

LOAD LINE 5 TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	PURPOSE AND SCOPE	1
1.2	BACKGROUND INFORMATION	1
1.	2.1 AOC Description and History	1
1.	2.2 Previous Investigation	2
1.	2.3 Regulatory Authorities	3
1.	2.4 Regulatory Status of Load Line 5	3
2.0	ENVIRONMENTAL SETTING AT LOAD LINE 5	4
2.1	SURFACE FEATURES	4
2.2	METEOROLOGY AND CLIMATE	4
2.3	SURFACE WATER HYDROLOGY	4
2.4	GEOLOGY	4
2.	4.1 Glacial Deposits	4
2.	4.2 Sedimentary Rocks	5
2.5	Soil	5
2.6	HYDROGEOLOGY	5
2.	6.1 Unconsolidated Sediments	5
2.	6.2 Bedrock	5
2.7	DEMOGRAPHY AND LAND USE	5
2.8	ECOLOGY	5
3.0	CHARACTERIZATION ACTIVITIES OF LOAD LINE 5	6
3.0 3.1	CHARACTERIZATION ACTIVITIES OF LOAD LINE 5	
3.1		6
3.1 <i>3</i> .	FIELD ACTIVITIES	6 6
3.1 3. 3.	FIELD ACTIVITIES 1.1 Trenching Activities	6 6 7
3.1 3. 3. 3.	FIELD ACTIVITIES 1.1 Trenching Activities 1.2 MI Surface Soil (0-1 ft) Sampling	6 6 7 7
3.1 3. 3. 3. 3.	FIELD ACTIVITIES	6 7 7 7
3.1 3. 3. 3. 3. 3. 3.	FIELD ACTIVITIES 1.1 Trenching Activities 1.2 MI Surface Soil (0-1 ft) Sampling 1.3 Discrete Surface Soil (0-1 ft) Sampling (VOC) 1.4 Surface Water Sampling (Sewers/Sumps/Basements)	6 6 7 7 7 8
3.1 3. 3. 3. 3. 3. 3. 3.	FIELD ACTIVITIES	6 6 7 7 8 8
3.1 3. 3. 3. 3. 3. 3. 3.	FIELD ACTIVITIES Image: Constraint of the second secon	6 7 7 8 8 0
3.1 3. 3. 3. 3. 3. 3. 3.	FIELD ACTIVITIES 11 1.1 Trenching Activities 1.2 MI Surface Soil (0-1 ft) Sampling 1.3 Discrete Surface Soil (0-1 ft) Sampling (VOC) 1.4 Surface Water Sampling (Sewers/Sumps/Basements) 1.5 Sediment (Sewers/Sumps) Sampling 1.6 Groundwater Investigation Activities 1.7 Sampling Location and Monitoring Well Survey	6 6 7 7 8 8 0 0
3.1 3. 3. 3. 3. 3. 3. 3.2	FIELD ACTIVITIES Image: Constraint of the system of th	6 7 7 8 8 0 1
3.1 3. 3. 3. 3. 3. 3. 4.0	FIELD ACTIVITIES Image: Constraint of the system of th	6 7 7 7 8 8 0 0 1
3.1 3. 3. 3. 3. 3. 3.2 4.0 4.1	FIELD ACTIVITIES 11 1.1 Trenching Activities 1.2 MI Surface Soil (0-1 ft) Sampling 1.3 Discrete Surface Soil (0-1 ft) Sampling (VOC) 1.4 Surface Water Sampling (Sewers/Sumps/Basements) 1.5 Sediment (Sewers/Sumps) Sampling 1.6 Groundwater Investigation Activities 1.7 Sampling Location and Monitoring Well Survey 10 DEVIATIONS FROM THE WORK PLAN 11 MI SURFACE SOIL (0-1 FT) 11 MI SURFACE SOIL (0-1 FT)	6 7 7 7 8 8 0 0 1 1 2
3.1 3. 3. 3. 3. 3. 3. 4.0 4.1 4.2	FIELD ACTIVITIES 1 1.1 Trenching Activities 1 1.2 MI Surface Soil (0-1 ft) Sampling 1 1.3 Discrete Surface Soil (0-1 ft) Sampling (VOC) 1 1.4 Surface Water Sampling (Sewers/Sumps/Basements) 1 1.5 Sediment (Sewers/Sumps) Sampling 1 1.6 Groundwater Investigation Activities 1 1.7 Sampling Location and Monitoring Well Survey 1 DEVIATIONS FROM THE WORK PLAN 1 NATURE OF CONTAMINATION AT LOAD LINE 5 1 MI SURFACE SOIL (0-1 FT) 1 SEDIMENTS 1	6 7 7 7 8 8 0 0 1 1 2 3
3.1 3. 3. 3. 3. 3. 3.2 4.0 4.1 4.2 4.3	FIELD ACTIVITIES 1.1 1.1 Trenching Activities 1.2 MI Surface Soil (0-1 ft) Sampling 1.3 Discrete Surface Soil (0-1 ft) Sampling (VOC) 1.4 Surface Water Sampling (Sewers/Sumps/Basements) 1.5 Sediment (Sewers/Sumps) Sampling 1.6 Groundwater Investigation Activities 1.7 Sampling Location and Monitoring Well Survey 10 NATURE OF CONTAMINATION AT LOAD LINE 5 11 MI SURFACE SOIL (0-1 FT) 12 Surface Water	6 7 7 7 8 8 0 1 1 2 3 4
3.1 3. 3. 3. 3. 3. 3.2 4.0 4.1 4.2 4.3 4.4	FIELD ACTIVITIES 1 1.1 Trenching Activities 1 1.2 MI Surface Soil (0-1 ft) Sampling 1 1.3 Discrete Surface Soil (0-1 ft) Sampling (VOC) 1 1.4 Surface Water Sampling (Sewers/Sumps/Basements) 1 1.5 Sediment (Sewers/Sumps) Sampling 1 1.6 Groundwater Investigation Activities 1 1.7 Sampling Location and Monitoring Well Survey 1 DEVIATIONS FROM THE WORK PLAN 1 NATURE OF CONTAMINATION AT LOAD LINE 5 1 MI SURFACE SOIL (0-1 FT) 1 SEDIMENTS 1 GROUNDWATER 1	6 7 7 7 8 8 0 0 1 1 2 3 4 5
3.1 3. 3. 3. 3. 3. 3.2 4.0 4.1 4.2 4.3 4.4 4.5	FIELD ACTIVITIES 1.1 1.1 Trenching Activities 1.2 MI Surface Soil (0-1 ft) Sampling 1.3 Discrete Surface Soil (0-1 ft) Sampling (VOC) 1.4 Surface Water Sampling (Sewers/Sumps/Basements) 1.5 Sediment (Sewers/Sumps) Sampling 1.6 Groundwater Investigation Activities 1.7 Sampling Location and Monitoring Well Survey 10 DEVIATIONS FROM THE WORK PLAN 11 MI SURFACE SOIL (0-1 FT) 12 MI SURFACE SOIL (0-1 FT) 13 Surface Water 14 GEOTECHNICAL	6 6 7 7 8 8 0 0 1 1 2 3 4 5 5
3.1 3. 3. 3. 3. 3. 3. 4.0 4.1 4.2 4.3 4.4 4.5 4.6	FIELD ACTIVITIES 1.1 1.1 Trenching Activities 1.2 MI Surface Soil (0-1 ft) Sampling 1.3 Discrete Surface Soil (0-1 ft) Sampling (VOC) 1.4 Surface Water Sampling (Sewers/Sumps/Basements) 1.5 Sediment (Sewers/Sumps) Sampling 1.6 Groundwater Investigation Activities 1.7 Sampling Location and Monitoring Well Survey 1.6 DEVIATIONS FROM THE WORK PLAN 10 NATURE OF CONTAMINATION AT LOAD LINE 5 11 Sediments 12 MI SURFACE SOIL (0-1 FT) 13 Surface Water 14 Surface Soil (0-1 FT) 15 Sediments 16 Trenching Activities 17 Surface Soil (0-1 FT) 18 Surface Soil (0-1 FT) 19 Surface Water 10 Surface Water 11 Surface Water 12 Surface Water 13 Surface Water 14 Geotechnical 15 In SITU PERMEABILITY TESTING RESULTS	6 6 7 7 8 8 0 0 1 1 2 3 4 5 5 7

5.	1.2	Sediment	. 17
5.	1.3	Surface Water	. 18
		Groundwater	
5.2	Eco	DLOGICAL RISK SCREENING	.18
5.	2.1	Surface Soil (0-1 ft)	. 18
5.	2.2	Sediment	. 18
5.	2.3	Surface Water	. 19
6.0	SUN	MMARY AND CONCLUSION FOR THE CHARACTERIZATION OF	.21
6.1	NA	TURE OF CONTAMINATION	.21
6.2	HU	MAN HEALTH RISK SCREENING	.21
6.3	Eco	DLOGICAL RISK SCREENING	.22
6.4	Col	NCLUSION	.23

LOAD LINE 5 FIGURES

- Figure LL5-1 Load Line 5 Geologic Cross Section
- Figure LL5-2 Load Line 5 Geologic Cross Section A
- Figure LL5-3 Load Line 5 Geologic Cross Section B
- Figure LL5-4 Load Line 5 Geologic Cross Section C
- Figure LL5-5 Load Line 5 Monitoring Well Locations
- Figure LL5-6 Load Line 5 Multi-Increment Soil Sampling Locations
- Figure LL5-7 Load Line 5 Discrete Soil, Sediment and Surface Water Sampling Locations
- Figure LL5-8A Load Line 5 Soil and Sediment Sample Locations Exceedences Inorganics
- Figure LL5-8B Load Line 5 Soil and Sediment Sample Locations Exceedences Inorganics
- Figure LL5-9 Load Line 5 Soil Sample Locations Exceedences Organics
- Figure LL5-10 Load Line 5 Surface Water and Sediment Sample Locations Exceedences
- Figure LL5-11 Load Line 5 Groundwater Sample Locations Exceedences
- Figure LL5-12 Load Line 5 Potentiometric Surface Map A
- Figure LL5-13 Load Line 5 Potentiometric Surface Map B
- Figure LL5-14 Load Line 5 Potentiometric Surface Map C

LOAD LINE 5 TABLES

- Table LL5-1Load Line 5 Summary of Sampling and Analysis
- Table LL5-2
 Load Line 5 Summary of Surface Soil (0-1 ft) Detections
- Table LL5-3
 Load Line 5 Summary of Sediment Detections
- Table LL5-4
 Load Line 5 Summary of Surface Water Detections
- Table LL5-5
 Load Line 5 Summary of Groundwater Detections
- Table LL5-6Load Line 5 Summary of All Surface Soil (0-1 ft) Results
- Table LL5-7
 Load Line 5 Summary of All Sediment Results
- Table LL5-8
 Load Line 5 Summary of All Surface Water Results
- Table LL5-9
 Load Line 5 Summary of All Groundwater Results
- Table LL5-10
 Load Line 5 Human Health Risk Screening Tables for Surface Soil (0-1 ft)
- Table LL5-11
 Load Line 5 Human Health Risk Screening Tables for Sediment
- Table LL5-12
 Load Line 5 Human Health Risk Screening Tables for Surface Water
- Table LL5-13
 Load Line 5 Human Health Risk Screening Tables for Groundwater
- Table LL5-14Load Line 5 Ecological Risk Screening Tables for Surface Soil (0-1 ft)
- Table LL5-15
 Load Line 5 Ecological Risk Screening Tables for Sediment
- Table LL5-16
 Load Line 5 Ecological Risk Screening Tables for Surface Water
- Table LL5-17
 Load Line 5 Ecological Risk Summary of Quantitative and Qualitative COPECs for
- Environmental Media
- Table LL5-18 Load Line 5 Chemical of Potential Concern All Media (in text)
- Table LL5-19
 Load Line 5 Chemical of Potential Ecological Concern All Media (in text)

1.0 INTRODUCTION

This report documents the results of the sampling completed at Load Line 5 (LL5) (AOC-39), one of the 14 RVAAP AOCs. Field activities were conducted from October 2004 to May 2005 to characterize 14 Ravenna Army Ammunition Plant (RVAAP) Areas of Concern (AOCs).

1.1 PURPOSE AND SCOPE

Characterization activities were conducted LL5 to collect sufficient data for all applicable media to allow efficient planning and execution of future environmental actions.

The characterization effort for the LL5 was undertaken to accomplish the following:

- Collect characterization data using multi-increment (MI) sampling to provide data for future risk assessments that may be conducted;
- Develop and/or update the Conceptual Site Model to identify the key elements that should be considered in future actions;
- Assess AOC-specific physical characteristics;
- Assess potential sources of contamination;
- Allow initial assessment of the nature and lateral extent of soil, sediment, surface and groundwater contamination (the depth of contamination was not evaluated for this characterization effort); and
- Conduct a preliminary human health and ecological screening.

The investigation approach to the LL5 involved a combination of field and laboratory activities to characterize the site. Field investigation techniques included surface soil (0-1 ft) samples, (multiincrement (MI) and discrete), soil boring and sampling, surface water, sediment, monitoring well installation and development; groundwater sampling; sample and monitoring well location survey, and aquifer testing. The rationale for the AOC-specific sampling plan was biased based on historical information including past usage, past investigations, ecological settings, climatic conditions, and geological and hydrologic characteristics. The field program was conducted in general accordance with the revised (USACE, 2001a) and the Final Sampling and Analysis Plan Addendum FSAP for the characterization of 14 RVAAP AOCs (MKM, 2004).

1.2 BACKGROUND INFORMATION

This section briefly describes LL5 and previous investigations performed at this AOC.

1.2.1 AOC Description and History

LL5 is located in an area known as Fuze and Booster Hill, which consists of Load Lines 5, 6, 7, 8, 9, 10 and 11 collectively. Fuze and Booster Hill is located in the south central part of the RVAAP facility. Load Line 5 is located south of Fuze and Booster Road, east of Load Line 6 and west of Load Line 10. Figure 1-2 shows the location of LL5 in relation to the RVAPP facility.

Load Line 5, also designated as Fuze Line # 1, was a finished product assembly line, which was operated from 1941 to 1945 to produce fuzes for artillery projectiles. LL5 is a 15.8 ha (39 acre) AOC that consists of 18 process buildings ranging in size between 120 sq ft and 32, 910 sq ft. Operations were discontinued at the end of WWII and the process equipment was removed in 1945. LL5 has been inactive for more than 50 years and is overgrown with vegetation consisting of young trees, bushes and weeds.

There is no historical evidence (process records, drawings, etc.) that bulk handling of primary explosives lead azide or lead styphnate took place within the boundaries of this load line as reported by USATHEMA (USATEHMA 1978). This also applies to the reported potential use of TNT, Composition B, propellants and explosives other than black powder, which was used in the delay component manufactured at this line and Load Line 6. With the exception of the mercury fulminate primer, which was loaded and assembled within the line, all other primary explosive products were delivered as sealed, finished sub-assemblies. There is no evidence that the booster component was included in the assembly processes conducted at this line.

A summary of building utilization is provided:

- Bldgs. 1F-1, 1F-3, 1F-4, 1F-9 and 1F-18 primer manufacturing
- Bldgs. 1F-6, 1F-7, 1F-8, 1F-19 and 1F-20 delay component manufacturing
- <u>Bldg. 1F-10</u> detonator service magazine

The detonator components were manufactured at Load Line 9 and were containerized when they arrived at LL5. The detonating components were stored in 1F-10 until utilization in the assembly process conducted in 1F-11. Unless spillage occurred at the storage magazine, there is no reason to expect wholesale primary explosive contamination.

• <u>Bldgs. 1F-11and 1F-12</u> – assembly and testing

1.2.2 Previous Investigation

The following assessments and evaluations have been conducted at LL5:

1.2.2.1 Installation Assessment of Ravenna Army Ammunition Plant (USATHAMA 1978)

This assessment identified the following conditions at RVAAP:

- Areas of RVAAP, including the productions areas (i.e. LL-5, LL-7, LL-8, LL-10 and LL-12), burning grounds, test areas and demolition areas were identified as sites contaminated with explosive waste which included: TNT, Composition B, lead azide, lead styphnate and black powder.
- Surface waters exiting the installation were not required to be monitored for nitrobodies and heavy metals.
- Analysis of the well water indicated potable quality.
- UXO items were identified in the demolition area.
- No environmental stress was identified at RVAAP.
- The chemical agent mustard may be buried within the old demolition grounds.

- The Ramsdell Quarry site landfill was identified as having a potential leaching problem.
- Trace quantities of 2,4,6-TNT was identified in the wells indicating that some leaching had occurred.
- 1.2.2.2 Preliminary Review and Visual Site Inspection conducted as a part of Resource Conservation and Recovery Act (RCRA) Facility Assessment conducted by the USEPA. (Jacobs Engineering Group, Inc. 1989)
 - This document could not be located.
- 1.2.2.3 Preliminary Assessment Screening of the Boundary Load Line Areas (USAEHA 1994)
 - This document could not be located.
- 1.2.2.4 Relative Risk Site Evaluation for Newly Added Sites at the Ravenna Army Ammunition Plant (USACHPPM 1998).

LL5 was scored with a moderate (48.2) CHF for groundwater and a potential migration pathway factor and receptor pathway factor. The AOC also was scored with a moderate (17.7) CHF for surface soil with a potential migration pathway factor and receptor pathway factor. The final RRSE score for the AOC was medium.

• This evaluation identified groundwater and surface soil as a possible media of concern and identified a potential for contaminate migration. The evaluation also identifies the potential for exposure to receptors because the site has limited access. The final score for the RRSE at LL5 is "Medium."

1.2.3 Regulatory Authorities

Volume I, Section 1.2.3 identifies the regulatory authorities which oversee remedial activities for these AOCs.

1.2.4 Regulatory Status of Load Line 5

Volume I, Section 1.2.4 identifies the regulatory status for these AOCs.

2.0 ENVIRONMENTAL SETTING AT LOAD LINE 5

This section describes the physical characteristics of LL5 and its adjacent environment that are factors in interpreting the potential contaminant transport pathways, receptor populations, and exposure scenarios with respect to the evaluation of human health and ecological risks. The area immediately surrounding LL5 is a combination of forested and open areas of former operations. An unnamed stream is located approximately 500 feet southeast of the AOC that flows to the West Branch of the Mahoning River. This AOC is approximately 1000 feet southwest of LL 10 and 750 feet northeast of the LL6 AOC. The AOC surface water flows to the southeast. Fuze and Booster Road is located approximately 750 to the northwest. The AOC has very little topographic relief.

2.1 SURFACE FEATURES

The topography at LL5 is characterized by gently undulating contours that shows a range of elevations between 1123 ft amsl to 1126 ft amsl from a topographic high in the north western portion of the load line to lows in south eastern portion of the load line (USGS Topographic Map, Windham Quadrangle 1994).

2.2 METEOROLOGY AND CLIMATE

Meteorology and climate are addressed in Section 2.2 of Volume I.

2.3 SURFACE WATER HYDROLOGY

Surface water drainage generally follows the topography of the AOC toward the south and southeast. Intermittent surface water flows in several drainage ditches located on site. These ditches are fed by surface runoff from precipitation events. The ditches tend to hold water for extended periods of time due to the low permeability of soils.

2.4 GEOLOGY

Lithologic logs from six borings which are advanced during the characterization activities and completed as monitoring wells, were used to characterize the surface and subsurface geology at LL5. Fine grained Sandstone was encountered at the range of 21 to 28 ft. when installing the LL5 monitoring wells. The boring logs, which detail the vertical lithologic sequences, are found in Appendix H.

2.4.1 Glacial Deposits

Subsurface lithology at LL5 consists mostly of sand-rich silt tills with interbedded sands scattered throughout. These deposits are generally firm, moderately plastic, and tend to hold water where encountered. Groundwater was encountered 11 to 24 ft bgs when the LL5 groundwater monitoring wells were drilled. Deposits with higher concentrations of sand and gravel generally control the elevation of the shallow water table zone, and bio-turbation has been observed to act as a conduit for the local shallow water table at various locations at LL5. Cross-sections of the subsurface at LL5 illustrate the lateral distribution and variation of these discontinuous glaciated sediments (Figures LL5-1 to LL5-4).

2.4.2 Sedimentary Rocks

Weathered grained sandstone was encountered at the range of 21 to 28 ft when installing the LL5 monitoring wells.

2.5 SOIL

Soils found at LL5 and adjacent areas are mostly the Mahoning Silt Loam (0 to 2 percent slopes). Gently sloped land with medium to rapid runoff, severe seasonal wetness and slow permeability characterize these soils.

2.6 HYDROGEOLOGY

This section describes the unconsolidated sediments and bedrock characteristics found at LL5.

2.6.1 Unconsolidated Sediments

Unconsolidated sediments at LL5 is consistent with the installation wide description located in Volume 1, Section 2.6.1.

2.6.2 Bedrock

Fine grained sandstone was encountered at the range of 21 to 28 ft when installing the LL5 monitoring wells. Bedrock slopes slightly in a west-southwest direction and ranges in elevation from approximately 1098 ft to approximately 1104 ft.

2.7 DEMOGRAPHY AND LAND USE

Demographics and land use are discussed in Volume 1, Section 2.7.

2.8 ECOLOGY

Ecological information is provided in Volume I, Section 2.8.

3.0 CHARACTERIZATION ACTIVITIES OF LOAD LINE 5

This section describes the field and analytical methods implemented during the RVAAP 14 AOC Characterization at LL5. The field and analytical programs were conducted in accordance with the RVAAP Facility Wide Sampling and Analysis Plan (FWSAP) (USACE, 2001) and the RVAAP 14 AOC FWSAP Addendum (MKM, 2004). Investigation objectives, rationale for sampling locations, sampling methods, and sampling locations are briefly discussed in this section.

3.1 FIELD ACTIVITIES

AOC-specific field activities conducted from October 2004 thru May 2005 at LL5 included:

- Collecting multi-increment (MI) surface soil (0-1ft) samples (11-12-04 11-19-04);
- Collecting discrete surface soil (0-1ft) samples (11-15-04 11-19-04);
- Excavating of three test trenches (10-07-04);
- Installing six groundwater monitoring wells (12-08-04 12-10-04);
- Collecting geotechnical samples from the monitoring well borings (12-08-04 12-10-04);
- Conducting well slug tests (01-20-05);
- Collecting groundwater samples from monitoring wells (01-03-05 01-18-05);
- Collecting surface water samples (sewers/sumps/basements) (11-18-04 12-10-04);
- Collecting sediment samples (sewers/sumps) (11-18-04 12-10-04); and
- Conducting a sampling location and monitoring well survey (12-13-04 01-28-05).

Sampling was conducted at this AOC to assess the impact that LL5 operations may have had on soil, sediment, surface water and groundwater; and to evaluate where contaminants related to the former operations are found within the AOC. The following sections describe the rationales for the various types of samples that were collected and methods employed during the characterization. Information from previous assessments, evaluations and investigations, plus institutional knowledge of the historical operations that occurred at LL5, were used to determine the sampling locations, type of media collected, analysis performed and number of samples required to adequately characterize LL5. Table LL5-1 summarizes the type and number of samples collected and the analyses conducted. A photo log of investigation activities area provided in Appendix C. Figure LL5-5 shows the monitoring well locations, Figure LL5-6 show the sanitary sewer locations and Figure LL5-7 shows the sampling locations for all other media collected at this AOC.

3.1.1 Trenching Activities

Three test trenches were excavated in the LL5 AOC before the start of drilling operations. The trenching activities provided information about the soil stratification profile, depth to groundwater and depth to bedrock.

Trenching was halted upon encountering bedrock, saturation or to a maximum depth of approximately 12 ft whichever came first. Test trenches at LL5 did not exceed 12 ft bgs. Saturation was encountered in

LL5tr-001 at 11.3 ft bgs; LL5tr-002 at 9 ft bgs; and LL5tr-003 at 12 ft bgs. No suspect soil or MEC was encountered during the trenching operation. Trenching activities were conducted as described in Volume I, Section 3.1.5.

3.1.2 MI Surface Soil (0-1 ft) Sampling

Twenty-nine MI surface soil (0-1 ft) grids were sampled at this AOC to:

- Assess the potential impact of LL5 operations on the soils within the AOC;
- Evaluate soil surrounding the process buildings and dry drainage ditches within the AOC; and
- Determine the nature contamination found within LL5 decision units.

LL5 was divided into 29 MI grids located around process buildings and dry drainage ditch locations within the AOC. One MI surface soil (0-1 ft) sample was collected from each grid. Multi-increment samples were collected as described in Volume I, Section 3.1.10.1. Three split samples were collected and submitted for analysis to an independent, USACE-approved laboratory. Analysis for LL5 MI surface soil (0-1 ft) samples include the following parameters: TAL Metals, explosives, Nitrate, Volatile Organic compounds (VOC), Semi-Volatile Organic compounds (SVOCs), propellants, pesticides and polychlorinated biphenyls (PCBs).

Three discrete VOC samples were collected within surface soil (0-1 ft) MI grids to fulfill the 10 percent full suite requirement and the FWSAP approved VOC collection methods. describes the procedure used to collect discrete surface soil (0-1 ft) samples. Discrete VOC samples were not subjected to MI sample drying or processing. Field sampling forms documenting the surface soil (0-1 ft) sampling activities are presented in Appendix E.

3.1.3 Discrete Surface Soil (0-1 ft) Sampling (VOC)

One discrete VOC sample (LL5ss-030M) was collected, independent of any MI sampling grids, outside the building that was formerly used for solvent storage. The discrete surface soil (0-1ft) sample was collected as specified in Section 3.1.10.3 of Volume I. The discrete VOC sample was not subjected to MI sample drying or processing. One split sample associated with this location was collected and submitted for analysis to an independent, USACE-approved laboratory.

Samples were prepared, packaged and shipped per Volume I, Section 3.1.14. A field sampling form documenting this sampling activity is presented in Appendix E of this report.

3.1.4 Surface Water Sampling (Sewers/Sumps/Basements)

Surface water samples were collected at this AOC to:

- Evaluate the impact to sewer, basement, sump and/or basin water by runoff from LL5; and
- Identify the migration pathways for contaminated runoff from LL5.

Four of the ten sewers contained enough water for a viable sample. There was limited access to the four sewer locations at LL5. Therefore, the alternative sampling method described in Volume 1, Section

3.1.10.6 (peristaltic pump and tubing) was employed. No water was present in the remaining six sewer locations; therefore, no surface water samples were collected from these locations.

Surface water samples were collected from each of the two basement locations. No water was present at the sump location; therefore, no sample was collected. Water quality measurements (pH, conductivity, dissolved oxygen content, and temperature) were recorded just prior to sample collection. Surface water samples were collected as described in Volume I, Section 3.1.10.6. Analysis for LL5 surface water samples included the following: TAL Metals, Explosives, Nitrate, VOCs, and SVOCs, propellants, pesticides and PCBs.

Two split samples were collected for analysis by an independent, USACE-approved laboratory. Samples were prepared, packaged and shipped per Volume I, Section 3.1.14. Field sampling forms for the surface water are presented in Appendix O.

3.1.5 Sediment (Sewers/Sumps) Sampling

Sediment samples (sewer/sump) were collected at this AOC to:

- Evaluate impact to sewer/sump sediments by LL5 surface water runoff; and
- Evaluate the potential migration of contaminants in sewer/sump sediments beyond the AOC boundaries.

Sewer/sump sediment samples were co-located with the sewer/sump water samples. Two of the 11 sewer/sumps contained enough recoverable sediment to constitute a viable sample. All sewer/sump/basin sediment samples were collected using a long handled scoop or telescopic pole with Teflon swivel cup as specified in Volume I, Section 3.1.10.7. Analysis for LL5 sewer/sump sediment samples included the following parameters: TAL Metals, Explosives and Nitrate.

Split samples were not collected for sewer sediments due to the lack of sufficient quantity of sample media. Samples were prepared, packaged and shipped per Volume I, Section 3.1.14. Field sampling forms are presented in Appendix Q.

3.1.6 Groundwater Investigation Activities

The groundwater activities were conducted at this AOC to:

- Determine the impact of LL5 operations on groundwater quality at the AOC; and
- Collect data pertaining to groundwater flow at LL5.

Six boreholes were advanced and converted to monitoring wells at LL5. The depth of the monitoring wells ranged from 21 to 27.8 ft bgs. The monitoring wells were located in the following locations to maximize the information obtained about the groundwater beneath LL5.

- LL5mw-001: Center of the explosives handling area.
- LL5mw-002: Within the explosives handling area.
- LL5mw-003: Upgradient of the northeast boundary of the explosives handling area.
- LL5mw-004: Downgradient of the explosives handling area.

- LL5mw-005: Downgradient of the explosives handling area.
- LL5mw-006: Downgradient of the AOC.

One round of groundwater sampling and slug testing conducted and three rounds of water level data were collected.

3.1.6.1 Monitoring Well Installation and Development

An 8.25 in. OD, hollow-stem auger was used to advance the borehole through unconsolidated material and weathered bedrock. The average borehole depth was 7.19 m (23.6 ft) bgs. Weathered bedrock was encountered at four of the six boring locations at depths of 24.6 ft bgs; (LL5mw-002), 21.8 ft bgs; (LL5mw-004), 26.0 ft bgs; (LL5mw-005) and 22.0 ft. bgs (LL5mw-006).

Monitoring well installation and development at LL5 followed the procedures reported in Volume I, Section 3.1.6. Well construction diagrams and well development records are provided in Appendix H.

3.1.6.2 Geotechnical Sample Collection (Shelby Tubes)

Three Shelby tubes were collected at monitoring well locations LL5mw-001 (6 to 8 ft), LL5mw-003 (8 to 10 ft) and LL5mw-006 (10 to 12 ft), and sent to the laboratory for analysis. Geotechnical sample collection was conducted IAW Section 4.4.2.4.1 of the FWSAP and included the following analysis: moisture content, Alterberg limits, specific gravity, grain size, pH and total organic content. Geotechnical analytical data can be found in Appendix J.

3.1.6.3 Groundwater Sampling

Six ground water samples were collected for analysis at LL5. Samples were prepared, packaged and shipped per Volume I, Section 3.1.14. One split sample was collected and submitted for analysis to an independent, USACE-approved laboratory. Analysis for LL5 ground water samples included the following parameters: TAL Metals, Explosives, Nitrate, VOCs, SVOCs, propellants, pesticides and PCBs. Well purging and sampling records are provided at Appendix H. No detections were observed in the PID readings for the wells at LL5. This information is provided on the field forms located in Appendix H. Specific information related to the type of PID used and calibration is included in Section 3.1.5 of Volume 1. All groundwater sampling was conducted in accordance with the procedures provided in Section 4.3.4 and 4.3.5 of the FWSAP. Section 3.1.10.11 of Volume 1 also discusses the groundwater sampling procedures used for this project.

3.1.6.4 In-Situ Permeability Testing

A slug test was performed at each of the six monitoring wells at LL5 to evaluate the hydraulic conductivity of the media surrounding each well screen. Slug tests were performed at the LL5 monitoring wells as discussed in Volume I, Section 3.1.10.12. Slug test data records are provided at Appendix K. The testing results are presented in Section 4.6.

3.1.6.5 Water Level Measurements

Static water level and total depth measurements were recorded for each monitoring well on three separate occasions to provide data on the groundwater flow regime underlying the LL5. These water level readings were collected during February 2005, March 2005, and May 2005. Water level measurements

were performed as discussed in Volume I, Section 3.1.10.13. Groundwater elevation data is included in Appendix M.

3.1.7 Sampling Location and Monitoring Well Survey

The sampling location and monitoring well survey at LL5 was conducted per the specifications in Section 3.1.11, in Volume I of this characterization report. The monitoring well survey report can be found in Appendix N and the sample location survey data in Appendix S.

3.2 DEVIATIONS FROM THE WORK PLAN

Every effort was made to complete the field activities as required by the FWSAP and the approved RVAAP 14 AOC FWSAP Addendum. However, in some instances, circumstances or field conditions necessitated a modification. Modifications to the FWSAP during the LL5 characterization activities are noted below.

- Construction of monitoring wells 003 and 004 deviated from the approved plans. LL5mw-004 was constructed with 4.5 ft of sand above the screen rather than the FWSAP approved construction requirement of 3 ft; and 2.5 ft of bentonite rather than 3 ft. LL5mw-003 and LL5mw-004 were both constructed with 7 ft casing lengths rather than 8 ft of casing.
- The approved plan specified that wells be developed no earlier than 24 hours, and no later than seven days, after the grout was set. However, unanticipated logistical challenges delayed the development of the six LL5 wells until eight or nine days after the grout was set.
- Because of an extremely low recharge rate, at least two days were required to replace each borehole volume of groundwater at Monitoring Well LL5mw-003. After three weeks, although only three volumes of water had been removed, the groundwater samples were collected.
- Six of the ten scoped sewer locations and the scoped sump location contained no water for sample collection.
- Nine of the ten scoped sewer sediment locations did not contain enough recoverable sediment to constitute a viable sample.
- Due to insufficient quantities of sediment, split samples were not collected for sewer sediments at this AOC.

Although deviations were made to the FWSAP, the objectives of the LL5 characterization were achieved.

4.0 NATURE OF CONTAMINATION AT LOAD LINE 5

This section summarizes the analytical results from surface soil (0-1 ft), groundwater, surface water and sediment environmental sampling conducted at the LL5. The results are organized by media: surface soil (0-1 ft), surface water, sediment, and groundwater. The number of samples collected and the number of analytical results that exceeded either the RVAAP background criteria or Region 9 residential Preliminary Remediation Goals is listed in each subsection. The evaluation completed in this section is a preliminary comparison and is not intended to be used alone for making risk management decisions. The risk screening, presented later in this report, further discusses and evaluates the contaminants detected during this AOC characterization.

The following sections present a summary of the results and initial screening of the analytical data for samples collected during the AOC characterization.

4.1 MI SURFACE SOIL (0-1 FT)

During the characterization at LL5, 35 MI surface soil (0-1 ft) samples (30 regular and five QC) were collected from various locations. Three discrete surface soil (0-1 ft) samples were collected for VOC analysis. All positive detections were compared to RVAAP background and residential PRG values as previously discussed.

Surface soil (0-1 ft) results at or above detection limits are presented in Table LL5-2. A summary of all surface soil (0-1 ft) analytical results is presented in Table LL5-6. Locations of surface soil (0-1 ft) analytes detected at or above background levels and residential PRG exceedances are shown in Figures LL5-8 and LL5-9. Laboratory analytical reports are provided in Appendix F.

The surface soil (0-1 ft) analytical results that exceeded background or Region 9 residential PRGs are summarized as follows:

- Aluminum exceeded the Region 9 residential PRG in 33 samples and exceeded background and the Region 9 PRG in one sample with a maximum concentration of 18000 mg/kg.
- Arsenic exceeded the Region 9 residential PRG in 35 samples with a maximum concentration of 14 mg/kg.
- Barium exceeded background in seven samples with a maximum concentration of 220 mg/kg.
- Beryllium exceeded background in six samples with a maximum concentration of 4.2 mg/kg.
- Cadmium exceeded background in 31 samples with a maximum concentration of 3.0 mg/kg.
- Calcium exceeded background in seven samples with a maximum concentration of 140000 mg/kg.
- **Chromium** exceeded background in 29 samples and exceeded background and the Region 9 residential PRG in two samples with a **maximum concentration of 34 mg/kg**.
- Cobalt exceeded background in seven samples with a maximum concentration of 13 mg/kg.
- Copper exceeded background in 21 samples with a maximum concentration of 49 mg/kg.
- **Iron** exceeded the Region 9 residential PRG in 24 samples, and exceeded background and the Region 9 residential PRG in 11 samples with a **maximum concentration of 26000 mg/kg.**

- Lead exceeded background in 20 samples with a maximum concentration of 170 mg/kg.
- Magnesium exceeded background in 16 samples with a maximum concentration of 16000 mg/kg.
- Manganese exceeded the Region 9 residential PRG in 34 samples, and exceeded background and the Region 9 residential PRG in one sample with a maximum concentration of 3100 mg/kg.
- Nickel exceeded background in 12 samples with a maximum concentration of 30 mg/kg.
- Potassium exceeded background in 26 samples with a maximum concentration of 2100 mg/kg.
- Selenium exceeded background in one sample with a maximum concentration of 1.8 mg/kg.
- Sodium exceeded background in 35 samples with a maximum concentration of 970 mg/kg.
- Vanadium exceeded the Region 9 residential PRG in 35 samples with a maximum concentration of 25 mg/kg.
- Zinc exceeded background in 35 samples with a maximum concentration of 140 mg/kg.
- Mercury exceeded background in 14 samples, and exceeded background and the Region 9 PRG in one sample with a maximum concentration of 3.0 mg/kg.
- Thallium exceeded background in five samples with a maximum concentration of 0.28 mg/kg.
- 2-Methylnaphthalene exceeded laboratory detection limits in two samples with a maximum concentration of 0.11 mg/kg.
- Acenaphthylene exceeded the laboratory detection limit in one sample with a maximum concentration of 0.016 J mg/kg. J value indicates an estimated result.
- Benzo(a)pyrene exceeded the Region 9 residential PRG in two samples with a maximum concentration of 0.15 mg/kg.
- Benzo(g,h,i)perylene exceeded the Region 9 residential PRG in three samples with a maximum concentration of 0.097 mg/kg.
- Phenanthrene exceeded the laboratory detection limit in three samples with a maximum concentration of 0.2 mg/kg.
- **VOCs, pesticides, PCBs, explosives and propellants** were below Region 9 residential PRGs and/or laboratory detection limits.

4.2 SEDIMENTS

Three sediment samples (two regular and one QC) were collected during the characterization effort at LL5. Results from the sediment samples were compared to facility-wide background concentrations for sediments and Region 9 residential PRGs for residential soil.

Sediment analytical results at or above detection limits are presented in Table LL5-3. All sediment analytical results are presented in Table LL5-7. Sample locations where concentrations of sediment analytes detected at or above background levels and Region 9 residential PRGs are shown in Figure LL5-10. Laboratory analytical reports are provided in Appendix R.

The sediment analytical results that exceeded background or Region 9 residential PRGs are summarized as follows:

• Aluminum exceeded the Region 9 residential PRG in two samples with a maximum concentration of 9900 J mg/kg. J value indicates an estimated result.

- Arsenic exceeded the Region 9 residential PRG in two samples, and exceeded background and the Region 9 residential PRG in one sample with a maximum concentration of 180 mg/kg.
- Barium exceeded background in one sample with a maximum concentration of 220 mg/kg.
- Beryllium exceeded background in three samples with a maximum concentration of 0.68 mg/kg.
- **Cadmium** exceeded background in two samples, and exceeded background and the Region 9 residential PRG in one sample with a **maximum concentration of 6.4 mg/kg**.
- Calcium exceeded background in one sample with a maximum concentration of 140000 mg/kg.
- **Chromium** exceeded background in two samples, and exceeded background and the Region 9 residential PRG in one sample with a **maximum concentration of 130 mg/kg**.
- Cobalt exceeded background in one sample with a maximum concentration of 9.4 mg/kg.
- **Copper** exceeded background in two samples, and exceeded background and the Region 9 residential PRG in one sample with a **maximum concentration of 340 mg/kg.**
- Iron exceeded background and the Region 9 PRG in three samples with a maximum concentration of 100000 mg/kg.
- Lead exceeded background in two samples, and exceeded background and the Region 9 residential PRG in one sample with a maximum concentration of 1500 mg/kg.
- **Magnesium** exceeded background in one sample with a **maximum concentration of 3200 J mg/kg.** J value indicates an estimated result.
- Manganese exceeded the Region 9 residential PRG in three samples with a maximum concentration of 100 mg/kg.
- Nickel exceeded background in three samples with a maximum concentration of 33 mg/kg.
- Selenium exceeded background in one sample with a maximum concentration of 2.5 mg/kg.
- Sodium exceeded background in three samples with a maximum concentration of 730 mg/kg.
- **Vanadium** exceeded the Region 9 residential PRG in one sample, and exceeded background and the Region 9 residential PRG in two samples with a **maximum concentration of 32 mg/kg.**
- Zinc exceeded background in one sample with a maximum concentration of 1700 mg/kg.
- Antimony exceeded background in one sample with a maximum concentration of 3.1 mg/kg.

4.3 SURFACE WATER

Eight surface water samples (six regular and two QC) were collected during the characterization effort at LL5. Results from the laboratory analysis were compared to RVAAP surface water background concentrations and/or USEPA Region 9 tap water PRGs.

Surface water analytical results at or above detection limits are presented in Table LL5-4. All surface water analytical results are presented in Table LL5-8. The sample locations where surface water analytes detected at or above background levels and Region 9 tap water PRGs are shown in Figure LL5-10. Laboratory analytical reports are provided in Appendix P.

The surface water analytical results that exceeded background or Region 9 tap water PRGs are summarized as follows:

- Cadmium exceeded background in three samples with a maximum concentration of 0.33 µg/L.
- Calcium exceeded background in one sample with a maximum concentration of 42000 µg/L.
- Chromium exceeded background in four samples with a maximum concentration of 2.9 µg/L.
- Iron exceeded background in one sample with a maximum concentration of 2700 µg/L.
- Nickel exceeded background in one sample with a maximum concentration of 1.6 µg/L.
- Potassium exceeded background in three samples with a maximum concentration of 28000 µg/L.
- Selenium exceeded background in one sample with a maximum concentration of 3.6 µg/L.
- Vanadium exceeded background in five samples with a maximum concentration of 3.0 µg/L.
- Zinc exceeded background in two samples with a maximum concentration of 81 µg/L.
- Arsenic exceeded the Region 9 tap water PRG in one sample with a maximum concentration of 1.2 µg/L.
- Lead exceeded background in two samples with a maximum concentration of 0.98 µg/L.
- Mercury exceeded background in one sample with a maximum concentration of 0.064 µg/L.
- Benzo(a)anthracene exceeded the Region 9 tap water PRG in two samples with a maximum concentration of 0.17 J µg/L. J value indicates an estimated result.
- **Benzo(a)pyrene** exceeded the Region 9 tap water PRG in one sample with a **maximum** concentration of 0.25 J μ g/L. J value indicates an estimated result.
- Benzo(b)fluoranthene exceeded the Region 9 tap water PRG in one sample with a maximum concentration of 0.18 J µg/L. J value indicates an estimated result.
- **Benzo**(g,h,i)**perylene** exceeded the laboratory detection limit in one sample with a **maximum concentration of 0.32 J \mug/L. J value indicates an estimated result**.
- **Bis(2-ethylhexyl)phthalate** exceeded the Region 9 tap water PRG in three samples with a **maximum concentration of 0.17 J μg/L.** J value indicates an estimated result.
- Dibenzo(a,h)anthracene exceeded the Region 9 tap water PRG in one sample with a maximum concentration of 0.31 J μ g/L. J value indicates an estimated result.
- Indeno(1,2,3-cd)pyrene exceeded the Region 9 tap water PRG in two samples with a maximum concentration of 0.29 J μ g/L. J value indicates an estimated result.
- VOCs, pesticides, PCBs and propellants were below Region 9 tap water PRGs and/or laboratory detection limits.

4.4 **GROUNDWATER**

Seven groundwater samples (six regular and one QC) were collected from monitoring wells LL5mw-001 through LL5mw-006 during the LL5 characterization. Groundwater samples were collected in order to identify any subsurface contamination of the shallow water table. The groundwater analytical results were compared to RVAAP groundwater background values and USEPA Region 9 tap water PRGs.

Groundwater results at or above detection limits are presented in Table LL5-5. All groundwater analytical results are presented in Table LL5-9. Groundwater analytes detected at or above background levels and tap water PRGs are shown on figure LL5-11. Laboratory analytical reports are provided in Appendix L.

The groundwater analytical results that exceeded RVAPP background or Region 9 tap water PRGs are summarized as follows:

- Calcium exceeded background in five samples with a maximum concentration of 71000 µg/L.
- Cobalt exceeded background in two samples with a maximum concentration of 4.2 µg/L.
- Copper exceeded background in two samples with a maximum concentration of 2.8 µg/L.
- Magnesium exceeded background in five samples with a maximum concentration of 31000 µg/L.
- Manganese exceeded background and the Region 9 tap water PRG in one sample with a maximum concentration of 2000 µg/L.
- Nickel exceeded background in one sample with a maximum concentration of 2.2 µg/L.
- Potassium exceeded background in one sample with a maximum concentration of 3800 µg/L.
- Selenium exceeded background in one sample with a maximum concentration of 3.3 µg/L.
- Vanadium exceeded background in one sample with a maximum concentration of 1.0 µg/L.
- Antimony exceeded background in three samples with a maximum concentration of 4.1 µg/L.
- Arsenic exceeded background and the Region 9 tap water PRG in one sample with a maximum concentration of 2.3 µg/L.
- Lead exceeded background in one sample with a maximum concentration of $1.2 \mu g/L$.

4.5 GEOTECHNICAL

Geotechnical analysis was conducted during groundwater monitoring well installation. Three Shelby tubes were collected at monitoring well locations LL5mw-001 (10-12 ft), LL5mw-004 (8-10 ft) and LL5mw-005 (4-6 ft). The results of the geotechnical analysis are summarized in the following table.

Sample Number	Depth Feet	Moisture Content %	Liquid Limit %	Plastic Limit %	Plastic Index	Agg. %	C Sand %	M Sand %	F Sand %	Silt & Clay %	Soil Description	Class Sym.	pH	Specific Gravity
LL5mw-001 (6-8 ft)	7.6	20.6	39	25	14	1.1	0.5	1.9	8.4	88.1	Brown lean clay, little sand, trace gravel	CL	8.5	2.782
LL5mw-004 (8-10 ft)	9.6	22.0	NP	NP	NP	0.0	0.0	0.0	2.5	97.5	Brown silt, trace sand	ML	8.4	2.732
LL5mw-005 (4-6 ft)	11.6	17.9	29	21	8	0.7	2.6	2.0	8.1	86.5	Brown lean clay, little sand, trace gravel	CL	8.8	2.788

4.6 IN SITU PERMEABILITY TESTING RESULTS

Following installation of the monitoring wells, slug tests were completed to determine the in-situ permeability of the aquifer underlying the LL5. The following table shows the results of the slug tests performed in January and February 2005.

Monitoring Well ID	Screened Interval Depth (ft)	Total Borehole Depth (ft)	Geologic Material Adjacent to Screen	Hydraulic conductivity (cm/s)
MW-001	14-24	24	Sandy silt, silty sand, sandstone	1.91 E-4
MW-002	15-25	25	Sandy silt, silty sand	2.52 E-4
MW-003	11-21	21	Sandy silt, silty sand	1.76 E-4
MW-004	12-22	22.4	Sandy silt, silty sand	1.36 E-4
MW-005	17-27	27.8	Sandy silt, silty sand	5.52 E-4
MW-006	14-24	24.5	Sandy silt, silty sand	1.31 E-4

Hydraulic Conductivities in Load Line 5 Monitoring Wells

Based on the results of the slug tests, hydraulic conductivities arithmetic average 2.40 x 10^{-4} cm/s in the soil underlying LL5. The field measurements and test data are provided in Appendix K along with the calculation worksheets for the tests. Previous slug tests performed at wells located at other sites within RVAAP indicate average hydraulic conductivities between 3.87 x 10^{-2} cm/s to 4.46 x 10^{-6} cm/s (USACE, 1999).

Data from the three rounds of well gauging were used to produce potentiometric surface maps for LL5 (Figures LL5-12 through LL5-14). The water level data suggest that groundwater flows to the east/southeast at a gradient of approximately 0.004 ft/ft.

5.0 HUMAN HEALTH AND ECOLOGICAL RISK SCREENING FOR LOAD LINE 5

This section details both the human health and ecological risk screening performed at LL5.

5.1 HUMAN HEALTH RISK SCREENING

Total chromium analytical results were conservatively screened against 1/10th of the PRG value; therefore, a screening value of 21 mg/kg was used rather than 210 mg/kg.

5.1.1 Surface Soil (0-1 ft)

Table LL5-10 presents the human health screening table for surface soil (0-1 ft) at LL5. A total of 46 constituents were detected including metals and SVOCs.

- Nineteen constituents had detections greater than background concentrations: aluminum, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, sodium, zinc, mercury, and thallium.
- Seven constituents had detections above the adjusted Region 9 residential PRGs: aluminum, arsenic, chromium, iron, manganese, vanadium, and benzo(a)pyrene.
- Five constituents had detected concentrations above both RVAAP background and the adjusted Region 9 residential PRG: aluminum, chromium, iron, manganese, and mercury.
- Four constituents have no established background value or Region 9 residential PRG: 2methylnaphthalene, acenaphthylene, benzo(g,h,i)perylene, and phenanthrene.

Based on these comparisons, ten constituents were identified as chemicals of potential concern (COPC) in surface soil (0-1ft) at LL5: aluminum, chromium, iron, manganese, mercury, 2-methylnaphthalene, acenaphthylene, benzo(a)pyrene, benzo(g,h,i)perylene, and phenanthrene. Of these COPC, 2-methylnaphthalene, acenaphthylene, benzo(g,h,i)perylene, and phenanthrene were identified due to the lack of screening criteria.

5.1.2 Sediment

Table LL5-11 presents the human health screening table for sediment at LL5. Twenty-three constituents were detected in sediment. These constituents included metals and one nutrient.

- Eighteen constituents had detected concentrations greater than background values: arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, nickel, selenium, sodium, vanadium, zinc, antimony, and mercury.
- Nine constituents had detections above the adjusted Region 9 residential PRGs: arsenic, aluminum, cadmium, chromium, copper, iron, lead, manganese, and vanadium.
- Seven constituents also had detected concentrations above both RVAAP background and the adjusted Region 9 residential PRGs: arsenic, cadmium, chromium, copper, iron, lead, and vanadium.

Based on these comparisons, arsenic, cadmium, chromium, copper, iron, lead, and vanadium were identified as COPCs.

5.1.3 Surface Water

Table LL5-12 presents the human health screening table for surface water at LL5. Eight surface water samples were collected resulting in a total of 31 detected constituents.

- Eleven constituents had detections greater than background values: cadmium, calcium, chromium, iron, potassium, nickel, selenium, vanadium, zinc, lead, and mercury.
- An additional eight constituents had detections above the Region 9 tap water PRGs: arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, bis(2-ethylhexyl)phthalate, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and nitrate.
- No constituents were greater than both RVAAP background concentrations and Region 9 tap water PRGs.

Based on these comparisons, eight constituents were identified as COPC in surface water: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, bis(2-ethylhexyl)phthalate, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and nitrate.

5.1.4 Groundwater

Table LL5-13 presents the human health screening table for groundwater at LL5. A total of 18 constituents were detected including metals and one nutrient.

- Ten constituents had detections greater than background concentrations: calcium, cobalt, copper, magnesium, manganese, nickel, potassium, selenium, vanadium, antimony, arsenic, and lead.
- Two constituents, manganese and arsenic, were detected above both RVAAP background concentrations and Region 9 tap water PRGs.

Based on these comparisons, manganese and arsenic were identified as COPC in groundwater at LL5.

5.2 ECOLOGICAL RISK SCREENING

5.2.1 Surface Soil (0-1 ft)

Table LL5-14 presents the ecological screening table for surface soil (0-1 ft) at LL5. A total of 46 constituents were detected.

- Nineteen constituents had detections greater than background concentrations: aluminum, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, sodium, zinc, mercury, and thallium.
- Twelve constituents had detections above ecological screening values: aluminum, arsenic, chromium, iron, lead, manganese, nickel, selenium, vanadium, zinc, mercury, and Aroclor 1254.

• Four constituents (carbazole, dibenzofuran, 4-nitrotoluene, and nitrate) have no screening values.

Based on these comparisons, 14 constituents were identified as chemicals of potential ecological concern (COPECs) in surface soil (0-1 ft) at LL5: aluminum, chromium, iron, lead, manganese, nickel, selenium, zinc, mercury, aroclor 1254, carbazole, dibenzofuran, 4-nitrotoluene, and nitrate. Of these COPECs, carbazole, dibenzofuran, 4-nitrotoluene, and nitrate, were identified due to the lack of screening criteria.

5.2.2 Sediment

Table LL5-15 presents the ecological screening table for sediment at LL5. Twenty-two constituents were detected in sediment.

- Eighteen constituents had detected concentrations greater than background values: arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, nickel, selenium, sodium, vanadium, zinc, antimony, and mercury.
- Twelve constituents exceeded the Sediment Reference Value (SRV): arsenic, barium, cadmium, chromium, copper, iron, lead, nickel, selenium, zinc, antimony, and mercury.
- Eight constituents had detections above ecological screening values: arsenic, cadmium, chromium, copper, lead, nickel, zinc, and mercury.
- Nine constituents (aluminum, barium, beryllium, iron, manganese, selenium, vanadium, antimony, and nitrate) have no screening value. Of the ten, seven constituents (barium, beryllium, iron, selenium, vanadium and antimony) exceed the background value established for RVAAP and barium, iron, selenium and antimony exceed the SRV.

Based on these comparisons, 13 constituents were identified as COPECs: arsenic, barium, cadmium, chromium, copper, iron, lead, nickel, selenium, zinc, antimony, mercury, and nitrate. Of these COPECs, barium, iron, selenium, antimony, and nitrate were identified due to the lack of screening criteria.

5.2.3 Surface Water

Table LL-16 presents the ecological screening table for surface water at LL5. Thirty-one constituents were detected in surface water.

- Eleven constituents had detections greater than background values: cadmium, calcium, chromium, iron, nickel, potassium, selenium, vanadium, zinc, lead, and mercury.
- None of the constituents were detected above ecological screening values.
- Thirteen constituents (aluminum, iron, manganese, selenium, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and nitrate) had no screening values. Of those eleven, two constituents (iron and selenium) also exceed the background values established for RVAAP.

Based on these comparisons, twelve constituents were identified as COPECs in surface water at LL5: iron, selenium, mercury, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene,

and nitrate. All COPECs, except mercury, were identified due to the lack of screening criteria. Mercury was identified as a COPEC in surface water because it is considered persistent, bioaccumulative, and toxic.

6.0 SUMMARY AND CONCLUSION FOR THE CHARACTERIZATION OF LOAD LINE 5

This section briefly summarizes the existing conditions that were found during the AOC characterization at LL5 and the risk screening tasks that were completed.

6.1 NATURE OF CONTAMINATION

The nature and extent of contamination is examined in all four media: soil, sediment, surface water and groundwater. Contaminants were detected above screening criteria in all environmental media sampled. Six constituents other than inorganics were detected above screening criteria in the samples collected from the various media. Beno(a)pyrene was detected above screening criteria in two out of three soil samples and SVOCs were detected in three of eight surface water samples at LL5.

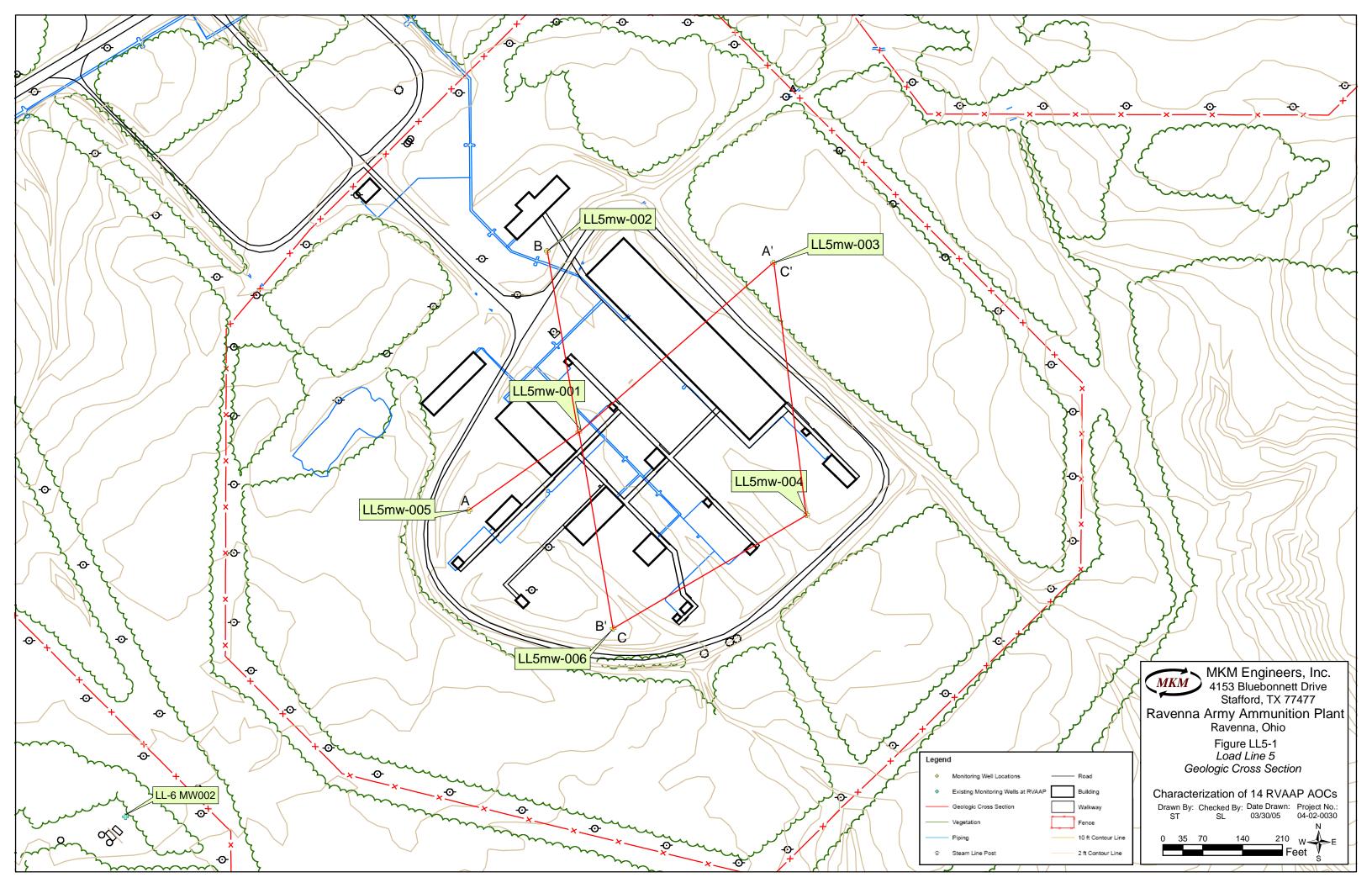
- Contaminants detected in surface soil (0-1 ft) above background and/or Region 9 residential PRG screening values included 21 metals and one SVOC (Benzo(a)pyrene).
- In sediment, 20 metals were detected above background and/or Region 9 residential PRG screening values.
- In surface water, 12 metals, six SVOCs and nitrate were detected above background and/or Region 9 tap water PRG screening values
- In groundwater, 12 metals were detected above background and/or Region 9 tap water PRG screening values.

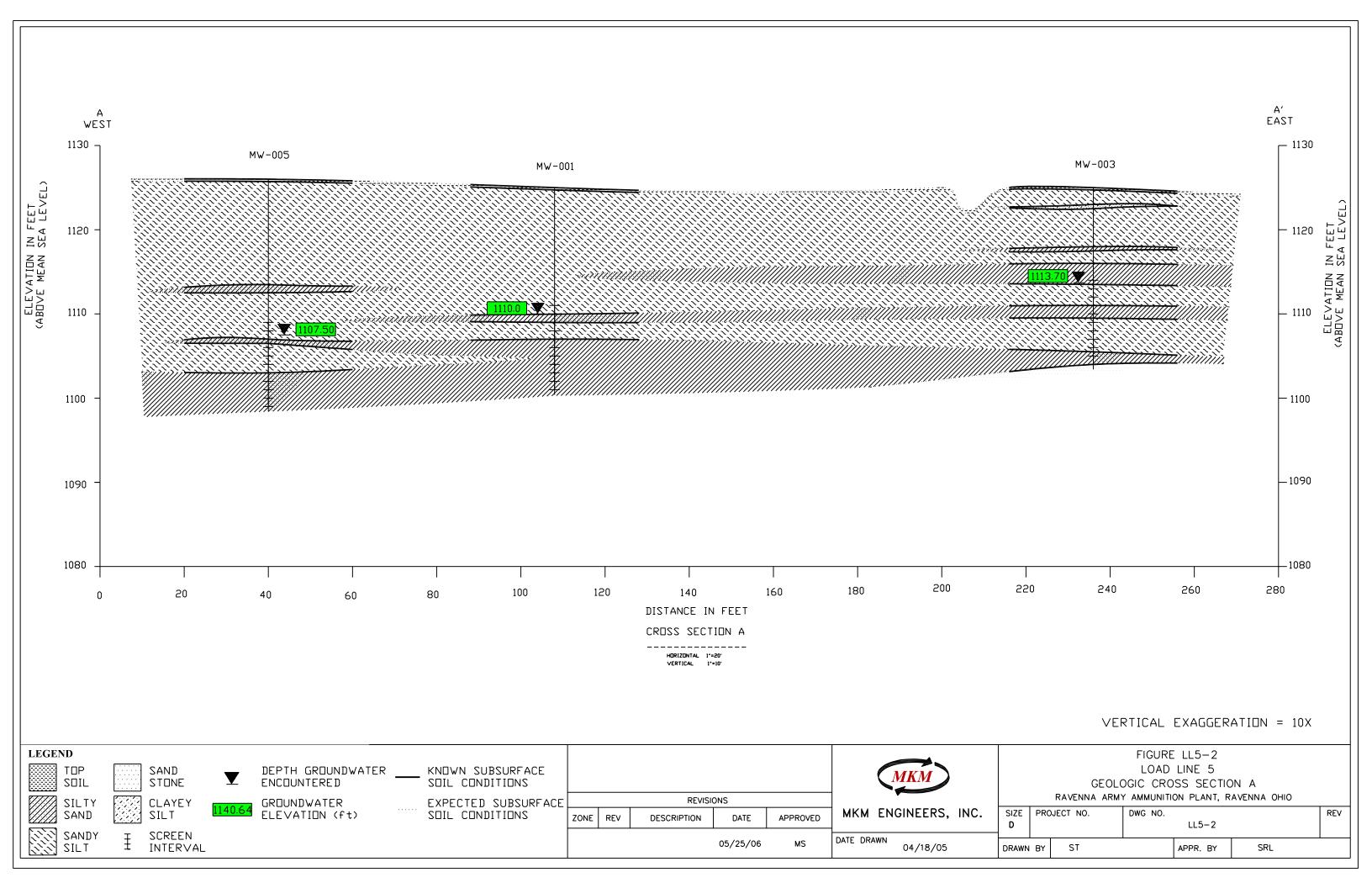
6.2 HUMAN HEALTH RISK SCREENING

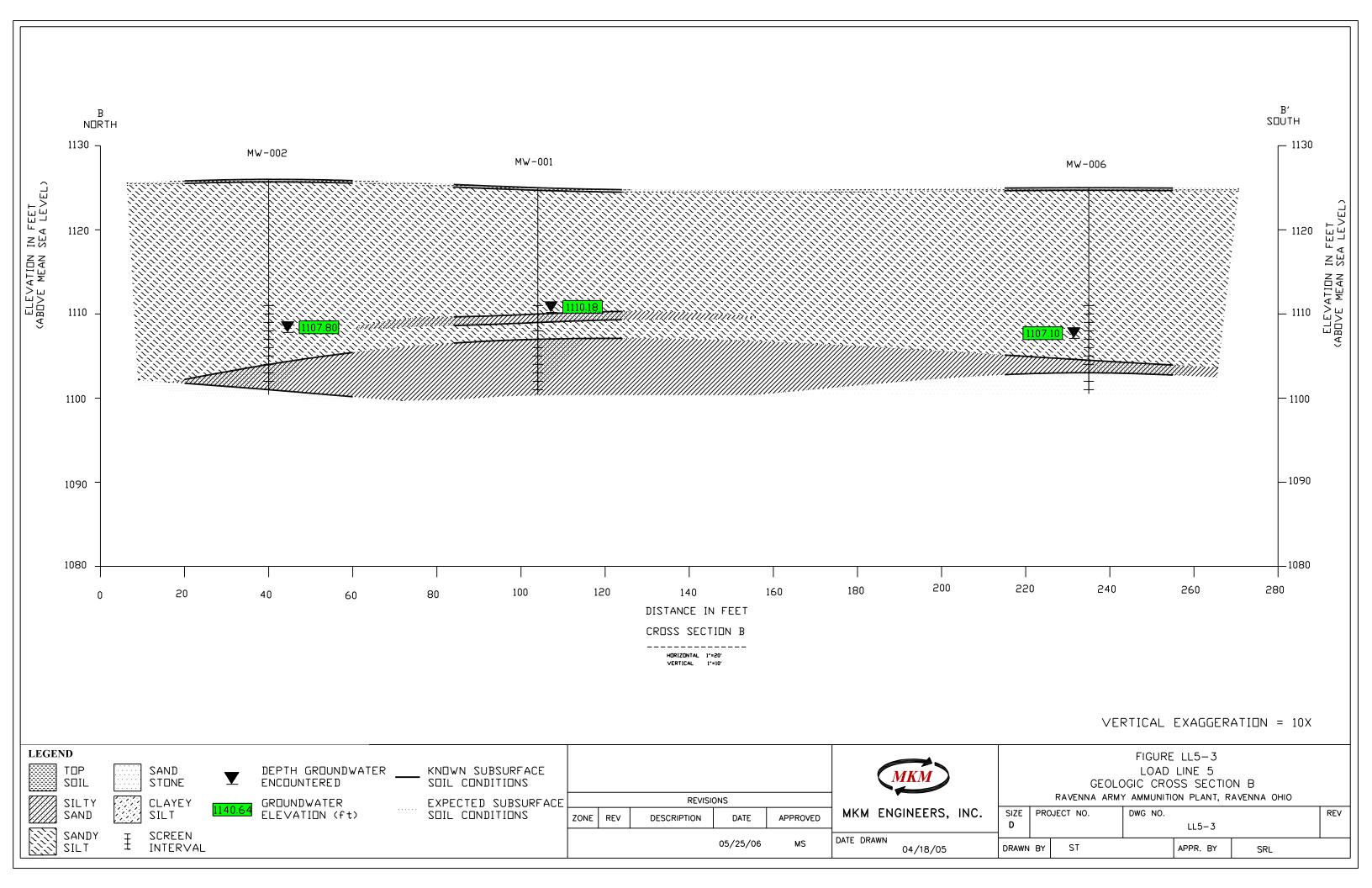
A Human Health Risk Screening (HHRS) was conducted to compare the concentrations detected in LL5 samples to RVAAP-specific background values and U.S. EPA Region 9 residential PRGs. This preliminary screening was conducted to identify potential COPCs. The following table identifies the COPCs.

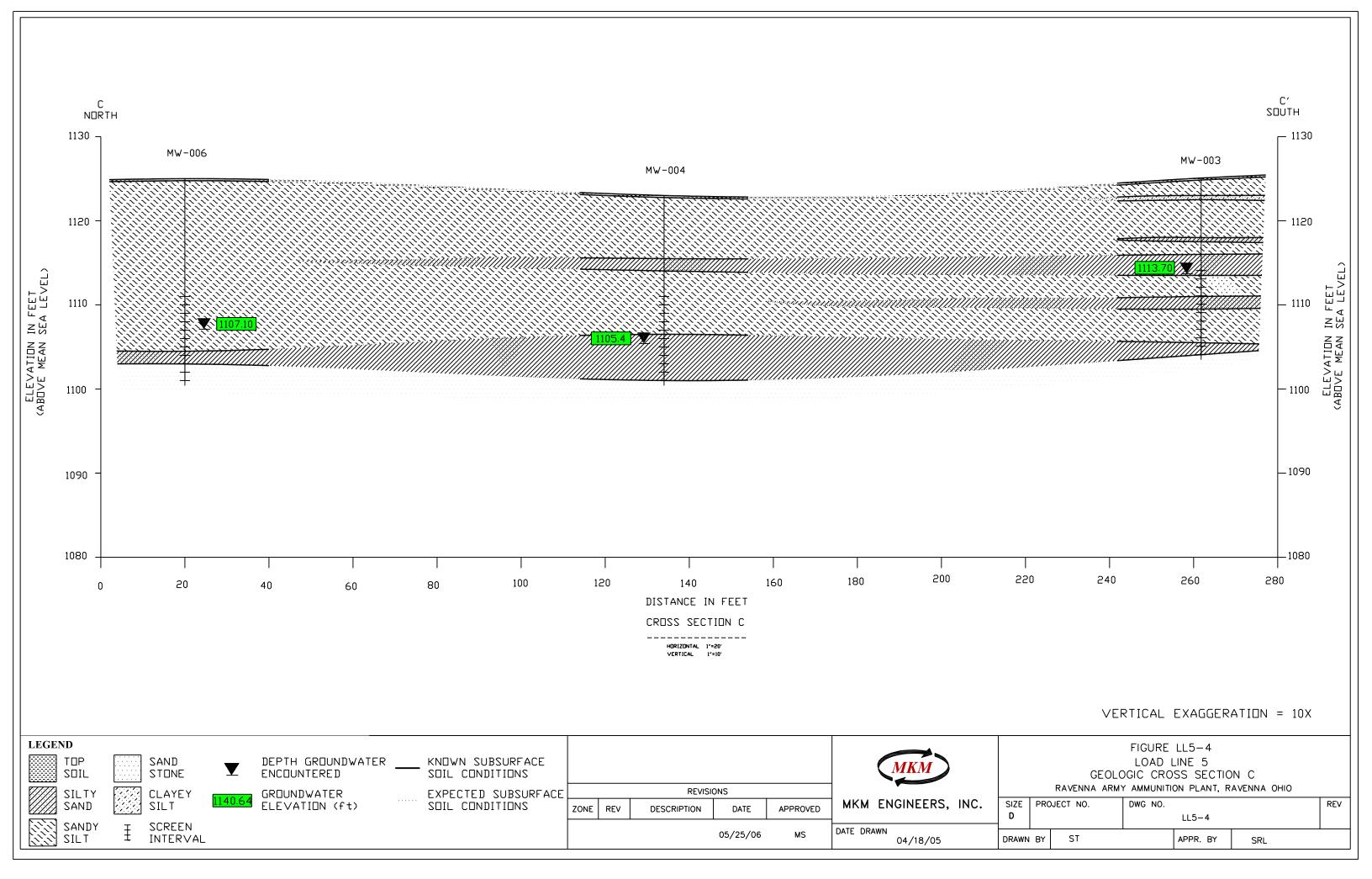
Table LL5-18							
Chemical of Potential Concern – All Media							
Soils Sediment Surface Water Ground							
Aluminum	Arsenic	Benzo(a)anthracene	Arsenic				
Chromium	Cadmium	Benzo(a)pyrene	Manganese				
Iron	Chromium	Benzo(b)fluoranthene					
Manganese	Copper	Benzo(g,h,i)perylene					
Mercury	Iron	Bis(2-ethylhexyl)phthalate					
2-Methylnapthalene	Lead	Dibenzo(a,h)anthracene					
Acenapthylene	Vanadium	Indeno(1,2,3-cd)pyrene					
Benzo(a)pyrene		Nitrate					
Benzo(g,h,i)perylene							
Phenanthrene							

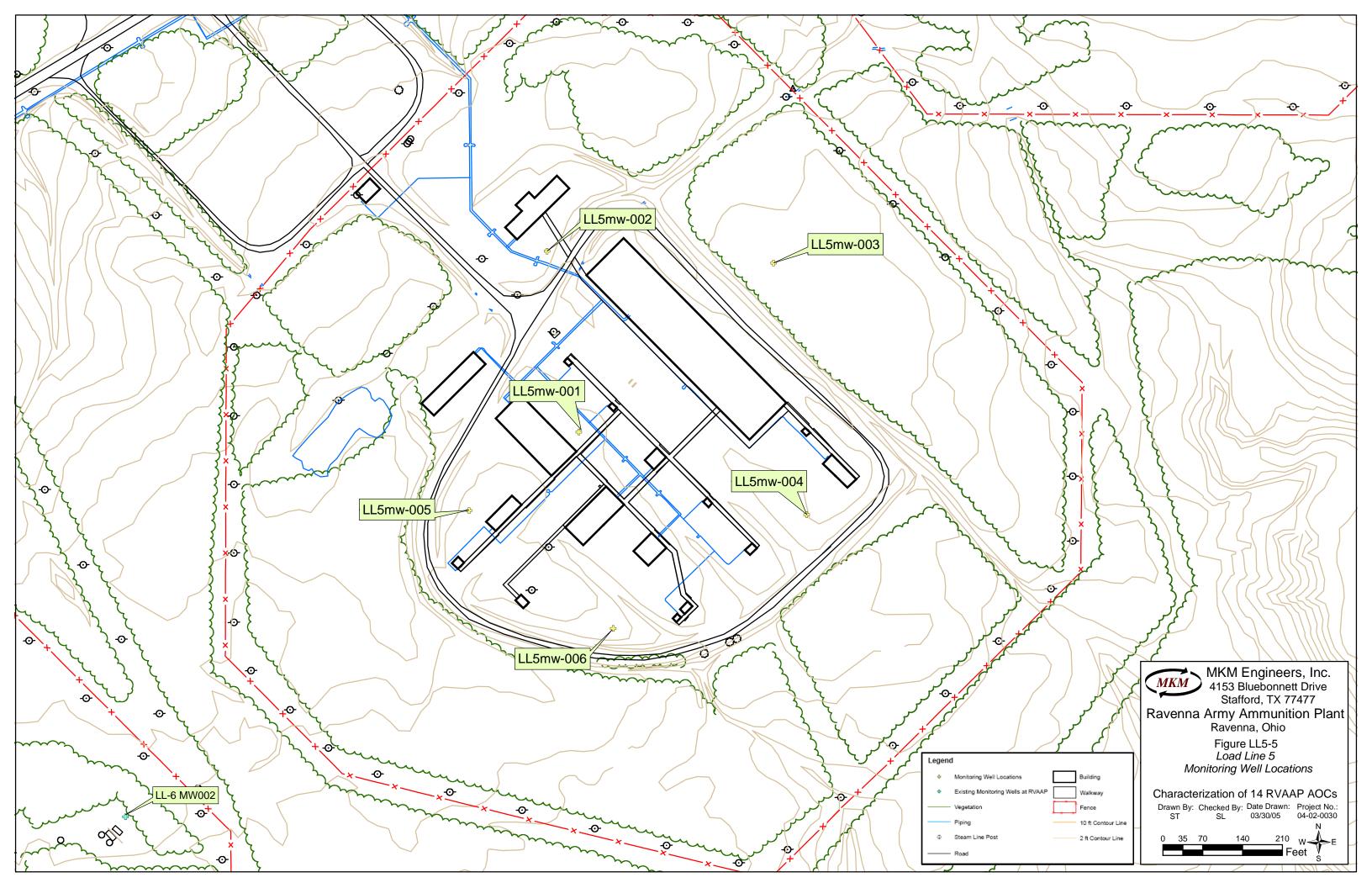
6.3 ECOLOGICAL RISK SCREENING

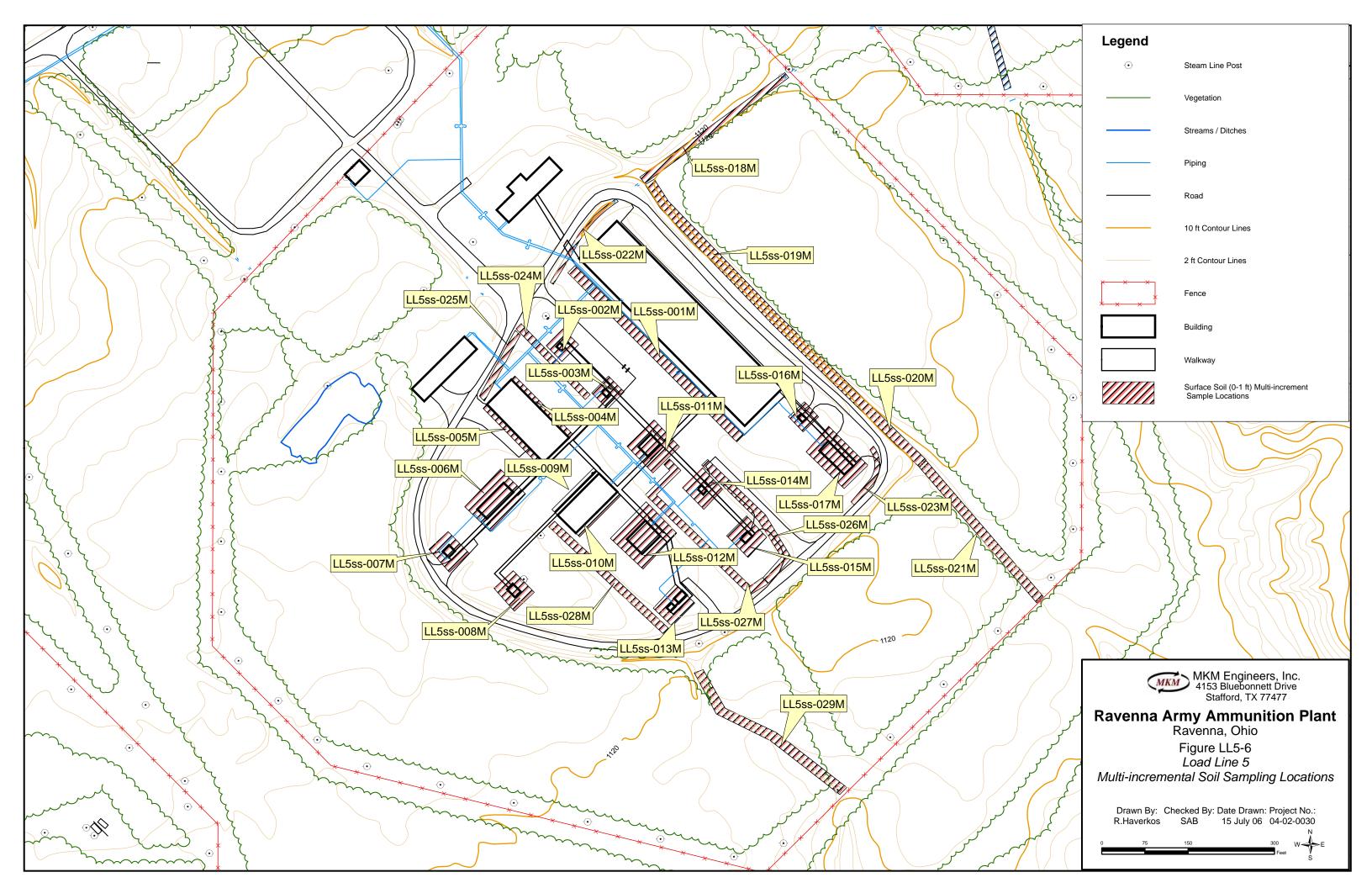

An Ecological Risk Screening (ERS) was performed to compare contaminant concentrations detected at LL5 to RVAAP-specific background values and ecological screening values. The ERS was conducted as outlined in Volume 1, Section 5.2. The ERS identified COPECs for LL5. The following table summarizes those COPECs by media.

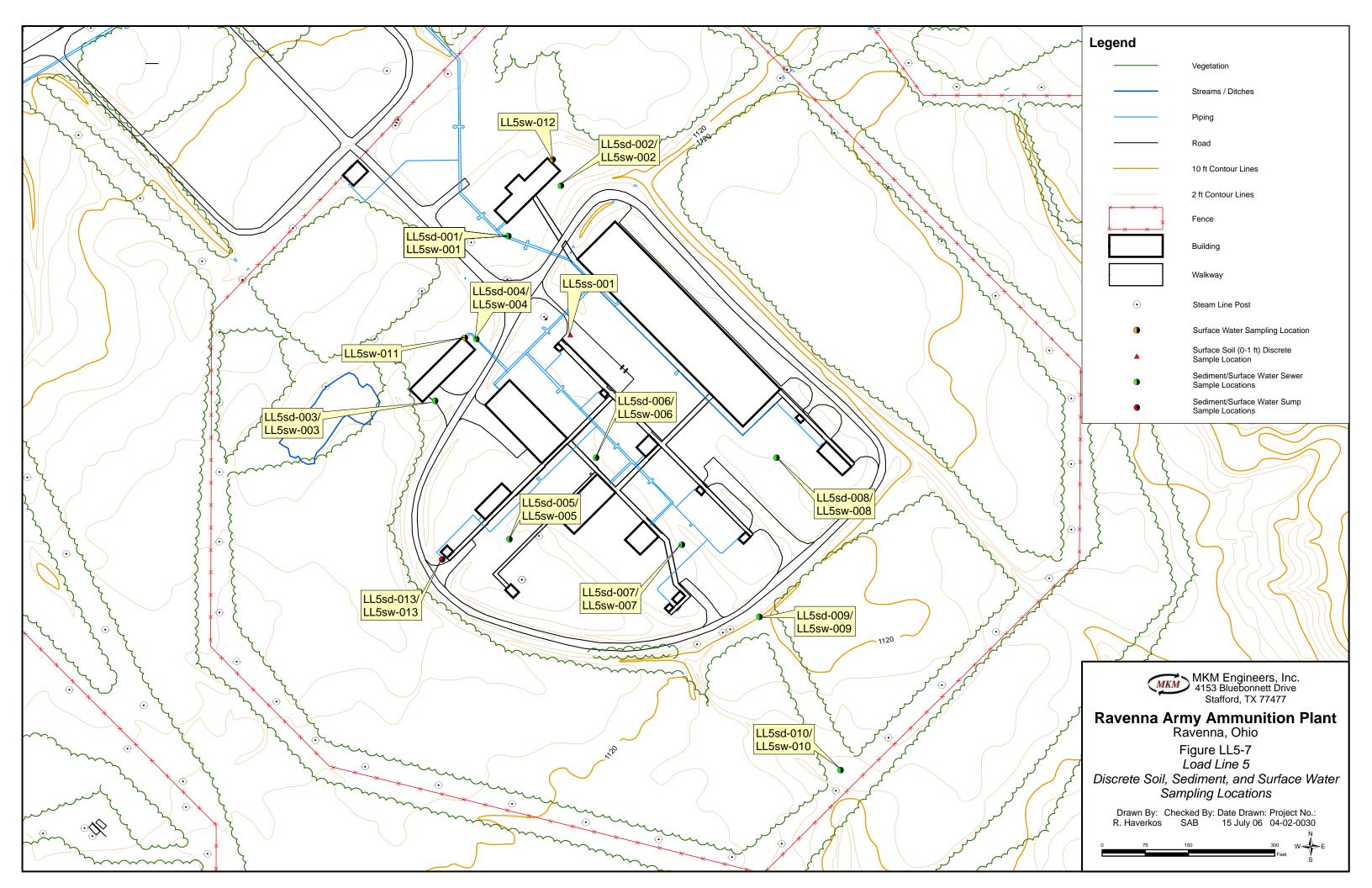


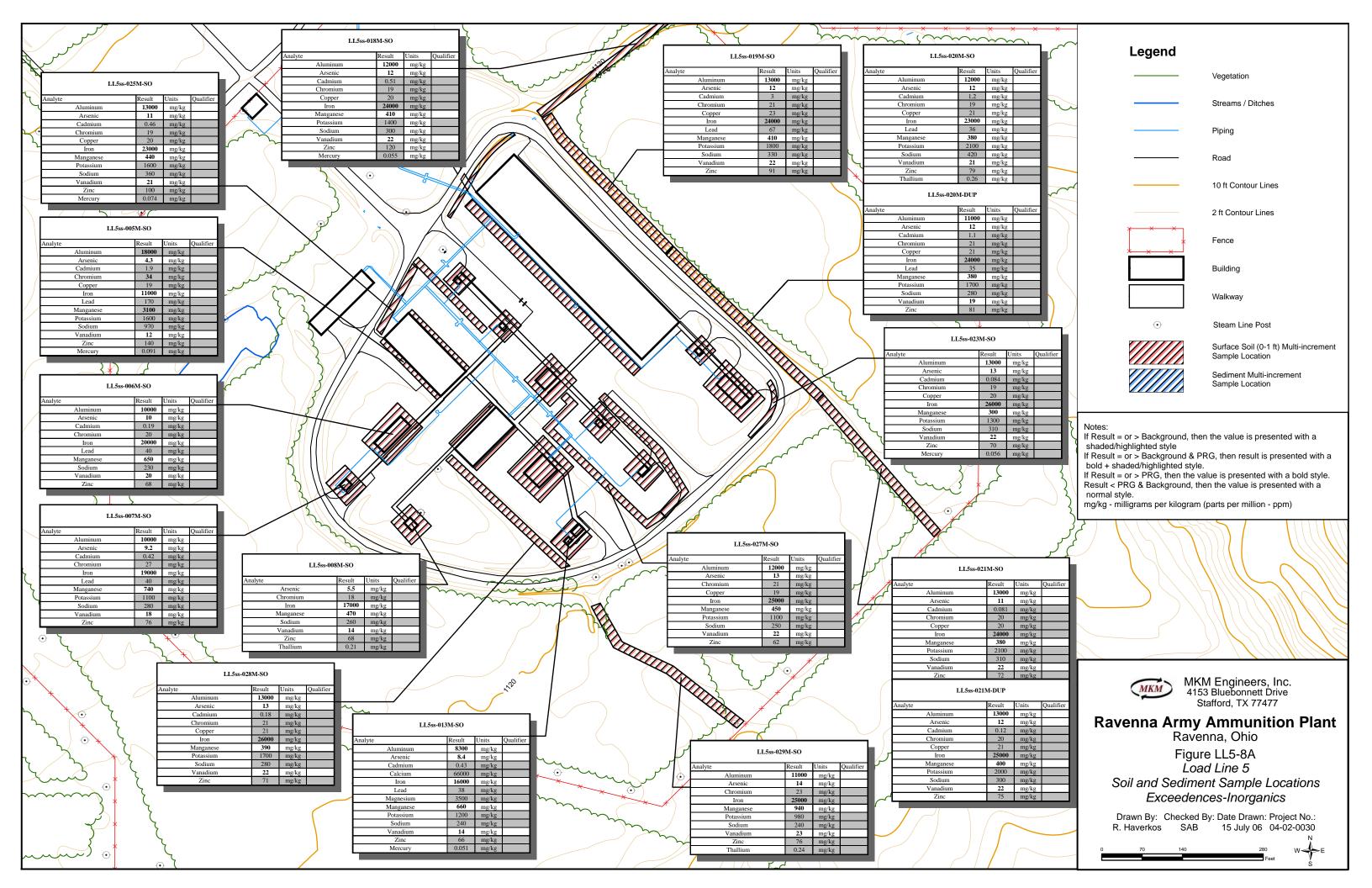

Table LL5-19							
Chemical of Potential Ecological Concern – All Media							
Soils	Sediment	Surface Water	Groundwater				
Aluminum	Arsenic	Iron	Groundwater not				
Chromium	Barium	Selenium	evaluated for ERS				
Iron	Cadmium	Mercury					
Lead	Chromium	Benzo(a)anthracene					
Manganese	Copper	Benzo(a)pyrene					
Nickel	Iron	Benzo(b)fluoranthene					
Selenium	Lead	Benzo(g,h,i)perylene					
Zinc	Nickel	Benzo(k)fluoranthene					
Mercury	Selenium	Chrysene					
Aroclor 1254	Zinc	Dibenzo(a,h)anthracene					
Carbazole	Antimony	indeno(1,2,3-cd)pyrene					
Dibenzofuran	Mercury	Nitrate					
4-Nitrotoluene	Nitrate						
Nitrate							

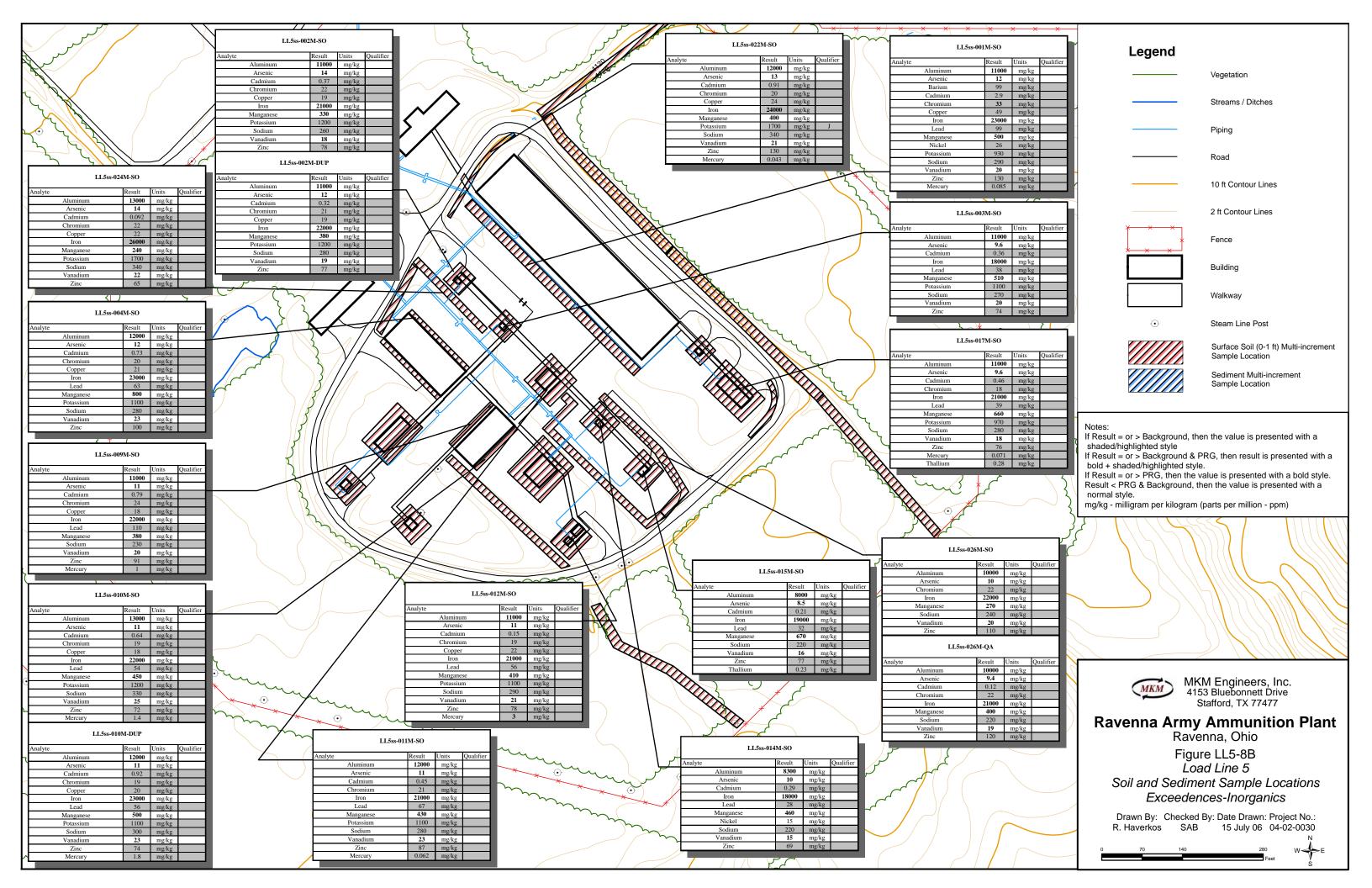

6.4 CONCLUSION

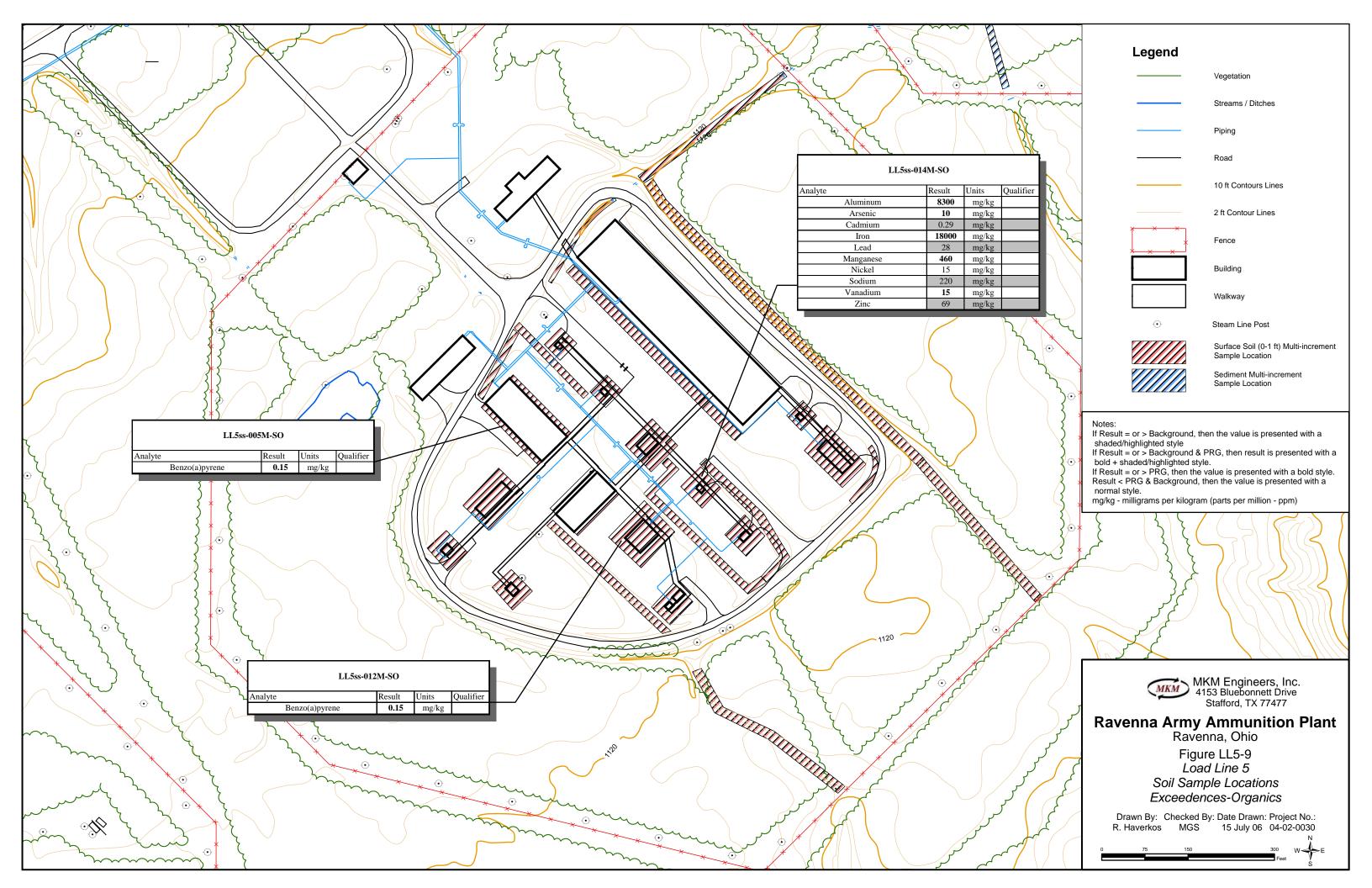

Based on the COPCs presented in Section 6.2 and the COPECs presented in Section 6.3, a full risk evaluation should be carefully considered in the overall risk management decisions that are made for LL5.











alyte	Result	Units	Qualifier
Aluminum	9900	mg/kg	J
Arsenic	14	mg/kg	
Beryllium	0.68	mg/kg	
Cadmium	1.9	mg/kg	J
Chromium	20	mg/kg	J
Cobalt	9.4	mg/kg	
Copper	44	mg/kg	J
Iron	39000	mg/kg	J
Lead	35	mg/kg	J
Magnesium	3200	mg/kg	J
Manganese	510	mg/kg	J
Nickel	24	mg/kg	
Sodium	300	mg/kg	
Vanadium	32	mg/kg	

LL5sd-002-DUP

alyte	Result	Units	Qualifier
Aluminum	9100	mg/kg	
Arsenic	14	mg/kg	
Beryllium	0.63	mg/kg	
Cadmium	1.6	mg/kg	
Chromium	19	mg/kg	
Copper	59	mg/kg	
Iron	43000	mg/kg	
Lead	36	mg/kg	
Manganese	530	mg/kg	
Nickel	23	mg/kg	
Sodium	280	mg/kg	
Vanadium	29	mg/kg	
	15	$\left(\mathcal{E} \right)$	

LL5sw-011-SW

		I	1
alyte	Result	Units	Qualifier
Cadmium	0.28	ug/l	
Calcium	42000	ug/l	
Potassium	28000	ug/l	
Zinc	81	ug/l	
Lead	0.89	ug/l	
	Calcium Potassium Zinc	Cadmium0.28Calcium42000Potassium28000Zinc81	Cadmium 0.28 ug/l Calcium 42000 ug/l Potassium 28000 ug/l Zinc 81 ug/l

LL5sw-011-DUP

A					
	Analyte	Result	Units	Qualifier	
ىر	Cadmium	0.31	ug/l		
~	Potassium	27000	ug/l		
\checkmark	Zinc	79	ug/l		
\odot	Lead	0.98	ug/l		7

LL5sw-011-DUP

्र

 \odot_{\odot}

Analyte Result Units Qualifier 5.3 ug/l J Bis(2-ethylhexyl) phthalate

		- 14	
Jun manuf			
	LL5sw-0	12-SW	Qualifier
	Analyte Cadmium	Result Units 0.33 ug/l	Qualifier
T Jon H Star	Potassium	16000 ug/l	
			- Mar July July
	35 16	A L	
		han the	
		Real And	(
			Analyte
		Not the second s	Chromium
			Vanadium Nitrate as N (NO3
3			Analyte
			Chromium Selenium
			Vanadium
			Nitrate as N (NO3
		X	
		Mary .	
			Y T
			2
			Analyte Vanadium
			Nitrate as N (NO3
			Analyte
		7/	Benzo(a)anthrace Indeno(1,2,3-cd)py
The second secon	× X & M		
N CON VIII			

LL5sd-013-SD

m

 $\sim \sim \sim$

mm

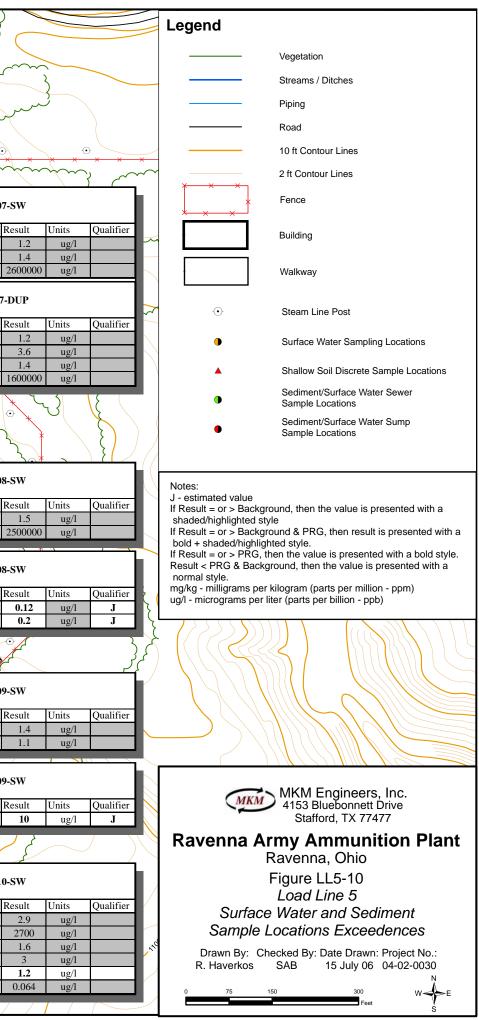
nalyte	Result	Units	Qualifie
Arsenic	180	mg/kg	
Barium	220	mg/kg	
Beryllium	0.68	mg/kg	
Cadmium	6.4	mg/kg	
Calcium	14000	mg/kg	
Chromium	130	mg/kg	
Copper	340	mg/kg	
Iron	100000	mg/kg	
Lead	1500	mg/kg	
Manganese	1000	mg/kg	
Nickel	33	mg/kg	
Selenium	2.5	mg/kg	
Sodium	730	mg/kg	
Vanadium	16	mg/kg	
Zinc	1700	mg/kg	
Antimony	3.1	mg/kg	
		•	

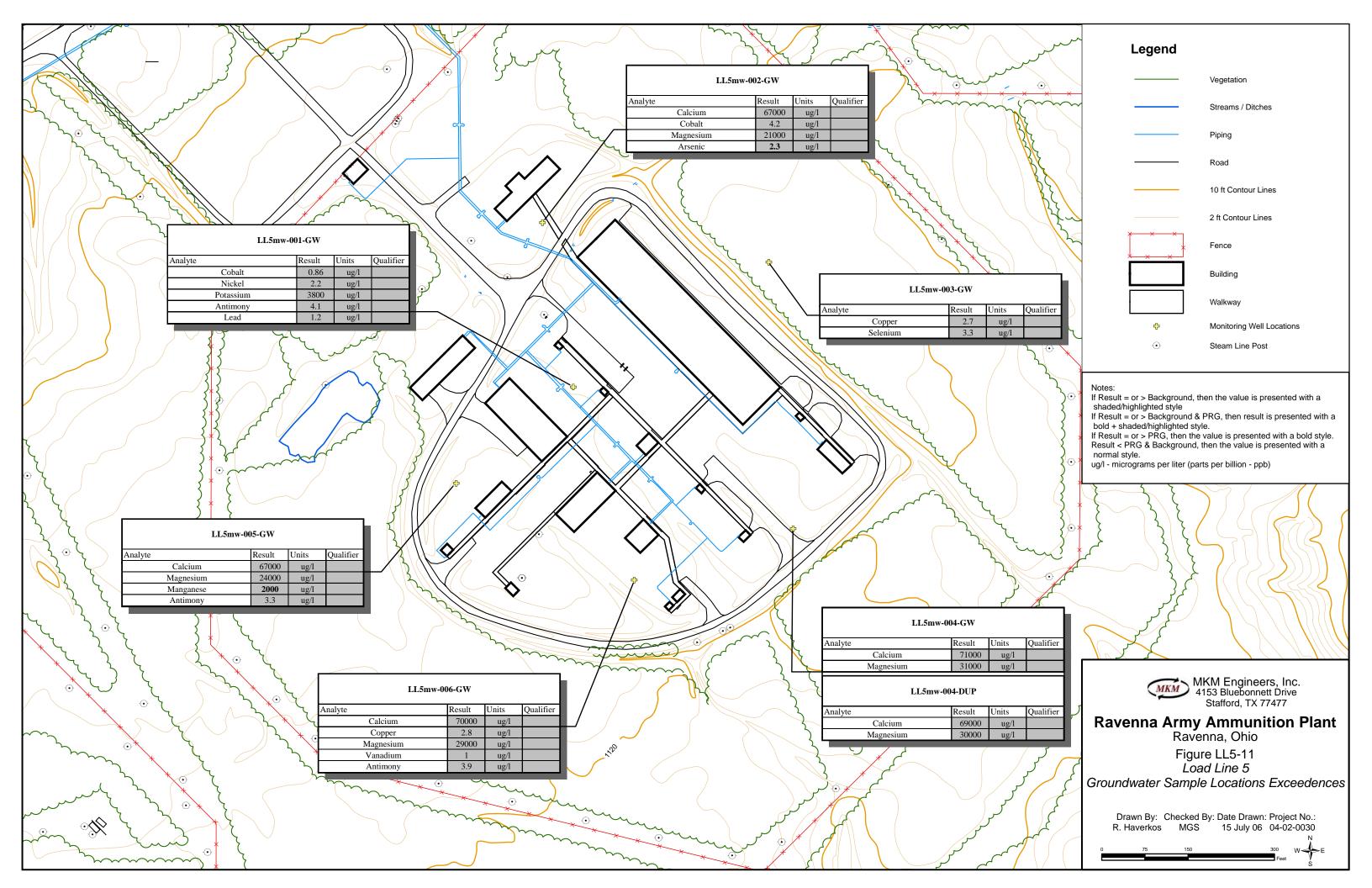
	Nitrate as N (NO3-N)	2600000	u
	LL5sw-007	7-DUP	
	Analyte	Result	Unit
	Chromium	1.2	u
	Selenium	3.6	u
	Vanadium	1.4	u
	Nitrate as N (NO3-N)	1600000	u
			J
	LL5sw-00		
γ	Analyte	Result	Unit
	Vanadium	1.5	u
1)	Nitrate as N (NO3-N)	2500000	u
			N
/	LL5sw-00	8-SW	
\sim	Analyte	Result	Unit
	Benzo(a)anthracene	0.12	u
	Indeno(1,2,3-cd)pyrene	0.2	u
)			
	_		

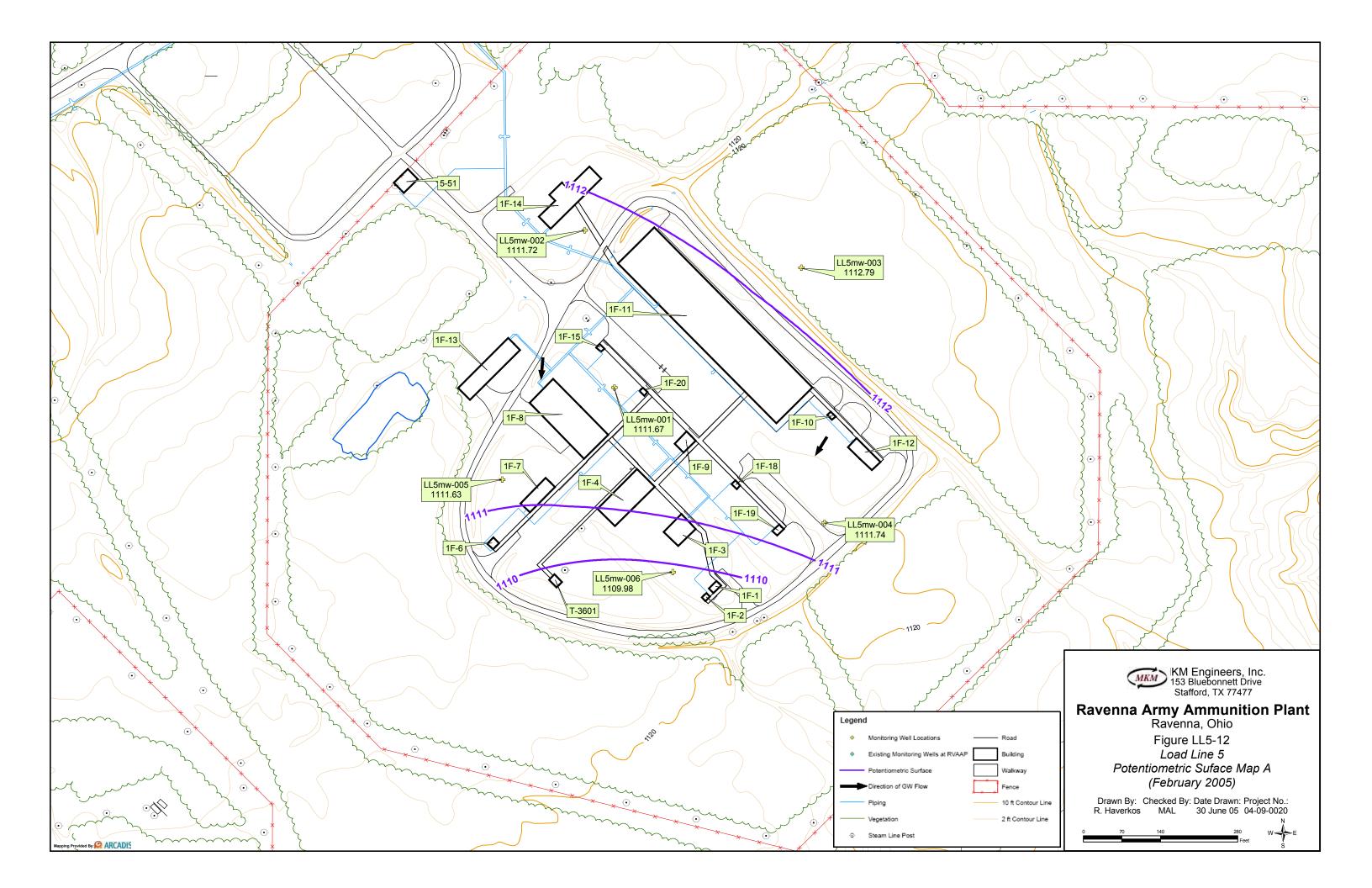
LL5sw-007-SW

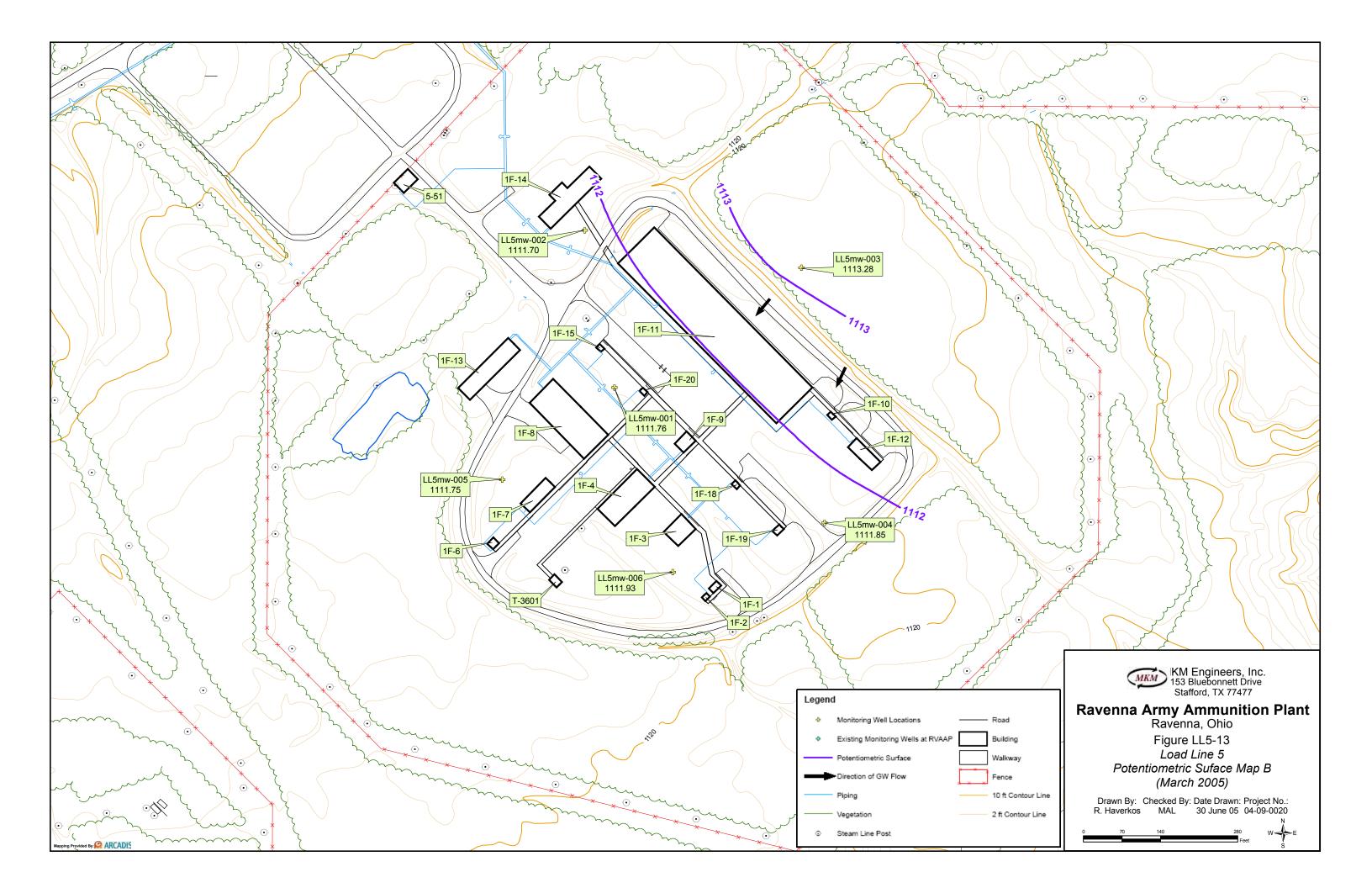
1.2

1.4


LL5sw-009-SW Analyte Result Units Chromium 1.4 1.1 Vanadium


LL5sw-009-SW


Result Units Qualifier Analyte Bis(2-ethylhexyl) phthalate 10


LL5sw-010-SW

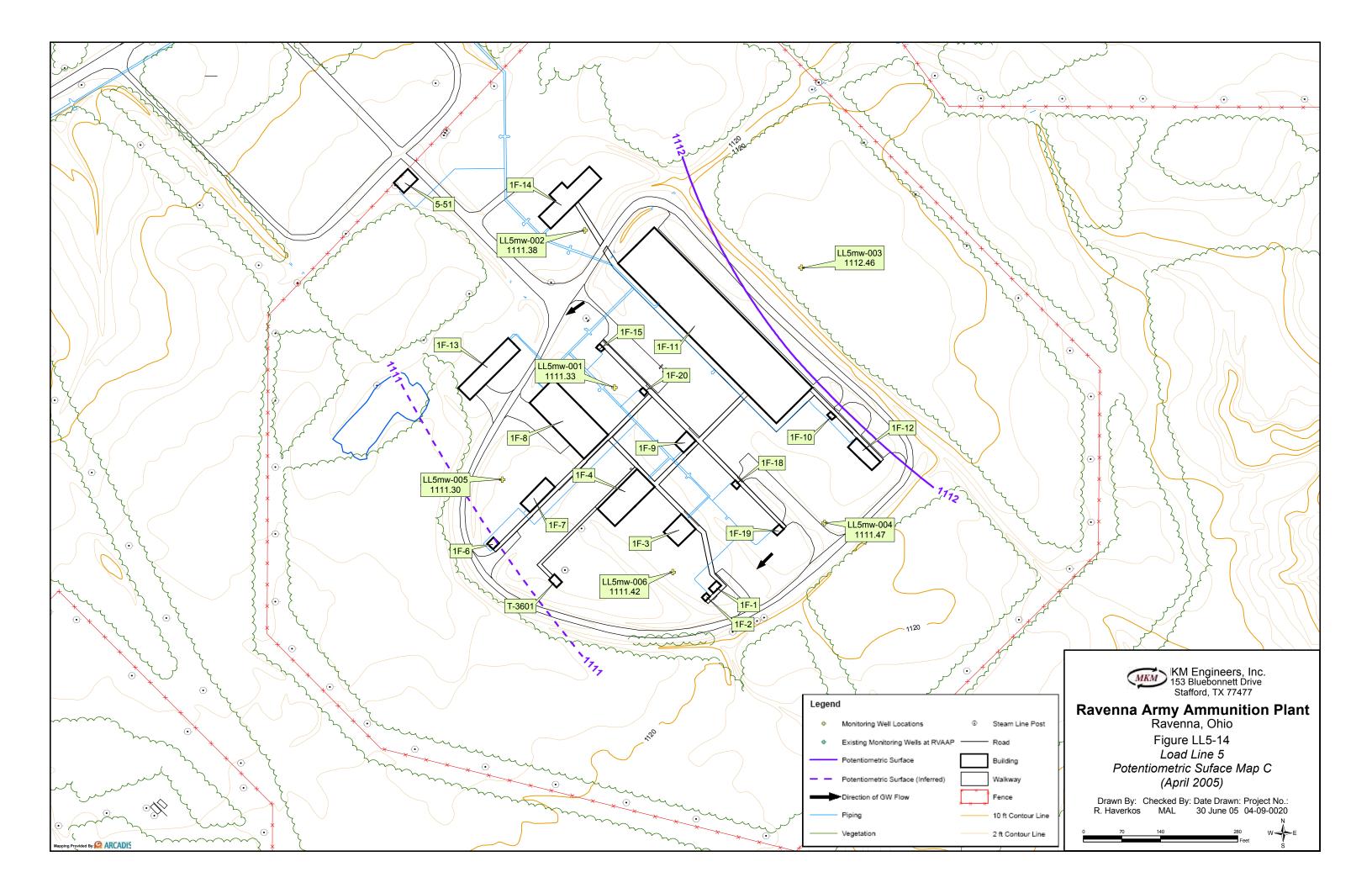

	Analyte	Result	Units
	Chromium	2.9	ug/l
	Iron	2700	ug/l
	Nickel	1.6	ug/l
	Vanadium	3	ug/l
	Arsenic	1.2	ug/l
حر\	Mercury	0.064	ug/l
			/ /

Table LL5-1Load Line 5 Summary of Sampling and AnalysisRVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

SAMPLE PREFIX		VOC	SVOC	Explosives	Propellants	TAL Metals	Chrome +6	Destaides	DOD			1								
LL5				Liptobirob	Troponants	TAL IVICIAIS		Pesticides	PCB	Cyanides	Nitrate	TOC	Geo-Tech	Grain			FIELD QA/Q	C SAMPLES		
	SAMPLE ID	8260B	8270C	8330	3532/8330	6010/7000	7196A	8081A	8082B	9010A/9012A	EPA 353.2	EDA 415 1	Analysis	Size	Multi-Incremental	Duplicate	Equipment Blank	Trip Blank	MS/MSD	USACE Split
MULTI-INCREMENTAL							/19011	0001A	6062D	9010A/9012A	EPA 353.2	EPA 415.1	(Various)	ASTM D422	QA	Sample	1 1	The second se	MIGHNIGE	Correct opin
Surface Soils	SS-001M			1		1					1									
	SS-002M			1		1				1	. 1									
	SS-003M			1	-	1					1			+		1				1
	SS-004M			1		1					1					· · · · · · · · · · · · · · · · · · ·				
	SS-005M	1	1	1	1	1		1	1		1							· · · · · · · · · · · · · · · · · · ·	-	
	SS-006M			1		1		-	· · · · ·		1						1*			
	SS-007M			1		1					1								· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	SS-008M	-		1		1					1									
	SS-009M			1		1					1									
	SS-010M			1		1					1					1				· · · · · · · · · · · · · · · · · · ·
	SS-011M			1		1					1		· · · · ·			1				1
	SS-012M	1	1	1	1	1		1	1		1									
	SS-013M			1		1					1									
	SS-014M			1		1					1									
	SS-015M			1		1					1									
	SS-016M			1		1					1				1					
Dry-Ditch Soils	SS-017M			1		1					1									
Dry-Duch Sous	SS-018M	1	1	1	1	1		1	1		1									
	SS-019M			1		1					1									
	SS-020M			1		1					1			· · · · · · · · · · · · · · · · · · ·		1				
	SS-021M			1		1					1					1				1
	SS-022M SS-023M			1		1				-	1					1			1	1
		-		1		1					1								1	
	SS-024M SS-025M			1		1					1									
				1		1					1									
	SS-026M			1		1					1				1					
	SS-027M SS-028M			1		1					1									1
	SS-029M			1		1					1			·····						<u>I</u>
DISCRETE SOILS	SS-029W	1		1		1					1									
DISCRETE SOILS	33-030	1					-									1				1
GROUNDWATER) (TV 001	4	3	29	3 74-	29 *	0 .	3	.3	0 .	28	0	0	0	a 2	5	10	0	1 *	6
GROUNDWATEK	MW-001	1	1	1	1	1		1	1		1		1	1				V	1	0
	MW-002	1	1	1		1		1	1		1								-	
	MW-003	1	1	1		1		1	1		1		1	1					····	
	MW-004	1	1	1		1		1	1		1		1			1				
·····	MW-005	1	1	1		1		1	1		1					1	1		1	1
······································	MW-006	1	1	1		1		1	1		1		1	1						
		6	6	w 6	1.2	6	3 0 the	6	6	2 () E	6	-0	34	3.	4 (J)	1				-
SURFACE WATER	SW-001	No sample (no	water)	-		1	I		[1	1			1,2		0	1	terite di
Sanitary Sewers		No sample (no												· · · · · · · · · · · · · · · · · · ·						
44 - 4		No sample (no	water)																	
	SW-004	No sample (no	water)																	
	SW-005	No sample (no	water)																	
	SW-006	No sample (no	water)																	
	SW-007	1	1	1		1		1	1											-
	SW-008	1	1	1	1	1		1	1		1					1			1	1.
	SW-009	1	1	1		1		1	1		1									
	SW-010	1	1	1		1			1		1									
Basements	SW-011	1	1	1		1.		1	1		1									
	SW-012	1	1	1	1	1		1	1		1					1				1
Sumps/Basins	SW-013	No sample (no 1	water)						I		1				· · · ·					
			6	6 4	2*-	. 6	\$ j)	Ó	6											
						11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u> </u>	¥ .	0	6	2. 0 . A. ML	0	30	0	2	0	0	1	2

Table LL5-1Load Line 5 Summary of Sampling and AnalysisRVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

SAMPLE PREFIX		VOC	SVOC	Explosives	Propellants	TAL Metals	Chrome +6	Pesticides	PCB	Cyanides	Nitrate	TOC	Geo-Tech	L Contra			EIEE D.O.L. (O.			
LL5									100	Cyanides	Initate	100		Grain	A test in the second	D !!	FIELD QA/Q	SAMPLES		
	SAMPLE ID	8260B	8270C	8330	3532/8330	6010/7000	7196A	8081A	8082B	9010A/9012A	EPA 353.2	EPA 415.1	Analysis (Various)	Size ASTM D422	Multi-Incremental QA	Duplicate Sample	Equipment Blank	Trip Blank	MS/MSD	USACE Split
SEDIMENT	SD-001	No sample (no	o sediment)							2010122012211	LIN 555.2		(various)	A311V1 D422		Sample				
Sanitary Sewers	SD-002			1		1					1			l						
	SD-003	No sample (no	o sediment)								1					1			1	1
	SD-004	No sample (no	o sediment)																	
	SD-005	No sample (no	o sediment)																	
······	SD-006	No sample (no																		
	SD-007	No sample (no													-					
	SD-008	No sample (no																		
· · · · · · · · · · · · · · · · · · ·	SD-009	No sample (no													[]-					
Sumps/Basins	SD-010	No sample (no	o sediment)														-			· ·
Sumps/ Basins	SD-013			1		1					1									
		0	. 0	2	0	.2		<i>§</i> *0	0	0.4	2	± 0	5 - Q.	0.		_1	0 11	0	1	¥ 1. *
Notes:																				
Blank cell indicates that e	ther the sample was	not analyzed f	for that comr	ound and/or the	e sample did n	t have a OC or	Split comple		h 41- 4 1 -											
Discrete Sample is taken	for vocs only from I	31dg 1115 doo	orway	l i			1													
Geo-tech analysis consists	s of Moisture Content	(ASTM D22)	16). Atterbur	g Limits (AST)	M D4318) UC	S (ASTM D249	R7) pH (EDA	150 1) & Smaa	ifia Cravity	(ACT) (DOCA)										
Oranisize and TOC are ta	ken at an major dran	nageway" sedi	iments			5 (7101101 D240	57), pri (EFA	150.1) & Spec	nic Gravity	(ASTM D854)										
All shelby tubes taken du	ing MW installatinor	ns will have fu	ill geo-tech a	nd grainsize and	alvses															
* Mislabeled on final resu	Its package as LL5sw	-005M-ER	0	B and the un																
										I										

							T		1		I	r —	T	T	· · · · · · · · · · · · · · · · · · ·				·	
						OS-M100-	02M-DUP	002M-SO	-003M-SO	-004M-SO	.005D-SO	OS-M200-	OS-M900-	O2-M700	OS-M800-	OS-W600	0M-DUP	010M-SO	OS-MI	2D-SO
						LL5ss-	LL5ss-0	LL5ss-	LL5ss-	LL5ss-	LL5ss-00	LL5ss-00	LL5ss-00	LL5ss-00	LL5ss-00	LL.5ss-00	LL5ss-01(LL5ss-01(LL5ss-011M	LL5ss-012
					Sample Date: ample Depth:		0-1 ft	11/12/2004	11/12/2004	11/10/2004	11/19/2004	11/19/2004	11/12/2004	11/12/2004	11/12/2004	11/15/2004	11/15/2004	11/15/2004	11/12/2004	11/15/2
				Surface Soil		0-111	0-110	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1
			Region 9 PRG	Background																
oup	Method	Parameter	(Res Soil)	Criteria	Units															
tals	6010B	Aluminum	7614 nc	17700	mg/kg	11000	11000	11000	11000	12000		18000	10000	10000	7400	11000	12000	13000	12000	
	6010B	Arsenic	0.39 ca		mg/kg	12	12	14	9.6	12		4.3	10000	9.2	5.5	11000	12000	13000	12000	
	6010B	Barium	538 nc		mg/kg	- 99	53	50	71	81		220	61	94	40	54	68	62	64	
	6010B 6010B	Beryllium Cadmium	<u>15 nc</u>		mg/kg	0.82	0.78	0.69	0.75	0.74		4.2	0.65	1	0.54	0.64	0.66	0.68	0.69	1
	6010B	Calcium	<u>3.7 nc</u> [n]		mg/kg	2.9	0.32	0.37	0.36	0.73		1.9	0.19	0.42		0.79	0.92	0.64	0.45	
	6010B	Chromium		15800	mg/kg	5900.	5800	4700	7800	2700		140000	2200	43000	840	1900	2000	2100	1800	
	6010B	Cobalt	<u> </u>		mg/kg mg/kg	33 7.2	21	22	17	20		34	-20	27	18	24	19	19	21	
	6010B	Copper	313 nc		mg/kg	49	6.6	6.5 19	6	8.8		1.9	8.6	6.2	6	7.4	8.8	7.7	7.6	
	6010B	Iron	2346 nc		mg/kg	23000	22000	21000	16 18000	21 23000		19	14	17	9.7	18	20	18	· 16	
	6010B	Lead	400 pbk		mg/kg	99	22000	21000	38	63		11000	20000	19000	17000	22000	23000	22000	21000	
	6010B	Magnesium	[n]	3030	mg/kg	3000	3000	2800	2500	2400		170 16000	40	40	17	110	56	54	67	
	6010B	Manganese	176 nc		mg/kg	500	380	330	510	800		3100	2100 650	4000	1500	2400	2600	2600	2200	
	6010B	Nickel	156 nc	21.1	mg/kg	26	19	19	15	18		13	17	740 18	470 12	380	500	450	430	
	6010B	Potassium	[n]	927	mg/kg	930	1200	1200	1100	1100		1600	790	1100	760	19 830	17 1100	17 1200	16	
	6010B	Selenium	39 nc	1.4	mg/kg	0.78	0.69	0.54	0.47	0.65	-	1.8	0.76	0.67	0.6	0.57	0.71	0.77	1100 0.77	
	6010B	Sodium	[n]	123	mg/kg	290	280	260	270	280		970	230	280	260	230	300	330	280	
	6010B 6010B	Vanadium Zinc	7.8 nc		mg/kg	20	19	18	20	23		12	20	18	14	20	23	25	23	
	7041	Antimony	2346 nc		mg/kg	130	77	78 -	74	100		140	68	76	68	91	74	72	87	
	7841	Thallium	<u>3.1 nc</u> 0.52 nc		mg/kg													0.46	0.43	
Bs	8082	Aroclor 1254	0.52 nc 0.22 ca	0.00	mg/kg										0.21					
)Cs	8270C	2-Methylnaphthalene	0.22 Ca		mg/kg							0.038								
	8270C	Acenaphthene	368 nc		mg/kg mg/kg							0.11								
	8270C	Acenaphthylene			mg/kg							0.014 7								
	8270C	Anthracene	2189 nc		mg/kg							0.016 J								
	8270C	Benzo(a)anthracene	0.62 ca		mg/kg							0.031 J 0.12								
	8270C	Benzo(a)pyrene	0.062 ca		mg/kg							0.12			······································					
	8270C	Benzo(b)fluoranthene	0.62 ca		mg/kg							0.19								
	8270C	Benzo(g,h,i)perylene			mg/kg							0.097								
	8270C	Benzo(k)fluoranthene	6.2 ca		mg/kg							0.098								
	8270C 8270C	Benzyl alcohol Carbazole	1833 nc		mg/kg							1.3								
	8270C	Chrysene	24 ca 62 ca		mg/kg							0.017 J								
	8270C	Dibenzo(a,h)anthracene			mg/kg							0.15								
	8270C	Dibenzofuran	0.062 ca		mg/kg mg/kg							0.024 J								
	8270C	Fluoranthene	229 nc		mg/kg mg/kg							0.039 J								
	8270C	Fluorene	275 nc		mg/kg							0.23								
	8270C	Indeno(1,2,3-cd)pyrene	0.62 ca		mg/kg							0.018 J		·						
	8270C	Isophorone	512 ca		mg/kg							0.09								
	8270C	Naphthalene	5.6 nc		mg/kg							0.095								•
	8270C	Phenanthrene			mg/kg							0.093								
	8270C	Phenol	1833 nc		mg/kg							0.10								
	8270C	Pyrene	232 nc		mg/kg							0.17								

				Sample Date:	OS-W100-sssTT 11/12/2004	dnq-w200-sss211 11/12/2004	LL5ss-002M-SO	LL5ss-003M-SO	LL5ss-004M-SO	LL5ss-005D-SO	LL5ss-005M-SO	LL5ss-006M-SO	LL5ss-007M-SO	LL5ss-008M-SO	LL5ss-009M-SO	LL5ss-010M-DUP	LL5ss-010M-SO	LL5ss-011M-SO	LL5ss-012D-SO
		······································		Sample Date: Sample Depth:		0-1 ft	11/12/2004 0-1 ft	11/12/2004 0-1 ft	11/10/2004 0-1 ft	11/19/2004 0-1 ft	11/19/2004 0-1 ft	11/12/2004 0-1 ft	11/12/2004 0-1 ft	11/12/2004 0-1 ft	11/15/2004 0-1 ft	11/15/2004 0-1 ft	11/15/2004 0-1 ft	11/12/2004	11/15/2004
Group	Method	Parameter	Region 9 PRG (Res Soil)	Surface Soil Background Criteria Units									0-1 IL	<u>0-1 It</u>	0-1 II	0-1 IL	<u>0-1 II</u>	0-1 ft	0-1 ft
Explosives	8330	4-Nitrotoluene	12 ca	mg/kg															

Notes:

--- no background/PRG value is available for this analyte

blank cell indicates that the analyte was a non-detect (with a "U" qualifier) or analysis was not performed

mg/kg - means milligrams per Kilogram (parts per million - ppm)

PRG - preliminary remediation goals

nc - non-cancer basis, value is 1/10 the published PRG

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

U - analyte not detected

J - estimated value

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style.

If Result = or > PRG, then the value is presented with a bold style

r								_														
								So I	so	00	l og	₹Ŏ	0 0	0	-so	0	şo	5	0	<u>₽</u>	0	0
								-012M-SO	-013M-5	-014M-SO	-015M-SO	6M-C	-016M-SO	017M-SO	D-S	-018M-SO	M-S	020M-DUP	020M-SO	021M-DUP	IM-SO	022M-SO
								-01	-01		-015	-016	-016	017	018D-	018	-M610-	020	0201	0211	0211	0221
								L5ss-		.5ss	-5ss	.5ss	.5ss-	5ss-	5ss-	5ss-	5ss-	5ss-	5ss-t	Sss-(5ss-(-5ss-(
						s.	omula Data	11/15/2004	11/15/0004	<u><u> </u></u>	3	<u> </u>	1	<u> </u>			LLL	LLL.	TT	Ë	LLL	LLL.
							ample Date: mple Depth:		0-1 ft	0-1 ft	0-1 ft	11/15/2004	11/15/2004	11/15/2004	11/19/2004	11/19/2004	11/12/2004	11/15/2004	11/15/2004	11/19/2004	11/19/2004	11/12/2004
						Surface Soil	T	. 0-110	0-110	0-111	0-111	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft				
			-	ion 9 PR		Background																
Group	Method	Parameter	(R	tes Soil)		Criteria	Units									1						
Metals	6010B	Aluminum			nc	17700	mg/kg	11000	8300	8300	8000	10000	11000	11000	1	12000	13000	11000	12000	13000	13000	12000
	6010B 6010B	Arsenic Barium			ca	15.4	mg/kg	11	8.4	10	8.5	9.2	9.3	9.6		12	12	12	12	12	13000	12000
	6010B	Beryllium			nc nc	88.4	mg/kg	57	83	52	51	67	69	66		82	95	76	74	80	77	90
	6010B	Cadmium	3		nc	0.88	mg/kg mg/kg	0.64	0.83	0.63	0.65	0.8	0.91	0.94		0.82	0.85	0.79	0.78	0.84	0.8	0.86
	6010B	Calcium		./ [n]		15800	mg/kg	3700	66000	3900	3600	0.41	0.44	0.46		0.51	3	1.1	1.2	0.12	0.081	0.91
	6010B	Chromium			ca	17.4	mg/kg	19	16	16	15	17000	21	9200		2400 19	9000	18000 21	19000	13000	14000	3800 J
	6010B	Cobalt			ca	10.4	mg/kg	7.3	6	6.8	7.5	5.4	5.1	8.9		19	9.7	11	19	20 12	20	20
	6010B	Copper	3		nc	17.7	mg/kg	22	14	17	15	16	16	17		20	23	21	21	21	20	24
	6010B 6010B	Iron Lead	23		nc	23100	mg/kg	21000	16000	18000	19000	19000	18000	21000		24000	24000	24000	23000	25000	24000	24000
	6010B	Magnesium		00 [n]	pbk	26.1 3030	mg/kg	56	38	28	32	31	32	39		23	67	35	36	17	17	21
	6010B	Manganese			nc	1450	mg/kg mg/kg	2700 410	3500 660	2100	1800	2600	3200	3300		2900	3400	5200	5400	5300	5100	3100
	6010B	Nickel			nc	21.1	mg/kg	17	16	460 15	670 15	410	450	660		410	410	380	380	400	380	400
	6010B	Potassium		n]		927	mg/kg	1100	1200	730	710	15 840	15 820	16 970		24 1400	25 1800	30	28	29	27	28
	6010B	Selenium	3	9	nc	1.4	mg/kg	0.88	0.72	0.63	0.65	0.69	0.79	0.79		1400	0.7	1700	2100	2000	2100	1700 J 0.52
	6010B	Sodium	[123	mg/kg	290	240	220	220	260	270	280		300	330	280	420	300	310	340
	6010B 6010B	Vanadium	7.		nc	31.1	mg/kg	21	14	15	16	17	17	18		22	22	19	21	22	22	21
	7041	Zinc Antimony	23		nc	61.8	mg/kg	78	66	69	77	75	73	76		120	91	81	79	75	72	130
	7841	Thallium	0.5		nc nc	0.96	mg/kg mg/kg				0.02											
PCBs	8082	Aroclor 1254	0.2		ca		mg/kg				0.23			0.28					0.26			ļ
SVOCs	8270C	2-Methylnaphthalene	-				mg/kg						<u> </u>			0.026 1						
	8270C	Acenaphthene	36	58 1	nc		mg/kg	0.021 J								0.026 J						
	8270C	Acenaphthylene					mg/kg															
	8270C 8270C	Anthracene	21		nc		mg/kg	0.056														[
	8270C	Benzo(a)anthracene Benzo(a)pyrene	0.6		ca ca		mg/kg	0.19								0.025 J						
	8270C	Benzo(b)fluoranthene	0.0		ca		mg/kg mg/kg	0.15								0.033						
	8270C	Benzo(g,h,i)perylene					mg/kg	0.089								0.053						
	8270C	Benzo(k)fluoranthene	6.		ca		mg/kg	0.11								0.026 J 0.025 J						
	8270C	Benzyl alcohol	183		nc		mg/kg									0.46 J						
	8270C 8270C	Carbazole	24		ca	-	mg/kg	0.038 J														
	8270C	Chrysene Dibenzo(a,h)anthracene	0.00		ca		mg/kg	0.22								0.041						· · · · · · · · · · · · · · · · · · ·
	8270C	Dibenzofuran	15		ca nc		mg/kg mg/kg	0.019 J														
	8270C	Fluoranthene	22		nc		mg/kg mg/kg	0.42								0.0099 J						
	8270C	Fluorene	27		nc		mg/kg	0.42 0.014 J								0.065						
	8270C	Indeno(1,2,3-cd)pyrene	0.6	2 c	ca		mg/kg	0.072								0.025 J						· · ·
	8270C	Isophorone	51		ca		mg/kg									0.025 5						
	8270C	Naphthalene	5.6		10		mg/kg									0.02 J			-			
	8270C 8270C	Phenanthrene Phenol	183				mg/kg	0.2								0.04 J						
	8270C	Pyrene	232		10 10		mg/kg	0 36								0.046 J						· · · · · · · · · · · · · · · · · · ·
	1	I- 7.000	1 23	L 11	~1	- 1	mg/kg	0.30	1	1	I	I	[0 046 J	- 1					

Load Line 5 Summary of Surface Soil (0-1 ft) Detections **RVAAP 14 AOC Characterization** Ravenna Army Ammunition Plant, Ravenna, Ohio

						ss-012M-SO	ss-013M-SO	ss-014M-SO	ss-015M-SO	s-016M-QA	s-016M-SO	OS-M710-s	s-018D-SO	s-018M-SO	OS-M610-s	-020M-DUP	-020M-SO	-021M-DUP	-021M-SO	-022M-SO
					mple Date: ple Depth:		57 11/15/2004 0-1 ft	57 77 11/15/2004 0-1 ft	\$5 11/15/2004	\$77 11/15/2004	\$777 11/15/2004	³⁵ 11/15/2004	\$\$77 11/19/2004	SSTT 11/19/2004	SS 11/12/2004	\$\$777 11/15/2004	\$\$ 11/15/2004	\$\$\$771 11/19/2004	\$\$ 5777 11/19/2004	\$577 11/12/2004
Group	Method	Parameter	Region 9 PRG (Res Soil)	Surface Soil Background Criteria	Units	<u>0-111</u>	<u>0-1 It</u>	<u>0-1 ft</u>	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft
Explosives	8330	4-Nitrotoluene	12 ca		mg/kg														0.066 J	

Notes:

--- no background/PRG value is available for this analyte

blank cell indicates that the analyte was a non-detect (with a "U" qualifier) or analysis was not performed

mg/kg - means milligrams per Kilogram (parts per million - ppm)

PRG - preliminary remediation goals

nc - non-cancer basis, value is 1/10 the published PRG

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit sat - soil saturation

[n] - nutrient

U - analyte not detected

J - estimated value

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style.

If Result = or > PRG, then the value is presented with a bold style

Load Line 5 Summary of Surface Soil (0-1 ft) Detections RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

	a												
							<u>ğ</u>	<u>o</u> g	og	¥ž	Q	Q	
							LL5ss-023M-SO	LL5ss-024M-SO	LL5ss-025M-SO	LL5ss-026M-QA	LL5ss-026M-SO	LL5ss-027M-SO	
l .					S	ample Date:	11/15/2004	11/12/2004	11/12/2004	11/15/2004	11/15/2004	11/15/2004	+
					Sa	mple Depth:	0-1 ft	0-1 ft	t				
					Surface Soil						-		t
0			Region 9		Background								
Group	Method	Parameter	(Res So	oil)	Criteria	Units							
Metals	6010B	Aluminum	7614	nc	17700	mg/kg	13000	13000	13000	10000	10000	12000	Т
	6010B	Arsenic	0.39	ca	15.4	mg/kg	13	14	11	9.4	10	13	T
	6010B	Barium	538	nc	88.4	mg/kg	59	79	95	52	47	61	
	6010B	Beryllium	15	nc	0.88	mg/kg	0.73	0.8	0.89	0.59	0.59	0.75	
	6010B 6010B	Cadmium	3.7	nc	0.00	mg/kg	0.084	0.092	0.46	0.12			
	6010B	Calcium	[n]		15800	mg/kg	11000	860	8200	3300	3100	2800	
	6010B	Chromium Cobalt	30	ca	17.4	mg/kg	19	22	- 19	22	22	21	
	6010B	Copper	30	ca	10.4	mg/kg	9.1	10	9.4	6.4	5.9	9.4	
	6010B	Iron	2346	nc	17.7 23100	mg/kg	20	22	20	15	15	19	4
	6010B	Lead	400	nc pbk	23100	mg/kg	26000	26000	23000	21000	22000	25000	4
	6010B	Magnesium	[n]	pok	3030	mg/kg mg/kg	19 3300	18 3200	20	22	21	18	
	6010B	Manganese	176	nc	1450	mg/kg	300 300	3200 240	3300	2000	2200	3100	4
	6010B	Nickel	156	nc	21.1	mg/kg	20	240	440 25	400	270	450	
	6010B	Potassium	[n]		927	mg/kg	1300	1700	1600	16 790	17	23	╞
	6010B	Selenium	39	nc	1.4	mg/kg	0.76	0.6	0.72	0.92	870	1100	-
	6010B	Sodium	[n]	- 110	123	mg/kg	310	340	360	220	0.58	0.61	╞
	6010B	Vanadium	7.8	nc	31.1	mg/kg	22	22	21	19 19	240	250	₽
	6010B	Zinc	2346	nc	61.8	mg/kg	70	65	100 -	120	20 110	<u>22</u> 62	
	7041	Antimony	3.1	nc	0.96	mg/kg	10	- 05	100	120	110	02	⊨
	7841	Thallium	0.52	nc	0.00	mg/kg							⊢
PCBs	8082	Aroclor 1254	0.22	ca		mg/kg			····· ·	 			⊢
SVOCs	8270C	2-Methylnaphthalene				mg/kg							┝
	8270C	Acenaphthene	368	nc		mg/kg							⊢
	8270C	Acenaphthylene				mg/kg							⊢
	8270C	Anthracene	2189	nc		mg/kg							⊢
	8270C	Benzo(a)anthracene	0.62	ca		mg/kg							⊢
	8270C	Benzo(a)pyrene	0.062	ca		mg/kg							-
	8270C	Benzo(b)fluoranthene	0.62	ca		mg/kg							F
	8270C	Benzo(g,h,i)perylene				mg/kg							F
	8270C	Benzo(k)fluoranthene	6.2	ca		mg/kg							Γ
	8270C	Benzyl alcohol	1833	nc		mg/kg							Γ
	8270C	Carbazole	24	ca		mg/kg							Γ
	8270C	Chrysene	62	ca		mg/kg							Γ
	8270C	Dibenzo(a,h)anthracene	0.062	ca		mg/kg							[
	8270C	Dibenzofuran	15	nc		mg/kg							-
	8270C	Fluoranthene	229	nc		mg/kg							
	8270C 8270C	Fluorene	275	nc		mg/kg							
	8270C	Indeno(1,2,3-cd)pyrene	0.62	ca		mg/kg							
	8270C	Isophorone Naphthalene	512	ca		mg/kg							<u> </u>
	8270C		5.6	nc		mg/kg							
	8270C	Phenanthrene Phenol				mg/kg							
	8270C		1833	nc		mg/kg							_
	02/00	Pyrene	232	nc	-	mg/kg]				

OS-W8200-585 TT 11/15/2004 0-1 ft	OS-W620-ss2717 11/15/2004 0-1 ft
13000	11000
13	14
100	72
0.99	0.82
0.18	
4700	1700
21 13	23 13
21	14
26000	25000
21	20
4600	
	2400
390	940
33	21
1700	980 0.84
280	240
	240
22	23
71	76
	0.24
Ì	

						LL5ss-023M-SO	LL.5ss-024M-SO	LL5ss-025M-SO	LL5ss-026M-QA	LL5ss-026M-SO	LL5ss-027M-SO	LL5ss-028M-SO	LL5ss-029M-SO
				S	ample Date:	11/15/2004	11/12/2004	11/12/2004	11/15/2004	11/15/2004	11/15/2004	11/15/2004	11/15/2004
				Sar	nple Depth:	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft
Group	Method	Parameter	Region 9 PRG (Res Soil)	Surface Soil Background Criteria	Units								
Explosives	8330	4-Nitrotoluene	12 ca		mg/kg								

Notes:

-- - no background/PRG value is available for this analyte

blank cell indicates that the analyte was a non-detect (with a "U" qualifier) or analysis was not performed

mg/kg - means milligrams per Kilogram (parts per million - ppm)

PRG - preliminary remediation goals

nc - non-cancer basis, value is 1/10 the published PRG

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

U - analyte not detected

J - estimated value

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style

If Result = or > PRG, then the value is presented with a bold style

		·····						1	· · · · · · · · · · · · · · · · · · ·
							LL5sq-002-DUP	LL5sd-002-SD	LLSsd-013-SD
						ample Date:	12/10/2004	12/10/2004	11/18/2004
<u> </u>						nple Depth:	<u>8 ft</u>	8 ft	0-0.5 ft
Group	Method	Parameter	Region 9 (Res So		Sediment Background Criteria	Units			
Metals	6010B	Aluminum	7614	nc	13900	mg/kg	9100	9900 J	4600
	6010B	Arsenic	0.39	ca	19.5	mg/kg	14	14	180
	6010B	Barium	538	nc	123	mg/kg	72	73	-220
5	6010B	Beryllium	15	nc	0.38	mg/kg	0.63	0.68	0.68
	6010B	Cadmium	3.7	nc	0.00	mg/kg	1.6	1.9 J	6,4
	6010B	Calcium	[n]		5510	mg/kg	3900	5400 J	14000
	6010B	Chromium	30	ca	18.1	mg/kg	19	20 J	130
	6010B	Cobalt	30	ca	9.1	mg/kg	9	9.4	8.1
	6010B	Copper	313	nc	27.6	mg/kg	59	44 J	340
	6010B	Iron	2346	nc	28200	mg/kg	43000	39000 J	100000
	6010B	Lead	400	pbk	27.4	mg/kg	36	35 J	1500
	6010B	Magnesium	[n]		2760	mg/kg	2700	3200 J	1900
	6010B	Manganese	176	nc	1950	mg/kg	530	510 J	1000
	6010B	Nickel	156	nc	17.7	mg/kg	23	24	33
	6010B	Potassium	[n]		1950	mg/kg	1500	1700 J	1000
	6010B	Selenium	39	nc	1.7	mg/kg			2.5
	6010B	Sodium	[n]		112	mg/kg	280	300	730
	6010B	Vanadium	7.8	nc	26.1	mg/kg	29	32	16
	6010B	Zinc	2346	nc	532	mg/kg	140	150 J	1700
	7471A	Mercury	2.3	nc	0.06	mg/kg	0.29	- 0.2	1.9
	7041	Antimony	3.1	nc	0.00	mg/kg		l	3.1

Notes:

--- no background/PRG value is available for this analyte

blank cell indicates that the analyte was a non-detect (with a "U" qualifier) or analysis was not performed

mg/kg - means milligrams per Kilogram (parts per million - ppm)

PRG - preliminary remediation goals

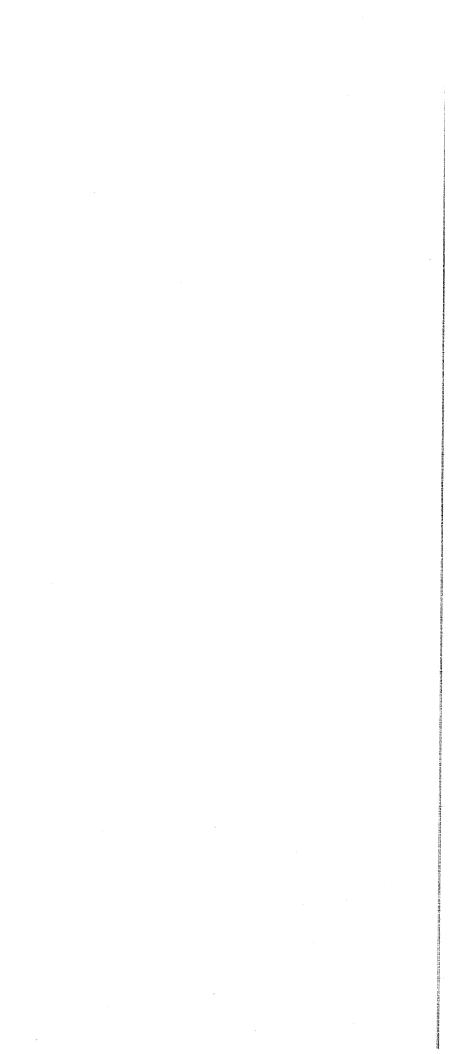
nc - non-cancer basis, value is 1/10 the published PRG

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit


sat - soil saturation [n] - nutrient

U - analyte not detected

J - estimated value

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style. If Result = or > PRG, then the value is presented with a bold style

Load Line 5 Summary of Surface Water Detections RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

			-	Sar Surface Water	ample Date		MS-2007-MS5- 171 12/6/2004 13.31 ft.	MS-800-mss TTT 12/6/2004 5.38 ft.	MS-600-MSSTT 12/7/2004 13.2 ft.	MS-010-M85 TT 12/7/2004 11.3 ft.	dnq-110-mss TT 11/18/2004 surface	107000 11 11/18 11/18
Group	Method	Parameter	Region 9 PRG (Tap Water)	Background Criteria	Units							
Metals	6010B	Aluminum	36499 nc		ug/l	430	620	730	730	1900		
	6010B	Arsenic	0.045 ca		ug/l		020	/30	130	1500		
	6010B	Barium	2555 nc		ug/l	25	28 J	25	27	34	25	
	6010B	Cadmium	18 nc	1	ug/l		200		21		0.31	0.2
	6010B	Calcium	[n]	41400	ug/l	32000	33000	38000	38000	38000	41000	4200
	6010B	Chromium	109 nc		ug/l	1.2	1.2		1.4	2.9	41000	72.0
	6010B	Copper	1460 nc		ug/l			1		3.2	2.7	2
	6010B	Iron	10950 nc	2560	ug/l	350	530	750	990	2700	46	
	6010B	Magnesium	[n]	10800	ug/l	1600	1800	3300	3500	5500	6400	650
	6010B	Manganese	876 nc	391	ug/l	41	63	9.2	12	75	3.4	3
	6010B	Nickel	730 nc	0.00	ug/1					1.6		<u> </u>
i i	6010B	Potassium	[n]	3170	ug/l	1100	1100	1400	1400	1800	27000	2800
	6010B	Selenium	182 nc	0.00	ug/l	3.6						
	6010B	Sodium	[n]	21300	ug/l	560		810	570	1300	4100	420
	6010B	Vanadium	36 nc	0.00	ug/l	1.4	1.4	1.5	1.1	3		
	6010B	Zinc	10950 nc	42	ug/l	3.6	4.4	6.6			79	- 8
	7060A	Arsenic	0.045 ca	3.2	ug/l					1.2		
	7421	Lead	15 mcl	0.00	ug/l						0.98	0.8
	7470A	Mercury	11 nc	0.00	ug/l					0.064		
SVOCs	8270C	1,3-Dichlorobenzene	182 nc		ug/l					0.44 J		
	8270C	Benzo(a)anthracene	0.092 ca	-	ug/l	0.17 J		0.12 J				
	8270C	Benzo(a)pyrene	0.0092 ca		ug/l	0.25 J						
	8270C	Benzo(b)fluoranthene	0.092 ca		ug/l	0.18 J						
	8270C	Benzo(g,h,i)perylene			ug/l	0.32 J						
	8270C	Benzo(k)fluoranthene	0.92 ca		ug/l	0.36 J		0.2 J				
	8270C	Bis(2-ethylhexyl) phthalate	4.8 ca	-	ug/l	12 J			10 J		5.3 J	
	8270C	Chrysene	9.2 ca		ug/l	0.23 J		0.17 J	•			
	8270C	Dibenzo(a,h)anthracene	0.0092 ca		ug/l	0.31 J						
	8270C	Indeno(1,2,3-cd)pyrene	0.092 ca		ug/l	0.29 J		0.2 J				
	8270C	Pyrene	182 nc		ug/l	0.14 J						
Propellants	8332	Nitroglycerine	4.8 ca		ug/l			0.21 J				
Other Analytes	353.2	Nitrate as N (NO3-N)	10000		ug/l	1600000	2600000	2500000	160	110	280	27

Notes:

--- no background/PRG value is available for this analyte

blank cell indicates that the analyte was a non-detect (with a "U" qualifier) or analysis was not performed

ug/l - means micrograms per Liter (parts per billion - ppb)

PRG - preliminary remediation goals

nc - non-cancer basis ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

U - analyte not detected

R - result rejected during ADR validation

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style.

If Result = or > PRG, then the value is presented with a bold style

	1
MS-	MS-0
L5sw-011-SW	L5sw-012-SW
LL5s	LL5s
18/2004	11/18/2004
urface	surface
25	13
0.28	0.33
2000	22000
2.2 46	2.2
46	
5500 3.6	5400 5.5
3.0	5.5
8000	16000
1200	3600
81	24
- ði	24
0.89	
0.05	
270	85

Load Line 5 Summary of Groundwater Detections RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

					Sa	Sample Date: mple Depth: Description	M5-100 M5-100	MD-200- mmg-TTT 1/18/2005 22 ft C/Filtered	MD-600- mug TTT 1/18/2005 18 ft UC/Filtered	dnq-+00	MD-700 mmg7TT 1/4/2005 21 ft C/Filtered	MD-500 mmg7T1 1/4/2005 24 ft C/Filtered	MD-900-wmg7T1 1/3/2005 17.53 ft C/Filtered
Group	Method	Parameter	Region 9 PRG (Tap Water)	Unconsolidated Filtered Groundwater Background	Consolidated Filtered Groundwater Background	Units							
Metals	6010B 6010B 6010B	Aluminum Barium Calcium	36499 nc 2555 nc [n]	82.1 115000	256 53100	ug/l ug/l ug/l	50 58000	49	18 100000	25 69000	25 71000	40 16 67000	24 70000
	6010B 6010B 6010B	Cobalt Copper Iron	730 nc 1460 nc 10950 nc	0.00 0.00 279	0.00 0.00 1430	ug/l ug/l ug/l	0.86	4.2	2.7			66	2.8
	6010B 6010B 6010B	Magnesium Manganese Nickel	[n] 876 nc 730 nc	43300 1020 0.00	15000 1340 83.4	ug/l ug/l ug/l	23000 840 2.2	21000 180 11	23000	30000 8.5	31000 6.6	24000 2000 1.9	29000 10
	6010B 6010B 6010B	Potassium Selenium Sodium	[n] 182 nc [n]	2890 0.00 45700	5770 0.00 51400	ug/l ug/l ug/l	3800 6700	2200	3 3 4300	3600	3700	5400 8500	480
	6010B 6010B 7041	Vanadium Zinc Antimony	36 nc 10950 nc 15 nc	0.00 60.9 0.00	0.00 52.3 0.00	ug/l ug/l ug/l	4.1	3.4	10			3.3	1 30 3.9
Othon Angled	7060A 7421	Arsenic Lead	0.045 ca 15 mcl	11.7 0.00	0.00 0.00	ug/l ug/l	1.2	2.3					
Other Analytes	353.2	Nitrate as N (NO3-N)	10000 nc			ug/l	120	0	0	59	58	0	67

Notes:

-- - no background/PRG value is available for this analyte

blank cell indicates that the analyte was a non-detect (with a "U" qualifier) or analysis was not performed

ug/l - means micrograms per Liter (parts per billion - ppb)

PRG - preliminary remediation goals

nc - non-cancer basis

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

UC/Filtered - GW sample was filtered for metals and taken from an unconsolidated MW

C/Filtered - GW sample was filtered for metals and taken from a consolidated (bedrock) MW

[n] - nutrient

U - analyte not detected

J - estimated value

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style.

If Result = or > PRG, then the value is presented with a bold style

						1	1		1	T		1	1	1		<u></u>	1					
1									Í													
															ļ							
						l õ	002M-DUP	l so	so l	so l	so	9		So I		0	-010M-DUP	0	so	0	0	0
						00-M100-	I-W	W-	- W	Ϋ́Ψ		₩ ₩	- W	N-S	OS-M800	S-W		₩-S	N-S	012D-SC	012M-SC	013M-SO
						100	002	202	003M-	004	-005D-	005]	1900	1200	180	60	10	10	11	121	121	131
						-SS	-ss	ss-(ss-(ss-(ss-(l Ss-C)-ss	ss-0	ss-0	-ss-0	-ss-0	0-ss	0-ss	0-ss		0-s
						LLS	II.S	TLS	TLS	TLS	TLS	Trs	Tre	TS	TIS	TL5	T	T	T2	FLS	T 2	CL5s
				S	Sample Date:	11/12/2004	11/12/2004	11/12/2004	11/12/2004	11/10/2004	11/19/2004	11/19/2004	11/12/2004	11/12/2004	11/12/2004	11/15/2004	11/15/2004	11/15/2004	11/12/2004	11/15/2004	11/15/2004	11/15/2004
					ample Depth:		0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft
				Surface Soil												011		0-1 R	0-1 11	0-1 It		<u> </u>
1			Region 9 PRG	Background								-			[]					
Group	Method	Parameter	(Res Soil)	Criteria	Units											Í	1]
Metals	6010B	Aluminum	7614 nc	17700	mg/kg	11000	11000	11000	11000	12000		18000	10000	10000	7400	11000	12000	13000	12000		11000	8300
	6010B	Arsenic	0.39 ca		mg/kg	12	12	14	9.6	12		4.3	10	9.2	5.5	11	11	11	11		11	8.4
	6010B	Barium	538 nc		mg/kg	99	53	50	71	81		220	61	94	40	54	68	62	64		57	83
	6010B	Beryllium	15 nc		mg/kg	0.82	0.78	0.69	0.75	0.74		4.2	0.65	1	0.54	0.64	0.66	0.68	0.69		0.64	0.83
	6010B	Cadmium	3.7 nc		mg/kg	2.9	0.32	0.37	0.36	0.73		1.9	0.19	0.42	0.12 U	0.79	0.92	0.64	0,45		0.15	0.43
	6010B	Calcium	[n]	15800	mg/kg	5900	5800	4700	7800	2700		140000	2200	43000	840	1900	2000	2100	1800		3700	- 66000
	6010B 6010B	Chromium Cobalt	<u>30 ca</u>		mg/kg	33	21	22	17	20		34	20	27	18	- 24	19	19	21		19	16
	6010B		30 ca 313 nc		mg/kg	7.2	6.6	6.5	6	8.8	-	1.9	8.6	6.2	6	7.4	8.8	7.7	7.6		7.3	6
	6010B	Copper Iron			mg/kg	49	19	19	16	21		19	14	17	9.7	18	20	18	16		22	14
	6010B	Lead	2346 nc 400 pbk		mg/kg		22000	21000	18000	23000		11000	20000	19000	17000	22000	23000	22000	21000		21000	16000
	6010B	Magnesium	[n]	3030	mg/kg mg/kg	99 3000	26 3000	25	38	63		170	40	40	17	110	56	54	67		56	38
	6010B	Manganese	176 nc	1	mg/kg	500	380	2800 330	2500 510	2400 800		16000	2100	4000	1500	2400	2600	2600	2200		2700	3500
	6010B	Nickel	156 nc		mg/kg	26	19	19	15	18		3100 13	650	740	470	380	500	450	430		410	660
	6010B	Potassium	[n]	927	mg/kg	930	1200	1200	1100	1100		1600	17 790	18	12	19	17	17	16		17	16
	6010B	Selenium	39 nc		mg/kg	0.78	0.69	0.54	0.47	0.65		1.8	0.76	0.67	760 0.6	830 0.57	1100 0.71	1200 0.77	1100 0.77		1100 0,88	1200
	6010B	Silver	39 nc		mg/kg	0.49 U	0.485 U	0.485 U	0.46 U	0.47 U		0.485 U	0.48 U	0.485 U	0.475 U	0.5 U	0.48 U	0.77 0.49 U	0.485 U		0.88 0.485 U	0.72 0.48 U
	6010B	Sodium	[n]	123	mg/kg	290	280	260	270	280		970	230	280	260	230	300	330	280		290	240
	6010B	Vanadium	7.8 nc	31.1	mg/kg	20	19	18	20	23		12	20	18	14	200	23	25	230		230	14
	6010B	Zinc	2346 nc	61.8	mg/kg	130	77	78	74	100		140	68	76	68	91	74	72	87		78	66
	7041	Antimony	3.1 nc	0.96	mg/kg	0.65 U	0.65 U	0.65 U	0.7 U	0.65 U		0.7 U	0.65 U	0.7 U	0.65 U	0.7 U	0.7 U	0.46	0.43		0.7 U	0.7 U
	7841	Thallium	0.52 nc	0.00	mg/kg	0.275 U	0.285 U	0.28 U	0.295 U	0.275 U		0.295 U	0.275 U	0.3 U	0.21	0.3 U	0.295 U	0.285 U	0.29 U		0.295 U	0.3 U
Pesticides	8081A	4,4'-DDD	2.4 ca		mg/kg							0.0017 U									0.00085 U	
	8081A	4,4'-DDE	1.7 ca		mg/kg							0.00205 U									0.001 U	[
	8081A	4,4'-DDT	1.7 ca		mg/kg							0.0017 U									0.00085 U	
	8081A	Aldrin	0.029 ca		mg/kg							0.0017 U									0.00085 U	
	8081A 8081A	alpha-BHC alpha-Chlordane	0.09 sat		mg/kg							0.0017 U	L								0.00085 U	
	8081A	beta-BHC	1.6 ca		mg/kg							0.0017 U									0.00085 U	I
	8081A	delta-BHC	0.32 ca		mg/kg							0.0017 U									0.00085 U	l
	8081A	Dieldrin	0.030 ca		mg/kg							0.0017 U									0.00085 U	l
	8081A	Endosulfan I	0.030 ca 37 nc		mg/kg mg/kg							0.0017 U									0.00085 U	l
	8081A	Endosulfan II	37 nc	f	mg/kg							0.0017 U 0.0017 U									0.00085 U	(
	8081A	Endosulfan sulfate	37 nc		mg/kg							0.0017 U									0.00085 U	l
	8081A	Endrin	1.8 nc		mg/kg							0.0017 U									0.00085 U	(
	8081A	Endrin aldehyde			mg/kg							0.0017 U									0.00085 U 0.00085 U	·
	8081A	Endrin ketone			mg/kg							0.0017 U						-			0.00085 U	·
	8081A	gamma-BHC	0.44 ca		mg/kg						•	0.0017 U									0.00085 U	í
	8081A	gamma-Chlordane	1.6 ca		mg/kg							0.0017 U									0.00085 U	·
	8081A	Heptachlor	0.11 ca		mg/kg							0.0017 U									0.00085 UJ	í
	8081A	Heptachlor epoxide	0.053 ca		mg/kg							0.0017 U									0.00085 U	í
	8081A	Methoxychlor	31 nc		mg/kg							0.0085 U									0.00415 U	í
	8081A	Toxaphene	0.44 ca		mg/kg							0.017 U									0.0085 U	·
PCBs	8082	Aroclor 1016	0.39 nc		mg/kg							0.0165 U									0.0165 U	·
	8082	Aroclor 1221	0.22 ca		mg/kg							0.0165 U									0.0165 U	
1	8082	Aroclor 1232	0.22 ca		mg/kg							0.0085 U									0.0085 U	
	8082 8082	Aroclor 1242	0.22 ca		mg/kg							0.0165 U									0.0165 U	
	8082	Aroclor 1248 Aroclor 1254	0.22 ca		mg/kg							0.0085 U			[0.0085 U	
	8082	Aroclor 1254 Aroclor 1260	0.22 ca 0.22 ca		mg/kg							0.038									0.0165 U	
VOCs	8260B	1,1,1-Trichloroethane			mg/kg	-						0.0165 U	-								0.0165 U	
11003	0200D	1,1,1-1110110F0ethalle	1200 sat		mg/kg						0.00425 U									0.0032 U		

Load Line 5 Summary of All Surface Soil (0-1ft) Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

						OS-M100-ss2L	L5ss-002M-DUP	L5ss-002M-SO	L5ss-003M-SO	L5ss-004M-SO	L5ss-005D-SO	OS-M200-ss2L	L5ss-006M-SO	L5ss-007M-SO	L5ss-008M-SO	L5ss-009M-SO	L5ss-010M-DUP	L5ss-010M-SO	L5ss-011M-SO	L5ss-012D-SO	L5ss-012M-SO	C5ss-013M-SO
				Sam	ple Date:	11/12/2004	11/12/2004	11/12/2004	11/12/2004	11/10/2004	11/19/2004	11/19/2004	11/12/2004	11/12/2004	11/12/2004	11/15/2004	11/15/2004	11/15/2004	11/12/2004	11/15/2004	고 11/15/2004	11/15/2004
			····		le Depth:	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft
			Duinoppo	Surface Soil																		
Group	Method	Parameter	Region 9 PRG (Res Soil)	Background Criteria	Units				-													1
	8260B	1,1,2,2-Tetrachloroethane	0.41 ca		mg/kg						0.00425 U									0.0000 77		<u></u>
	8260B	1,1,2-Trichloroethane	0.73 ca		mg/kg						0.00425 U									0.0032 U 0.0032 U		<u> </u>
	8260B	1,1-Dichloroethane	51 nc		mg/kg						0.00425 U									0.0032 U 0.0032 U		<u> </u>
	8260B 8260B	1,1-Dichloroethene	12 nc		mg/kg						0.00425 U									0.0032 U		
	8260B	1,2-Dibromoethane	0.032 ca 0.28 ca		mg/kg						0.00425 U									0.0032 U		
	8260B	1,2-Dichloroethene (total)	0.28 ca 6.9 nc		mg/kg mg/kg						0.00425 U 0.0085 U									0.0032 U		
	8260B	1,2-Dichloropropane	0.34 ca		mg/kg						0.0085 U 0.00425 U									0.0065 U 0.0032 U		<u> </u>
Î	8260B	2-Butanone	2231 nc		mg/kg						0.013 U									0.0032 U 0.0095 U		
	8260B	2-Hexanone	530 nc		mg/kg						0.0085 U						-			0.0095 U		
	8260B 8260B	4-Methyl-2-pentanone Acetone	528 nc 1412 nc		mg/kg						0.0085 U									0.0065 U		
	8260B	Benzene	<u>1412</u> nc 0.64 ca		mg/kg mg/kg						0.013 U									0.0095 U		L
	8260B	Bromochloromethane			mg/kg						0.00425 U 0.00425 U									0.0032 U		
	8260B	Bromodichloromethane	0.82 ca		mg/kg						0.00425 U									0.0032 U 0.0032 U		j
ļ	8260B	Bromoform	62 ca		mg/kg						0.00425 U									0.0032 U		
	8260B 8260B	Bromomethane Carbon disulfide	0.39 nc		mg/kg						0.00425 U									0.0032 U		l
	8260B	Carbon tetrachloride	<u>36 nc</u> 0.25 ca		mg/kg mg/kg						0.00425 U									0.0032 U		
	8260B	Chlorobenzene	15 nc		mg/kg						0.00425 U 0.00425 U									0.0032 U		
	8260B	Chloroethane	3.0 ca		mg/kg						0.00425 U									0.0032 U 0.0032 U		
	8260B	Chloroform	0.22 ca		mg/kg						0.00425 U									0.0032 U		
	8260B 8260B	Chloromethane cis-1,2-Dichloroethene	4.7 nc		mg/kg						0.00425 U									0.0032 U		
	8260B	cis-1,3-Dichloropropene	4.3 nc 0.78 ca		mg/kg						0.00425 U									0.0032 U		
	8260B	Dibromochloromethane	1.1 ca		mg/kg mg/kg						0.00425 U 0.00425 U									0.0032 U		·
	8260B	Ethylbenzene	395 sat		mg/kg						0.00425 U									0.0032 U 0.0032 U		
	8260B	m&p-Xylenes	27 nc		mg/kg						0.0085 U									0.0032 U 0.0065 U		
	8260B 8260B	Methylene chloride	<u>9.1 ca</u>		mg/kg		_				0.0085 U									0.0065 U		
	8260B	o-Xylene Styrene	27 nc 1700 sat		mg/kg						0.00425 U									0.0032 U		
	8260B	Tetrachloroethene	1700 sat 0.48 ca		mg/kg mg/kg						0.00425 U									0.0032 U		
	8260B	Toluene	520 sat		mg/kg						0.00425 U 0.00425 U									0.0032 U 0.0032 U		
	8260B	Total Xylenes	27 nc		mg/kg						0.0085 U									0.0032 U 0.0065 U		
	8260B	trans-1,2-Dichloroethene	6.9 nc		mg/kg						0.00425 U									0.0032 U		
	8260B 8260B	trans-1,3-Dichloropropene Trichloroethene	0.78 ca 0.053 ca		mg/kg						0.00425 U									0.0032 U		
	8260B	Vinyl chloride	0.053 ca		mg/kg mg/kg						0.00425 U 0.00425 U									0.0032 U		
SVOCs	8270C	1,2,4-Trichlorobenzene	6.2 nc		mg/kg						0.00423 U	0.08 U		·						0.0032 U	0.085 77	<u></u>
	8270C	1,2-Dichlorobenzene	600 sat		mg/kg							0.08 U									0.085 U 0.085 U	
	8270C	1,3-Dichlorobenzene	53 nc		mg/kg							0.08 U									0.085 U	
	8270C 8270C	1,4-Dichlorobenzene 2,2-oxybis (1-chloropropane)	3.4 ca 2.9 ca		mg/kg							0.08 U									0.085 U	
	8270C	2,2-oxybis (1-chloropropane) 2,4,5-Trichlorophenol	2.9 ca 611 nc		mg/kg							0.08 U									0.085 U	
	8270C	2,4,6-Trichlorophenol	0.61 nc		mg/kg mg/kg							0.16 U 0.08 U							,		0.17 U	
	8270C	2,4-Dichlorophenol	18 nc		ng/kg							0.08 U 0.16 U									0.085 U 0.17 U	
	8270C	2,4-Dimethylphenol	122 nc	1	ng/kg							0.16 U									0.17 U 0.17 U	
	8270C	2,4-Dinitrophenol	12 nc		ng/kg							- R									- R	
	8270C 8270C	2,4-Dinitrotoluene 2,6-Dinitrotoluene	12 nc		ng/kg							0.016 U									0.017 U	
	8270C 8270C	2,6-Dinitrotoluene 2-Chloronaphthalene	6.1 nc 494 nc		ng/kg							0.016 U									0.017 U	
	<u></u>		474 10		ng/kg							0.08 U			i						0.085 U	

					-so	- dug-	so	So	SO	so	So	so	so	S S	S	and	So la	so	0	l og	
					5ss-001M-SO	.5ss-002M-	.5ss-002M-	.5ss-003M-	5ss-004M-SO	.5ss-005D-	5ss-005M-	5ss-006M-SO	Sss-007M-SO	OS-008M-SO	OS-M000-ss2	AUC-M010-sss	5ss-010M-SO	OS-M110-SS	5ss-012D-SO	ss-012M-SO	
					<u> </u>	1	1 1	L 1	<u> </u>	L L	<u> </u>	L 1		LLL L	LLL.	ILL	E E	TT	ELL.	E E	
				ample Date:		11/12/2004	11/12/2004	11/12/2004	11/10/2004	11/19/2004	11/19/2004	11/12/2004	11/12/2004	11/12/2004	11/15/2004	11/15/2004	11/15/2004	11/12/2004	11/15/2004	11/15/2004	
 			Surface Soil	nple Depth:	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	Τ
Method	Parameter	Region 9 PRG (Res Soil)	Background Criteria	Units																	
8270C	2-Chlorophenol	6.3 nc		mg/kg							0.08 U									0.085 U	+
8270C	2-Methylnaphthalene			mg/kg							0.11									0.085 U 0.017 U	
8270C	2-Methylphenol	306 nc		mg/kg		_					0.0325 U									0.034 U	+
8270C 8270C	2-Nitroaniline	18.3 nc		mg/kg							0.08 U									0.085 U	+
8270C 8270C	2-Nitrophenol 3,3'-Dichlorobenzidine			mg/kg							0.16 U									0.17 U	+
8270C	3-Nitroaniline	1.1 ca 1.8 nc		mg/kg							0.08 U									0.085 U	T
8270C	4,6-Dinitro-2-methylphenol	1.8 nc 0.61 nc		mg/kg	·						0.325 U									0.34 U	
8270C	4-Bromophenyl phenyl ether			mg/kg mg/kg							- R									- R	
8270C	4-Chloro-3-methylphenol			mg/kg							0.08 U									0.085 U	
8270C	4-Chloroaniline	24 nc		mg/kg							0.16 U 0.325 U									0.17 U	
8270C	4-Chlorophenyl phenyl ether			mg/kg							0.325 U 0.08 U									0.34 U	
8270C	4-Methylphenol	31 nc		mg/kg							0.0325 U									0.085 U	
8270C	4-Nitroaniline	23 ca		mg/kg						-	0.325 U									0.034 U 0.34 U	+
8270C	4-Nitrophenol			mg/kg							0.325 U									0.34 U	+
8270C	Acenaphthene	368 nc		mg/kg							0.016 U									0.021 J	+
8270C	Acenaphthylene			mg/kg							0.016 J									0.021 J 0.017 U	+
8270C	Anthracene	2189 nc		mg/kg							0.031 J									0.056	+
8270C 8270C	Benzo(a)anthracene	0.62 ca		mg/kg							0.12									0.19	1
8270C	Benzo(a)pyrene	0.062 ca		mg/kg							0.15									0.15	
8270C	Benzo(b)fluoranthene Benzo(g,h,i)perylene	0.62 ca		mg/kg							0.19									0.19	1
8270C	Benzo(k)fluoranthene			mg/kg mg/kg							0.097									0.089	
8270C	Benzoic acid	100000 max		mg/kg							0.098									0.11	
8270C	Benzyl alcohol	1833 nc		mg/kg							- R 1.3									- R	\perp
8270C	Bis(2-chloroethoxy)methane			mg/kg							0.0325 U									0.34 U	_
8270C	Bis(2-chloroethyl) ether	0.22 ca		mg/kg							0.0325 U 0.0325 U									0.034 U	+
8270C	Bis(2-ethylhexyl) phthalate	35 ca		mg/kg							0.0325 U									0.034 U 0.085 U	┼─
8270C	Butylbenzyl phthalate	1222 nc		mg/kg							0.0325 U									0.085 U 0.034 U	+
8270C	Carbazole	24 ca		mg/kg							0.017 J									0.034 U 0.038 J	+
8270C	Chrysene	62 ca		mg/kg							0.15							-		0.038 5	+
8270C	Dibenzo(a,h)anthracene	0.062 ca		mg/kg							0.024 J							···		0.019 J	\mathbf{t}
8270C	Dibenzofuran District alter	15 nc		mg/kg							0.039 J									0.034 U	
8270C 8270C	Diethyl phthalate	4888 nc		mg/kg							0.0325 U									0.034 U	
8270C 8270C	Dimethyl phthalate Di-n-butyl phthalate	100000 max		mg/kg							0.0325 U									0.034 U	
8270C 8270C	Di-n-outyl phthalate	611 nc		mg/kg							0.08 U									0.085 U	
8270C	Fluoranthene	244 nc 229 nc		mg/kg							0.16 U									0.17 U	
8270C	Fluorene	229 nc 275 nc		mg/kg mg/kg						I	0.23		1							0.42	

									1		r		·····	· · · · · · · · · · · · · · · · · · ·		·				1		
								-						1								
												ļ										
							£															
						01M-SO	DUP	S I	S I	S I	SO SO	S I	l oʻ	SO	So I	SO	and	S S	SO	So I	So	SO S
						Ż		ž 1	Ż	ź	l ä	Ż	ž –	ž	İ İ	Ż	-M01	4	ž	5D-5	ž	Σ I
						00	3 2	202	203	004M-SO	005D-	05	900	200	80	60	010	010	-011M-	012	012	-013M-
						-SS-L	SS-L	SS-(-ss	-ss-(ss-(ss-(ss-(l ss		-ss)-ss	-ss)-ss)-ss)-se
						TL5	T	T2	Tr	LS I	Tr2	LS.	TS	T	Tr	T2	Tra	T.S.	TS	T	L5.	T
					Sample Date	: 11/12/2004	11/12/2004	11/12/2004	11/12/2004	11/10/2004	11/10/2004	11/10/2004	11/12/2004	11/12/2004	11/12/2004		H 11/15/2004	H	L]			
1					ample Date		0-1 ft	0-1 ft	0-1 ft	0-1 ft	11/19/2004 0-1 ft	0-1 ft	0-1 ft	0-1 ft	11/12/2004	11/15/2004	11/15/2004	11/15/2004	11/12/2004	11/15/2004	11/15/2004	11/15/2004
· · · · ·						. 0-1 1	0-110	0-111	0-111	0-110	0-1π	0-1 π	0-1π	0-1 π	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft
			Region 9 PRG	Surface Soil			1			1												
Group	Method	Parameter	(Res Soil)	Background Criteria	Units																	1
Group																						
	8270C	Hexachlorobenzene		a	mg/kg							0.016 U									0.017 U	
	8270C	Hexachlorobutadiene	6.2 c		mg/kg		[0.08 U									0.085 U	<u></u>
	8270C	Hexachlorocyclopentadiene	37 n		mg/kg							0.485 U									0.5 U	
	8270C	Hexachloroethane	<u>35</u> c		mg/kg							0.08 U									0.085 U	
	8270C	Indeno(1,2,3-cd)pyrene	0.62 c		mg/kg							0.09									0.072	
	8270C	Isophorone	512 c		mg/kg							0.08 U									0.085 U	
	8270C	Naphthalene	5.6 n	c	mg/kg	4						0.095									0.017 U	
	8270C	Nitrobenzene	2 n	c	mg/kg							0.016 U									0.017 U	
	8270C	n-Nitroso-di-n-propylamine	0.069 c	a	mg/kg							0.0325 U									0.034 U	
	8270C	n-Nitrosodiphenylamine	99 c	a –	mg/kg							0.016 UJ									0.017 UJ	
	8270C	Pentachlorophenol	3.0 c	a	mg/kg							0.16 U									0.17 U	
	8270C	Phenanthrene			mg/kg							0.18									0.2	
	8270C	Phenol	1833 n	c	mg/kg							0.08 U									0.085 U	
	8270C	Pyrene	232 n	c	mg/kg							0.17									0.36	
Explosives	8330	1,3,5-Trinitrobenzene	183 n	c	mg/kg	0.05 U	0.049 U	0.05 U	0.0495 U	0.05 U		0.0495 U	0.0495 U	0.0495 U	0.05 U	0.0495 U	0.05 U	0.05 U	0.05 U		0.0495 U	0.05 U
	8330	1,3-Dinitrobenzene	0.61 n	c	mg/kg	0.05 U	0.049 U	0.05 U	0.0495 U	0.05 U		0.0495 U	0.0495 U	0.0495 U	0.05 U	0.0495 U	0.05 U	0.05 U	0.05 U		0.0495 U	0.05 U
	8330	2,4,6-TNT	16 c	a	mg/kg	0.05 U	0.049 U	0.05 U	0.0495 U	0.05 U		0.0495 U	0.0495 U	0.0495 U	0.05 U	0.0495 U	0.05 U	0.05 U	0.05 U		0.0495 U	0.05 U
	8330	2,4-Dinitrotoluene	12 n	c	mg/kg	0.05 U	0.049 U	0.05 U	0.0495 U	0.05 U		0.0495 U	0.0495 U	0.0495 U	0.05 U	0.0495 U	0.05 U	0.05 U	0.05 U		0.0495 U	0.05 U
	8330	2,6-Dinitrotoluene	6.1 n	c	mg/kg	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U
	8330	2-Amino-4,6-Dinitrotoluene			mg/kg	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U
	8330	2-Nitrotoluene	0.88 c	a	mg/kg	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U
	8330	3-Nitrotoluene	73 n	c	mg/kg	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U
	8330	4-Amino-2,6-Dinitrotoluene			mg/kg	0.15 U	0.145 U	0.15 U	0.15 U	0.15 U		0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U	0.15 U		0.15 U	0.15 U
	8330	4-Nitrotoluene	12 ca	a	mg/kg	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U
	8330	HMX	306 no		mg/kg	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U
	8330	Nitrobenzene	2 no	c	mg/kg	0.05 U	0.049 U	0.05 U	0.0495 U	0.05 U		0.0495 U	0.0495 U	0.0495 U	0.05 U	0.0495 U	0.05 U	0.05 U	0.05 U		0.0495 U	0.05 U
	8330	RDX	4.4 ca		mg/kg	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.0 U	0.0425 U	0.05 U	0.1 U	0.05 U		0.1 U	0.1 U
	8330	Tetryl	61 no		mg/kg	0.2 U	0.195 U	0.2 U	0.2 U	0.2 U		0.1 U	0.1 U	0.2 U	0.1 U	0.1 U 0.2 U	0.1 U	0.1 U	0.1 U		0.195 U	0.2 U
Propellants	353.2 Modified	Nitrocellulose			mg/kg					0.2 0		1.1 U	<u> </u>	0.20	0.2 0	0.2 0	0.20	0.2 0	V.2 U		0.175 U	
· .	8332	Nitroglycerine	35 ca		mg/kg							0.25 U									0.5 U	
	SW8330 Modified		611 no		mg/kg							0.125 U									0.25 U	I
L	12 11 0000 1110001100		VII 10		1 mg/kg	<u> </u>						0.125 0						I			0.125 U 1	I

Notes:

-- - no background/PRG value is available for this analyte

blank cell indicates that the analysis was not performed

mg/kg - means milligrams per Kilogram (parts per million - ppm)

PRG - preliminary remediation goals nc - non-cancer basis, value is 1/10 the published PRG

ca - cancer basis pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

U - analyte not detected

J - estimated value

R - result rejected during ADR validation If Result = or > Background, then the value is presented with a shaded/highlighted style If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style.

If Result = or > PRG, then the value is presented with a bold style

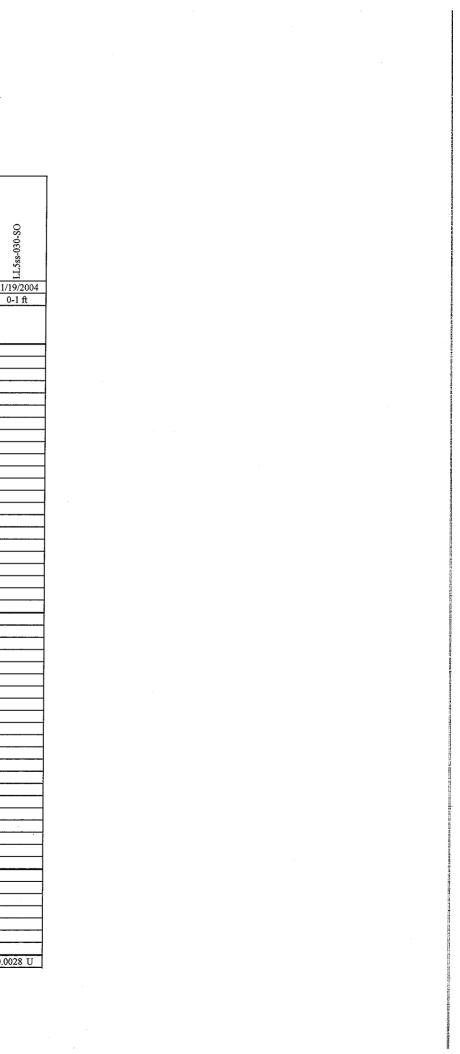
																0				-		
						-014M-SO	M-SO	W-QA	OS-W	OS-W	D-SO	OS-M	M-SO	20M-DUF	M-SO	021M-DUP	-021M-SO	0S-1/	V-V	024M-SO	025M-SO	026M-QA
						-014	-015M-	-016	-016M-	-017	-018D-	018]	0191	0201	0201	0211	021N	022N	023N	024h	025N	026N
						L5ss	L5ss	L5ss	L5ss	L5ss	L5ss-	L5ss-	L5ss-	L5ss-	-5ss-	-Sss-	-SSS-	-58S-	5ss-	5ss-t	,5ss-(.5ss-(
				S	Sample Date:	11/15/2004	11/15/2004	11/15/2004	11/15/2004	11/15/2004	11/19/2004	11/19/2004	11/12/2004	11/15/2004	<u> </u>	<u> </u>	11/19/2004	11/12/2004	<u> </u>	11/12/2004	11/12/2004	LL
					mple Depth:	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	11/15/2 0-1 f
oup	Method	Parameter	Region 9 PRG (Res Soil)	Surface Soil Background Criteria	Units		-															n
etals	6010B	Aluminum	7614 nc	17700	mg/kg	8300	8000	10000	11000	11000		12000	13000	11000	12000	13000	13000	12000	13000	13000	13000	1000
	6010B 6010B	Arsenic Barium	0.39 ca		mg/kg	10	8.5	9.2	9.3	9.6		12	12	12	12	12	11	13	13000	13000	13000	9
	6010B	Beryllium	538 nc 15 nc		mg/kg	52	51	67	69	66		82	95	76	74	80	77	90	59	79	95	
	6010B	Cadmium	<u>15 nc</u> 3.7 nc		mg/kg mg/kg	0.63	0.65	0.8	0.91	0.94	· · · ·	0.82	0.85	0.79	0.78	0.84	0.8	0.86	0.73	0.8	0.89	0.
	6010B	Calcium	[n]	15800	mg/kg	3900	3600	17000	16000	0.46 9200		0.51	<u>3</u> 9000	1.1	1.2	0.12	0.081	0.91	0.084	0.092	0.46	0.
	6010B	Chromium	30 ca		mg/kg	16	15	19	21	18		2400	21	- 18000	19000 19	13000 20	14000 20	3800 J 20	11000	860	8200	330
	6010B	Cobalt	30 ca	10.4	mg/kg	6,8	7.5	5.4	5.1	8.9		11	9.7	11	19	12	20	20	<u>19</u> 9.1	22 10	19 9.4	6
	6010B	Copper	313 nc	17.7	mg/kg	17	15	16	16	17		20	23	21	21	21	20	24	20	22	9.4	0
	6010B	Iron Lead	2346 nc	23100	mg/kg	18000	19000	19000	18000	21000		24000	24000	24000	23000	25000	24000	24000	26000	26000	23000	2100
	6010B	Magnesium	400 pbk	26.1 3030	mg/kg	-28	32	31	32	39		23	67	35	36	17	17	21	19	18	20	
	6010B	Manganese	176 nc		mg/kg mg/kg	2100 460	1800 670	2600 410	3200	3300		2900	3400	5200	5400	5300	5100	3100	3300	3200	3300	200
	6010B	Nickel	156 nc		mg/kg	15	15	15	450 15	660 16		<u>410</u> 24	410 25	380	380	400	380	400	300	240	440	40
	6010B	Potassium	[n]	927	mg/kg	730	710	840	820	970		1400	1800	30 1700	28 2100	29 2000	27	28	20	24	25	
	6010B	Selenium	39 nc	1.4	mg/kg	0.63	0.65	0.69	0.79	0.79		0.75 U	0.7	0.75 U	0.75 U	0.5	2100 0.75 U	1700 J 0.52	0.76	1700 0.6	1600 0.72	0.9
	6010B	Silver	39 nc	0.00	mg/kg	0.5 U	0.5 U .	0.5 U	0.5 U	0.495 U		0.495 U	0.485 U	0.495 U	0.495 U	0.485 U	0.49 U	0.465 U	0.49 U	0.485 U	0.72 0.475 U	0.5
	6010B 6010B	Sodium	[n]	123	mg/kg	220	220	260	270	280		300	330	280	420	300	310	340	310	340	360	22
	6010B	Vanadium Zinc	7.8 nc 2346 nc		mg/kg	15	16	17	17	18		22	22	19	21	22	22	21	22	22	21	1
	7041	Antimony	2346 nc 3.1 nc		mg/kg mg/kg	69 0.7 U	77	75	73	76		120	91	81	79	75	72	130	70	65	100	12
	7841	Thallium	0.52 nc		mg/kg	0.7 U 0.3 U	0.65 U 0.23	0.75 U 0.31 U	0.7 U 0.31 U	0.7 U 0.28		0.7 U	0.65 U	0.7 U	0.65 U	0.7 U	0.65 U	- R	0.7 U	0.65 U	0.7 U	0.7
icides	8081A	4,4'-DDD	2.4 ca		mg/kg	0.5 0	0.23	0.31 0	0.51 0	V.20		0.3 U 0.00085 U	0.285 U	0.295 U	0.26	0.3 U	0.29 U	0.28 U	0.305 U	0.275 U	0.29 U	0.3
	8081A	4,4'-DDE	1.7 ca		mg/kg							0.00085 U										<u> </u>
	8081A	4,4'-DDT	1.7 ca		mg/kg							0.00085 U										
	8081A	Aldrin	0.029 ca		mg/kg							0.00085 U										
	8081A 8081A	alpha-BHC alpha-Chlordane	0.09 sat		mg/kg							0.00085 U										
	8081A	beta-BHC	1.6 ca 0.32 ca		mg/kg							0.00085 U						_				
	8081A	delta-BHC	U.32 Ca		mg/kg mg/kg							0.00085 U										· · ·
	8081A	Dieldrin	0.030 ca		mg/kg							0.00085 U 0.00085 U										
	8081A	Endosulfan I	37 nc		mg/kg							0.00085 U										
	8081A	Endosulfan II	37 nc		mg/kg							0.00085 U										
	8081A	Endosulfan sulfate	<u>37 nc</u>		mg/kg							0.00085 U		-								
	8081A 8081A	Endrin Endrin aldehyde	1.8 nc		mg/kg							0.00085 U										·
	8081A	Endrin ketone			mg/kg							0.00085 U								-		[
	8081A	gamma-BHC	0.44 ca		mg/kg mg/kg							0.00085 U										
	8081A	gamma-Chlordane	1.6 ca		mg/kg							0.00085 U 0.00085 U										I
	8081A	Heptachlor	0.11 ca		mg/kg							0.00085 U										i
	8081A	Heptachlor epoxide	0.053 ca		mg/kg							0.00085 U										
	8081A	Methoxychlor	31 nc		mg/kg							0.0041 U										
3	8081A 8082	Toxaphene Aroclor 1016	0.44 ca		mg/kg							0.0085 U										
>	8082	Aroclor 1016 Aroclor 1221	0.39 nc 0.22 ca		mg/kg							0.0165 U										
	8082	Aroclor 1221 Aroclor 1232	0.22 ca		mg/kg mg/kg							0.0165 U										
	8082	Aroclor 1242	0.22 ca		mg/kg							0.0085 U 0.0165 U										
	8082	Aroclor 1248	0.22 ca		mg/kg							0.0165 U 0.0085 U										
	8082	Aroclor 1254	0.22 ca		mg/kg							0.0085 U 0.0165 U								 		
	8082	Aroclor 1260	0.22 ca		mg/kg							0.0165 U										
s	8260B	1,1,1-Trichloroethane	1200 sat		mg/kg						0.00325 U									1		

						<u> </u>			1	1	[1			(· · · · · · · · · · · · · · · · · · ·
														۵.		0.						1
						SO SO	ŝ	₹ N	so	20	S S	S S	8	4-DUP	So l	021M-DUP	l 00	00	õ	0 0	so	v≿
						014M-SO	015M-	-016M-QA	-016M-SO	OS-MT10-	ģ	-W	OS-M610	-W(020M-SO	-W	-021M-SO	2M-SO	023M-SO	-024M-SO	У-W	026M-QA
						10	-01	-01		01	-018D-	-018	510-	-020	-030	-021	021	022	023	024	025	026
						-5ss	.5ss	5ss	.5ss	5ss	5ss	5ss	.5ss	5ss	2ss	2ss-	5ss-	5ss-	5ss-	5ss-	5ss-	2ss-
						3	<u>1</u>	1	1	3	1		TT	TT	LLL LLL	<u> </u>	LLL	TT	TT	TT		LL LL
					ample Date: mple Depth:		11/15/2004	11/15/2004	11/15/2004	11/15/2004	11/19/2004	11/19/2004	11/12/2004	11/15/2004	11/15/2004	11/19/2004	11/19/2004	11/12/2004	11/15/2004	11/12/2004	11/12/2004	11/15/2004
				Surface Soil	mple Deptn:	0-1π	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft				
			Region 9 PRG	Background							ĺ											1
Group	Method	Parameter	(Res Soil)	Criteria	Units								í I									(L
	8260B	1,1,2,2-Tetrachloroethane	0.41 ca		mg/kg						0.00325 U											
	8260B	1,1,2-Trichloroethane	0.73 ca		mg/kg						0.00325 U											
	8260B	1,1-Dichloroethane	51 nc		mg/kg						0.00325 U											
	8260B 8260B	1,1-Dichloroethene 1,2-Dibromoethane	12 nc		mg/kg						0.00325 U											
	8260B	1,2-Dichloroethane	0.032 ca 0.28 ca		mg/kg						0.00325 U											L
	8260B	1,2-Dichloroethene (total)	6.9 nc		mg/kg mg/kg						0.00325 U 0.0065 U											·
	8260B	1,2-Dichloropropane	0.34 ca		mg/kg						0.00325 U											
	8260B	2-Butanone	2231 nc		mg/kg						0.0095 U											
	8260B	2-Hexanone	530 nc		mg/kg						0.0065 U											
	8260B	4-Methyl-2-pentanone	528 nc		mg/kg						0.0065 U											
	8260B 8260B	Acetone	1412 nc		mg/kg						0.0095 U											
	8260B	Benzene Bromochloromethane	0.64 ca		mg/kg			-			0.00325 U											
	8260B	Bromodichloromethane			mg/kg mg/kg						0.00325 U											
	8260B	Bromoform	62 ca		mg/kg						0.00325 U 0.00325 U											
	8260B	Bromomethane	0.39 nc		mg/kg						0.00325 U								· · ·			
	8260B	Carbon disulfide	36 nc		mg/kg						0.00325 U											
	8260B	Carbon tetrachloride	0.25 ca		mg/kg						0.00325 U											
	8260B	Chlorobenzene	15 nc		mg/kg						0.00325 U											
	8260B 8260B	Chloroethane	3.0 ca 0.22 ca		mg/kg						0.00325 U											
	8260B	Chloromethane	0.22 ca 4.7 nc		mg/kg mg/kg						0.00325 U											
	8260B	cis-1,2-Dichloroethene	4.3 nc		mg/kg						0.00325 U 0.00325 U											
	8260B	cis-1,3-Dichloropropene	0.78 ca		mg/kg						0.00325 U											
	8260B	Dibromochloromethane	1.1 ca		mg/kg						0.00325 U											
	8260B	Ethylbenzene	395 sat		mg/kg						0.00325 U											
	8260B 8260B	m&p-Xylenes Methylene chloride	27 nc		mg/kg						0.0065 U											
	8260B	o-Xylene	9.1 ca 27 nc		mg/kg mg/kg						0.0065 U											
	8260B	Styrene	1700 sat		mg/kg						0.00325 U 0.00325 U											
	8260B	Tetrachloroethene	0.48 ca		mg/kg						0.00325 U											
	8260B	Toluene	520 sat		mg/kg						0.00325 U											
	8260B	Total Xylenes	27 nc		mg/kg						0.0065 U											
	8260B	trans-1,2-Dichloroethene	6.9 nc		mg/kg						0.00325 U											
	8260B 8260B	trans-1,3-Dichloropropene Trichloroethene	0.78 ca 0.053 ca		mg/kg						0.00325 U											
	8260B	Vinyl chloride	0.053 ca 0.079 ca		mg/kg mg/kg						0.00325 U 0.00325 U										·	
SVOCs	8270C	1,2,4-Trichlorobenzene	6.2 nc		mg/kg						0.00325 0	0.08 U										
	8270C	1,2-Dichlorobenzene	600 sat		mg/kg							0.08 U										
	8270C	1,3-Dichlorobenzene	53 nc		mg/kg							0.08 U				· · · · · ·						
	8270C	1,4-Dichlorobenzene	3.4 ca		mg/kg							0.08 U										
	8270C	2,2-oxybis (1-chloropropane)	2.9 ca		mg/kg							0.08 U										
	8270C 8270C	2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	611 nc 0.61 nc		mg/kg							0.16 U										
	8270C	2,4-Dichlorophenol	0.61 nc 18 nc		mg/kg mg/kg							0.08 U										
	8270C	2,4-Dimethylphenol	122 nc		mg/kg							0.16 U 0.16 U										
	8270C	2,4-Dinitrophenol	12 nc		mg/kg							- R										
	8270C	2,4-Dinitrotoluene	12 nc		mg/kg							0.016 U					_					
	8270C	2,6-Dinitrotoluene	6.1 nc		mg/kg							0.016 U										
I	8270C	2-Chloronaphthalene	494 nc		mg/kg							0.08 U										

Table LL5-6 Load Line 5 Summary of All Surface Soil (0-1ft) Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

					0	0	×						£	0	5			0			
					.5ss-014M-SO	.5ss-015M-SO	.5ss-016M-QA	.5ss-016M-SO	OS-ML10-ss2L	LL5ss-018D-SO	Sss-018M-SO	OS-M910-ss2	.5ss-020M-DUP	LL5ss-020M-SO	L5ss-021M-DUP	L5ss-021M-SO	5ss-022M-SO	5ss-023M-SO	L5ss-024M-SO	5ss-025M-SO	LL5ss-026M-QA
					II	LLI	1	<u> </u>	<u> </u>	<u> </u>	L LL	L T	rr	-	<u> </u>		LLL L			11	ĭ
				ample Date:		11/15/2004	11/15/2004	11/15/2004	11/15/2004	11/19/2004	11/19/2004	11/12/2004	11/15/2004	11/15/2004	11/19/2004	11/19/2004	11/12/2004	11/15/2004	11/12/2004	11/12/2004	11/15/
 ~	T	·· · · · · · · · · · · · · · · · · · ·		nple Depth:	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1					
		Region 9 PRG	Surface Soil Background																		1
Method	Parameter	(Res Soil)	Criteria	Units																	
8270C 8270C	2-Chlorophenol 2-Methylnaphthalene			mg/kg			-				0.08 U				[ļ					
8270C	2-Methylphenol	 306 nc		mg/kg mg/kg							0.026 J 0.0325 U										
8270C	2-Nitroaniline	18.3 nc																			-
8270C	2-Nitrophenol	18.5 HC		mg/kg mg/kg							0.08 U 0.16 U	<u> </u>							 		
8270C	3,3'-Dichlorobenzidine	1.1 ca		mg/kg							0.18 U										+
8270C	3-Nitroaniline	1.8 nc		mg/kg				-			0.325 U							-	· · · · ·		+
8270C	4,6-Dinitro-2-methylphenol	0.61 nc		mg/kg							- R										
8270C	4-Bromophenyl phenyl ether			mg/kg							0.08 U										+
8270C	4-Chloro-3-methylphenol			mg/kg							0.16 U										
8270C	4-Chloroaniline	24 nc		mg/kg						1	0.325 U										
8270C	4-Chlorophenyl phenyl ether			mg/kg	-						0.08 U										
8270C	4-Methylphenol	31 nc		mg/kg							0.0325 U										
8270C	4-Nitroaniline	23 ca		mg/kg					[0.325 U										
8270C	4-Nitrophenol			mg/kg							0.325 U										
8270C	Acenaphthene	368 nc		mg/kg							0.016 U										
8270C	Acenaphthylene			mg/kg							0.016 U										
8270C	Anthracene	2189 nc		mg/kg							0.016 U										
8270C	Benzo(a)anthracene	0.62 ca		mg/kg							0.025 J										
8270C	Benzo(a)pyrene	0.062 ca		mg/kg							0.033										
8270C	Benzo(b)fluoranthene	0.62 ca		mg/kg							0.053										L
8270C 8270C	Benzo(g,h,i)perylene	-		mg/kg							0.026 J				· · · ·						<u> </u>
8270C	Benzo(k)fluoranthene Benzoic acid	6.2 ca 100000 max		mg/kg							0.025 J										
8270C	Benzyl alcohol	100000 max 1833 nc		mg/kg mg/kg							- R 0.46 J										
8270C	Bis(2-chloroethoxy)methane	1855 IIC		mg/kg mg/kg							0.46 J 0.0325 U		-								
8270C	Bis(2-chloroethyl) ether	0.22 ca		mg/kg							0.0325 U										
8270C	Bis(2-ethylhexyl) phthalate	35 ca		mg/kg							0.0323 U 0.08 U										
8270C	Butylbenzyl phthalate	1222 nc		mg/kg							0.0325 U										
8270C	Carbazole	24 ca		mg/kg							0.0325 U										1
8270C	Chrysene	62 ca		mg/kg							0.00 0										
8270C	Dibenzo(a,h)anthracene	0.062 ca		mg/kg							0.016 U										
8270C	Dibenzofuran	15 nc		mg/kg							0.0099 J										
8270C	Diethyl phthalate	4888 nc		mg/kg							0.0325 U										İ
8270C	Dimethyl phthalate	100000 max		mg/kg							0.0325 U										
8270C	Di-n-butyl phthalate	611 nc		mg/kg							0.08 U										
8270C	Di-n-octyl phthalate	244 nc		mg/kg							0.16 U										
8270C	Fluoranthene	229 nc		mg/kg							0.065										
8270C	Fluorene	275 nc		mg/kg							0.016 U										

-						7	1	r	·		1		1	1	1		T	· · · · · · · · · · · · · · · · · · ·				
								<						6		ŝ			\sim			
						I-Sc	I-SO	PQ-I	-Sc	-Sc	-so	-Sc	Ň	l IQ	-so	Ā	SO	SC	-SO	-so	-S	ĝ
						014M-SO	510	N9	N9	JN 1	018D-	28	W6	NO	N	021M-DUP	021M-	5 J	3M	4W	2W	026M-QA
						-0-	0,	<u>6</u>	-01	<u>o</u>	0-	0	0	-02	-02	-02	-03	-07	-03	-02	-02	67
						-2sc	-5s	-22s	-22s	-28s	.5ss	-25s	5ss	5ss	.5ss	.5ss	.5ss	.5ss	,5ss	,5ss	.5ss	.5ss
								=		LI L	LI LI			L L	L L	1	rr	п	rı		L L	
					*	11/15/2004	11/15/2004	11/15/2004	11/15/2004	11/15/2004	11/19/2004	11/19/2004	11/12/2004	11/15/2004	11/15/2004	11/19/2004	11/19/2004	11/12/2004	11/15/2004	11/12/2004	11/12/2004	11/15/2004
	1				nple Depth:	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft
				Surface Soil																		
			Region 9 PRG	Background																		
Group	Method	Parameter	(Res Soil)	Criteria	Units																	
	8270C	Hexachlorobenzene	0.30 ca		mg/kg							0.016 U										
	8270C	Hexachlorobutadiene	6.2 ca		mg/kg							0.08 U										
	8270C	Hexachlorocyclopentadiene	37 nc		mg/kg							0.485 U										
-	8270C	Hexachloroethane	35 ca		mg/kg							0.08 U										
	8270C	Indeno(1,2,3-cd)pyrene	0.62 ca		mg/kg							0.025 J										
	8270C	Isophorone	512 ca		mg/kg							0.08 U										
	8270C	Naphthalene	5.6 nc		mg/kg_							0.02 J										
	8270C	Nitrobenzene	2 nc		mg/kg							0.016 U										
	8270C	n-Nitroso-di-n-propylamine	0.069 ca		mg/kg							0.0325 U										
	8270C	n-Nitrosodiphenylamine	99 ca		mg/kg							0.016 UJ										
	8270C	Pentachlorophenol	3.0 ca		mg/kg							0.16 U										
	8270C 8270C	Phenanthrene		'	mg/kg							0.04 J										
	8270C 8270C	Phenol	1833 nc		mg/kg							0.046 J										
T 1		Pyrene	232 nc		mg/kg							0.046 J										
Explosives	8330 8330	1,3,5-Trinitrobenzene	183 nc		mg/kg	0.05 U	0.05 U	0.0495 U	0.05 U	0.05 U		0.05 U	0.0495 U	0.05 U	0.05 U	0.049 U	0.049 U	0.0495 U	0.05 U	0.0495 U	0.05 U	0.05 U
	8330	1,3-Dinitrobenzene	0.61 nc		mg/kg	0.05 U	0.05 U	0.0495 U	0.05 U	0.05 U		0.05 U	0.0495 U	0.05 U	0.05 U	0.049 U	0.049 U	0.0495 U	0.05 U	0.0495 U	0.05 U	0.05 U
	8330	2,4,0-1N1 2,4-Dinitrotoluene	16 ca 12 nc		mg/kg	0.05 U	0.05 U	0.0495 U	0.05 U	0.05 U		0.05 U	0.0495 U	0.05 U	0.05 U	0.049 U	0.049 U	0.0495 U	0.05 U	0.0495 U	0.05 U	0.05 U
	8330	2,4-Dinitrotoluene	+ · · · · · · · · · · · · · · · · · · ·		mg/kg	0.05 U	0.05 U	0.0495 U	0.05 U	0.05 U		0.05 U	0.0495 U	0.05 U	0.05 U	0.049 U	0.049 U	0.0495 U	0.05 U	0.0495 U	0.05 U	0.05 U
	8330	2-Amino-4.6-Dinitrotoluene	6.1 nc		mg/kg mg/kg	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U 0.1 U
	8330	2-Nitrotoluene	0.88 ca		mg/kg	0.1 U	0.1 U	0.1 U 0.1 U	0.1 U	0.1 U		0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U	0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U
:	8330	3-Nitrotoluene	73 nc		mg/kg	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U 0.1 U	0.1 U 0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
	8330	4-Amino-2,6-Dinitrotoluene			mg/kg mg/kg	0.1 U	0.1 U	0.1 U	0.1 U 0.15 U	0.1 U 0.15 U		0.1 U	0.1 U 0.15 U	0.1 U 0.15 U	0.1 U 0.15 U	0.1 U 0.145 U	0.1 U 0.145 U	0.1 U 0.15 U	0.1 U 0.15 U	0.1 U 0.15 U	0.1 U 0.15 U	0.1 U 0.15 U
	8330	4-Nitrotoluene	12 ca		mg/kg	0.13 U	0.13 U	0.13 U	0.13 U 0.1 U	0.13 U 0.1 U		0.15 U	0.15 U 0.1 U	0.15 U 0.1 U	0.15 U 0.1 U	0.145 U 0.1 U	0.145 U 0.066 J	0.15 U	0.15 U 0.1 U	0.15 U 0.1 U	0.15 U 0.1 U	0.15 U 0.1 U
	8330	HMX	306 nc		mg/kg	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.000 J	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
	8330	Nitrobenzene	2 nc		mg/kg	0.05 U	0.05 U	0.0495 U	0.05 U	0.05 U		0.05 U	0.0495 U	0.05 U	0.05 U	0.049 U	0.049 U	0.0495 U	0.05 U	0.0495 U	0.1 U 0.05 U	0.1 U 0.05 U
	8330	RDX	4.4 ca		mg/kg	0.1 U	0.1 U	0.04)5 U	0.1 U	0.05 U 0.1 U		0.05 U	0.0495 U	0.05 U	0.05 U	0.049 U	0.049 U	0.0495 U	0.05 U	0.0495 U	0.0 U	0.05 U
	8330	Tetryl	61 nc		mg/kg	0.2 U	0.2 U	0.195 U	0.2 U	0.1 U		0.1 U	0.1 U	0.1 U	0.1 U 0.2 U	0.195 U	0.195 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Propellants	353.2 Modified	Nitrocellulose			mg/kg							0.75 U		0.2.0	<u> </u>	0.170 0	0.175 0	0.2 0	0.2 0	0.2 0		
	8332	Nitroglycerine	35 ca		mg/kg							0.25 U										
	SW8330 Modified		611 nc		mg/kg							0.125 U	1									
L		alt in Stranding			mg/ng		I					0.125 0										ł

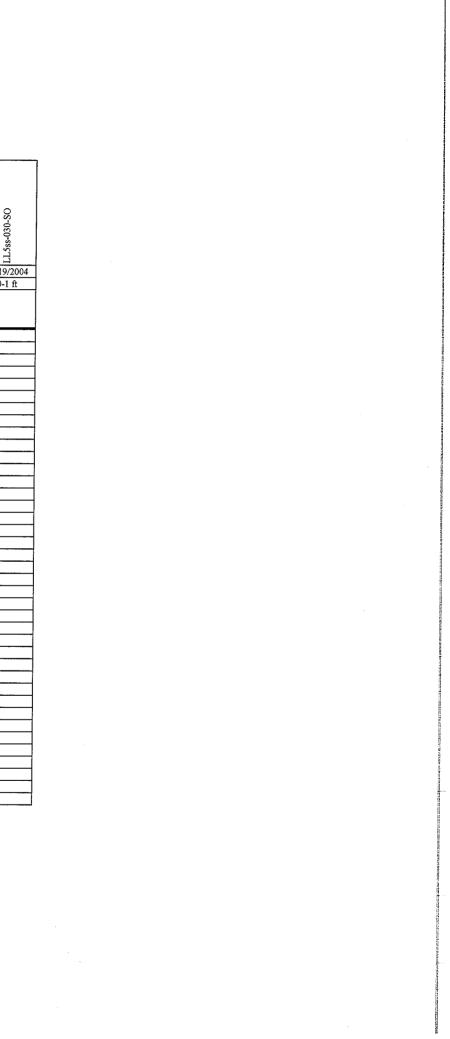

Notes:

--- no background/PRG value is available for this analyte blank cell indicates that the analysis was not performed mg/kg - means milligrams per Kilogram (parts per million - ppm) PRG - preliminary remediation goals nc - non-cancer basis, value is 1/10 the published PRG ca - cancer basis pbk - based on PBK modeling mcl - based on CWA maximum contaminant level max - ceiling limit sat - soil saturation [n] - nutrient U - analyte not detected J - estimated value R - result rejected during ADR validation If Result = or > Background, then the value is presented with a shaded/highlighted style If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style.

If Result = or > PRG, then the value is presented with a bold style

Load Line 5 Summary of All Surface Soil (0-1ft) Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

							M-SO	M-SO	M-SO	OS-M	ang	
							LL5ss-026M-SO	LL5ss-027M-SO	LL5ss-028M-SO	LL5ss-029M-SO	LL5ss-030-DUP	
								LLS	LLL5	LLLS	LLS	
						ample Date:	11/15/2004	11/15/2004	11/15/2004	11/15/2004	11/19/2004	11/19
					Surface Soil	mple Depth:	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-
			Region 9	PRG	Background			1				
Group	Method	Parameter	(Res S		Criteria	Units						
Metals	6010B	Aluminum	7614	nc	17700	mg/kg	10000	12000	13000	11000		
	6010B	Arsenic	0.39	ca	15.4	mg/kg	10	13	13	14		
	6010B 6010B	Barium Beryllium	538	nc	88.4	mg/kg	47	61	100	72		<u> </u>
	6010B	Cadmium	3.7	nc	0.88	mg/kg mg/kg	0.59 0.125 U	0.75 0.13 U	0.99	0.82 0.13 U		
	6010B	Calcium	[n]	ne	15800	mg/kg	3100	2800	4700	1700		
	6010B	Chromium	30	ca	17.4	mg/kg	22	2000	21	23		
· ·	6010B	Cobalt	30	ca	10.4	mg/kg	5.9	9.4	13	13		
	6010B	Copper	313	nc	17.7	mg/kg	15	19	21	14		1
	6010B 6010B	Iron	2346	nc	23100	mg/kg	22000	25000	26000	25000		<u> </u>
	6010B	Lead Magnesium	400 [n]	pbk	26.1 3030	mg/kg	21 2200	18 3100	21 4600	20	<u> </u>	<u> </u>
	6010B	Manganese	176	nc	1450	mg/kg mg/kg	2200 270	450	4000 390	2400 940	-	
	6010B	Nickel	156	nc	21.1	mg/kg	17	23	- 33	21		+
	6010B	Potassium	[n]		927	mg/kg	870	1100	1700	980		+
	6010B	Selenium	39	nc	1.4	mg/kg	0.58	0.61	0.75 U	0.84		
	6010B	Silver	39	nc	0.00	mg/kg	0.5 U	0.5 U	0.495 U	0.5 U		
	6010B	Sodium	[n]		123	mg/kg	240	250	280	240		
	6010B	Vanadium	7.8	nc	31.1	mg/kg	20	22	22	23		<u> </u>
1	6010B 7041	Zinc Antimony	2346	nc	61.8 0.96	mg/kg	110	62	71	76		<u> </u>
1	7841	Thallium	0.52	nc	0.96	mg/kg mg/kg	0.7 U 0.31 U	0.65 U 0.285 U	0.7 U 0.305 U	0.7 U 0.24		<u> </u>
Pesticides	8081A	4,4'-DDD	2.4	ca		mg/kg	0.31 0	0.285 0	0.303 0	0.24		┼──
	8081A	4,4'-DDE	1.7	ca		mg/kg						
	8081A	4,4'-DDT	1.7	ca		mg/kg						1
	8081A	Aldrin	0.029	ca		mg/kg						1
	8081A	alpha-BHC	0.09	sat		mg/kg						
	8081A	alpha-Chlordane	1.6	ca		mg/kg						
	8081A 8081A	beta-BHC delta-BHC	0.32	ca		mg/kg						──
	8081A 8081A	Dieldrin	0.030	ca		mg/kg mg/kg					l	
	8081A	Endosulfan I	37	ca nc		mg/kg mg/kg						+
	8081A	Endosulfan II	37	nc		mg/kg						<u> </u>
	8081A	Endosulfan sulfate	37	nc		mg/kg						<u> </u>
	8081A	Endrin	1.8	nc		mg/kg						
	8081A	Endrin aldehyde]		mg/kg						1
	8081A	Endrin ketone				mg/kg						ļ
	8081A 8081A	gamma-BHC gamma-Chlordane	0.44	ca		mg/kg						<u> </u>
	8081A 8081A	Heptachlor	0.11	ca ca		mg/kg mg/kg						<u> </u>
	8081A	Heptachlor epoxide	0.053	ca		mg/kg						+
	8081A	Methoxychlor	31	nc		mg/kg						
	8081A	Toxaphene	0.44	ca		mg/kg						<u> </u>
PCBs	8082	Aroclor 1016	0.39	nc		mg/kg						
	8082	Arocior 1221	0.22	ca		mg/kg						
	8082	Aroclor 1232	0.22	ca		mg/kg						
	8082	Aroclor 1242	0.22	ca		mg/kg						<u> </u>
	8082 8082	Aroclor 1248	0.22	ca		mg/kg						<u> </u>
	8082	Aroclor 1254 Aroclor 1260	0.22	ca ca		mg/kg		-				
VOCs	8260B	1,1,1-Trichloroethane	1200	sat		mg/kg mg/kg					0.0028 U	0.00
	02000	1,1,1-111011010601016	1200	Sat		шу/ку					0.0028 U	0.002

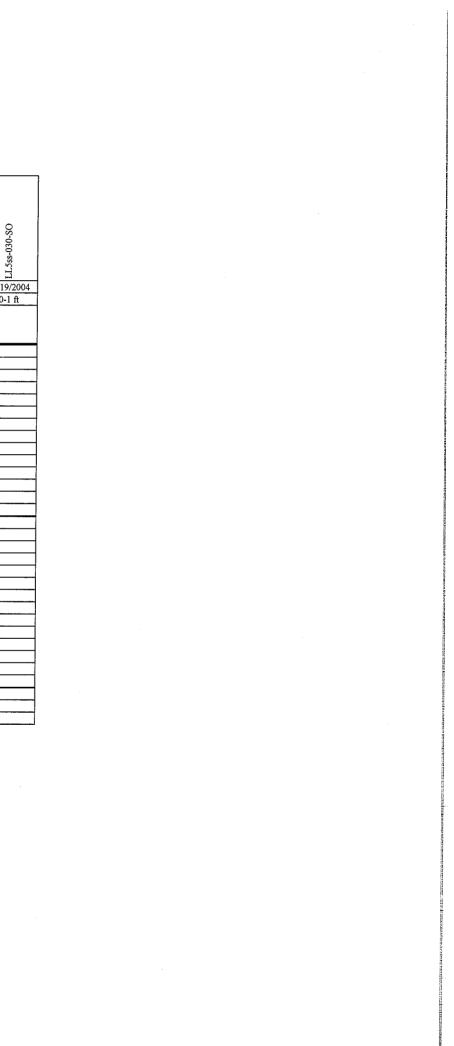

Load Line 5 Summary of All Surface Soil (0-1ft) Results RVAAP 14 AOC Characterization

Ravenna Army Ammunition Plant, Ravenna, Ohio

							LL5ss-026M-SO	LL5ss-027M-SO	LL5ss-028M-SO	OS-M620-ss2TT	LL5ss-030-DUP	LL5ss-030-SO
						Sample Date:	11/15/2004	11/15/2004	11/15/2004	11/15/2004	11/19/2004	11/19/
						ample Depth;	0-1 ft	0-1				
Group	Method	Parameter	Region 9 (Res So		Surface Soil Background Criteria	Units						
	8260B	1,1,2,2-Tetrachloroethane	0.41	ca		mg/kg					0.0028 U	0.002
	8260B	1,1,2-Trichloroethane	0.73	ca		mg/kg					0.0028 U	0.00
	8260B	1,1-Dichloroethane	51	nc		mg/kg					0.0028 U	0.00
	8260B	1,1-Dichloroethene	12	nc		mg/kg					0.0028 U	0.00
	8260B	1,2-Dibromoethane	0.032	ca		mg/kg					0.0028 U	0.00
	8260B 8260B	1,2-Dichloroethane	0.28	ca		mg/kg					0.0028 U	0.00
	8260B	1,2-Dichloropropane	6.9	nc		mg/kg					0.0055 U	0.00
	8260B	2-Butanone	0.34	ca		mg/kg mg/kg					0.0028 U	0.00
	8260B	2-Hexanone	530	nc		mg/kg					0.0085 U 0.0055 U	0.00
	8260B	4-Methyl-2-pentanone	528	nc		mg/kg					0.0055 U	0.00
	8260B	Acetone	1412	nc		mg/kg					0.0085 U	0.00
	8260B	Benzene	0.64	ca		mg/kg					0.0028 U	0.00
	8260B	Bromochloromethane				mg/kg					0.0028 U	0.00
	8260B	Bromodichloromethane	0.82	ca		mg/kg					0.0028 U	0.00
	8260B	Bromoform	62	ca		mg/kg					0.0028 U	0.00
	8260B	Bromomethane	0.39	nc		mg/kg					0.0028 U	0.00
	8260B	Carbon disulfide	36	nc		mg/kg					0.0028 U	0.00
	8260B	Carbon tetrachloride	0.25	ca		mg/kg					0.0028 U	0.00
	8260B	Chlorobenzene	15	nc		mg/kg					0.0028 U	0.002
	8260B 8260B	Chloroethane	3.0	ca		mg/kg					0.0028 U	0.002
	8260B	Chloroform Chloromethane	0.22	ca		mg/kg					0.0028 U	0.002
	8260B	cis-1,2-Dichloroethene	4.7	nc nc		mg/kg	· · · · ·				0.0028 U	0.00
	8260B	cis-1,3-Dichloropropene	0.78	ca		mg/kg mg/kg					0.0028 U 0.0028 U	0.002
	8260B	Dibromochloromethane	1.1	ca		mg/kg					0.0028 U	0.002
	8260B	Ethylbenzene	395	sat		mg/kg					0.0028 U	0.002
	8260B	m&p-Xylenes	27	nc		mg/kg					0.0055 U	0.00
	8260B	Methylene chloride	9.1	ca		mg/kg					0.0055 U	0.00
	8260B	o-Xylene	27	nc		mg/kg					0.0028 U	0.002
	8260B	Styrene	1700	sat		mg/kg					0.0028 U	0.002
	8260B	Tetrachloroethene	0.48	ca		mg/kg					0.0028 U	0.002
	8260B	Toluene	520	sat		mg/kg					0.0028 U	0.002
	8260B 8260B	Total Xylenes	27	nc		mg/kg					0.0055 U	0.005
	8260B 8260B	trans-1,2-Dichloroethene trans-1,3-Dichloropropene	6.9	nc		mg/kg					0.0028 U	0.002
	8260B	Trichloroethene	0.78	ca ca		mg/kg mg/kg					0.0028 U	0.002
	8260B	Vinyl chloride	0.033	ca		mg/kg mg/kg					0.0028 U 0.0028 U	0.002
VOCs	8270C	1,2,4-Trichlorobenzene	6.2	nc		mg/kg					0.0020 0	0.002
	8270C	1,2-Dichlorobenzene	600	sat		mg/kg						
	8270C	1,3-Dichlorobenzene	53	nc		mg/kg						
	8270C	1,4-Dichlorobenzene	3.4	ca		mg/kg						
	8270C	2,2-oxybis (1-chloropropane)	2.9	ca		mg/kg						
	8270C	2,4,5-Trichlorophenol	611	nc		mg/kg						
	8270C	2,4,6-Trichlorophenol	0.61	nc		mg/kg						
	8270C	2,4-Dichlorophenol	18	nc		mg/kg						
	8270C	2,4-Dimethylphenol	122	nc		mg/kg						
	8270C	2,4-Dinitrophenol	12	nc		mg/kg						
	8270C	2,4-Dinitrotoluene	12	nc		mg/kg						
	8270C	2,6-Dinitrotoluene	6.1	nc		mg/kg						
	8270C	2-Chloronaphthalene	494	nc		mg/kg						

Load Line 5 Summary of All Surface Soil (0-1ft) Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

					Sample Date: ample Depth:	OS-W920-ssc911 11/15/2004 0-1 ft	OS-WLZ0-ssgTT 11/15/2004 0-1 ft	OS-W870-555 11/15/2004 0-1 ft	OS-W670-sss 11/15/2004 0-1 ft	dnq-0c0-sss5777 11/19/2004 0-1 ft	OS-020-S05 11/19/2 0-1 ft
Group	Method	Parameter	Region 9 PRG	Surface Soil Background							
·			(Res Soil)	Criteria	Units						
	8270C	2-Chlorophenol	<u>6.3</u> nc		mg/kg						
	8270C	2-Methylnaphthalene			mg/kg						
	8270C	2-Methylphenol	306 nc		mg/kg						
	8270C 8270C	2-Nitroaniline	18.3 nc		mg/kg						
	8270C	2-Nitrophenol			mg/kg	·	l			L	
	8270C	3,3'-Dichlorobenzidine	1.1 ca		mg/kg						
	8270C	3-Nitroaniline	<u>1.8</u> nc		mg/kg						
	8270C	4,6-Dinitro-2-methylphenol	0.61 nc		mg/kg						
	8270C	4-Bromophenyl phenyl ether			mg/kg						
	8270C	4-Chloro-3-methylphenol			mg/kg						
	8270C	4-Chloroaniline	24 nc		mg/kg						
	8270C	4-Chlorophenyl phenyl ether 4-Methylphenol			mg/kg						
	8270C	4-Nitroaniline	31 nc		mg/kg						
	8270C	4-Nitrophenol	23 ca		mg/kg						
	8270C	Acenaphthene			mg/kg			-			
	8270C	Acenaphthylene			mg/kg						
	8270C	Anthracene	2189 nc		mg/kg						
	8270C	Benzo(a)anthracene	0.62 ca		mg/kg						
	8270C	Benzo(a)pyrene	0.062 ca		mg/kg mg/kg						
	8270C	Benzo(b)fluoranthene	0.62 ca		mg/kg						
	8270C	Benzo(g,h,i)perylene	Ca		mg/kg						
	8270C	Benzo(k)fluoranthene	6.2 ca		mg/kg						
	8270C	Benzoic acid	100000 max		mg/kg						
	8270C	Benzyl alcohol	1833 nc		mg/kg						
	8270C	Bis(2-chloroethoxy)methane			mg/kg						
	8270C	Bis(2-chloroethyl) ether	0.22 ca		mg/kg						
	8270C	Bis(2-ethylhexyl) phthalate	35 ca		mg/kg						
	8270C	Butylbenzyl phthalate	1222 nc		mg/kg						
	8270C	Carbazole	24 ca		mg/kg						
	8270C	Chrysene	62 ca		mg/kg						
	8270C	Dibenzo(a,h)anthracene	0.062 ca		mg/kg						
	8270C	Dibenzofuran	15 nc		mg/kg						
	8270C	Diethyl phthalate	4888 nc		mg/kg						
	8270C	Dimethyl phthalate	100000 max		mg/kg						
	8270C	Di-n-butyl phthalate	611 nc		mg/kg						
	8270C	Di-n-octyl phthalate	244 nc		mg/kg						
	8270C	Fluoranthene	229 nc		mg/kg						
	8270C	Fluorene	275 nc		mg/kg						
					. <u>v x</u> _L						


Load Line 5 Summary of All Surface Soil (0-1ft) Results RVAAP 14 AOC Characterization

Ravenna Army Ammunition Plant, Ravenna, Ohio

										-		
					Si	ample Date:	OS-W920-sss511 11/15/2004	OS-WLZ0-sss511 11/15/2004	OS-W870-555777 11/15/2004	OS-W620-5557TT 11/15/2004	dncr-060-ssg711 11/19/2004	OS-030-SO
L					Sau	nple Depth:	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1 ft	0-1
Group	Method	Parameter	Region 9 (Res So		Surface Soil Background Criteria	Units						
	8270C	Hexachlorobenzene	0.30	ca		mg/kg			1	1		
	8270C	Hexachlorobutadiene	6.2	ca		mg/kg						
	8270C	Hexachlorocyclopentadiene	37	nc		mg/kg				1		
	8270C	Hexachloroethane	35	ca		mg/kg						
	8270C	Indeno(1,2,3-cd)pyrene	0.62	ca		mg/kg						
	8270C	Isophorone	512	ca		mg/kg						
	8270C	Naphthalene	5.6	nc		mg/kg						
	8270C	Nitrobenzene	2	nc		mg/kg						
	8270C	n-Nitroso-di-n-propylamine	0.069	ca	-	mg/kg						
	8270C	n-Nitrosodiphenylamine	99	ca		mg/kg						
	8270C	Pentachlorophenol	3.0	ca		mg/kg				-		
	8270C	Phenanthrene				mg/kg						
	8270C	Phenol	1833	nc		mg/kg						
	8270C	Pyrene	232	nc		mg/kg						
Explosives	8330	1,3,5-Trinitrobenzene	183	· nc		mg/kg	0.0495 U	0.0495 U	0.0495 U	0.05 U		
	8330	1,3-Dinitrobenzene	0.61	nc	-	mg/kg	0.0495 U	0.0495 U	0.0495 U	0.05 U		
	8330	2,4,6-TNT	16	ca		mg/kg	0.0495 U	0.0495 U	0.0495 U	0.05 U		
	8330	2,4-Dinitrotoluene	12	nc		mg/kg	0.0495 U	0.0495 U	0.0495 U	0.05 U		
	8330	2,6-Dinitrotoluene	6.1	nc		mg/kg	0.1 U	0.1 U	0.1 U	0.1 U		
	8330	2-Amino-4,6-Dinitrotoluene				mg/kg	0.1 U	0.1 U	0.1 U	0.1 U		
	8330	2-Nitrotoluene	0.88	ca		mg/kg	0.1 U	0.1 U	0.1 U	0.1 U		
	8330	3-Nitrotoluene	73	nc		mg/kg	0.1 U	0.1 U	0.1 U	0.1 U		
	8330	4-Amino-2,6-Dinitrotoluene				mg/kg	0.15 U	0.15 U	0.15 U	0.15 U		
	8330	4-Nitrotoluene	12	ca		mg/kg	0.1 U	0.1 U	0.1 U	0.1 U		
	8330	HMX	306	nc		mg/kg	0.1 U	0.1 U	0.1 U	0.1 U		
	8330	Nitrobenzene	2	nc		mg/kg	0.0495 U	0.0495 U	0.0495 U	0.05 U		
	8330	RDX	4.4	ca		mg/kg	0.1 U	0.1 U	0.1 U	0.1 U		
	8330	Tetryl	61	nc		mg/kg	0.2 U	0.195 U	0.2 U	0.1 U		
Propellants	353.2 Modified	Nitrocellulose				mg/kg						
	8332	Nitroglycerine	35	ca		mg/kg						
	SW8330 Modified		611	nc		mg/kg						

Notes:

-- - no background/PRG value is available for this analyte blank cell indicates that the analysis was not performed mg/kg - means milligrams per Kilogram (parts per million - ppm) PRG - preliminary remediation goals nc - non-cancer basis, value is 1/10 the published PRG ca - cancer basis pbk - based on PBK modeling mcl - based on CWA maximum contaminant level max - ceiling limit sat - soil saturation [n] - nutrient U - analyte not detected J - estimated value R - result rejected during ADR validation If Result = or > Background, then the value is presented with a shaded/highlighted style If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style. If Result = or > PRG, then the value is presented with a bold style

							8		
							LL5sd-002-DUP	LL5sd-002-SD	LL5sd-013-SD
					S	ample Date:	12/10/2004	12/10/2004	11/18/2004
					Sar	mple Depth:	8 ft	8 ft	0-0.5 ft
					Sediment				
Group	Method	Parameter	Region 9 (Res So		Background Criteria	Units			
Metals	6010B	Aluminum	7614	nc	13900	mg/kg	9100	9900 J	4600
	6010B	Arsenic	0.39	ca	19.5	mg/kg	14	14	180
	6010B	Barium	538	nc	123	mg/kg	72	73	220
	6010B	Beryllium	15	nc	0.38	mg/kg	0.63	0,68	0.68
	6010B	Cadmium	3.7	nc	0.00	mg/kg	1.6	1.9 J	6,4
	6010B	Calcium	[n]		5510	mg/kg	3900	5400 J	14000
	6010B	Chromium	30	ca	18.1	mg/kg	19	20 J	130
	6010B	Cobalt	30	ca	9.1	mg/kg	9	94	8.1
	6010B	Copper	313	nc	27.6	mg/kg	59	- 44 J	340
	6010B	Iron	2346	nc	28200	mg/kg	43000	39000 J	100000
	6010B	Lead	400	pbk	27.4	mg/kg	36	35 J	1500
	6010B	Magnesium	[n]		2760	mg/kg	2700	3200 J -	1900
	6010B	Manganese	176	nc	1950	mg/kg	530	510 J	1000
	6010B	Nickel	156	nc	17.7	mg/kg	23	24	33
	6010B	Potassium	[n]		1950	mg/kg	1500	1700 J	1000
	6010B	Selenium	39	nc	1.7	mg/kg	0.9 U	0.9 U	2.5
	6010B	Silver	39	nc	0.00	mg/kg	0.6 U	0.6 U	1.65 U
	6010B	Sodium	[n]		112	mg/kg	280	300	730
	6010B	Vanadium	7.8	nc	26.1	mg/kg	29	32	16
	6010B	Zinc	2346	nc	532	mg/kg	140	150 J	1700
	7041	Antimony	3.1	nc	0.00	mg/kg	0.75 U	- R	3.1
	7471A	Mercury	2.3	nc	0.06	mg/kg	0.29	0.2	19
	7841	Thallium	0.52	nc	0.89	mg/kg	0.33 U	0.335 U	1.05 U
Explosives	8330	1,3,5-Trinitrobenzene	183	nc		mg/kg	0.25 U	0.25 U	0.0495 U
	8330	1,3-Dinitrobenzene	0.61	nc		mg/kg	0.25 U	0.25 U	0.0495 U
	8330	2,4,6-TNT	16	ca		mg/kg	0.25 U	0.25 U	0.0495 U
	8330	2,4-Dinitrotoluene	12	nc		mg/kg	0.25 U	0.25 U	0.0495 U
	8330	2,6-Dinitrotoluene	6.1	nc		mg/kg	0.5 U	0.495 U	0.1 U
	8330	2-Amino-4,6-Dinitrotoluene			-	mg/kg	0.5 U	0.495 U	0.1 U
	8330	2-Nitrotoluene	0.88	ca		mg/kg	0.5 U	0.495 U	0.1 U
	8330	3-Nitrotoluene	73	nc		mg/kg	0.5 U	0.495 UJ	0.1 U
	8330	4-Amino-2,6-Dinitrotoluene				mg/kg	0.75 U	0.75 U	0.15 U
	8330	4-Nitrotoluene	12	ca	-	mg/kg	0.5 U	0.495 U	0.1 U
	8330	HMX	306	nc		mg/kg	0.5 U	0.495 U	0.1 U
	8330	Nitrobenzene	2	nc		mg/kg	0.25 U	0.25 U	0.0495 U
	8330	RDX	4.4	ca		mg/kg	0.5 U	0.495 U	0.1 U
	8330	Tetryl	61	nc		mg/kg	1 U	1 UJ	0.2 U

Notes:

-- no background/PRG value is available for this analyte blank cell indicates that the analysis was not performed mg/kg - means milligrams per Kilogram (parts per million - ppm)
 PRG - preliminary remediation goals

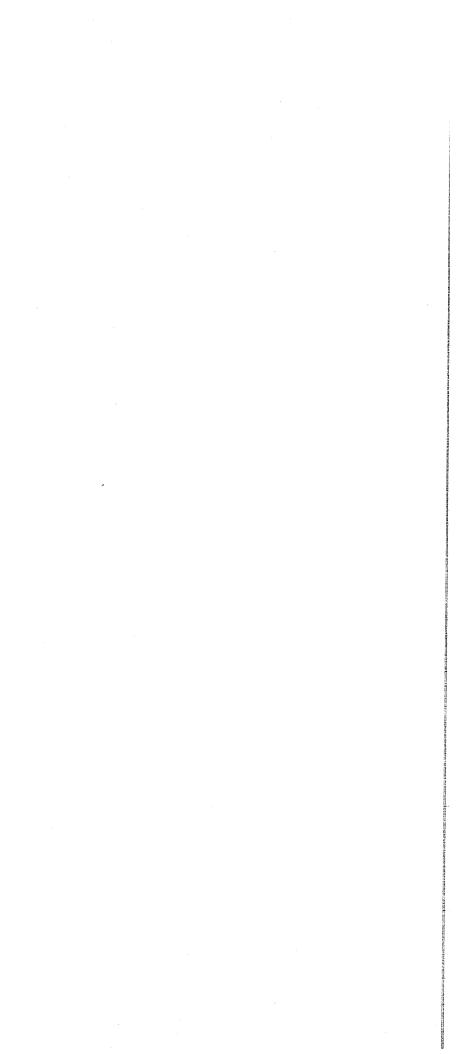
nc - non-cancer basis, value is 1/10 the published PRG

ca - cancer basis pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level max - ceiling limit

sat - soil saturation

[n] - nutrient


U - analyte not detected

J - estimated value

R - result rejected during ADR validation

If Result = or > Background, then the value is presented with a shaded/highlighted style If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style

If Result = or > PRG, then the value is presented with a bold style

Load Line 5 Summary of All Surface Water Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

r						·····							
						E					L 64		
						LL5sw-007-DUP	LL5sw-007-SW	LL5sw-008-SW	LL5sw-009-SW	LL5sw-010-SW	LL5sw-011-DUP	LL5sw-011-SW	LL5sw-012-SW
						-200	.200	80	60	010			012-
)- <u>w</u>	8
						L5s	L5s	L5s	L5s	L5s	L5s	L5s	L5s
				0							,,		
					ample Date:	12/6/2004	12/6/2004	12/6/2004	12/7/2004	12/7/2004	11/18/2004	11/18/2004	11/18/2004
				T	nple Depth:	13.31 ft	13.31 ft	5.38 ft	13.2 ft	11.3 ft	surface	surface	surface
			Region 9 PRG	Surface Water Background	1								
Group	Method	Parameter	(Tap Water)	Criteria	Units								
Metals	6010B	Aluminum			ug/l	430	620	730	730	1900	75 U	75 U	75 U
inicials.	6010B	Barium	<u>36499 nc</u> 2555 nc		ug/l	25	28 J	25	27	34	25	25	75 U 13
	6010B	Beryllium	73 nc		ug/l	1 U	1 U	1 U	1 U	1 U	23 1 U	1 U	13 1 U
	6010B	Cadmium	18 nc		ug/l	1 U	1 U	1 U	10	10	0.31	0.28	0.33
	6010B	Calcium	[n]	41400	ug/l	32000	33000	38000	38000	38000	41000	42000	22000
	6010B	Chromium	109 nc	1	ug/l	1.2	1.2	5 U	1.4	2.9	5 U	5 U	5 U
	6010B	Cobalt	730 nc		ug/l	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
	6010B	Copper	1460 nc		ug/l	5 U	5 U	5 U	5 U	3.2	2.7	2.2	2.2
	6010B	Iron	10950 nc		ug/l	350	530	750	990	2700	46	46	60 U
	6010B	Magnesium	[n]	10800	ug/l	1600	1800	3300	3500	5500	6400	6500	5400
	6010B	Manganese	876 nc	391	ug/l	41	63	9.2	12	75	3.4	3.6	5.5
	6010B	Nickel	730 nc	0.00	ug/l	5 U	5 U	5 U	5 U	1.6	5 U	5 U	5 U
	6010B	Potassium	[n]	3170	ug/l	1100	1100	1400	1400	1800	27000	28000	16000
	6010B	Selenium	182 nc	0.00	ug/l	3.6	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U	7.5 U
	6010B	Silver	182 nc		ug/l	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
	6010B	Sodium	[n]	21300	ug/l	560	750 U	810	570	1300	4100	4200	3600
	6010B	Vanadium	36 nc		ug/l	1.4	1.4	1.5	- 1.1	3	5 U	5 U	5 U
	6010B	Zinc	10950 nc		ug/l	3.6	4.4	6.6	3.2 U	7 U	79	81	24
	7041	Antimony	15 nc		ug/l	3.75 U	3.75 UJ	3.75 U	3.75 U	3.75 U	3.75 U	3.75 U	3.75 U
	7060A	Arsenic	0.045 ca		ug/l	1 U	1 U	1 U	1 U	1.2	1 U	1 U	1 U
	7421	Lead	15 mcl		ug/l	1.5 U	1.5 UJ	1.5 U	0.8 U	1.7 U	0.98	0.89	1.5 U
	7470A	Mercury	11 nc	0.00	ug/l	0.1 U	0.1 UJ	0.1 U	0.1 U	0.064	0.1 U	0.1 U	0.1 U
D	7841	Thallium	2.4 nc	0.00	ug/l	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Pesticides	8081A	4,4'-DDD	0.28 ca		ug/l	0.055 U	0.055 U	0.055 U	0.055 U	0.05 U	0.05 U	0.055 U	0.055 U
	8081A 8081A	4,4'-DDE 4,4'-DDT	0.20 ca		ug/l	0.0485 U	0.048 U	0.049 U	0.048 U	0.0465 U	0.047 U	0.049 U	0.0485 U
	8081A	Aldrin	0.20 ca		ug/l	0.075 U	0.07 U	0.075 U	0.07 U	0.07 U	0.07 U	0.075 U	0.075 U
	8081A	alpha-BHC	0.0040 ca 0.011 nc		ug/l	0.0485 U 0.075 U	0.048 U 0.07 U	0.049 U 0.075 U	0.048 U 0.07 U	0.0465 U	0.047 U	0.049 U	0.0485 U
	8081A	alpha-Chlordane	0.011 nc 0.19 ca		ug/l	0.075 U 0.0245 U	0.07 U 0.024 U	0.075 U 0.0245 U	0.07 U	0.07 U 0.0235 U	0.07 U 0.0235 U	0.075 U 0.0245 U	0.075 U 0.0245 U
	8081A	beta-BHC			ug/l	0.0243 U 0.0485 U	0.024 U 0.048 U	0.0243 U 0.049 U	0.024 U 0.048 U	0.0233 U 0.0465 U	0.0233 U 0.047 U	0.0243 U 0.049 U	0.0243 U 0.0485 U
	8081A	delta-BHC	0.037 ca		ug/l ug/l	0.0485 U	0.048 U	0.049 U	0.048 U	0.0465 U	0.047 U	0.049 U	0.0485 U
	8081A	Dieldrin	0.0042 ca		ug/l	0.0485 U	0.048 U	0.049 U 0.049 U	0.048 U	0.0465 U	0.047 U	0.049 U 0.049 U	0.0485 U
	8081A	Endosulfan I	220 nc		ug/l	0.0485 U	0.048 U	0.049 U	0.048 U	0.0465 U	0.047 U	0.049 U	0.0485 U
	8081A	Endosulfan II	220 nc		ug/l	0.0405 U	0.040 U	0.075 U	0.040 U	0.0405 U	0.047 U	0.075 U	0.075 U
	8081A	Endosulfan sulfate	220 nc		ug/l	0.075 U	0.07 U	0.075 U	0.07 U	0.07 U	0.07 U	0.075 U	0.075 U
	8081A	Endrin	11 nc		ug/1 ug/1	0.0485 U	0.048 U	0.049 U	0.048 U	0.0465 U	0.047 U	0.049 U	0.0485 U
	8081A	Endrin aldehyde			ug/l	0.075 U	0.07 U	0.075 U	0.07 U	0.07 U	0.07 U	0.075 U	0.075 U
	8081A	Endrin ketone			ug/l	0.0485 U	0.048 U	0.049 U	0.048 U	0.0465 U	0.047 U	0.049 U	0.0485 U
	8081A	gamma-BHC	0.052 ca		ug/l	0.075 U	0.07 U	0.075 U	0.07 U	0.07 U	0.07 U	0.075 U	0.075 U
	8081A	gamma-Chlordane	0.19 ca		ug/l	0.0485 U	0.048 U	0.049 U	0.048 U	0.0465 U	0.047 U	0.049 U	0.0485 U
	8081A	Heptachlor	0.015 ca		ug/l	0.075 U	0.07 U	0.075 U	0.07 U	0.07 U	0.07 U	0.075 U	0.075 U
	8081A	Heptachlor epoxide	0.0074 ca		ug/l	0.075 U	0.07 U	0.075 U	0.07 U	0.07 U	0.07 U	0.075 U	0.075 U
	8081A	Methoxychlor	182 nc		ug/l	0.29 U	0.29 U	0.295 U	0.29 U	0.28 U	0.285 U	0.295 U	0.29 U

•.

Load Line 5 Summary of All Surface Water Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

						LL5sw-007-DUP	LL5sw-007-SW	LL5sw-008-SW	LL5sw-009-SW	LL5sw-010-SW	LL5sw-011-DUP	LL5sw-011-SW	LL5sw-012-SW
				S	ample Date:	12/6/2004	12/6/2004	12/6/2004	12/7/2004	12/7/2004	11/18/2004	11/18/2004	11/18/2004
				Sa	mple Depth:	13.31 ft	13.31 ft	5.38 ft	13.2 ft	11.3 ft	surface	surface	surface
				Surface Water									
			Region 9 PRG	Background									
Group	Method	Parameter	(Tap Water)	Criteria	Units								
_	8081A	Toxaphene	0.061 ca		ug/l	0.245 U	0.24 U	0.245 U	0.24 U	0.235 U	0.235 U	0.245 U	0.245 U
PCBs	8082	Aroclor 1016	0.96 ca		ug/l	0.29 U	0.29 U	0.295 U	0.24 U	0.23 U	0.235 U	0.245 U	0.243 U
	8082	Aroclor 1221	0.034 ca		ug/l	0.65 U	0.2 / U	0.65 U	0.29 U	0.28 U	0.285 U 0.6 U	0.293 U 0.65 U	0.29 U 0.65 U
	8082	Aroclor 1232	0.034 ca		ug/l	0.65 U	0.6 U	0.65 U	0.6 U	0.6 U	0.6 U	0.65 U	0.65 U
	8082	Aroclor 1242	0.034 ca		ug/l	0.65 U	0.6 U	0.65 U	0.6 U	0.6 U	0.6 U	0.65 U	0.65 U
	8082	Aroclor 1248	0.034 ca		ug/l	0.05 U	0.0 U	0.05 U	0.0 U	0.0 U	0.8 U	0.83 U 0.75 U	
	8082	Aroclor 1254	0.034 ca		ug/l	0.65 U	0.7 U	0.65 U	0.7 U 0.6 U	0.7 U	0.7 U	0.75 U	0.75 U 0.65 U
	8082	Aroclor 1260	0.034 ca		ug/1 ug/1	0.09 U	0.0 U	0.295 U	0.0 U 0.29 U	0.0 U	0.285 U	0.85 U 0.295 U	0.65 U 0.29 U
VOCs	8260B	1,1,1-Trichloroethane	3172 nc		ug/l	0.2 J U	0.2 / U	0.295 U	0.29 U 0.5 U	·····			
	8260B	1,1,2,2-Tetrachloroethane	0.055 ca		ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U
	8260B	1,1,2-Trichloroethane	0.20 ca		ug/l	0.5 U			0.5 U				
	8260B	1,1-Dichloroethane	811 nc		ug/1 ug/1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	1,1-Dichloroethene	339 nc		ug/l '	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U
	8260B	1,2-Dibromoethane	0.0056 ca		ug/1 ug/1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U	0.5 U
	8260B	1,2-Dichloroethane	0.12 ca		ug/l	0.5 U		0.5 U	0.5 U				
	8260B	1,2-Dichloroethene (total)	120 nc		ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U
	8260B	1,2-Dichloropropane	0.16 ca		ug/1 ug/1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U
	8260B	2-Butanone	6968 nc		ug/l	5 U	0.5 U	0.3 U	0.3 U	0.3 U 5 U	0.5 U	0.5 U	0.5 U
	8260B	2-Hexanone	2000 nc		ug/l	5 U	5 U	5 U	5 U	5 U	5 U	5 U 5 U	5 U
	8260B	4-Methyl-2-pentanone	1993 nc		ug/l	5 U	5 U	5 U	5 U	5 U	5 U	5 U	<u>5 U</u>
	8260B	Acetone	5475 nc		ug/l	5 U	5 U	5 U	5 U	5 U	5 U	5 U	<u>5 U</u>
	8260B	Benzene	0.35 ca		ug/l	0.5 U		5 U					
	8260B	Bromochloromethane			ug/l	0.5 U		0.5 U	0.5 U				
	8260B	Bromodichloromethane	0.18 ca		ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U
	8260B	Bromoform	8.5 ca		ug/l	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U				
	8260B	Bromomethane	8.7 nc		ug/l	0.5 U		0.5 U 0.5 U	0.5 U				
	8260B	Carbon disulfide	1043 nc		ug/l	2.5 U	2.5 U	2.5 U	0.5 U 2.5 U	0.5 U 2.5 U	0.5 U 2.5 U	0.5 U 2.5 U	0.5 U
	8260B	Carbon tetrachloride	0.17 ca		ug/l	0.5 U	2.5 U 0.5 U	0.5 U	2.5 U 0.5 U				
	8260B	Chlorobenzene	106 nc		ug/1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U
	8260B	Chloroethane	4.6 ca		ug/l	0.5 U	0.5 U 0.5 U						
	8260B	Chloroform	0.17 ca		ug/l	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U					
	8260B	Chloromethane	158 nc		ug/l	0.5 U	0.5 U	0.5 U 0.5 U					
	8260B	cis-1,2-Dichloroethene	61 nc		ug/1 ug/1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	
	8260B	cis-1,3-Dichloropropene	0.40 ca		ug/l	0.5 U	0.5 U	0.5 U 0.5 U					
	8260B	Dibromochloromethane	0.13 ca		ug/l	0.5 U	0.5 U 0.5 U	0.5 U					
	8260B	Ethylbenzene	1340 nc		ug/l	0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U				
	8260B	m&p-Xylenes	206 nc		ug/l	1 U	0.5 U	1 U	0.3 U 1 U	0.5 U 1 U	0.5 U 1 U	0.5 U 1 U	
	8260B	Methylene chloride	4.3 ca		ug/l	0.75 U			1 U				
	8260B	o-Xylene	206 nc		ug/l	0.73 U 0.5 U	0.73 U 0.5 U	0.75 U 0.5 U	0.75 U 0.5 U	0.75 U 0.5 U	0.75 U	0.75 U	0.75 U
	8260B	Styrene	1641 nc		ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U	0.5 U	0.5 U
	8260B	Tetrachloroethene	0.10 ca		ug/l	0.5 U	0.5 U	0.5 U			0.5 U	0.5 U	0.5 U
	8260B	Toluene	723 nc	-	ug/l	0.5 U	0.5 U		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	Total Xylenes	206 nc		ug/1	0.3 U	0.5 0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

Load Line 5 Summary of All Surface Water Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

							·····	1					,
						LL5sw-007-DUP	LL5sw-007-SW	LL5sw-008-SW	MS-600-MS-TT	LL5sw-010-SW	LL5sw-011-DUP	MS-110-mS2TT	LL5sw-012-SW
											LLL		E
					ample Date:	12/6/2004	12/6/2004	12/6/2004	12/7/2004	12/7/2004	11/18/2004	11/18/2004	11/18/2004
				T	mple Depth:	13.31 ft	13.31 ft	5.38 ft	13.2 ft	11.3 ft	surface	surface	surface
				Surface Water									
roup	Method	Parameter	Region 9 PRG	Background	11.11								
noup		Parameter	(Tap Water)	Criteria	Units								
	8260B	trans-1,2-Dichloroethene	122 nc		ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	trans-1,3-Dichloropropene	0.40 ca		ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	Trichloroethene	0.028 ca		ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
10.0	8260B	Vinyl chloride	0.020 ca		ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
/OCs	8270C	1,2,4-Trichlorobenzene	7.2 nc		ug/l	0.95 U	0.95 U	1 U	1 U	0.95 U	1 U	0.95 U	1 U
	8270C	1,2-Dichlorobenzene	370 nc		ug/l	0.95 U	0.95 U	1 U	1 U	0.95 U	1 U	0.95 U	1 U
	8270C	1,3-Dichlorobenzene	182 nc		ug/l	0.95 U	0.95 U	1 U	1 U	0.44 J	1 U	0.95 U	1 U
	8270C	1,4-Dichlorobenzene	0.50 ca		ug/l	0.95 U	0.95 U	1 U	1 U	0.95 U	1 U	0.95 U	1 U
	8270C	2,2-oxybis (1-chloropropane)	0.27 ca		ug/l	0.95 U	0.95 U	1 U	1 U	0.95 U	1 U	0.95 U	1 U
	8270C	2,4,5-Trichlorophenol	3650 nc		ug/l	4.85 U	4.85 U	4.9 U	4.95 U	4.7 U	4.9 U	4.8 U	4.95 U
	8270C	2,4,6-Trichlorophenol	3.6 nc		ug/l	2.45 U	2.45 U	2.45 U	2.5 U	2.35 U	2.45 U	2.4 U	2.5 U
	8270C	2,4-Dichlorophenol	109 nc		ug/l	4.85 U	4.85 U	4.9 U	4.95 U	4.7 U	4.9 U	4.8 U	4.95 U
	8270C	2,4-Dimethylphenol	730 nc		ug/l	4.85 U	4.85 U	4.9 U	4.95 U	4.7 U	4.9 U	4.8 U	4.95 U
	8270C	2,4-Dinitrophenol	73 nc		ug/l	9.5 U	9.5 U	10 U	10 U	9.5 U	10 U	9.5 U	10 U
	8270C	2,4-Dinitrotoluene	73 nc		ug/l	0.485 U	0.485 U	0.49 U	0.495 U	0.47 U	0.49 U	0.48 U	0.495 U
	8270C	2,6-Dinitrotoluene	36 nc		ug/l	0.245 U	0.245 U	0.245 U	0.25 U	0.235 U	0.245 U	0.24 U	0.25 U
	8270C	2-Chloronaphthalene	487 nc		ug/l	0.95 U	0.95 U	1 U	1 U	0.95 U	1 U	0.95 U	1 U
	8270C	2-Chlorophenol	30 nc		ug/l	2.45 U	2.45 UJ	2.45 U	2.5 U	2.35 U	2.45 U	2.4 U	2.5 U
	8270C	2-Methylnaphthalene			ug/l	0.245 U	0.245 U	0.245 U	0.25 U	0.235 U	0.245 U	0.24 U	0.25 U
	8270C	2-Methylphenol	1825 nc		ug/l	0.95 U	0.95 U	1 U	1 U	0.95 U	1 U	0.95 U	1 U
	8270C	2-Nitroaniline	109 nc		ug/l	2.45 U	2.45 UJ	2.45 U	2.5 U	2.35 U	2.45 U	2.4 U	2.5 U
	8270C	2-Nitrophenol			ug/l	4.85 U	4.85 U	4.9 U	4.95 U	4.7 U	4.9 U	4.8 U	4.95 U
	8270C	3,3'-Dichlorobenzidine	0.15 ca		ug/l	2.45 U	2.45 U	2.45 U	2.5 U	2.35 U	2.45 U	2.4 U	2.5 U
	8270C	3-Nitroaniline	3.2 ca		ug/l	4.85 U	4.85 U	4.9 U	4.95 U	4.7 U	4.9 U	4.8 U	4.95 U
	8270C	4,6-Dinitro-2-methylphenol	3.6 nc		ug/l	9.5 U	9.5 U	10 U	10 U	9.5 U	10 U	9.5 U	10 U
	8270C	4-Bromophenyl phenyl ether			ug/l	2.45 U	2.45 U	2.45 U	2.5 U	2.35 U	2.45 U	2.4 U	2.5 U
	8270C	4-Chloro-3-methylphenol		-	ug/l	4.85 U	4.85 U	4.9 U	4.95 U	4.7 U	4.9 U	4.8 U	4.95 U
	8270C	4-Chloroaniline	146 nc		ug/l	4.85 U	4.85 U	4.9 U	4.95 U	4.7 U	4.9 U	4.8 U	4.95 U
	8270C	4-Chlorophenyl phenyl ether			ug/l	2.45 U	2.45 U	2.45 U	2.5 U	2.35 U	2.45 U	2.4 U	2.5 U
	8270C	4-Methylphenol	182 nc		ug/l	0.95 U	0.95 U	1 U	1 U	0.95 U	1 U	0.95 U	1 U
	8270C	4-Nitroaniline	3.2 ca		ug/l	4.85 U	4.85 U	4.9 U	4.95 U	4.7 U	4.9 U	4.8 U	4.95 U
	8270C	4-Nitrophenol			ug/l	9.5 U	9.5 U	10 U	10 U	9.5 U	10 U	9.5 U	10 U
	8270C	Acenaphthene	365 nc		ug/l	0.485 U	0.485 U	0.49 U	0.495 U	0.47 U	0.49 U	0.48 U	0.495 U
	8270C	Acenaphthylene	-		ug/l	0.485 U	0.485 U	0.49 U	0.495 U	0.47 U	0.49 U	0.48 U	0.495 U
	8270C	Anthracene	1825 nc		ug/l	0.485 U	0.485 U	0.49 U	0.495 U	0.47 U	0.49 U	0.48 U	0.495 U
	8270C	Benzo(a)anthracene	0.092 ca		ug/l	0.17 J	0.095 U	0.12 J	0.1 U	0.095 U	0.1 U	0.095 U	0.1 U
	8270C	Benzo(a)pyrene	0.0092 ca		ug/l	0.25 J	0.195 U	0.195 U	0.2 U	0.19 U	0.195 U	0.19 U	0.2 U
	8270C	Benzo(b)fluoranthene	0.092 ca		ug/l	0.18 J	0.195 U	0.195 U	0.2 U	0.19 U	0.195 U	0.19 U	0.2 U
	8270C	Benzo(g,h,i)perylene			ug/l	0.32 J	0.485 U	0.49 U	0.495 U	0.47 U	0.49 U	0.48 U	0.495 U
	8270C	Benzo(k)fluoranthene	0.92 ca		ug/l	0.36 J	0.195 U	0.2 J	0.2 U	0.19 U	0.195 U	0.19 U	0.2 U
	8270C	Benzoic acid	145979 nc		ug/l	9.5 U	9.5 U	10 U	10 U	- R	10 U	9.5 U	10 U
	8270C	Benzyl alcohol	10950 nc		ug/l	9.5 U	9.5 U	10 U	10 U	9.5 U	10 U	9.5 U	10 U
	8270C	Bis(2-chloroethoxy)methane			ug/l	0.95 U	0.95 U	1 U	1 U	0.95 U	1 U	0.95 U	1 U
	8270C	Bis(2-chloroethyl) ether	0.010 ca		ug/l	0.95 U	0.95 U	1 U	1 U	0.95 U	1 U	0.95 U	1 U

Load Line 5 Summary of All Surface Water Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

· · · · · · · · · · · · · · · · · · ·													
						LL5sw-007-DUP	5sw-007-SW	LL5sw-008-SW	LL5sw-009-SW	LL5sw-010-SW	5sw-011-DUP	SW.	LL5sw-012-SW
						001	007	008	-600	010	011-	011-	012-
						Ssw-	-MS	-MS	-MS	-MS	-MS	I-MS	-MS
						LLL,	LLL5	ILL5	LLLS	TLS	LLLS	LLS	LLS
				Sa	ample Date:	12/6/2004	12/6/2004	12/6/2004	12/7/2004	12/7/2004	11/18/2004	surface J 7 U U 0.95 U U 2.4 U U 0.24 U U 0.24 U U 0.95 U U 0.95 U U 0.95 U U 0.95 U U 0.95 U U 0.95 U U 0.95 U U 0.95 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U	11/18/200
			· · · · · · · · · · · · · · · · · · ·		nple Depth:	13.31 ft	13.31 ft	5.38 ft	13.2 ft	11.3 ft	surface	surface	surface
			n : 0000	Surface Water									
Group	Method	Parameter	Region 9 PRG (Tap Water)	Background Criteria	Units								
Gioup	8270C	Bis(2-ethylhexyl) phthalate				10.7							
	8270C	Butylbenzyl phthalate	4.8 ca 7300 nc		ug/l ug/l	12 J 0.95 U	7.5 U 0.95 U	7.5 U 1 U	10 J	7 U	5.3 J	<u></u>	7.5
	8270C	Carbazole	3.4 ca		ug/l	2.45 U	2.45 U	2.45 U	1 U 2.5 U	0.95 U 2.35 U	1 U 2.45 U		2.5
	8270C	Chrysene	9.2 ca		ug/l	0.23 J	0.245 U	0.17 J	0.25 U	0.235 U	0.245 U		0.25
	8270C	Dibenzo(a,h)anthracene	0.0092 ca		ug/l	0.25 J	0.195 U	0.17 J	0.23 U	0.19 U	0.195 U		0.23
	8270C	Dibenzofuran	12 nc		ug/l	0.95 U	0.95 U	1 U	1 U	0.95 U	1 U		0.2
	8270C	Diethyl phthalate	29199 nc		ug/l	0.95 U	0.95 U	1 U	1 U	0.95 U	1 U		1
	8270C	Dimethyl phthalate	364867 nc		ug/l	0.95 U	0.95 U	1 U	1 U	0.95 U	1 U		1
	8270C	Di-n-butyl phthalate	3650 nc		ug/l	2.45 U	2.45 U	2.45 U	2.5 U	2.35 U	2.45 U	2.4 U	2.5
	8270C	Di-n-octyl phthalate	1460 nc		ug/l	4.85 U	4.85 U	4.9 U	4.95 U	4.7 U	4.9 UJ	4.8 UJ	4.95
	8270C	Fluoranthene	1460 nc		ug/l	0.485 U	0.485 U	0.49 U	0.495 U	0.47 U	0.49 U		0.495
	8270C	Fluorene	243 nc		ug/l	0.485 U	0.485 U	0.49 U	0.495 U	0.47 U	0.49 U		0.495
	8270C	Hexachlorobenzene	0.042 ca		ug/l	0.245 U	0.245 U	0.245 U	0.25 U	0.235 U	0.245 U		0.25
	8270C	Hexachlorobutadiene	0.86 ca		ug/l	2.45 U	2.45 U	2.45 U	2.5 U	2.35 U	2.45 U		2.5
	8270C 8270C	Hexachlorocyclopentadiene Hexachloroethane	219 nc 4.8 ca		ug/l	- R	- R	- R	10 U	9.5 U	- R		-
	8270C	Indeno(1,2,3-cd)pyrene	4.8 ca 0.092 ca		ug/l	2.45 U 0.29 J	2.45 U 0.195 U	2.45 U 0.2 J	2.5 U	2.35 U 0.19 U	2.45 U		2.5
	8270C	Isophorone	71 ca		ug/l ug/l	0.29 J 0.95 U	0.195 U 0.95 U	1 U	0.2 U 1 U	0.19 U 0.95 U	0.195 U 1 U		0.2
	8270C	Naphthalene	6.2 nc		ug/l	0.485 U	0.485 U	0.49 U	0.495 U	0.93 U 0.47 U	0.49 U	UJ 4.8 UJ U 0.48 U U 0.48 U U 0.24 U U 2.4 U R - R U 2.4 U U 0.19 U U 0.19 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U U 0.48 U	0.495
	8270C	Nitrobenzene	3.4 nc		ug/l	0.485 U	0.485 U	0.49 U	0.495 U	0.47 U	0.49 U		0.495
	8270C	n-Nitroso-di-n-propylamine	0.0096 ca		ug/l	0.245 U	0.245 U	0.245 U	0.25 U	0.235 U	0.245 U		0.455
	8270C	n-Nitrosodiphenylamine	14 ca		ug/l	0.485 U	0.485 U	0.49 U	0.495 U	0.47 U	0.49 U		0.495
	8270C	Pentachlorophenol	0.56 ca		ug/l	4.85 U	4.85 U	4.9 U	4.95 U	4.7 U	4.9 U		4.95
	8270C	Phenanthrene			ug/l	0.485 U	0.485 U	0.49 U	0.495 U	0.47 U	0.49 U	0.48 U	0.495
	8270C	Phenol	10950 nc		ug/l	2.45 U	2.45 UJ	2.45 U	2.5 U	2.35 U	2.45 U	2.4 U	2.5
	8270C	Pyrene	182 nc		ug/l	0.14 J	0.485 U	0.49 U	0.495 U	0.47 U	0.49 U	0.48 U	0.495
xplosives	8330	1,3,5-Trinitrobenzene	1095 nc		ug/l	0.1 U	0.1 U	0.1 U	0.1 U	0.14 U	0.345 U		0.2
	8330	1,3-Dinitrobenzene	3.6 nc		ug/l	0.1 U	0.1 U	0.1 U	0.1 U	0.14 U	0.345 U	0.1 U	0.2
	8330	2,4,6-TNT	2.2 ca		ug/l	0.125 U	0.125 U	0.125 U	0.125 U	0.175 U	0.43 U	0.125 U	0.25
	8330 8330	2,4-Dinitrotoluene 2,6-Dinitrotoluene	73 nc		ug/l	0.18 U	0.18 U	0.18 U	0.18 U	0.25 U	0.6 U	0.18 U	0.355
	8330	2,6-Dinitrotoluene 2-Amino-4,6-Dinitrotoluene	36 nc		ug/l	0.215 U 0.18 U	0.215 U 0.18 U	0.215 U	0.215 U	0.3 U	0.75 U	0.215 U	0.425
	8330	2-Nitrotoluene	 0.049 ca		ug/l ug/l	0.18 U 0.155 U	0.18 U 0.155 U	0.18 U 0.155 U	0.18 U 0.155 U	0.25 U 0.215 U	0.6 U 0.55 U	0.18 U 0.155 U	0.355
	8330	3-Nitrotoluene	122 nc		ug/1 ug/1	0.155 U	0.155 U	0.155 U 0.155 U	0.155 U 0.155 U	0.215 U 0.215 U	0.55 U 0.55 U	0.155 U 0.155 U	0.305
	8330	4-Amino-2,6-Dinitrotoluene			ug/l	0.155 U	0.155 U	0.155 U	0.155 U	0.213 U	0.55 U	0.155 U	0.303
	8330	4-Nitrotoluene	0.66 ca		ug/l	0.155 U	0.155 U	0.105 U	0.105 U	0.25 U	0.55 U	0.105 U	0.305
	8330	HMX	1825 nc		ug/l	0.155 U	0.155 U	0.155 U	0.155 U	0.215 U	0.55 U	0.155 U	0.305
	8330	Nitrobenzene	3.4 nc		ug/l	0.08 U	0.08 U	0.08 U	0.08 U	0.11 U	0.275 U	0.08 U	0.16
	8330	RDX	0.61 ca		ug/l	0.1 U	0.1 U	0.1 U	0.1 U	0.14 U	0.345 U	0.1 U	0.2
	8330	Tetryl	365 nc		ug/l	0.39 U	0.39 U	0.39 U	0.39 U	0.55 U	1.35 U	0.39 U	0.75
ropellants	353.2 Modified	Nitrocellulose			ug/l			250 U					250
	8332	Nitroglycerine	4.8 ca		ug/l			0.21 J					1
	SW8330 Modified	d Nitroguanidine	3650 nc		ug/l			10 U					10

-

				Sa	mple Date:	4000-600-mss777 12/6/2004	MS-L00-MS5TT 12/6/2004	MS-800-MS5TT 12/6/2004	MS-600-msg771 12/7/2004	MS-010-MS5TT 12/7/2004	4000-110-ws\$771 11/18/2004	MS-110-MS2TT 11/18/2004	MS-710-NS-717 11/18/2004
					ple Depth:		13.31 ft	5.38 ft	13.2 ft	11.3 ft	surface	surface	surface
Group	Method	Parameter	Region 9 PRG (Tap Water)	Surface Water Background Criteria	Units						Juitade	Surace	Surface
Other Analytes	353.2	Nitrate as N (NO3-N)	10000 nc		ug/l	1600000	2600000	2500000	160	110	280	270	85

Notes:

-- - no background/PRG value is available for this analyte

blank cell indicates that the analysis was not performed

ug/l - means micrograms per Liter (parts per billion - ppb)

PRG - preliminary remediation goals

nc - non-cancer basis

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

U - analyte not detected

J - estimated value

R - result rejected during ADR validation

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style.

If Result = or > PRG, then the value is presented with a bold style

Load Line 5 Summary of All Groundwater Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

							,			1			-
							LL5mw-001-GW	LL.5mw-002-GW	LL5mw-003-GW	Smw-004-DUP	LL5mw-004-GW	1 B	LL5mw-006-GW
							01-	02-1	03-6	6-1-0	1 10	05-0	96-1
							0-2	- Ō-	Ō	0->	0	0-	0-
							, mg	, li	l ů	, ng	, di	j j	, m
							ET	EF	E I	ET	LL5	CT 2	ELLS
					S	ample Date:	1/4/2005	1/18/2005	1/18/2005	1/4/2005	1/4/2005	40 16 1 U 2,5 U 5 U 2,5 U 5 U 2,5 U 5 U 2,5 U 5 U 2,5 U 5 U 24000 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 2400 33 1 U 3.3 1 U 3.3 1 U 0.01 U 2 U 0.055 U 0.0485 U 0.0485 U 0.0485 U 0.075 U 0.0485 U 0.075 U 0.0485 U 0.075 U 0.0485 U 0.075 U 0.0485 U	1/3/2005
						mple Depth:	22 ft	22 ft	18 ft	21 ft	21 ft		17.53 ft
						Description		C/Filtered	UC/Filtered	C/Filtered	C/Filtered		C/Filtered
				Unconsolidated	Consolidated	1				·		1	
				Filtered	Filtered								
			Region 9 PRG	Groundwater	Groundwater								
Group	Method	Parameter	(Tap Water)	Background	Background	Units							1
Metals	6010B	Aluminum	36499 nc		-	ug/l	75 U	75 U	75 U	75 U	75 U	40	75 U
	6010B	Barium	2555 nc	82.1	256	ug/l	50	49	18	25	25		24
	6010B	Beryllium	73 nc	0.00	0.00	ug/l	1 U	1 U	1 U	1 U	1 U	· · · ·	10
	6010B	Cadmium	18 nc	0.00	0.00	ug/l	1 U	1 U	1 U	1 U	1 U		1 U
	6010B	Calcium	[n]	115000	53100	ug/l	58000	67000	100000	69000	71000		70000
	6010B	Chromium	109 nc	7.3	0.00	ug/l	5 U	5 U	5 U	5 U	5 U	1	5 U
	6010B	Cobalt	730 nc	0.00	0.00	ug/l	0.86	4.2	2.5 U	2.5 U	2.5 U		2.5 U
	6010B	Copper	1460 nc	0.00	0.00	ug/l	5 U	5 U	2.7	5 U	5 U		2.8
	6010B	Iron	10950 nc	279	1430	ug/l	60 U	170	60 U	60 U	60 U		60 U
	6010B	Magnesium	[n]	43300	15000	ug/l	23000	21000	23000	30000	31000	24000	29000
	6010B	Manganese	876 nc	1020	1340	ug/l	840	180	1.7	8.5	6.6		10
	6010B	Nickel	730 nc	0.00	83.4	ug/l	2.2	11	1.05 U	5 U	5 U		5 U
	6010B	Potassium	[n]	2890	5770	ug/l	3800	2200	225 U	220 U	210 U	5400	480
	6010B	Selenium	182 nc	0.00	0.00	ug/l	7.5 U	7.5 U	3.3	7.5 U	7.5 U		7.5 U
	6010B	Silver	182 nc	0.00	0.00	ug/l	5 U	5 U	5 U	5 U	5 U		5 U
	6010B	Sodium	[n]	45700	51400	ug/l	6700	7600	4300	3600	3700	8500	3400
	6010B	Vanadium	36 nc	0.00	0.00	ug/l	5 U	5 U	0.55 U	5 U	5 U	5 U	1
	6010B	Zinc	10950 nc	60.9	52.3	ug/l	10.5 U	3.4	10	4.8 U	1.7 U	9 U	30
	7041	Antimony	15 nc	0.00	0.00	ug/l	4.1	3.75 U	3.75 U	3.75 U	3.75 U	3.3	3.9
	7060A	Arsenic	0.045 ca	11.7	0.00	ug/l	1 U	2.3	1 U	1 U	1 U	1 U	1 U
	7421	Lead	15 mcl	0.00	0.00	ug/l	1.2	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
	7470A	Mercury	11 nc	0.00	0.00	ug/l	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
	7841	Thallium	2.4 nc	0.00	0.00	ug/l	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Pesticides	8081A	4,4'-DDD	0.28 ca			ug/l	0.05 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U	0.055 U
	8081A	4,4'-DDE	0.20 ca			ug/l	0.047 U	0.05 U	0.05 U	0.049 U	0.0495 U	0.0485 U	0.048 U
	8081A	4,4'-DDT	0.20 ca			ug/l	0.07 U	0.075 U	0.075 U	0.075 U	0.075 U	0.075 U	0.07 U
	8081A	Aldrin	0.0040 ca			ug/l	0.047 U	0.05 UJ	0.05 UJ	0.049 U	0.0495 U	0.0485 U	0.048 U
	8081A	alpha-BHC	0.011 nc			ug/l	0.07 U	0.075 UJ	0.075 UJ	0.075 U	0.075 U		0.07 U
	8081A	alpha-Chlordane	0.19 ca			ug/l	0.0235 U	0.0255 UJ	0.025 UJ	0.0245 U	0.025 U		0.024 U
	8081A	beta-BHC	0.037 ca			ug/l	0.047 U	0.05 UJ	0.05 UJ	0.049 U	0.0495 U	0.0485 U	0.048 U
	8081A	delta-BHC				ug/l	0.047 U	0.05 UJ	0.05 UJ	0.049 U	0.0495 U	0.0485 U	0.048 U
	8081A	Dieldrin	0.0042 ca			ug/l	0.047 U	0.05 U	0.05 U	0.049 U	0.0495 U		0.048 U
	8081A	Endosulfan I	220 nc			ug/l	0.047 U	0.05 UJ	0.05 UJ	0.049 U	0.0495 U		0.048 U
	8081A	Endosulfan II	220 nc			ug/l	0.07 U	0.075 U	0.075 U	0.075 U	0.075 U		0.07 U
	8081A	Endosulfan sulfate	220 nc			ug/l	0.07 U	0.075 U	0.075 U	0.075 U	0.075 U		0.07 U
	8081A	Endrin	11 nc			ug/l	0.047 U	0.05 UJ	0.05 UJ	0.049 U	0.0495 U		0.048 U
	8081A	Endrin aldehyde		, 		ug/l	0.07 U	0.075 U	0.075 U	0.075 U	0.075 U		0.07 U
	8081A	Endrin ketone		-		ug/l	0.047 U	0.05 UJ	0.05 UJ	0.049 U	0.0495 U		0.048 U
	8081A	gamma-BHC	0.052 ca			ug/l	0.07 U	0.075 UJ	0.075 UJ	0.075 U	0.075 U		0.07 U
	8081A	gamma-Chlordane	0.19 ca			ug/l	0.047 U	0.05 UJ	0.05 UJ	0.049 U	0.0495 U		0.048 U
	8081A	Heptachlor	0.015 ca			ug/l	0.07 U	0.075 UJ	0.075 UJ	0.075 U	0.075 U	0.075 U	0.07 U
	8081A	Heptachlor epoxide	0.0074 ca			ug/l	0.07 U	0.075 UJ	0.075 UJ	0.075 U	0.075 U	0.075 U	0.07 U

Table LL5-9Load Line 5 Summary of All Groundwater ResultsRVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

[1	· · · · · · · · · · · · · · · · · · ·		r		
							LL5mw-001-GW	LL5mw-002-GW	LL5mw-003-GW	LL5mw-004-DUP	MS	MS	M
							01-0	32-0	33-0	1-4	LL5mw-004-GW	LLSmw-005-GW	LL5mw-006-GW
							0- <u>v</u>	0-2	00-2	00-^	00->	00-	0,
							Smv	l m	, m	A mg	, Maria	, m	l mu
							EL	E E	E E	E I	LLL L	LLS	CLLS
						Sample Date:	1/4/2005	1/18/2005	1/18/2005	1/4/2005	1/4/2005	1/4/2005	1/3/2005
						Sample Depth:	22 ft	22 ft	18 ft	21 ft	21 ft	24 ft	17.53 ft
				······		Description	UC/Filtered	C/Filtered	UC/Filtered	C/Filtered	C/Filtered	C/Filtered	C/Filtered
				Unconsolidated	Consolidated								
				Filtered	Filtered								
Group	Method	Demonster	Region 9 PRG	Groundwater	Groundwater								
Gloup		Parameter	(Tap Water)	Background	Background	Units							
	8081A	Methoxychlor	182 nc			ug/l	0.285 U	0.305 U	0.3 U	0.295 U	0.295 U	0.29 U	0.29 U
DOD	8081A	Toxaphene	0.061 ca			ug/l	0.235 U	0.255 U	0.25 U	0.245 U	0.25 U	0.245 U	0.24 U
PCBs	8082	Aroclor 1016	0.96 ca			ug/l	0.285 U	0.305 U	0.3 U	0.295 U	0.295 U	0.29 U	0.29 U
	8082	Aroclor 1221	0.034 ca			ug/l	0.6 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.6 U
	8082 8082	Aroclor 1232	0.034 ca			ug/l	0.6 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.6 U
	8082	Aroclor 1242	0.034 ca			ug/l	0.6 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.6 U
	8082	Aroclor 1248	0.034 ca			ug/l	0.7 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.7 U
	8082	Aroclor 1254 Aroclor 1260	0.034 ca			ug/l	0.6 U	0.65 U	0.65 U	0.65 U	0.65 U	0.65 U	0.6 U
VOCs	8260B		0.034 ca			ug/l	0.285 U	0.305 U	0.3 U	0.295 U	0.295 U	0.29 U	0.29 U
vocs	8260B	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	<u>3172 nc</u>			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	1,1,2-Trichloroethane	0.055 ca			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	1,1-Dichloroethane	0.20 ca	-		ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	1,1-Dichloroethene	811 nc 339 nc			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	1,2-Dibromoethane				ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	1,2-Dichloroethane	0.0056 ca 0.12 ca			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	1,2-Dichloroethene (total)	120 nc			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	1,2-Dichloropropane	0.16 ca			ug/l ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	2-Butanone	6968 nc			ug/l	0.5 U 5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	2-Hexanone	2000 nc			ug/l ug/l	5 U 5 U	5 U 5 U	5 U 5 U	<u>5 U</u>	5 UJ	5 U	5 U
	8260B	4-Methyl-2-pentanone	1993 nc			ug/l	5 U	5 U	5 U	5 U 5 U	5 U	5 U	<u>5 U</u>
	8260B	Acetone	5475 nc			ug/l	5 U	5 U	5 U	5 U	5 U 5 UJ	5 U 5 U	<u>5 U</u>
	8260B	Benzene	0.35 ca			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U 0.5 U
	8260B	Bromochloromethane	-			ug/1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	Bromodichloromethane	0.18 ca	-		ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	Bromoform	8.5 ca			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	Bromomethane	8.7 nc			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	0.5 U
	8260B	Carbon disulfide	1043 nc			ug/l	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
	8260B	Carbon tetrachloride	0.17 ca			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	Chlorobenzene	106 nc			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	Chloroethane	4.6 ca			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	Chloroform	0.17 ca			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	Chloromethane	158 nc			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	cis-1,2-Dichloroethene	<u>61</u> nc			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	cis-1,3-Dichloropropene	0.40 ca			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	Dibromochloromethane	0.13 ca			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B 8260B	Ethylbenzene	1340 nc			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	8260B	m&p-Xylenes Methylene chloride	206 nc			ug/l	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	8260B		4.3 ca			ug/l	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
	8260B	o-Xylene Styrene	206 nc			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	0200B	Stylene	1641 nc			ug/l	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U

Table LL5-9

Load Line 5 Summary of All Groundwater Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

-GW 004-DUP -003-GW -004-GW βğ 8 -00-Sample Date: 1/4/2005 1/18/2005 1/18/2005 1/4/2005 1/4/20 Sample Depth: 22 ft 22 ft 18 ft 21 ft 21 ft Description UC/Filtered C/Filtered UC/Filtered C/Filtered C/Filter Unconsolidated Consolidated Filtered Filtered Region 9 PRG Groundwater Groundwater Method Group Parameter (Tap Water) Units Background Background 8260B Tetrachloroethene 0.10 ca ug/l 0.5 U 0.5 U 0.5 U 0.5 U 0.5 ------8260B Toluene 723 nc ug/l 0.5 U 0.5 U 0.5 U 0.5 U -----0.5 8260B Total Xylenes 206 nc 0.5 U 0.5 U 0.5 U 0.5 ug/l 0.5 U -----8260B trans-1,2-Dichloroethene 122 nc 0.5 U 0.5 U 0.5 U 0.5 U 0.5 --ug/l ---8260B 0.40 trans-1,3-Dichloropropene ca -ug/l 0.5 U 0.5 U 0.5 U 0.5 U 0.5 8260B Trichloroethene 0.028 ca 0.5 U -----ug/l 0.5 U 0.5 U 0.5 U 0.5 8260B Vinyl chloride 0.020 ca 0.5 U 0.5 U 0.5 U 0.5 U 0.5 -----ug/l SVOCs 8270C 1.2.4-Trichlorobenzene 7.2 nc 0.95 U 0.95 U 0.95 U ---ug/l 1 U 0.95 8270C 1.2-Dichlorobenzene 370 0.95 U 1 U 0.95 U 0.95 U nc -----ug/l 0.95 8270C 1,3-Dichlorobenzene 182 0.95 U 1 U 0.95 U nc ug/l 0.95 U 0.95 ------8270C 1,4-Dichlorobenzene 0.50 0.95 U 1 U 0.95 U 0.95 U 0.95 ca -ug/l ---8270C 2,2-oxybis (1-chloropropane) 0.27 ca ug/l 0.95 U 1 U 0.95 U 0.95 U 0.95 ------8270C 2,4,5-Trichlorophenol 3650 4.85 U 5 U 4.85 U 4.7 U nc ----ug/l 4.65 8270C 3.6 2,4,6-Trichlorophenol nc 2.45 U 2.55 U 2.45 U 2.35 U 2.35 ----ug/l 8270C 2,4-Dichlorophenol 109 nc ----4.85 U 5 U 4.85 U 4.7 U 4.65 ug/l 8270C 2,4-Dimethylphenol 730 nc ---ug/l 4.85 U 5 U 4.85 U 4.7 U 4.65 8270C 2,4-Dinitrophenol 73 9.5 U 10 U 9.5 U 9.5 U nc -----ug/l 9.5 8270C 2,4-Dinitrotoluene 73 0.485 U 0.5 U 0.485 U 0.47 U nc 0.465 ----ug/l 8270C 2,6-Dinitrotoluene 36 0.245 U 0.255 U 0.245 U 0.235 U 0.235 nc ug/l ------8270C 2-Chloronaphthalene 487 nc ug/l 0.95 U 1 U 0.95 U 0.95 U 0.95 ------8270C 2-Chlorophenol 30 2.45 U 2.55 U 2.45 U nc ug/l 2.35 U 2.35 ----8270C 2-Methylnaphthalene --0.245 U 0.255 U 0.245 U 0.235 U -ug/l 0.235 --8270C 2-Methylphenol 1825 nc ug/l 0.95 U 1 U 0.95 U 0.95 U 0.95 ------8270C 2-Nitroaniline 109 nc 2.55 U -----ug/l 2.45 U 2.45 U 2.35 U 2.35 8270C 2-Nitrophenol 4.85 U ---5 U 4.85 U -----ug/l 4.7 U 4.65 8270C 3,3'-Dichlorobenzidine 0.15 ca 2.45 U 2.55 U 2.45 U 2.35 U 2.35 -ug/l --8270C 3-Nitroaniline 3.2 ca -----ug/l 4.85 U 5 U 4.85 U 4.7 U 4.65 8270C 4,6-Dinitro-2-methylphenol 3.6 nc ug/l 9.5 U 10 U 9.5 U 9.5 U 9.5 -----8270C 4-Bromophenyl phenyl ether 2.45 U 2.55 U 2.45 U 2.35 ---ug/l 2.35 U ---8270C 4-Chloro-3-methylphenol --4.85 U 5 U 4.85 U 4.7 U ---ug/l 4.65 ---8270C 4-Chloroaniline 146 nc -----ug/l 4.85 U 5 U 4.85 U 4.7 U 4.65 8270C 4-Chlorophenyl phenyl ether 2.45 U ------ug/l 2.55 U 2.45 U 2.35 U 2.35 8270C 4-Methylphenol 182 0.95 U nc ---ug/l 1 U 0.95 U 0.95 U 0.95 8270C 4-Nitroaniline 3.2 ca 4.85 U 5 U 4.85 U -----ug/l 4.7 U 4.65 8270C 4-Nitrophenol 10 U 9.5 U 9.5 U 9.5 ------ug/l 9.5 U 8270C Acenaphthene 365 nc 0.485 U 0.5 U 0.485 U 0.47 U 0.465 ug/l -----8270C Acenaphthylene 0.485 U ug/l 0.5 U 0.485 U 0.47 U 0.465 ---8270C 1825 Anthracene nc -ug/l 0.485 U 0.5 U 0.485 U 0.47 U 0.465 --8270C Benzo(a)anthracene 0.092 ca --ug/l 0.095 U 0.1 U 0.095 U 0.095 U 0.095 8270C 0.0092 Benzo(a)pyrene ca ----ug/l 0.195 U 0.2 U 0.195 U 0.19 U 0.185 8270C Benzo(b)fluoranthene 0.092 ca ---0.195 U 0.2 U --ug/l 0.195 U 0.19 U 0.185 8270C Benzo(g,h,i)perylene 0.485 U 0.5 U 0.485 U -------ug/l 0.47 U 0.465

	15-GW	MD-9
	LL5mw-005-GW	.5mw-00
	3	L L
005 ft	1/4/2005 24 ft	1/3/2005 17.53 ft
ered	C/Filtered	C/Filtered
	CALINCICA	CATINETOL
5 U	0.5 U	0.5 U
5 U	0.5 U	0.5 U
5 U	0.5 U	0.5 U
5 U	0.5 U 0.5 U	0.5 U 0.5 U
5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	0.5 U 0.5 U	0.5 U 0.5 U
5 U 5 U	0.5 U	0.5 U 0.5 U
5 U	0.3 U	0.3 U 1 U
5 U	1 U	1 U
5 U	1 U	1 U
5 U 5 U	1 U	1 U
5 U	1 U	1 U
5 U	4.9 U	5 U
5 U	2.45 U	2.55 U
5 U	4.9 U	5 U 5 U
5 U	4.9 U 10 U	5 U
5 U 5 U	10 U 0.49 U	10 U 0.5 U
5 U	0.245 U	0.255 U
5 U	1 U	1 U
5 U	2.45 U	2.55 U
5 U	0.245 U	0.255 U
5 U	1 U	1 U
5 U	2.45 U 4.9 U	2.55 U
5 U	4.9 U	5 U
5 UJ 5 U	2.45 U 4.9 U	2.55 U 5 U
5 U	4.9 U 10 U	10 U
5 U	2.45 U	2.55 U
5 U	4.9 U	5 U
5 U	4.9 U	5 U
5 U 5 U	2.45 U	2.55 U
5 U	1 U	1 U
5 U 5 U 5 U	4.9 U	5 U
5 U	10 U	10 U
	0.49 U	0.5 U
บ บ บ	0.49 U 0.49 U	0.5 U 0.5 U
U U	0.49 U	0.1 U
ับ บ	0.195 U	0.205 U
UJ UJ	0.195 U	0.205 U
UJ U	0.49 U	0.5 U

Table LL5-9Load Line 5 Summary of All Groundwater ResultsRVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

							·····	1					
							LL5mw-001-GW	LL5mw-002-GW	LL5mw-003-GW	LL5mw-004-DUP	LL.5mw-004-GW	LL5mw-005-GW	LL5mw-006-GW
					s	ample Date:	1/4/2005	1/18/2005	1/18/2005	1/4/2005			
						mple Depth:	22 ft	22 ft	1/18/2003 18 ft	21 ft	1/4/2005 21 ft	1/4/2005 24 ft	1/3/20
						Description		C/Filtered	UC/Filtered	C/Filtered	C/Filtered	C/Filtered	C/Filte
			Region 9 PRG	Unconsolidated Filtered Groundwater	Consolidated Filtered Groundwater			C.T. MOTOL		Crintered		Chindeled	C/Thu
Group	Method	Parameter	(Tap Water)	Background	Background	Units							
	8270C	Benzo(k)fluoranthene	0.92 ca			ug/l	0.195 U	0.2 U	0.195 U	0.19 U	0.185 U	0.195 U	0.20
	8270C	Benzoic acid	145979 nc			ug/l	9.5 U	10 U	9.5 U	9.5 U	9.5 U	10 U	0.20
	8270C	Benzyl alcohol	10950 nc			ug/l	9.5 U	10 U	9.5 U	9.5 U	9.5 U	10 U	1
	8270C	Bis(2-chloroethoxy)methane				ug/l	0.95 U	1 U	0.95 U	0.95 U	0.95 U	10 U	
	8270C	Bis(2-chloroethyl) ether	0.010 ca			ug/l	0.95 U	1 U	0.95 U	0.95 U	0.95 U	1 U	
	8270C	Bis(2-ethylhexyl) phthalate	4.8 ca			ug/l	7.5 U	7.5 U	7.5 U	7 U	7 U	7.5 U	7.
	8270C	Butylbenzyl phthalate	7300 nc			ug/l	0.95 U	1 U	0.95 U	0.95 U	0.95 U	1 U	
	8270C	Carbazole	3.4 ca			ug/l	2.45 U	2.55 U	2.45 U	2.35 U	2.35 U	2.45 U	2.5
	8270C	Chrysene	9.2 ca			ug/l	0.245 U	0.255 U	0.245 U	0.235 U	0.235 U	0.245 U	0.25
	8270C	Dibenzo(a,h)anthracene	0.0092 ca			ug/l	0.195 U	0.2 U	0.195 U	0.19 U	0.185 U	0.195 U	0.20
	8270C 8270C	Dibenzofuran	12 nc			ug/l	0.95 U	1 U	0.95 U	0.95 U	0.95 U	1 U	
	8270C	Diethyl phthalate	29199 nc			ug/l	0.95 U	1 U	0.95 U	0.95 U	0.95 U	1 U	
	8270C	Dimethyl phthalate	364867 nc			ug/l	0.95 U	1 U	0.95 U	0.95 U	0.95 U	1 U	
	8270C	Di-n-butyl phthalate Di-n-octyl phthalate	3650 nc			ug/l	2.45 U	2.55 U	2.45 U	2.35 U	2.35 U	2.45 U	2.5
	8270C	Fluoranthene	1460 nc 1460 nc			ug/l	4.85 U	5 U	4.85 U	4.7 U	4.65 U	4.9 U	
	8270C	Fluorene	1460 nc 243 nc			ug/l	0.485 U	0.5 U	0.485 U	0.47 U	0.465 U	0.49 U	0.
	8270C	Hexachlorobenzene	0.042 ca			ug/l	0.485 U	0.5 U	0.485 U	0.47 U	0.465 U	0.49 U	0.
	8270C	Hexachlorobutadiene	0.86 ca			ug/l	0.245 U 2.45 U	0.255 U	0.245 U	0.235 U	0.235 U	0.245 U	0.25
	8270C	Hexachlorocyclopentadiene	219 nc			ug/l ug/l	9.5 U	2.55 U 10 UJ	2.45 U	2.35 U	2.35 U	2.45 U	2.5
	8270C	Hexachloroethane	4.8 ca			ug/l	2.45 U	2.55 U	9.5 UJ 2.45 U	9,5 U	9.5 UJ	10 U	1
	8270C	Indeno(1,2,3-cd)pyrene	0.092 ca			ug/l ug/l	0.195 U	0.2 U	0.195 U	2.35 U 0.19 U	2.35 U	2.45 U	2.5
	8270C	Isophorone	71 ca			ug/l	0.195 U	0.2 U 1 U	0.195 U	0.19 U 0.95 U	0.185 U 0.95 U	0.195 U 1 U	0.20
	8270C	Naphthalene	6.2 nc			ug/l	0.485 U	0.5 U	0.485 U	0.93 U 0.47 U	0.465 U	0.49 U	0.
	8270C	Nitrobenzene	3.4 nc			ug/l	0.485 U	0.5 U	0.485 U	0.47 U	0.465 U	0.49 U	0.
	8270C	n-Nitroso-di-n-propylamine	0.0096 ca			ug/l	0.245 U	0.255 U	0.245 U	0.235 U	0.235 U	0.245 U	0.25
	8270C	n-Nitrosodiphenylamine	14 ca			ug/l	0.485 U	0.5 U	0.485 U	0.47 U	0.465 U	0.49 U	0.23
	8270C	Pentachlorophenol	0.56 ca			ug/l	4.85 U	5 U	4.85 U	4.7 U	4.65 U	4.9 U	
	8270C	Phenanthrene				ug/l	0.485 U	0.5 U	0.485 U	0.47 U	0.465 U	0.49 U	0.
	8270C	Phenol	10950 nc			ug/l	2.45 U	2.55 U	2.45 U	2.35 U	2.35 U	2.45 U	2.5
	8270C	Pyrene	182 nc			ug/l	0.485 U	0.5 U	0.485 U	0.47 U	0.465 U	0.49 U	0.
plosives	8330	1,3,5-Trinitrobenzene	1095 nc			ug/l	0.13 U	0.175 U	0.16 U	0.17 U	0.17 U	0.175 U	0.1
	8330	1,3-Dinitrobenzene	3.6 nc			ug/l	0.13 U	0.175 U	0.16 U	0.17 U	0.17 U	0.175 U	0.17
	8330	2,4,6-TNT	2.2 ca			ug/l	0.165 U	0.215 U	0.2 U	0.215 U	0.21 U	0.22 U	0.21
	8330	2,4-Dinitrotoluene	73 nc			ug/l	0.235 U	0.31 U	0.285 U	0.31 U	0.305 U	0.315 U	0.3
	8330	2,6-Dinitrotoluene	36 nc			ug/l	0.285 U	0.375 U	0.34 U	0.37 U	0.36 U	0.375 U	0.3
	8330 8330	2-Amino-4,6-Dinitrotoluene				ug/l	0.235 U	0.31 U	0.285 U	0.31 U	0.305 U	0.315 U	0.3
		2-Nitrotoluene	0.049 ca			ug/l	0.205 U	0.27 U	0.245 U	0.265 U	0.26 U	0.27 U	0.26
	8330	3-Nitrotoluene	122 nc			ug/l	0.205 U	0.27 U	0.245 U	0.265 U	0.26 U	0.27 U	0.26
	8330	4-Amino-2,6-Dinitrotoluene				ug/l	0.215 U	0.285 U	0.26 U	0.285 U	0.28 U	0.29 U	0.28
	8330 8330	4-Nitrotoluene	0.66 ca			ug/l	0.205 U	0.27 U	0.245 U	0.265 U	0.26 U	0.27 U	0.26
	0000	HMX	1825 nc			ug/l	0.205 U	0.27 U	0.245 U	0.265 U	0.26 U	0.27 U	0.265

.

Table LL5-9

Load Line 5 Summary of All Groundwater Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

									r	1	r	1	
							LL5mw-001-GW	LL5mw-002-GW	LL5mw-003-GW	LL5mw-004-DUP	LL5mw-004-GW	LL5mw-005-GW	LL5mw-006-GW
					5	Sample Date:	1/4/2005	1/18/2005	1/18/2005	1/4/2005	1/4/2005	1/4/2005	1/3/2005
						mple Depth:	22 ft	22 ft	18 ft	21 ft	21 ft	24 ft	17.53 ft
						Description	UC/Filtered	C/Filtered	UC/Filtered	C/Filtered	C/Filtered	C/Filtered	C/Filtered
Group	Method	Parameter	Region 9 PRG (Tap Water)	Unconsolidated Filtered Groundwater Background	Consolidated Filtered Groundwater Background	Units							
	8330	Nitrobenzene	3.4 nc			ug/l	0.105 U	0.14 U	0.125 U	0.135 U	0.135 U	0.14 U	0.135 U
	8330	RDX	0.61 ca			ug/l	0.13 U	0.175 U	0.16 U	0.17 U	0.17 U	0.175 U	0.17 U
	8330	Tetryl	365 nc			ug/l	0.5 U	0.7 U	0.6 U	0.65 U	0.65 U	0.7 U	0.65 U
Propellants	353.2 Modified	Nitrocellulose				ug/l	65 U						
	8332	Nitroglycerine	4.8 ca			ug/l	0.65 U						
	SW8330 Modified		3650 nc		-	ug/l	10 U						
Other Analytes	353.2	Nitrate as N (NO3-N)	10000 nc			ug/l	120	100 U	100 U	59	58	100 U	67

Notes:

-- - no background/PRG value is available for this analyte

blank cell indicates that the analysis was not performed

ug/l - means micrograms per Liter (parts per billion - ppb)

PRG - preliminary remediation goals

nc - non-cancer basis

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

UC/Filtered - GW sample was filtered for metals and taken from an unconsolidated MW

C/Filtered - GW sample was filtered for metals and taken from a consolidated (bedrock) MW

[n] - nutrient

U - analyte not detected

J - estimated value

R - result rejected during ADR validation

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style.

If Result = or > PRG, then the value is presented with a bold style

If Result < PRG & Background, then the value is presented with a normal style.

Table LL5-13Load Line 5 Human Health Risk Screening Tables for GroundwaterRVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

Parameter	Region 9 (Tap Wa		Un-consolidated Filtered Groundwater Background	Consolidated Filtered Groundwater Background	Maximum Detected UC/Filtered	Maximum Detected C/Filtered	Frequency of Detection	COPC
Aluminum	36499	nc			-	40	1/7	No
Barium	2555	nc	82.1	256	50	49	7/7	No
Calcium	[n]		115000	53100	100000	71000	7/7	No
Cobalt	730	nc	0.00	0.00	0.86	4.2	2/7	No
Copper	1460	nc	0.00	0.00	2.7	2.8	2/7	No
Iron	10950	nc	279	1430		170	2/7	No
Magnesium	[n]		43300	15000	23000	31000	7/7	No
Manganese	876	nc	1020	1340	840	2000	7/7	Yes, > BKG & PRG
Nickel	730	nc	0.00	83.4	2.2	11	3/7	No
Potassium	[n]		2890	5770	3800	5400	4/7	No
Selenium	182	nc	0.00	0.00	3.3		1/7	No
Sodium	[n]		45700	51400	6700	8500	7/7	No
Vanadium	36	nc	0.00	0.00		1	1/7	No
Zinc	10950	nc	60.9	52.3	10	30	3/7	No
Antimony	15	nc	0.00	0.00	4.1	3.9	3/7	No
Arsenic	0.045	ca	11.7	0.00		2.3	1/7	Yes, > BKG & PRG
Lead	15	mcl	0.00	0.00	1.2		1/7	No
Nitrate as N (NO3-N)	10000	nc			120	67	4/7	No

Notes:

- no value available
BKG - site specific background
PRG - USEPA Region 9 Preliminary Remediation Goals
NIX - no toxicity screening value available
nc - non-cancer basis
ca - cancer basis
pbk - based on PBK modeling
mcl - based on CWA maximum contaminant level
max - ceiling limit
[n] - nutrient
*Concentration Units ug/L

Table LL5-12Load Line 5 Human Health Risk Screening Tables for Surface WaterRVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

	Region 9		Surface Water	Maximum	Frequency of	СОРС
Parameter	(Tap Wa	ter)	Background	Detected	Detection	
Aluminum	36499	nc	3370	1900	5/8	No
Barium	2555	nc	47.5	34	8/8	No
Cadmium	18	nc	0.00	0.33	3/8	No
Calcium	[n]		41400	42000	8/8	No
Chromium	109	nc	0.00	2.9	4/8	No
Copper	1460	nc	7.9	3.2	4/8	No
Iron	10950	nc	2560	2700	7/8	No
Magnesium	[n]		10800	6500	8/8	No
Manganese	876	nc	391	75	8/8	No
Nickel	730	nc	0.00	1.6	1/8	No
Potassium	[n]		3170	28000	8/8	No
Selenium	182	nc	0.00	3.6	1/8	No
Sodium	[n]		21300	4200	7/8	No
Vanadium	36	nc	0.00	3	5/8	No
Zinc	10950	nc	42	81	6/8	No
Arsenic	0.045	ca	3.2	1.2	1/8	No
Lead	15	mcl	0.00	0.98	2/8	No
Mercury	11	nc	0.00	0.064	1/8	No
1,3-Dichlorobenzene	182	nc		0.44	1/8	No
Benzo(a)anthracene	0.092	ca		0.17	2/8	Yes, > PRG
Benzo(a)pyrene	0.0092	ca	'	0.25	1/8	Yes, > PRG
Benzo(b)fluoranthene	0.092	ca		0.18	1/8	Yes, > PRG
Benzo(g,h,i)perylene				0.32	1/8	Yes, NTX
Benzo(k)fluoranthene	0.92	ca		0.36	2/8	No
Bis(2-ethylhexyl) phthalate	4.8	ca		12	3/8	Yes, > PRG
Chrysene	9.2	ca		0.23	2/8	No
Dibenzo(a,h)anthracene	0.0092	ca		0.31	1/8	Yes, > PRG
Indeno(1,2,3-cd)pyrene	0.092	ca		0.29	2/8	Yes, > PRG
Pyrene	182	nc		0.14	1/8	No
Nitroglycerine	4.8	ca		0.21	1/2	No
Nitrate as N (NO3-N)	10000	nc		2600000	8/8	Yes, > PRG

Notes:

-- - no value available

BKG - site specific background

PRG - USEPA Region 9 Preliminary Remediation Goals

NIX - no toxicity screening value available

nc - non-cancer basis

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

[n] - nutrient

*Concentration Units ug/L

Table LL5-11Load Line 5 Human Health Risk Screening Tables for SedimentRVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

Parameter	Region 9 (Res Sc		Sediment Background	Maximum Detected	Frequency of Detection	COPC
Aluminum	7614	nc	13900	9900	3/3	No
Arsenic	0.39	ca	19.5	180	3/3	Yes, > BKG & PRG
Barium	538	nc	123	220	3/3	No
Beryllium	15	nc	0.38	0.68	3/3	No
Cadmium	3.7	nc	0.00	6.4	3/3	Yes, > BKG & PRG
Calcium	[n]		5510	14000	3/3	No
Chromium	30	ca	18.1	130	3/3	Yes, > BKG & PRG
Cobalt	30	ca	9.1	9.4	3/3	No
Copper	313	nc	27.6	340	3/3	Yes, > BKG & PRG
Iron	2346	nc	28200	100000	3/3	Yes, > BKG & PRG
Lead	400	pbk	27.4	1500	3/3	Yes, > BKG & PRG
Magnesium	[n]		2760	3200	3/3	No
Manganese	176	nc	1950	1000	3/3	No
Nickel	156	nc	17.7	33	3/3	No
Potassium	[n]		1950	1700	3/3	No
Selenium	39	nc	1.7	2.5	1/3	No
Silver	39	nc	0.00		/ 3	
Sodium	[n]		112	730	3/3	No
Vanadium	7.8	nc	26.1	32	3/3	Yes, > BKG & PRG
Zinc	2346	nc	532	1700	3/3	No
Antimony	3.1	nc	0.00	3.1	1/2	No
Mercury	2.3	nc	0.06	1.9	3/3	No
Nitrate as N (NO3-N)	NA	0		4.4	1/3	No

Notes:

--- - no value available

BKG - site specific background

PRG - USEPA Region 9 Preliminary Remediation Goals

NTX - no toxicity screening value available

nc - non-cancer basis, value is 1/10 the published PRG

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

*Concentration Units mg/kg

Table LL5-10Load Line 5 Human Health Risk Screening Tables for Surface Soil (0-1 ft)RVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

						00000
	Region 9	DDC	Surface Soil	Maximum	Frequency of	COPC
Parameter	(Res S		Background	Detected	Detection	
Aluminum						
Arsenic	7614	nc	17700	18000	35/35	Yes, > BKG & PRG
	0.39	ca	15.4	14	35/35	No
Barium	538	nc	88.4	220	35/35	No
Beryllium	15	nc	0.88	4.2	35/35	No
Cadmium	3.7	nc	0.00	3	31/35	No
Calcium	[n]		15800	140000	35/35	No
Chromium	30	ca	17.4	34	35/35	Yes, > BKG & PRG
Cobalt	30	ca	10.4	13	35/35	No
Copper	313	nc	17.7	49	35/35	No
Iron	2346	nc	23100	26000	35/35	Yes, > BKG & PRG
Lead	400	pbk	26.1	170	35/35	No
Magnesium	[n]		3030	16000	35 / 35	No
Manganese	176	nc	1450	3100	35/35	Yes, > BKG & PRG
Nickel	156	nc	21.1	33	35/35	No
Potassium	[n]		927	2100	35/35	No
Selenium	39	nc	1.4	1.8	30/35	No
Sodium	[n]		123	970	35/35	No
Vanadium	7.8	nc	31.1	25	35/35	No
Zinc	2346	nc	61.8	140	35/35	No
Antimony	3.1	nc	0.96	0,46	2/34	No
Mercury	2.3	nc	0.04	3	21/35	Yes, > BKG & PRG
Thallium	0.52	nc	0.00	0.28	5/35	No
Aroclor 1254	0.22	ca		0.038	1/3	No
2-Methylnaphthalene		- Cu		0.11	2/3	Yes, NTX
Acenaphthene	368	nc		0.021	1/3	No
Acenaphthylene				0.016	1/3	Yes, NTX
Anthracene	2189	nc		0.016	2/3	No
Benzo(a)anthracene	0.62	ca		0.036	3/3	No
Benzo(a)pyrene	0.02	ca				
Benzo(b)fluoranthene	0.062			0.15	3/3	Yes, > PRG
		ca		0.19	3/3	No
Benzo(g,h,i)perylene				0.097	3/3	Yes, NTX
Benzo(k)fluoranthene	6.2	ca		0.11	3/3	No
Benzyl alcohol	1833	nc		1.3	2/3	No
Carbazole	24	ca		0.038	2/3	No
Chrysene	62	ca		0.22	3/3	No
Dibenzo(a,h)anthracene	0.062	ca		0.024	2/3	No
Dibenzofuran	15	nc		0.039	2/3	No
Fluoranthene	229	nc		0.42	3/3	No
Fluorene	275	nc		0.018	2/3	No
Indeno(1,2,3-cd)pyrene	0.62	ca		0.09	3/3	No
Naphthalene	5.6	nc		0.095	2/3	No
Phenanthrene				0.2	3/3	Yes, NTX
Phenol	1833	nc		0.046	1/3	No
Pyrene	232	nc		0.36	3/3	No
4-Nitrotoluene	12	ca		0.066	1/35	No
Nitrate as N (NO3-N)	NA	0		32	24/35	No

Notes:

-- - no value available

BKG - site specific background

PRG - USEPA Region 9 Preliminary Remediation Goals

NTX - no toxicity screening value available

nc - non-cancer basis, value is 1/10 the published PRG

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

*Concentration Units mg/kg

Table LL5-14 Load Line 5 Ecological Risk Screening Tables for Surface Soil (0-1 ft) RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

		Frequency of	Average	Maximum Detected		Surface Soil Background	Maximum Concentration >		Maximum Concentration >			COPC
Group	Parameter	Detection	Concentration	Concentration	Units	Concentration	Background	Screening Value	Screening value	PBT	COPC	Rationale
Metals	Aluminum	35/35	11371	18000	mg/kg	17700	Yes	600 ss2	Yes	No	Yes	ASL
	Arsenic	35/35	11	14	mg/kg	15.4	No	9.9 ss1	Yes	No	No	BLBKG
	Barium	35/35	74	220	mg/kg	88.4	Yes	283 ss1	No	No	No	BSL
	Beryllium	35/35	0.86	4.2	mg/kg	0.88	Yes	10 ss1	No	No	No	BSL
	Cadmium	31/35	0.59	3	mg/kg	0.00	Yes	4 ss1	No	No	No	BSL
	Calcium	35/35	13000	140000	mg/kg	15800	Yes	NUT	No	No	No	BSL
	Chromium	35/35	21	34	mg/kg	17.4	Yes	0.4 ss1	Yes	No	Yes	ASL
	Cobalt	35/35	8.2	13	mg/kg	10.4	Yes	20 ss1	No	No	No	BSL
	Copper	35/35	19	49	mg/kg	17.7	Yes	60 ss1	No	No	No	BSL
	Iron	35/35	21600	26000	mg/kg	23100	Yes	200 ss2	Yes	No	Yes	ASL
	Lead	35/35	41	170	mg/kg	26.1	Yes	40.5 ss1	Yes	No	Yes	ASL
	Magnesium	35/35	3451	16000	mg/kg	3030	Yes	NUT	No	No	No	BSL
	Manganese	35/35	547	3100	mg/kg	1450	Yes	100 ss2	Yes	No	Yes	ASL
	Nickel	35/35	20	33	mg/kg	21.1	Yes	30 ss1	Yes	No	Yes	ASL
	Potassium	35/35	1235	2100	mg/kg	927	Yes	NUT	No	No	No	BSL
	Selenium	30/35	0.73	1.8	mg/kg	1.4	Yes	0.21 ss1	Yes	No	Yes	ASL
	Sodium	35/35	302	970	mg/kg	123	Yes	NUT	No	No	No	BSL
	Vanadium	35/35	20	25	mg/kg	31.1	No	2 ss1	Yes	No	No	BLBKG
	Zinc	35/35	85	140	mg/kg	61.8	Yes	8.5 ss1	Yes	No	Yes	ASL
	Antimony	2/34	0.67	0.46	mg/kg	0.96	No	5 ss1	No	No	No	BLBKG
	Mercury	21/35	0.26	3	mg/kg	0.04	Yes	0.00051 ss1	Yes	Yes	Yes	ASL
	Thallium	5/35	0.29	0.28	mg/kg	0.00	Yes	1 ss1	No	No	No	BSL
PCBs	Aroclor 1254	1/3	0.024	0.038	mg/kg		NA	0.000332 ss4	Yes	No	Yes	ASL
SVOCs	2-Methylnaphthalene	2/3	0.051	0.11	mg/kg		NA	3.24 ss4	No	No	No	BSL
	Acenaphthene	1/3	0.018	0.021	mg/kg		NA	20 ss1	No	No	No	BSL
	Acenaphthylene	1/3	0.016	0.016	mg/kg		NA	628 ss4	No	No	No	BSL
	Anthracene	2/3	0.034	0.056	mg/kg		NA	148 ss4	No	No	No	BSL
	Benzo(a)anthracene	3/3	0.11	0.19	mg/kg		NA	5.21 ss4	No	No	No	BSL
	Benzo(a)pyrene	3/3	0.11	0.15	mg/kg	·	NA	1.52 ss4	No	No	No	BSL
	Benzo(b)fluoranthene	3/3	0.14	0.19	mg/kg		NA	59.8 ss4	No	No	No	BSL
	Benzo(g,h,i)perylene	3/3	0.071	0.097	mg/kg		NA	119 ss4	No	No	No	BSL
	Benzo(k)fluoranthene	3/3	0.078	0.11	mg/kg		NA	148 ss4	No	No	No	BSL
	Benzyl alcohol	2/3	0.70	1.3	mg/kg		NA	658 ss4	No	No	No	BSL
	Carbazole Chrysene	2/3	0.045	0.038	mg/kg		NA		NSL	No	Yes	NSL
	Dibenzo(a,h)anthracene	3/3	0.14	0.22	mg/kg	·	NA	4.73 ss4	No	No	No	BSL
	Dibenzo(a,n)anthracene Dibenzofuran	2/3	0.020	0.024	mg/kg		NA	18.4 ss4	No	No	No	BSL
	Fluoranthene	2/3	0.028	0.039	mg/kg		NA		NSL	No	Yes	NSL
	Fluorene	3/3	0.24	0.42	mg/kg		NA	122 ss4	No	No	No	BSL
	Indeno(1,2,3-cd)pyrene	3/3	0.016	0.018	mg/kg		NA	122 ss4	No	No	No	BSL
	Naphthalene	2/3	0.062	0.09	mg/kg		NA	109 ss4	No	No	No	BSL
	Phenanthrene	3/3	0.044	0.095	mg/kg		NA	0.0994 ss4	No	No	No	BSL
	Phenol	1/3	0.14	0.2	mg/kg		NA	45.7 ss4	No	No	No	BSL
	Pyrene	3/3	0.070	0.046	mg/kg	'	NA	30 ss1	No	No	No	BSL
Explosives	4-Nitrotoluene	1/35	0.099		mg/kg		NA	78.5 ss4	No	No	No	BSL
Other Analytes	Nitrate as N (NO3-N)			0.066	mg/kg		NA		NSL	No	Yes	NSL
Outer Analytes	protidate as in (INOS-IN)	24/35	1.8	32	mg/kg		NA		NSL	No	Yes	NSL

Notes:

--- no value available

mg/kg - means milligrams per Kilogram (parts per million - ppm)

ss1 - Preliminary Remediation Goals (Efroymson et al., 1997a)

ss2 - Ioxiclogolgical Benchmarks for Soil and Litter Invertebrates (Efrymonson et al. 1997b)

ss2 - roxiclogolgical Denominarks for Soll and Litter Invertebrates (Efrymonson et a ss3 - Toxiclogolgical Benchmarks for Terrestrial Plants (Efrymonson et al. 1997c)
 ss4- Ecological Data Quality Level (USEPA Region 5, 1999)
 NA - not applicable

NUT - nutrient BLBKG - below background concentration PBT- persistent, bioaccumulative and toxic NSL - no screening level ASL- above screening level BSL - below screening level

Table LL5-15

Load Line 5 Ecological Risk Screening Tables for Sediment

RVAAP 14 AOC Characterization

Ravenna Army Ammunition Plant, Ravenna, Ohio

Group	Parameter	Frequency of Detection	Average Concentration	Maximum Detected Concentration	Units	Sediment Background Concentration	Maximum Concentration > Background	SRV	Maximum Concentration > SRV	Screening Value	Maximum Concentration > Screening value	PBI	COPC	COPC Rationale
Metals	Aluminum	3/3	7867	9900	mg/kg	13900	No	29000	No		NSL	No	No	BLBKG
	Arsenic	3/3	69	180	mg/kg	19.5	Yes	25	Yes	9.79 sd1	Yes	No	Yes	ASL
	Barium	3/3	122	220	mg/kg	123	Yes	190	Yes		NSL	No	Yes	NSL
	Beryllium	3/3	0.66	0.68	mg/kg	0.38	Yes	0.8	No		NSL	No	No	BLSRV
	Cadmium	3/3	3.3	6.4	mg/kg	0.00	Yes	0.79	Yes	0.99 sd1	Yes	No	Yes	ASL
	Calcium	3/3	7767	14000	mg/kg	5510	Yes	21000	No	NUT	No	No	No	BLSRV
	Chromium	3/3	56	130	mg/kg	18.1	Yes	29	Yes	43.4 sd1	Yes	No	Yes	ASL
	Cobalt	3/3	8.8	9.4	mg/kg	9.1	Yes	12	No	50 sd2	No	No	No	BLSRV
	Copper	3/3	148	340	mg/kg	27.6	Yes	32	Yes	31.6 sd1	Yes	No	Yes	ASL
	Iron	3/3	60667	100000	mg/kg	28200	Yes	41000	Yes		NSL	No	Yes	NSL
	Lead	3/3	524	1500	mg/kg	27.4	Yes	47	Yes	35.8 sd1	Yes	No	Yes	ASL
	Magnesium	3/3	2600	3200	mg/kg	2760	Yes	7100	No	NUT	No	No	No	BLSRV
	Manganese	3/3	680	1000	mg/kg	1950	No	1500	No	·	NSL	No	No	BLBKG
	Nickel	3/3	27	33	mg/kg	17.7	Yes	33	Yes	22.7 sd1	Yes	No	Yes	ASL
	Potassium	3/3	1400	1700	mg/kg	1950	No	6800	No	NUT	No	No	No	BLBKG
	Selenium	1/3	1.4	2.5	mg/kg	1.7	Yes	1.7	Yes		NSL	No	Yes	NSL
	Sodium	3/3	437	730	mg/kg	112	Yes	NA	NA	NUT	No	No	No	BSL
	Vanadium	3/3	26	32	mg/kg	26.1	Yes	40	No		NSL	No	No	BLSRV
	Zinc	3/3	663	1700	mg/kg	532	Yes	160	Yes	121 sd1	Yes	No	Yes	ASL
	Antimony	1/2	1.9	3.1	mg/kg	0.00	Yes	1.3	Yes	·	NSL	No	Yes	NSL
	Mercury	3/3	0.80	1.9	mg/kg	0.06	Yes	0.12	Yes	0.18 sd1	Yes	Yes	Yes	ASL
Other Analytes	Nitrate as N (NO3-N)	1/3	2.2	4.4	mg/kg		NA		NA		NSL	No	Yes	NSL

.....

Notes:

-- - no value available

mg/kg - means milligrams per Kilogram (parts per million - ppm)

sd1 - Threshold Effects Concentration from McDonald et al , (2000)

sd2 - Ecological Data Quality Level (USEPA Region 5, 1999)

NUT - nutrient

NA - not applicable

BLBKG - below background concentration PBT- persistent, bioaccumulative and toxic

NSL - no screening level

ASL- above screening level

BSL - below screening level

SRV-Sediment Reference Value

Table LL5-16 Load Line 5 Ecological Risk Screening Tables for Surface Water RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

Group	Parameter	Frequency of Detection	Average Concentration	Maximum Detected Concentration	Units	Surface Water Background Concentration	Maximum Concentration > Background	Screening Value	Maximum Concentration > Screening value	PBI	COPC	COPC Rationale
Metals	Aluminum	5/8	579	1900	ug/l	3370	No		NSL	No	No	BLBKG
	Barium	8/8	25	34	ug/l	47.5	No	2000 sw1	No	No	No	BLBKG
	Cadmium	3/8	0.74	0.33	ug/l	0.00	Yes	4.8 sw1[H]	No	No	No	BSL
	Calcium	8/8	35500	42000	ug/l	41400	Yes	NUT	No	No	No	BSL
	Chromium	4/8	3.3	2.9	ug/l	0.00	Yes	1891 sw1[H]	No	No	No	BSL
	Copper	4/8	3.8	3.2	ug/l	7.9	No	15 sw1[H]	No	No	No	BLBKG
	Iron	7/8	684	2700	ug/l	2560	Yes		NSL	No	Yes	NSL
	Magnesium	8/8	4250	6500	ug/l	10800	No	NUT	No	No	No	BLBKG
	Manganese	8/8	27	75	ug/l	391	No		NSL	No	No	BLBKG
	Nickel	1/8	4.6	1.6	ug/l	0.00	Yes	493 sw1[H]	No	No	No	BSL
	Potassium	8/8	9725	28000	ug/l	3170	Yes	NUT	No	No	No	BSL
	Selenium	1/8	7.0	3.6	ug/l	0.00	Yes		NSL	No	Yes	NSL
	Sodium	7/8	1986	4200	ug/l	21300	No	NUT	No	No	No	BLBKG
	Vanadium	5/8	2.9	3	ug/l	0.00	Yes	150 sw1	No	No	No	BSL
	Zinc	6/8	26	81	ug/l	42	Yes	126 sw1[H]	No	No	No	BSL
	Arsenic	1/8	1.0	1.2	ug/l	3.2	No	340 sw1	No	No	No	BLBKG
	Lead	2/8	1.3	0.98	ug/l	0.00	Yes	132 sw1[H]	No	No	No	BSL
	Mercury	1/8	0.096	0.064	ug/l	0.00	Yes	1.7 sw1	No	Yes	Yes	PBT
SVOCs	1,3-Dichlorobenzene	1/8	0.91	0.44	ug/l		NA	79 sw1	No	No	No	BSL
	Benzo(a)anthracene	2/8	0.11	0.17	ug/l	*	NA		NSL	No	Yes	NSL
	Benzo(a)pyrene	1/8	0.20	0.25	ug/l		NA		NSL	No	Yes	NSL
	Benzo(b)fluoranthene	1/8	0.19	0.18	ug/l		NA		NSL	No	Yes	NSL
	Benzo(g,h,i)perylene	1/8	0.47	0.32	ug/l		NA		NSL	No	Yes	NSL
	Benzo(k)fluoranthene	2/8	0.22	0.36	ug/l		NA		NSL	No	Yes	NSL
	Bis(2-ethylhexyl) phthalate	3/8	8.0	12	ug/l		NA	1100 sw1	No	No	No	BSL
	Chrysene	2/8	0.23	0.23	ug/l		NA		NSL	No	Yes	NSL
	Dibenzo(a,h)anthracene	1/8	0.21	0.31	ug/l		NA		NSL	No	Yes	NSL
	Indeno(1,2,3-cd)pyrene	2/8	0.21	0.29	ug/l		NA		NSL	No	Yes	NSL
	Pyrene	1/8	0.44	0.14	ug/l		NA	42 sw1	No	No	No	BSL
Propellants	Nitroglycerine	1/2	0.60	0.21	ug/l		NA	160 sw1	No	No	No	BSL
Other Analytes	Nitrate as N (NO3-N)	8/8	837613	2600000	ug/l		NA		NSL	No	Yes	NSL

Notes:

-- - no value available

ug/l - means micrograms per Liter (parts per billion - ppb)

sw1 - Ohio Water Quality Criteria (Reg 3745-1-07)

sw1[H] - Ohio Water Quality Criteria (Reg 3745-1-07) based on a site specific hardness of 106 (mg/l) NA - not applicable

ID - insufficient data to calculate screening value

NUT - nutrient

BLBKG - below background concentration

PBT- persistent, bioaccumulative and toxic

NSL - no screening level

ASL- above screening level

Table LL5-17 Load Line 5 Ecological Risk Summary of Quantitative and Qualitative COPECs for Environmental Media

RVAAP 14 AOC Characterization

Ravenna Army Ammunition Plant, Ravenna, Ohio

Group	Parameter	Shallow Soil	Sediment	Surface Water
Metals	Arsenic		Х	1
	Beryllium			
	Cadmium		X .	
	Chromium	X	Х	
	Copper		Х	
	Iron	X		Q
	Lead	X	Х	
	Magnesium			
	Nickel	X	Х	
	Selenium	X		Q
	Vanadium			
	Zinc	X	Х	
	Antimony			
	Arsenic		Х	
	Lead	X	Х	
	Mercury	X	Х	X
PCBs	Aroclor 1254	X		
SVOCs	Benzo(a)anthracene			Q
	Benzo(a)pyrene			Q
	Benzo(b)fluoranthene			Q
	Benzo(g,h,i)perylene			Q
	Benzo(k)fluoranthene			Q
	Carbazole	Q		
	Chrysene			Q
	Dibenzo(a,h)anthracene			Q
	Dibenzofuran	Q		
	Indeno(1,2,3-cd)pyrene			Q
Explosives	4-Nitrotoluene	Q		
Other Analytes	Nitrate as N (NO3-N)	Q		Q

Notes

blank cell indicates that the analyte was not identifed as a COPEC for the media

COPEC - chemical of potential ecological concern

X - quantitative COPEC

Q - qualitative COPEC