Time Received.....: 09:15

EST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MOL	RL	DILUTION	UNITS	BATCH	DT .	DATE/TH	ME.
8270C	Semivolatile Organics					<u> </u>	383833884944888	101111111111		300000000000000000000000000000000000000	318 (10)
	Phenol, 3541 Low Solid*	210	U	9.1	210	1,00000		136309			
	Bis(2-chloroethyl)ether, 3541 Low Solid*	86	Ū	11	86	1.00000	ug/Kg	136309		1/29/04 (
	1,3-Dichlorobenzene, 3541 Low Solid*	210	ū	17	210	1.00000	ug/Kg ug/Kg	136309		1/29/04 (
	1,4-Dichlorobenzene, 3541 Low Solid*	210	u	20	210	1.00000	ug/Kg	136309		1/29/04 (
	1,2-Dichlorobenzene, 3541 Law Solid*	210	ū	18	210	1.00000			1 1	1/29/04 (いどうし
	Benzyl alcohol, 3541 Low Solid*	860	lül	95	860	1.00000	ug/Kg	136309 136309	1 11	1/29/04 (いとさい
	2-Methylphenol (o-cresol), 3541 Low Solid*	86	lul	14	86	1.00000	ug/Kg Ug/Kg	136309		1/29/04 (
	2,2-oxybis (1-chloropropane), 3541 Low So*id	210	ŭ	20	210	1.00000	ug/Kg	136309		1/29/04 (
	n-Nitroso-di-n-propylamine, 3541 Low Soli*	86	Ū	17	86	1.00000	ug/Kg	136309		1/29/04 (
	Hexachloroethane, 3541 Low Solid*	210		1 11	210	1.00000	ug/Kg	136309		1/29/04 (JOSE JOSE
	4-Methylphenol (m/p-cresol), 3541 Low Sol*d	86	เบ้า	15	86	1.00000	ug/Kg	136309		1/29/04 (JOOL
	2-Chlorophenol, 3541 Low Solid*	210	إنا	17	210	1.00000	ug/Kg	136309		1/29/04 (1071 1057
	Nitrobenzene, 3541 Low Solid*	42	lul .	11	42	1.00000	ug/Kg	136309		1/29/04 0	
	Bis(2-chloroethoxy)methane, 3541 Low Soli*	86	اتا	11	86	1.00000	ug/Kg	136309		1/29/04 0	
	1,2,4-Trichlorobenzene, 3541 Law Solid*	210	lūl	18	210	1.00000	ug/Kg ⊔g/Kg	136309		1/29/04 0 1/29/04 0	
	Benzoic acid, 3541 Low Solid*	860	U *	250	860	1.00000	ug/Kg	136309			
	Isophorone, 3541 Low Salid*	210	u	25	210	1.00000	ug/Kg	136309	1 11	1/29/04 0	יים מסכר
	2,4-Dimethylphenol, 3541 Low Solid*	420	u	21	420	1.00000	ug/Kg ug/Kg	136309		1/29/04 0 1/29/04 0	100 L
	Hexachlorobutadiene, 3541 Low Solid*	210	ŭ	12	210	1.00000	ug/Kg	136309			
	Naphthalene, 3541 Low Solid*	42	ful	11	42	1.00000	ug/Kg	136309		1/29/04 0	
	2,4-Dichlorophenol, 3541 Low Solid*	420	lŭ!	20	420	1.00000	ug/Kg	136309		1/29/04 0	
	4-Chloroaniline, 3541 Low Solid*	860	lul	69	860	1.00000	ug/Kg	136309	1 11	1/29/04 0 1/29/04 0	100L
	2,4,6-Trichlorophenol, 3541 Low Solid*	210	U U	48	210	1.00000	ug/Kg	136309	1 11	/27/04 U	JODY 1024
	2,4,5-Trichlorophenol, 3541 Low Solid*	420	U	58	420	1.00000	ug/Kg ⊔g/Kg	136309	4 4	/29/04 0	NO DU No E n
	Hexachlorocyclopentadiene, 3541 Low Solid*	1300	iul	390	1300	1.00000	ug/Kg	136309		/29/04 0 /29/04 0	
	2-Methylmaphthalene, 3541 Low Solid*	42	ŭ	13	42	1.00000	ug/Kg ug/Kg	136309		1/29/04 U 1/29/04 O	
	2-Nitroaniline, 3541 Low Solid*	210	Ū	14	210	1.00000	ug/Kg	136309		/29/04 0 /29/04 0	
	2-Chioronaphthalene, 3541 Low Solid*	210	Jul	20	210	1.00000	ug/Kg	136309		/29/04 0 /29/04 0	
			[]				*81 v3	130307] ''	127104 0	UCDA

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date:12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AGES

ATTA: Eric Ettis

Customer Sample ID: LNWsb-067-S0
Date Sampled.....: 11/10/2004
Time Sampled.....: 13:40
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	. MD17	RT.	DILUTION	UNITS	ВАТСИ	DT DATE	ZEIME	TECH
	4-Chioro-3-methylphenol, 3541 Low Solid*	420	U	45	420	1.00000	ug/Kg	136309			
	2,6-Dinitrotoluene, 3541 Low Solid*	42	U i	12	42	1.00000	ug/kg ug/Kg	136309		04 0850	
	2-Nitrophenol, 3541 Low Solid*	420	u	19	420	1.00000	ug/Kg	1136309	11/29/0		
	3-Nitroaniline, 3541 Low Solid*	860	u	180	860	1.00000	ug/Kg ug/Kg	136309	11/29/0	J4 U85U	dock
	Dimethyl phthalate, 3541 Low Solid*	86	U	11	B6	1.00000	ug/kg ug/Kg	136309	11/29/0	/4 UBDU	dok
	2,4-Dinitrophenol, 3541 Low Solid*	860	ן ען	130	860	1.00000	ug/Kg	136309	11/29/0	J4 U850 04 DD50	dok
	Acenaphthylene, 3541 Low Solid*	42	U	11	42	1.00000	ug/Kg	136309	11/29/0	<i>M</i>	labk
	2,4-Dinitrotoluene, 3541 Low Solid*	42	Ju	13	42	1.00000	ug/Kg	136309		0 4 08 50	
	Acenaphthene, 3541 Low Solid*	42 86		11	42	1.00000	ug/Kg	136309	11/29/0	04 08 50	
	Dibenzofuran, 3541 Low Solid*		U į	11	86	1.00000	ug/kg	136309	11/29/0	74 000U 16 00E0	OOK
	4-Nitrophenol, 3541 Low Solid*	860	u	270	860	1.00000	ug/Kg	136309	11/29/0	74 000U	OD K
	Fluorene, 3541 Low Solid*	42	U -	12	42	1.00000	ug/Kg	136309	11/29/0	14 OBSO	CED K
	4-Nitroaniline, 3541 Low Solid*	860	u	58	860	1.00000	ug/Kg	136309	11/29/0	74 DESC.	upk
	4-Bromophenyl phenyl ether, 3541 Low Soli*	210	น	13	210	1.00000	ug/Kg	136309	11/29/0	M 0000	dok
	Hexachlorobenzene, 3541 Low Solid*	42	u	12	42	1.00000	ug/Kg	136309	11/29/0	16 OBSO	Jupk
	Diethyl phthalate, 3541 Low Solid*	86	U	12	86	1.00000	ug/Kg	136309	11/29/0	14 0850 14 0850	dela
	4-Chlorophenyl phenyl ether, 3541 Low Sol*d	210	U	13	210	1.00000	ug/Kg	136309	11/29/0	14 0950 14 0950	ed a
	Pentachlorophenol, 3541 Low Solid*	420		140	420	1.00000	ug/Kg	136309	11/29/0	14 0850	op k
	n-Mitrosodiphenylamine, 3541 Low Solid*	42	u 	13	42	1.00000	ug/Kg	136309	11/29/0	M DRED	Opt R
	4,6-Dinitro-2-methylphenol, 3541 Low Soli*	860	u	220	860	1.00000	ug/Kg	136309	11/29/0	M OBSO	dek
	Phenanthrene, 3541 Low Solid*	64	4	19	64	1.00000	ug/Kg	136309	11/29/0		
	Anthracene, 3541 Low Solid*	42	[u]	14	42	1.00000	ug/Kg	136309	11/29/0	4 0030; M. 0850	-dulk
	Carbazole, 3541 Low Solid*	210	u	15	210	1.00000	ug/Kg	136309	11/29/0	* 0030) W 0960	Jupik Jupik
	Di-n-butyl phthalate, 3541 Low Solid*	210	U	15	210	1.00000	ug/Kg	136309	11/29/0	4 0000 I	est la
	Fluoranthene, 3541 Low Solid*	42	lu	14	42	1.00000	ug/Kg	136309	11/29/0		
	Pyrene, 3541 Low Solid*	64	lui l	15	64	1.00000	ug/Kg	136309			
	Butyl benzyl phthalate, 3541 Low Solid*	86	lu[13	86	1.00000	ug/Kg	136309	11/29/0 11/29/0		
	Benzo(a)anthracene, 3541 Low Solid*	42	lul l	13	42	1.00000	ug/Kg	136309	11/29/0		
	Chrysene, 3541 Low Solid*	42		14	42	1.00000	ug/Kg	136309	11/29/0	u nazni	l dpx
	;			- •		1	∧ā≀ uâ	130307	11/29/0	ועכסט +	op K
i] [*		1	i	1	ļ		ĺ

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

PROJECT: USAGE RVAAP 14 AGES

Date: 12/07/2004

ATTAL Eric Ellis

CUSTOMER: MICH Engineers, Inc.

Customer Sample ID: LNWsb-067-SO

Date Sampled....: 11/10/2004 Time Sampled....: 13:40 Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O FLAGS	MDL	RL	DILUTION	UNITS	BATCH	DT DA	TE/TIME	TECH
	3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Solid* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(k)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghi)perylene, 3541 Low Solid* % Solids Determination % Solids, Solid % Moisture, Solid	210 210 420 42 42 42 42 42 42 42 73.9 26.1		19 41 13 11 12 12 13 12 14 0.10	210 210 420 42 42 42 42 42 42 0.10	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309 136309 136309 1363309	11/2 11/2 11/2 11/2 11/2 11/2 11/2 11/2	9/04 0856 9/04 0856 9/04 0856 9/04 0856 9/04 0856 9/04 0856 9/04 0856 9/04 1959 4/04 1959	0 dpk 0 dpk 0 dpk 0 dpk 0 dpk 0 dpk 0 dpk 0 dpk 0 dpk
								77 Webb.			746

^{*} In Description = Dry Wgt.

Page 25

Job Number: 231912

Date:11/30/2004

CUSTOMER: NKW Engineers, Inc.

PROJECT: USACE RVAAP 14 AOGS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-067-S0
Date Sampled....: 11/10/2004
Time Sampled....: 13:40
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTION	UNITS	BATCH	or	DATE/T	ÎNE	TECH
8330	Explosives by 8330 (HPLC) HMX, Solid RDX, Solid 1,3,5-Irinitrobenzene, Solid 1,3-Dinitrobenzene, Solid 2,4-6-INT, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.20 0.20 0.099 0.099 0.099 0.40 0.099 0.20 0.30 0.20 0.20	200000000000000000000000000000000000000	0.056 0.062 0.033 0.023 0.024 0.12 0.025 0.048 0.045 0.093 0.047 0.050 0.053	0.20 0.20 0.099 0.099 0.099 0.40 0.20 0.20 0.20 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135657 135657 135657 135657 135657 135657 135657 135657 135657 135657 135657		11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04 11/20/04	1430 1430 1430 1430 1430 1430 1430 1430	san san san san san san san san san

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Date: 12/01/2004

CUSTONER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ADCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-068-SD Date Sampled....: 11/10/2004 Time Sampled....: 14:45 Sample Matrix....: Soil Laboratory Sample ID: 231912-22 Date Received.....: 11/12/2004 Time Received.....: 09:15

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT OFLAGS DILLITION UNITS SAICH DI DATE/TIME TECH Method % Solids Determination % Solids, Solid 83.6 0.10 0.10 X 134487 11/16/04 1208 dai % Moisture, Solid 16.4 0.10 0.10 X 134487 11/16/04 1208 daj 7041 Antimony (GFAA) Antimony, Solid* 1.6 0.50 1.6 mg/Kg 135006 11/19/04 1807 daj 7841 Thallium (GFAA) Thallium, Solid* 86.0 0.22 0.68 mg/Kg 135008 11/19/04 2156 daj 7471A Mercury (CYAA) Solids Mercury, Solid* 0.018 0.0051 0.020 ma/Ka 135393 11/23/04 1649 gok 60108 Metals Analysis (ICAP Trace) Atuminum, Solid* 6200 2.7 17 135536 mg/Kg 11/24/04 1643 tds Barium, Solid* 34 0.18 1.1 mg/Kg 135536 11/24/04 1643 tds Arsenic, Solid* 10 0.58 1.7 reg/Kg 135536 11/24/04 1643 tds Beryllium, Solid* 0.42 0.050 0.45 mg/Kg 135536 11/24/04 1643 tds Cadmium, Solid* 0.28 0.091 0.28 135536 mg/Kg 11/24/04 1643 tds Calcium, Solid* 600 3.5 11 mg/Kg 135536 11/24/04 1643 tds Chromium, Solid* 8.2 0.25 1.1 11/24/04 1643 tds mg/Kg 135536 Cobalt, Solid* 6.2 0.16 0.57mg/Kg 135536 11/24/04 1643 tds Copper, Solid* 20 1.0 3.4 mg/Kg 135536 11/24/04 1643 tds Iron, Solid* 17000 3.4 11 mg/Kg 135536 11/24/04 1643 tds Magnesium, Solid* 1700 1.9 11 mg/Kg 135536 11/24/04 1643 tds Manganese, Solid* 380 0.15 135536 1.1 mg/Kg 11/24/04 1643 tds Nickel, Solid* 15 0.28 1.1 mg/Kg 135536 11/24/04 1643 tds Lead, Salid* 10 0.49 1.7 mg/Kg 135536 11/24/04 1643 tds Potassium, Solid* 870 16 57 mg/Kg 135536 11/24/04 1643 tds

^{*} In Description = Dry Wgt.

	Job Number: 231912	LABORATOE	Υ	TEST RESU	LIS		Date:1	2/01/200	4	*******
CUSTOMER: MKM Engineers, Inc.		PROJE	T: USA	CE RVAAP 1& ACCS			ATTN:	Eric El	lis	
Date Sam Time Sam	~ Sample ID: LNWsb-068-SO mpled: 11/10/2004 mpled: 14:45 Hatrix: Soil			Laboratory Sample Date Received Time Received	: 11/12/2004					
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q Fi	NGS MOL	RL	DILUTION	UNITS	BATCH	DT BATE/TI	ME TE(
	Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadium, Solid* Zinc, Solid*	0.69 1.1 250 13 65	BUB	0.45 0.35 98 0.24 0.45	1.7 1.1 340 1.1 2.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536	11/24/04 11/24/04 11/24/04 11/24/04	1643 tds 1643 tds 1643 tds 1643 tds
									- Transferred	

^{*} In Description = Dry Wgt.

Page 46

DATE/TIME

STL Chicago is part of Severn Trent Laboratories, Inc.

Job Number: 231912

LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ACCS

ATTAL Erīc Ellis

Customer Sample ID: LNWsb-068-SO Date Sampled....: 11/10/2004 Time Sampled....: 14:45 Sample Matrix....: Soil Laboratory Sample ID: 231912-22
Date Received.....: 11/12/2004
Time Received.....: 09:15

TEST METHOD: PARAMETER/TEST BESCRIFTION SAMPLE RESULT Q FLAGS HDL RL DILUTION UNITS BATCH DT

8270C Semivolatile Organics
Phenol, 3541 Low Solid* 200 U 8.4 200 1.00000 ug/Kg 136309
Bis(2-chloroethyl)ether, 3541 Low Solid* 79 U 11 79 1.00000 ug/Kg 136309

					·		4 		نىنە	 ''''''''''''''''''''''''''''''''''''	
8270C	Semivolatile Organics								ĺ		
	Phenol, 3541 Low Solid*	200	U	8.4	200	1.00000	ug/Kg	136309	F	11/29/04 101	10 dpk
	Bis(2-chloroethyl)ether, 3541 Low Solid*	79	טטטטטטטטטטטטטטטטטטטטטטטט	11	79	1.00000	ug/Kg	136309	ŀ	11/29/04 101	
	1,3-Dichlorobenzene, 3541 Low Solid*	200	U	16	200	1.00000	ug/Kg	136309		11/29/04 101	10 dpk
	1,4-Dichlorobenzene, 3541 Low Solid*	200	U	18	200	1.00000	ug/Kg	136309		11/29/04 101	
1	1,2-Dichlarobenzene, 3541 Low Solid*	200	U	17	200	1.00000	ug/Kg	136309		[11/29/04 101	10 dpk
	Benzyl alcohol, 3541 Low Solid*	790	U]	87	790	1.00000	ug/Kg	136309		11/29/04 101	10 dpk
1	2-Methylphenol (o-cresol), 3541 Low Solid*	79	U	12	79	1.00000	ug/Kg	136309		11/29/04 101	
1	2,2-oxybis (1-chloropropane), 3541 Low So*id	200	u	19	200	1.00000	ug/Kg	136309		11/29/04 101	10 dpk
]	n-Nitroso-di-n-propylamine, 3541 Low Soli*	. 79	U	16	79	1.00000	ug/Kg	136309		11/29/04 101	10 dpk
1	Hexachloroethane, 3541 Low Solid*	200	u	10	200	1.00000	ug/Kg	136309		11/29/04 101	10 dpk
1	4-Methylphenol (m/p-cresol), 3541 Low Sol*d	79	U U	14	79	1.00000	ug/Kg	136309		11/29/04 101	10 dpk
1	2-Chlorophenol, 3541 Low Solid*	200	U	16	200	1.00000	ug/Kg	136309		11/29/04 101	10 dpk
	Nitrobenzene, 3541 Low Solid*	39	u	10	39	1.00000	ug/Kg	136309		11/29/04 101	i0 dok
	Bis(2-chloroethoxy)methane, 3541 Low Soli*	79	U	10	79	1.00000	ug/Kg	136309	1	11/29/04 101	10 dok
	1,2,4-Trichlarobenzene, 3541 Low Salid*	200	U	16	200	1.00000	ug/Kg	136309		11/29/04 101	
	Benzoic acid, 3541 Low Solid*	790	u *	230	790	1.80000	ug/Kg	136309	1	11/29/04 101	10 dok
	Isophorone, 3541 Low Solid*	200		23	200	1.00000	ug/Kg	136309	1	11/29/04 101	10 dapk i
	2,4-Dimethylphenol, 3541 Low Solid*	390	U	19	390	1.00000	ug/Kg	136309	1	11/29/04 101	10 dok
i	Hexachlorobutadiene, 3541 Low Solid*	200	u	11	200	1.00000	ug/Kg	136309		11/29/04 101	10 dpk
	Naphthalene, 3541 Low Solid*	39	u	9.9	39	1.00000	ug/Kg	136309	į	11/29/04 101	10 dpk
	2,4-Dichlorophenol, 3541 Low Solid*	390	u	18	390	1.00000	ug/Kg	136309	ŀ	11/29/04 10:	
	4-Chloroaniline, 3541 Low Solid*	790	⊍	64	790	1.00000	ug/Kg	136309		11/29/04 101	i0 dok
	2,4,6-Trichlorophenol, 3541 Low Solid*	200	U	44	200	1.00000	ug/Kg	136309		11/29/04 101	10 dpk
	2,4,5-Trichlorophenol, 3541 Low Solid*	390	000000000000000000000000000000000000000	53	390	1.00000	ug/Kg	136309		11/29/04 101	
1	Hexachlorocyclopentadiene, 3541 Low Solid*	1200	U	360	1200	1.00000	ug/Kg	136309	'	11/29/04 101	
	2-Methylnaphthalene, 3541 Low Solid*	39	U	12	39	1.00000	ug/Kg	136309		11/29/04 101	
	2-Nitroaniline, 3541 Low Solid*	200	U	13	200	1.00000	ug/Kg	136309		11/29/04 101	
	2-Chloronaphthalene, 3541 Low Solid*	200	U	18	200	1.00000	ug/Kg	136309		11/29/04 101	
1	· · ·				1	ŀ					' '
			j								

^{*} In Description = Dry Wgt.

Job Number: 231912

LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: WKW Engineers, Inc.

PROJECT: USACE RVAAP 14 AUCS

AJIN: Eric Ellis

Customer Sample ID: LNWsb-068-S0 Date Sampled.....: 11/10/2004 Time Sampled.....: 14:45 Sample Matrix....: Soil

TEST METHOD PARAMET	R/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	HD(RL	DILUTION	UNITS	BATCH	рт	DATE/1	I ME	TEC
4-Chloro-3-methyl	ohenol, 3541 Low Solid*	390	U	41	390	1.00000	ug/Kg	136309	100	11 (20)	303038	<u> </u>
2,6-Dinitrotoluen	e, 3541 Low Solid*	39	lul	1 11	39	11.00000	ug/Kg	136309		11/29/04 11/29/04		
2-Nitrophenol, 354	il Low Solid*	390	lul	17	390	1.00000	ug/Kg	136309	1 1	11/29/04 11/29/04	1010	dok
3-Mitroaniline, 3	i41 Low Solid*	790	lul	160	790	1.00000	ug/Kg	136309		11/29/04		
Dimethyl phthalata	, 3541 Low Solid*	79	lul	11	79	1.00000	ug/Kg	136309		11/29/04		
2,4-Dinitrophenol,	3541 Low Solid*	790	v	120	790	1.00000	ug/Kg ug/Kg	136309	$1 \cdot 1$	11/29/04	1010) apk
Acenaphthylene, 3	41 Low Solid*	39		9.8	39	1.00000	ug/Kg	136309	1 1/	11/29/04	1010	Japk
2,4-Dinitrotoluene	, 3541 Low Solid*	39	lul .	12	39	1.00000			1 - 1?	1/29/04	1010] apk
Acenaphthene, 354°	Low Solid*	39	lū l	9.8	39	1.00000	ug/Kg	136309	1 12	11/29/04	1010	labk
Dibenzofuran, 3541	Low Solid*	79	البا	10.0	79	1.00000	ug/Kg ug/Kg	136309		1/29/04		
4-Nitrophenol, 354	1 Law Solid*	790	lul	250	790	1.00000		136309 136309	1 12	11/29/04	1010	/ dok
Fluorene, 3541 Low	r Solid*	39		11	39	1.00000	ug/Kg		!	1/29/04	1010	/ dpk
4-Nitroaniline, 35	41 Low Solid*	790	0 0 0 0 0 0	53	790	1.00000	ug/Kg	136309	1 1.	1/29/04	1010	/ dpk
4-Bromophenyl pher	yl ether, 3541 Low Soli*	200	lŭ l	12	200	1.00000	ug/Kg	136309		11/29/04	1010	/ dpk
Hexachlorobenzene,	3541 Low Solid*	39	ļū l	11	39	1.00000	ug/Kg	136309	1	1/29/04	1010	기 dipk
Diethyl phthalate,	3541 Low Solid*	79	liil i	11	79		ug/Kg	136309] 1	1/29/04	1010	J dpk
4-Chlorophenyl pho	nyl ether, 3541 Low Sol*d	200	lĭil l	12	200	1.00000	ug/Kg	136309] []	1/29/04	1010	/ dpk
Pentachlorophenol,	3541 Low Solid*	390		130		1.00000	ug/Kg	136309]	1/29/04	1010	/ dpk
n-Mitrosodiphenvl:	mine, 3541 Low Solid*	39	lil l	12	390	1.00000	ug/Kg	136309	1	1/29/04	1010	/ dpk
4.6-Dinitro-2-meth	ylphenol, 3541 Low Soli*	790		200	39	1-00000		136309	1	1/29/04	1010	dpk
Phenanthrene, 3541	Low Solid*	59	10		790	1.00000		136309	1	1/29/04	1010	i∣dapk
Anthracene, 3541 L	ow Solid*	39	[<u> </u>	18 13	59	1.00000	ug/Kg	136309	1	1/29/04	1010	i dpk
Carbazole, 3541 Lo	u Solid™	200			39	1.00000	ug/Kg	136309]1	1/29/04	1010	dok
Di-n-butyl phthais	te, 3541 Low Solid*	200		14	200	1.00000	ug/Kg	136309	1 1	1/29/04	1010) dok
Fluoranthene, 3541	low Solids	39		13	200	1.00000	ug/Kg	136309	1	1/29/04	1010	dpk
Pyrene, 3541 Low S		37	181	13	39	1.00000	ug/Kg	136309		1/29/04		
	late, 3541 Low Solid*	59 79 39	181	14	59	1.00000	ug/Kg	136309	1	1/29/04	1010	dok
Benzo(a)anthracene	26(1 tour collisher	179	U	12	79	1.00000	ug/Kg	136309	1 1	1/29/04	1010	dok
Chrysene, 3541 Low		39	u	12	39	1.00000	ug/Kg	136309	1	1/29/04	1010	dpk
City Serie, 3341 LON	avt ju-	39	[u]	12	39	1.00000	ug/Kg	136309	1 1	1/29/04	1010	dpk
		1				1 1			4 [- -		"

^{*} In Description = Dry Wgt.

Page 30

Job Number: 231912 LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ADCS

ATTN: Eric Ellis

Customer Sample ID: 1NWsb-068-S0
Date Sampled....: 11/10/2004
Time Sampled....: 14:45
Sample Matrix....: Soil

Laboratory Sample ID: 231912-22 Date Received.....: 11/12/2004 Time Received.....: 09:15

TEST NETHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS HDL DILUTION UNITS BATCH OT DATE/TIME 3,3-Dichlorobenzidine, 3541 Low Solid* 200 17 200 1.00000 ug/Kg 136309 11/29/04 1010 dpk Bis(2-ethylhexyl)phthalate, 3541 Low Soli* 200 38 200 1.00000 ug/Kg 136309 11/29/04 1010 dpk Di-n-octyl phthalate, 3541 Low Solid* 390 12 390 1.00000 ug/Kg 136309 11/29/04 1010 dpk Benzo(b)fluoranthene, 3541 Low Solid* 39 11 39 1.00000 11/29/04 1010 dpk ug/Kg 136309 Benzo(k)fluoranthene, 3541 Low Solid* 39 11 39 1.00000 ug/Kg 136309 11/29/04 1010 dok Benzo(a)pyrene, 3541 Low Solid* 39 11 39 1.000000 ug/Kg Indeno(1,2,3-cd)pyrene, 3541 Low Solid* 136309 11/29/04 1010 dok 39 12 39 1.00000 ug/Kg 136309 11/29/04 1010 dok Dibenzo(a,h)enthracene, 3541 Low Solid* 39 11 39 1.00000 ug/Kg 136309 Benzo(ghi)perytene, 3541 Low Solid* 11/29/04 1010 dok 39 13 39 1.00000 136309 ug/Kg 11/29/04 1010 dpk **Hethod** % Solids Determination % Solids, Solid 83.6 0.10 0.10 134487 % Moisture, Solid 11/16/04 1208 dai 16.4 0.10 0.10 134487 11/16/04 1208 dai

Page 31

^{*} In Description = Dry Wgt.

Job Number: 231912

Date:11/30/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 16 AOCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-068-SD Date Sampled....: 11/10/2004 Fime Sampled....: 14:45

Laboratory Sample ID: 231912-22 Date Received.....: 11/12/2004 Time Received.....: 09:15

Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	G FLAGS	MOL .		DILUTION	UNITS	BATCH	DΤ	DATE/TIME	
833G	Explosives by 8330 (HPLC) HNX, Solid ROX, Solid 1,3,5-Trinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-TNT, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.20 0.20 0.10 0.10 0.10 0.10 0.40 0.10 0.20 0.20 0.30 0.20 0.20	הה ה הה ה ה ה	0.056 0.063 0.033 0.023 0.024 0.12 0.026 0.049 0.045 0.094 0.048 0.050 0.053	0.20 0.20 0.10 0.10 0.10 0.10 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135657 135657 135657 135657 135657 135657 135657 135657 135657 135657 135657 135657		11/20/04 153 11/20/04 153 11/20/04 153 11/20/04 153 11/20/04 153 11/20/04 153 11/20/04 153 11/20/04 153 11/20/04 153 11/20/04 153 11/20/04 153 11/20/04 153 11/20/04 153	35 35 35 35 35 35 35 35 35 35 35 35 35 3

^{*} In Description = Dry Wgt.

Page 24

LABORATORY TEST RESULTS

Job Number: 231912

Date: 12/01/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Effe Ellis

Customer Sample ID: LNWsb-069-S0
Date Sampled....: 11/10/2004
Time Sampled....: 15:15
Sample Metrix....: Soil

FEST METHOC	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	RL	DILUTEON	LINITS	BATCH	DT.	DATE/T	186	тесн
Method	% Solids Determination % Solids, Solid % Moisture, Solid	79.18 20.2		0.10 0.10	0.10 0.10	1	% %	134487 134487		11/16/04 11/16/04		
7041	Antimony (GFAA) Antimony, Solid*	1.7	บ	0.52	1.7	1	mg/Kg	135006		11/19/04	1944	daj
7841	Thallium (GFAA) Thallium, Solid*	0.71	u	0.22	0.71	1	mg/Kg	135008		11/19/04	2336	daj
7471A	Mercury (CVAA) Solids Mercury, Solid*	0.021	U	0.0054	0.021	1	mg/Kg	135393		11/23/04	1658	gok
6010 В	Metals Analysis (ICAP Trace) Aluminum, Solid* Barium, Solid* Arsenic, Solid* Beryllium, Solid* Cadmium, Solid* Calcium, Solid* Chromium, Solid* Cobalt, Solid* Copper, Solid* Iron, Solid* Magnesium, Solid* Mickel, Solid* Mickel, Solid* Potassium, Solid*	6800 24 13 0.42 0.30 810 11 7.2 22 22000 2400 260 18 9.9	В	2.9 0.19 0.61 0.053 0.096 3.7 0.26 0.17 1.1 3.6 2.0 0.16 0.30 0.51	18 1.2 1.8 0.48 0.30 12 1.2 0.60 3.6 12 12 1.2 1.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536 135536		11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04 11/24/04	1757 1757 1757 1757 1757 1757 1757 1757	tds tds tds tds tds tds tds tds tds tds

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 231912

Date:12/01/2004

CLISTOMER: MKM Engineers, inc. Project: USACE RVAAP 14 ACCS ATEN: Erac Eliás

Customer Sample ID: LNWsb-069-S0
Date Sampled.....: 11/10/2004
Time Sampled.....: 15:15
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O F	LAGS	MOL	RE	DILUTION	UNITS	BATCH	OΤ	DATE/T	惟	TECH
	Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadium, Solid* Zinc, Solid*		B U B		0.48 0.37 100 0.25 0.48	1.8 1.2 360 1.2 2.4	1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135536 135536 135536 135536 135536		11/24/04 11/24/04 11/24/04 11/24/04 11/24/04	1757 1757 1757	tds tds tds
	·												
									7 T T T T T T T T T T T T T T T T T T T				
		·											
										, , , ,			

^{*} In Description = Ory Wgt.

Page 54

Job Number: 231912

LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: NKM Engineers, Inc.

PROJECT: USACE RYAXP 14 AUCS

ATTMA Eric Ellis

Customer Sample ID: LNWsb-069-S0
Date Sampled....: 11/10/2004
Time Sampled....: 15:15
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	M OL	RL	DILUTION	UNITS	BATCH	DT	DATE/TI	146	TE:
	Semivolatile Organics Phenol, 3541 Low Solid* Bis(2-chloroethyl)ether, 3541 Low Solid* 1,3-Dichlorobenzene, 3541 Low Solid* 1,4-Dichlorobenzene, 3541 Low Solid* 1,2-Dichlorobenzene, 3541 Low Solid* 1,2-Dichlorobenzene, 3541 Low Solid* Benzyl alcohol, 3541 Low Solid* 2-Methylphenol (o-cresol), 3541 Low Solid* 2,2-oxybis (1-chloropropane), 3541 Low Solid* 2,2-oxybis (1-chloropropane), 3541 Low Solid* Hexachloroethane, 3541 Low Solid* 4-Methylphenol (m/p-cresol), 3541 Low Solid* 4-Methylphenol (m/p-cresol), 3541 Low Solid* Bis(2-chloroethoxy)methane, 3541 Low Solid* Bis(2-chloroethoxy)methane, 3541 Low Solid* Bis(2-chloroethoxy)methane, 3541 Low Solid* 1,2,4-Trichlorobenzene, 3541 Low Solid* 2,4-Dimethylphenol, 3541 Low Solid* 4-Chlorobentadiene, 3541 Low Solid* 2,4-Oichlorophenol, 3541 Low Solid* 2,4-Oichlorophenol, 3541 Low Solid* 2,4,6-Trichlorophenol, 3541 Low Solid* 2,4,6-Trichlorophenol, 3541 Low Solid* 2,4,5-Trichlorophenol, 3541 Low Solid* 2-Methylnaphthalene, 3541 Low Solid* 2-Methylnaphthalene, 3541 Low Solid* 2-Methylnaphthalene, 3541 Low Solid* 2-Mitroaniline, 3541 Low Solid* 2-Mitroaniline, 3541 Low Solid* 2-Chloronephthalene, 3541 Low Solid* 2-Chloronephthalene, 3541 Low Solid* 2-Chloronephthalene, 3541 Low Solid*	210 83 210 210 210 210 830 83 210 83 210 83 210 83 210 830 210 830 210 410 410 830 210 410 410 830 210	*	8.8 11 17 19 18 92 13 20 16 11 15 17 240 24 20 11 10 19 67 46 56 380 12 13 19	210 83 210 210 210 830 83 210 83 210 41 83 210 410 210 410 830 210 410 830 210 410 830 210 410 830 210	1.00000 1.00000	Ug/Kg Ug/Kg	136309 136309		11/29/04 11/29/04	1758 1158 1158 1158 1158 1158 1158 1158	98999999999999999999999999999999999999

^{*} In Description = Dry Wgt.

Job Number: 231912

LABORATORY TEST RESULTS

Date: 12/07/2004

CUSTOMER: MKM Engineers; Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTN: Eric Ellis

Customer Sample ID: LNHsb-069-S0
Date Sampled....: 11/10/2004
Time Sampled....: 15:15
Sample Metrix....: Soil

T METHOD PARAMETER/TEST DESCRIPTION	SAMPLE RESUL	D FLAGS	MOL	RL	DICUTION	UNITS	BATCH	DT DATE	/TIME
4-Chloro-3-methylphenol, 3541 Low Solid*	410	U	43	410	1.00000	ug/Kg	136309	100000000	:000000000 Of 445
2,6-Dinitrotoluene, 3541 Low Solid*	41	[u]	11	41	1.00000	ug/Kg ug/Kg	136309	11/29/	34 775 57 445
2-Nitrophenol, 3541 Low Solid*	410	U I	18	410	1.00000	ug/Kg	136309	11/29/	J4 113
3-Witroaniline, 3541 Low Solid*	830	u	170	830	1.00000	ug/Kg ug/Kg	136309	11/29/	J4 115
Dimethyl phthalate, 3541 Low Solid*	83	u	11	83	1.00000	ug/Kg	136309	11/29/1	/4 110 07 110
2,4-Dinitrophenol, 3541 Low Solid*	830	n h	130	830	1.00000	ug/Kg	136309	11/29/1	/4 110 N 415
Acenaphthylene, 3541 Low Solid*	41	U	10	41	1.00000	ug/Kg	136309	11/29/0	/4 (1)
2,4-Dinitrotoluene, 3541 Low Solid*	41]U[13	41	1.00000	ug/Kg	136309	11/29/0	J4 10
Acenaphthene, 3541 Low Solid*	41	U	10	41	1.00000	ug/Kg	136309	11/29/0 11/29/0	74 113 74 145
Dibenzofuran, 3541 Low Solid*	83	[0]	11	83	1.00000	ug/Kg	136309	11/29/0	
4-Nitrophenol, 3541 Low Solid*	830	lul l	260	830	1.00000	ug/Kg	136309	11/29/0	M 113
Fluorene, 3541 Low Solid*	41	u	11	41	1.00000	ug/Kg	136309	11/29/0	A4 113 17 445
4-Nitroaniline, 3541 Low Solid*	830	u	56	830	1.00000	ug/Kg	136309	11/27/1	74 113 14 445
4-Bromophenyl phenyl ether, 3541 Low Soli*	210	0	12	210	1.00000	ug/Kg	136309	11/29/0	/4 3 16 46
Hexachlorobenzene, 3541 Low Solid*	41	(u)	12	41	1.00000	ug/Kg	136309	11/29/0	/4
Diethyl phthalate, 3541 Low Solid*	83	U	12	83	1.00000	ug/Kg	136309	11/29/0	/4
4-Chlorophenyl phenyl ether, 3541 Low Sol*d	210	U	12	210	1.00000	ug/Kg	136309	11/29/0	/40 110 1/2 4.45
Pentachlorophenol, 3541 Low Solid*	410	u	140	410	1.00000	ug/Kg	136309	11/29/0	4 113 V 445
n-Nitrosodiphenylamine, 3541 Low Solid*	41	u	13	41	1.00000	ug/Kg	136309	11/29/0	44 TID
4,6-Dinitro-2-methylphenol, 3541 Low Soli*	830	lul l	210	830	1.00000	ug/Kg	136309	11/29/0	44 1 1 12 4 4 5
Phenanthrens, 3541 Low Solid*	62	U	19	62	1.00000	ug/Kg	136309	11/29/0	4 110
Anthracene, 3541 Low Solid*	41	[u]	14	41	1.00000	ug/kg ug/kg	136309	11/29/0	4 113
Carbazole, 3541 Low Solid*	210	וט	15	210	1.00000	ug/Kg	136309	11/29/0	4 1(3
Di-n-butyl phthalate, 3541 Low Solid*	210	lui f	14	210	1.00000	ug/Kg	136309	11/29/0	4 117 J 145
Fluoranthene, 3541 Low Solid*	41	luf l	13	41	1.00000	ug/Kg	136309	11/29/0	4 113
Pyrene, 3541 Low Solid*	62	ا الا	15	62	1.00000	ug/Kg ug/Kg	136309	11/29/0	4 112
Butyl benzyl phthalate, 3541 Low Solid*	83	lu l	13	83	1.00000	ug/Kg	136309	11/29/0	4 115
Benzo(a)anthracene, 3541 Low Solid*	41	ם פ ב ב ב פ פ ב ב ב ב פ פ פ	12	41	1.00000	ug/Kg	136309	11/29/0	4 115
Chrysene, 3541 Low Solid*	41	lul I	13	41	1.00000	ug/Kg ug/Kg	136309	11/29/0	4 115
		⁻] 7'		49/149	ן עטנסנין	11/29/0	4 715

^{*} In Description = Dry Wgt.

Page 39

Job Number: 231912 LABORATORY TEST RESULTS

Date:12/07/2004

CUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 AOCS

ATTH: Eric Ellis

Customer Sample ID: LNWsb-069-S0
Date Sampled....: 11/10/2004
Time Sampled....: 15:15
Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	O FLAGS	HDL .	13	DILUTION	UNITS	BATCH	6.5	DATE/TI		TEC
Method	3,3-Dichlorobenzidine, 3541 Low Solid* Bis(2-ethylhexyl)phthalate, 3541 Low Solid* Di-n-octyl phthalate, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(k)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(ghi)perylene, 3541 Low Solid* % Solids Determination % Solids, Solid % Moisture, Solid	210 210 410 41 41 41 41 41 41 79.8 20.2	ט ב ט ב ט ב ט ב ט ב ט ב	18 40 13 11 12 12 13 12 14 0.10	210 210 410 41 41 41 41 41 41 0.10	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	136309 136309 136309 136309 136309 136309 136309 136309 136487		11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04 11/29/04	1158 1158 1158 1158 1158 1158 1158 1158	dpledpledpledpledpledpledpledpledpledple
									7		1904.	

^{*} In Description = Dry Wgt.

Page 40

Job Number: 231912

Date:11/30/2004

CUSTOMER: NKM Engineers, Inc. PROJECT: USACE RVALD 14 ACCS

ATTN: Eric Ellis

Customer Sample ID: LNWsb-069-SO
Date Sampled....: 11/10/2004
Time Sampled....: 15:15
Sample Matrix...: Soil

TEST HETHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	g FLAGS	MO1	RE OTLUT	ON UNITS	BATCH	T DATE/TIME	TECH
8330	Explosives by 8330 (HPLC) HMM, Solid RDX, Solid 1,3,5-Irinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-INI, Solid 1etryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 2-Nitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.20 0.098 0.098 0.098 0.098 0.39 0.098 0.20		0.055 0.062 0.032 0.023 0.021 0.023 0.12 0.025 0.048 0.045 0.093 0.047 0.049	0.20 1.0000 0.098 1.0000 0.098 1.0000 0.098 1.0000 0.098 1.0000 0.399 1.0000 0.20 1.0000 0.29 1.0000 0.29 1.0000 0.20 1.0000 0.20 1.0000	0 mg/Kg 0 mg/Kg 0 mg/Kg 0 mg/Kg 0 mg/Kg 0 mg/Kg 0 mg/Kg 0 mg/Kg 0 mg/Kg 0 mg/Kg 0 mg/Kg	135657 135657 135657 135657 135657 135657 135657 135657 135657 135657 135657 135657	11/20/04 185: 11/20/04 185: 11/20/04 185: 11/20/04 185: 11/20/04 185: 11/20/04 185: 11/20/04 185: 11/20/04 185: 11/20/04 185: 11/20/04 185: 11/20/04 185: 11/20/04 185:	0 san 0 san 0 san 0 san 0 san 0 san 0 san 0 san 0 san 0 san

^{*} In Description = Bry Wgt.

Job Number: 231832

Date: 11/29/2004

COSTOMER: MKM Englineers; Inc. ATTHIS Eric Ellis

Customer Sample ID: ATAsb-001M-S0 Date Sampled.....: 11/08/2004 Time Sampled.....: 12:00 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MDL	ŖĹ	DILUTION	UNITS	BATCH	DТ	DATE/TI	ME	TEC
Method	% Solids Determination					<u> </u>	_ 11,17,11,11, 17131		\$51,711		30103	14:33
	% Solids, Solid	99.7		0.10	0.10	1 1	, x	134211		11/13/04	1034	∮da i
	% Moisture, Solid	0.30		0_10	0.10	1	%	134211		11/13/04		
7041	Antimony (GFAA)							l				-
	Antimony, Solid*	1.4	u	0.42	1.4	1	mg/Kg	134864		11/18/04	1317	daj
7841	Thatlium (GFAA)]			
	Thallium, Solid*	0.58	u	0.18	0.58	1	mg/Kg	134716		11/17/04	1229	daj
7471A	Mercury (CVAA) Solids								!			
	Mercury, Solid*	0.011	В	0.0043	0.017	1	mg/Kg	135393	1	11/23/04	1326	gok
60108	Metals Analysis (ICAP Trace)											
	Aluminum, Solid*	2400	i I	2.3	14	1	mg/Kg	135031	1	11/20/04 2	2157	Lone
	Barium, Solid*	15		0.15	0.96	1	mg/Kg	135031		11/20/04 2		
	Arsenic, Solid*	7.1	11	0.49	1.4	1	mg/Kg	135031		11/20/04 2		
	Beryllium, Solid*	0.18	8	0.042	0.38	1	mg/Kg	135031		11/20/04 2		
	Cadmium, Solid*	0.24	u	0.077	0.24	1	mg/Kg	135031		11/20/04 2	2157	: I me
	Calcium, Solid*	17000		3.0	9.6	1	mg/Kg	135031		11/20/04		
	Chromium, Solid*	28	11	0.21	0.96	1	mg/Kg	135031		11/20/04 2		
	Cobalt, Solid*	2.9		0.13	0.48	11	mg/Kg	135031		11/20/04 2		
	Copper, Salid*	14		0.86	2.9	ำ	mg/Kg	135031		11/20/04 2		
	Iron, Solid*	11000		2.9	9.6	1 .	mg/Kg	135031		11/20/04 2		
	Magnesium, Solid*	3500		1.6	9.6	11	mg/Kg	135031		11/20/04 2		
	Manganese, Solid*	210	11	0.12	0.96	1	mg/Kg	135031	.	11/20/04 2	2157	Lmr
	Nickel, Solid*	15		0.24	0.96	1	mg/Kg	135031		11/20/04 2	2157	1 mr
	Lead, Solid*	6.3	i I	0.41	1,4	1	mg/Kg	135031		11/20/04 2		
	Potassium, Solid*	430	1	13	48	14	mg/Kg	135031		11/20/04 2		

^{*} In Description = Dry Wgt.

Page 12

Job Number: 231832

Date:11/29/2004

ATTH: Eric Ellis

CUSTOMER: NKM Engineers, Inc.

Customer Sample IO: ATAsb-001M-SO Date Sampled.....: 11/08/2004

Time Sampled....: 12:00 Sample Matrix....: Soil Laboratory Sample ID: 231832-6
Date Received.....: 11/10/2004

Time Received.....: 09:45

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	WDT	RL	DILUTION	LUITS	ватсн с	DT DATE/TIME	TEC
	Selenium, Solid* Silver, Solid* Sodium, Solid* Vanadium, Solid* Zinc, Solid*	0.39 0.96 130 5.1 42	B B	0.38 0.30 83 0.20 0.38	1.4 0.96 290 0.96 1.9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135031 135031 135031 135031 135031	11/20/04 2157 11/20/04 2157 11/20/04 2157 11/20/04 2157 11/20/04 2157	' Lmr ' Lmr ' Lmr ' Lmr
									7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	,

PROJECT: USACE RVAAP 14 AOCS

Page 13

^{*} In Description = Dry Wgt.

	Job Wumber: 231832	LABORATORY			Date: 12/02/2004
	CUSTOMER: MKM Engineers, Inc.	РКОЈЕСТ∷ И	SACE RVAAP	14 Ades	ATTN= Eric EtLis
;	Customer Sample ID: ATAsb-001M-S0 Date Sampled: 11/08/2004 Time Sampled: 12:00 Sample Matrix: Soil		Date Re	ory Sample ID: 231832-6 ceived: 11/10/200 ceived: 09:45	

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	MCT.	RL.	DILUTION	UNITS	BATCH	DT	DATE/TIM	Æ TI
8330	Explosives by 8330 (MPLC) HMX, Solid RDX, Solid 1,3,5-Trinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-TNT, Solid Tetryl, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 4-Nitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.20 0.20 0.099 0.099 0.099 0.099 0.20 0.20		0.056 0.062 0.033 0.023 0.024 0.12 0.025 0.048 0.045 0.045 0.093 0.047 0.050 0.053	0.20 0.20 0.099 0.099 0.099 0.099 0.40 0.099 0.20 0.20 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135895 135895 135895 135895 135895 135895 135895 135895 135895 135895 135895 135895 135895 135895		11/19/04 1 11/19/04 1 11/19/04 1 11/19/04 1 11/19/04 1 11/19/04 1 11/19/04 1 11/19/04 1 11/19/04 1	1158 si 1158 si 1158 si 1158 si 1158 si 1158 si 1158 si 1158 si 1158 si 1158 si

^{*} In Description = Dry Wgt.

LABORATORY TEST RESULTS

Job Number: 231832

Date:11/29/2004

CUSTOMER: MCM: Engineers, Inc. ATTN: Eric Ellis

Customer Sample ID: ATAsb-002M-SO Date Sampled.....: 11/08/2004 Time Sampled.....: 12:30 Sample Matrix....: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	Q FLAGS	(40)	RC	DILLUTION	UNITS	BATCH	DΤ	DATE/T	INE.	TECH
Method	% Solids Determination % Solids, Solid	99.2		0.10	0.10	1	×	134211	1	11/13/04	1102	dai
	% Moisture, Solid	0.80		0.10	0.10	1	*	134211		11/13/04		
7041	Antimony (GFAA) Antimony, Solid*	1.2		0.70						}		
		1.2	"	0.38	1.2		mg/Kg	134864		11/18/04	1632	daj
7841	Thallium (GFAA) Thallium, Solid*	0.52		0,17	0.52			134716		44.47.01	10.77	
	,	0.52		""	0.52	'	mg/Kg	134110		11/17/04	1847	daj
7471A	Mercury (CVAA) Solids Mercury, Solid*	0.011	l _R	0.0043	0.017		mg/Kg	135393		14 /27 /0/	1/05	
444		0.011		310045	0.011	'	"9/49	133393		11/23/04	1401	gor
6010B	Metals Analysis (ICAP Trace)				_					l		
	Aluminum, Solid*	2900	1	2.3	15	[1]	mg/Kg	135031		11/20/04		
	Barium, Solid* Arsenic, Solid*	17		0.16	0.97	!1	mg/Kg	135031		11/20/04		
	Beryllium, Solid*	6.5 0.22	ایا	0.50	1.5	.1	mg/Kg	135031		11/20/04		
	Cadmium, Solid*	0.24	B	0.043	0.39		mg/Kg	135031		11/20/04		
	Calcium, Solid*	19000		0.078 3.0	0.24 9.7	1.	mg/Kg	135031		11/20/04		
	Chromium, Solid*	26		0.21	9.7 0.97	11	mg/Kg	135031 135031		11/20/04		
	Cobelt, Solid*	3.3	11	0.14	0.49	1	mg/Kg mg/Kg	135031		11/20/04		
	Copper, Solid*	12	1 1	0.88	2.9	11	mg/Kg	135031		11/20/04		
	Iron, Solid*	12000		2.9	9.7	li l	mg/Kg	135031		11/20/04	2342	lmr
	Magnesium, Solid*	3300		1.7	9.7	li l	mg/Kg	135031		11/20/04		
	Manganese, Solid*	240		D. 13	0.97	1	mg/Kg	135031	; ;	11/20/04	2342	lmr
	Nickel, Solid*	18	11	0.24	0.97	1	mg/Kg	135031	1	11/20/04	2342	imr
	Lead, Solid*	6.3	11	0.42	1.5	1	mg/Kg	135031	:	11/20/04	2342	Lmr
	Potassium, Solid*	500	11	13	49	1		135031				
: :	Potassium, Solid*	500		13	49	1	mg/Kg]	135031			135031 11/20/04 2342

^{*} In Description = Dry Wgt.

Job Number: 231832

Date: 11/29/2004

CUSTOMER: MKM Engineers, Inc. PROJECT: USAGE RVAAP 14 AGES ATTN: Eric Ellis

Customer Sample ID: ATAsb-002M-SO Date Sampled.....: 11/08/2004 Time Sampled.....: 12:30 Sample Matrix....: Soil

Laboratory Sample 1D: 231832-19 Date Received.....: 11/10/2004 Time Received.....: 09:45

TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS MOL RL DILLETTON UNITS BATCH DI DATE/TIME Selenium, Solid* 0.44 0.39 1.5 mg/Kg 135031 11/20/04 2342 Lmr Silver, Solid* 0.97 0.30 11/20/04 2342 Lmr 11/20/04 2342 Lmr 0.97 135031 mg/Kg Sodium, Solid* 130 84 290 mg/Kg 135031 Vanadium, Solid* 5.9 0.20 0.97 mg/Kg 135031 11/20/04 2342 imr Zinc, Solid* 39 0.39 1.9 mg/Kg 135031 11/20/04 2342 Lmr

Page 39

^{*} In Description = Dry Wgt.

Job Number: 231832

Date: 12/02/2004

GUSTOMER: MKM Engineers, Inc.

PROJECT: USACE RVAAP 14 ADCS

ATTN: Eric Ellis

Customer Sample ID: ATAsb-002M-SO
Date Sampled....: 11/08/2004
Time Sampled....: 12:30
Sample Matrix...: Soil

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RÉSULT	G FLA	is HOL	RL	DILUTION	UNITS	BATCH 4	T DATE/TI	ME TE	£H.
8330	Explosives by 8330 (HPLC) HMX, Solid 1,3,5-Trinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-TMT, Solid 12,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 4-Amitrotoluene, Solid 3-Nitrotoluene, Solid 3-Nitrotoluene, Solid	0.098 0.098 0.39 0.098 0.20 0.20 0.29 0.20		0.055 0.062 0.032 0.023 0.021 0.023 0.12 0.025 0.048 0.045 0.093 0.047 0.049 0.052	0.20 0.20 0.098 0.098 0.098 0.39 0.20 0.20 0.20 0.20 0.20	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	135895 135895 135895 135895 135895 135895 135895 135895 135895 135895 135895 135895	11/19/04 11/19/04 11/19/04 11/19/04 11/19/04 11/19/04 11/19/04 11/19/04 11/19/04 11/19/04 11/19/04 11/19/04	1933 sa 1933 sa 1933 sa 1933 sa 1933 sa 1933 sa 1933 sa 1933 sa 1933 sa 1933 sa 1933 sa 1933 sa 1933 sa	

^{*} In Description = Dry Wgt.