

# **C-BLOCK QUARRY TABLE OF CONTENTS**

| 1.0 | INTRODUCTION                                                  | 1  |
|-----|---------------------------------------------------------------|----|
| 1.1 | PURPOSE AND SCOPE                                             | 1  |
| 1.2 | BACKGROUND INFORMATION                                        | 1  |
|     | <i>1.2.1</i> AOC Description and History                      | 1  |
|     | 1.2.2 Previous Investigation                                  | 2  |
|     | 1.2.3 Regulatory Authorities                                  | 3  |
|     | 1.2.4 Regulatory Status of C-Block Quarry                     | 3  |
| 2.0 | ENVIRONMENTAL SETTING AT C-BLOCK QUARRY                       | 4  |
| 2.1 | SURFACE FEATURES                                              | 4  |
| 2.2 | METEOROLOGY AND CLIMATE                                       | 4  |
| 2.3 | SURFACE WATER HYDROLOGY                                       | 4  |
| 2.4 | Geology                                                       | 4  |
|     | 2.4.1 Glacial Deposits                                        | 5  |
|     | 2.4.2 Sedimentary Rocks                                       | 5  |
| 2.4 | SOIL                                                          | 5  |
| 2.0 | HYDROGEOLOGY                                                  | 5  |
| 2.7 | DEMOGRAPHY AND LAND USE                                       | 6  |
| 2.8 | ECOLOGY                                                       | 6  |
| 3.0 | C-BLOCK QUARRY CHARACTERIZATION ACTIVITIES                    | 7  |
| 3   | FIELD ACTIVITIES                                              | 7  |
| 5.  | <b>311</b> MI Surface Soil (0-1 ft) Sampling                  | 7  |
|     | 312 MI Sediment Sampling                                      |    |
|     | 313 Surface Water Sampling                                    | 8  |
|     | 314 Groundwater Investigation Activities                      | 9  |
|     | 315 Sample Location and Monitoring Well Survey                | 10 |
| 3.2 | Deviations From The Work Plan                                 | 10 |
| 4.0 | NATURE OF CONTAMINATION AT C-BLOCK QUARRY                     | 12 |
| 4.  | MI SURFACE SOIL (0-1 FT)                                      | 12 |
| 4.2 | SEDIMENTS                                                     | 13 |
| 4.3 | SURFACE WATER                                                 | 14 |
| 4.4 | GROUNDWATER                                                   | 14 |
| 4.5 | GEOTECHNICAL                                                  | 15 |
| 4.0 | IN SITU PERMEABILITY TESTING RESULTS                          | 16 |
| 5.0 | HUMAN HEALTH AND ECOLOGICAL RISK SCREENING FOR C-BLOCK QUARRY | 17 |
| 5.1 | HUMAN HEALTH RISK SCREENING                                   | 17 |
|     | 5.1.1 Surface Soil (0-1 ft)                                   | 17 |
|     | 5.1.2 Sediment                                                | 17 |
|     | <i>5.1.3</i> Surface Water                                    | 18 |
|     | 5.1.4 Groundwater                                             | 18 |
|     |                                                               |    |



| 5.2 | E     | ECOLOGICAL RISK SCREENING                                   | 18              |
|-----|-------|-------------------------------------------------------------|-----------------|
| 5   | 5.2.1 | Surface Soil (0-1 ft)                                       | 19              |
| 5   | 5.2.2 | Sediment                                                    | 19              |
| 5   | .2.3  | Surface Water                                               | 19              |
| 6.0 | SUN   | MMARY AND CONCLUSION FOR THE CHARACTERIZATION OF C-BLOCK QU | J <b>ARRY21</b> |
| 6.1 | Ν     | NATURE OF CONTAMINATION                                     | 21              |
| 6.2 | Η     | HUMAN HEALTH RISK SCREENING                                 | 21              |
| 6.3 | E     | ECOLOGICAL RISK SCREENING                                   | 22              |
| 6.4 | С     | Conclusion                                                  | 22              |
|     |       |                                                             |                 |



# **C-BLOCK QUARRY FIGURES**

- Figure CBL-1 C-Block Quarry Geologic Cross Section
- Figure CBL-2 C-Block Quarry Geologic Cross Section A
- Figure CBL-3 C-Block Quarry Geologic Cross Section B
- Figure CBL-4 C-Block Quarry Geologic Cross Section C
- Figure CBL-5 C-Block Quarry Monitoring Well Locations
- Figure CBL-6 C-Block Quarry Sampling Locations
- Figure CBL-7 C-Block Quarry Soil, Sediment and Surface Water Sample Location Exceedences
- Figure CBL-8 C-Block Quarry Groundwater Sample Location Exceedences
- Figure CBL-9 C-Block Quarry Potentiometric Surface Map A
- Figure CBL-10 C-Block Quarry Potentiometric Surface Map B
- Figure CBL-11 C-Block Quarry Potentiometric Surface Map C



# **C-BLOCK QUARRY TABLES**

- Table CBL-1
   C-Block Quarry Summary of Sampling and Analysis
- Table CBL-2
   C-Block Quarry Summary of Surface Soil (0-1 ft) Detections
- Table CBL-3
   C-Block Quarry Summary of Sediment Detections
- Table CBL-4
   C-Block Quarry Summary of Surface Water Detections
- Table CBL-5
   C-Block Quarry Summary of Groundwater Detections
- Table CBL-6C-Block Quarry Summary of All Surface Soil (0-1 ft) Results
- Table CBL-7
   C-Block Quarry Summary of All Sediment Results
- Table CBL-8
   C-Block Quarry Summary of All Surface Water Results
- Table CBL-9
   C-Block Quarry Summary of All Groundwater Results
- Table CBL-10C-Block Quarry Human Health Risk Screening Tables for Surface Soil (0-1 ft)
- Table CBL-11
   C-Block Quarry Human Health Risk Screening Tables for Sediment
- Table CBL-12
   C-Block Quarry Human Health Risk Screening Tables for Surface Water
- Table CBL-13
   C-Block Quarry Human Health Risk Screening Tables for Groundwater
- Table CBL-14C-Block Quarry Ecological Risk Screening Tables for Surface Soil (0-1 ft)
- Table CBL-15
   C-Block Quarry Ecological Risk Screening Tables for Sediment
- Table CBL-16
   C-Block Quarry Ecological Risk Screening Tables for Surface Water
- Table CBL-17C-Block Quarry Ecological Risk Summary of Quantitative and Qualitative<br/>COPECs for Environmental Media
- Table CBL-18
   C-Block Quarry Chemical of Potential Concern All Media (in text)
- Table CBL-19
   C-Block Quarry Chemical of Potential Ecological Concern All Media (in text)



# 1.0 INTRODUCTION

This report documents the results of C-Block Quarry (AOC-06) sampling effort which was completed during the activities conducted from October 2004 to May 2005 to characterize the 14 Ravenna Army Ammunition Plant (RVAAP) Areas of Concern (AOCs).

### **1.1 PURPOSE AND SCOPE**

Characterization activities were conducted at C-Block Quarry to collect sufficient data for all applicable media to allow efficient planning and execution of future environmental actions.

The characterization effort for the C-Block Quarry was undertaken to accomplish the following:

- Collect characterization data using multi-increment (MI) sampling to provide data for future risk assessments that may be conducted;
- Develop and/or update the Conceptual Site Model to identify the key elements that should be considered in future actions;
- Assess AOC-specific physical characteristics;
- Assess potential sources of contamination;
- Allow initial assessment of the nature and lateral extent of soil, sediment, surface and groundwater contamination (the depth of contamination was not evaluated for this characterization effort); and
- Conduct a preliminary human health and ecological screening.

The investigation approach to the C-Block Quarry involved a combination of field and laboratory activities to characterize the site. Field investigation techniques included surface soil (0-1 ft) samples (multi-increment (MI) and discrete), soil boring and sampling, surface water, monitoring well installation and development, groundwater sampling, sample and monitoring well location survey, and aquifer testing. The rationale for the AOC-specific sampling plan was biased based on historical information including past usage, past investigations, ecological settings, climatic conditions, and geological and hydrologic characteristics. The field program was conducted in general accordance with the revised (USACE, 2001a) and the Final Sampling and Analysis Plan Addendum FSAP for the characterization of 14 RVAAP AOCs (MKM, 2004).

#### **1.2 BACKGROUND INFORMATION**

This section briefly describes C-Block Quarry and previous investigations performed.

# **1.2.1** AOC Description and History

The C-Block Quarry is located in the northwestern portion of the facility north of Newton Falls Road within the central portion of the C-Block storage area. The material mined at C-Block Quarry Consisted of Massillon Sandstone (Pennsylvanian System, Pottsville Group). This was quarried for the purpose of road and construction base material. C-Block Quarry has a measured maximum depth of 25 ft in the center of the quarry and tapers to zero depth to the north and south. C-Block Quarry is an unlined borrow pit (approximately 150 ft by 600 ft or 0.3 acres) that was used during the 1950's as a disposal area for



annealing and pickling process wastes. Spent pickle liquors from brass finishing that contained lead, mercury, chromium, and sulfuric acid were disposed in the pit. The quantity of waste disposed is unknown. Based upon preliminary site assessments conducted by MKM, fill dirt and some construction and demolition type materials were placed and/or disposed in the quarry. Field observations from the AOC characterization effort suggest the fill material ranges in depth from 1.5 to 5 feet with deeper amounts where debris and soil piles exist. Currently, C-Block Quarry is densely populated by trees and ground level vegetation.

# **1.2.2** Previous Investigation

The following evaluations and sampling efforts have been conducted at C-Block Quarry:

1.2.2.1 Preliminary Review and Visual Site Inspection conducted as a part of Resource Conservation and Recovery Act (RCRA) Facility Assessment conducted by the USEPA. (Jacobs Engineering Group, Inc., 1989)

This document could not be located.

#### 1.2.2.2 Preliminary Assessment for the Ravenna Army Ammunition Plant (USACE, 1996)

This assessment identified the following conditions at RVAAP:

- Potential chemicals of concern (PCOCs) at RVAAP sites were identified explosives (TNT, RDX, HMX, RDXX, composition B, and lead azide) and heavy metals (lead and mercury).
- The primary sources of potential contamination at RVAAP were identified as wastewater effluent from munitions assembly and demilitarization process, open burning and detonation of explosives, and landfill operations.
- Primary contaminant release mechanisms from load lines were process effluent discharges to surface water (drainage ditches, settling ponds, and streams) and process building wastewater wash-out on to surface soils. Media of concern were identified as a soil, sediment, groundwater and surface water.
- The greatest potential for release of contaminants to groundwater from load lines likely was identified as wastewater effluent discharge to unlined earthen settling ponds. Concrete settling tanks, open drainage ditches, and storm sewers were also identified as a concern relative to groundwater.
- The primary contaminant release mechanism from open burning and detonation areas resulted from the burning and detonation of off-specification explosives on the ground surface. Media of concern was identified as soils, groundwater, surface water and sediment.
- The primary release mechanism at landfills was identified as a result of potential leaching of contaminants from buried/disposal materials. Groundwater and soils were selected as media of concern.
- Known releases of contamination to surface water and soils have occurred from load line (assembly and demilitarization) operations and from open burning and detonation operations.



- Known releases of contamination to groundwater were noted to have occurred from quarry landfill operations.
- The greatest potential for off-site migration of contaminants during load line operations was identified as surface water. The greatest potential for current off-site migration of contaminants was identified as groundwater and surface water.

Based on qualitative assessment of the potential hazards, release mechanisms, and environmental conditions at RVAAP, LL-12, Building 1200 and the Landfill N. of Winklepeck Burning Grounds were considered among the higher priority sites in this assessment.

#### 1.2.2.3 Relative Risk Site Evaluation, Ravenna Army Ammunition Plant (USACHPPM, 1996)

This evaluation identified only surface soil as a possible media of concern and identified a potential for contaminate migration. The evaluation also identified the potential for exposure to receptors because the site is not restricted. The final score for the RRSE at C-Block Quarry was "low."

1.2.2.4 August 2001 – USACE Collected Additional Samples from the Quarry.

This document could not be located.

#### **1.2.3** Regulatory Authorities

Volume I, Section 1.2.3 identifies the regulatory authorities which oversee remedial activities for these AOCs.

#### **1.2.4** Regulatory Status of C-Block Quarry

Volume I, Section 1.2.4 identifies the regulatory status for this AOC.



# 2.0 ENVIRONMENTAL SETTING AT C-BLOCK QUARRY

This section describes the physical characteristics of C-Block Quarry and its adjacent environment that are factors in interpreting the potential contaminant transport pathways, receptor populations, and exposure scenarios with respect to the evaluation of human health and ecological risks. The area immediately surrounding C-Block Quarry is forested except for the clearings immediately adjacent to the storage bunkers. The AOC is located on a bedrock and topographic high with decreasing elevations in north, south and east directions. The quarry was excavated from the sandstone bedrock which remains exposed along the quarry walls and portions of the quarry floor. The Quarry is bounded on the east by C-Block lane 3-C and on the west by C-Block lane 4-C. Newton Falls Road is located approximately 700 feet south of the quarry and North Line.

# 2.1 SURFACE FEATURES

The topography at C-Block is characterized by a large plateau which slopes radially in all directions. The AOC is characterized by contours that show a range of elevation between 1100 ft amsl to 1180 ft amsl from a topographic high where the quarry is located in the center of a large plateau to a low area found in the far eastern portion of the AOC (USGS Topographic Map, Windham Quadrangle, 1994).

The quarry area is located on a local bedrock high area with surface drainage moving away from the area in a radial pattern. Surface water in the pit flows radially inward toward the topographic low point in the quarry area. The quarry walls are composed of sandstone bedrock outcroppings. Observations of fractures in those outcroppings indicate the existence of a defined fracture pattern.

# 2.2 METEOROLOGY AND CLIMATE

Meteorology and climate are addressed in Section 2.2, Volume I.

# 2.3 SURFACE WATER HYDROLOGY

Surface water drainage generally follows the topography of the AOC toward the southeast. Intermittent surface water flows in drainage ditches located within the AOC. Generally, surface water flow is away from the quarry in an east-northeast or west-southwest direction. Any precipitation which falls within the footprint of the quarry will collect with the quarry's low elevation. In addition, an unknown quantity of surface waters enters the quarry from the east drainage ditch of lane C-3A via a drainage swale. Based on soil borings located outside the quarry, groundwater is located at an elevation below the quarry's bottom. Therefore the bedrock sidewall of the quarry does not contribute to surface water at the C-Block Quarry. These ditches are fed by surface runoff from precipitation events. After leaving the AOC, the water commingles with effluent from other RVAAP drainage ways. Eventually the installation-wide drainage feeds the West Branch of the Mahoning River, located just west of the installation. The West Branch of the Mahoning River in turn flows to the Michael J. Kirwan Reservoir, immediately south of RVAAP across State Highway 5.

# 2.4 GEOLOGY

Lithologic logs from four borings located near the quarry, which were advanced during the characterization activities and completed as monitoring wells, were used to characterize the surface and



subsurface geology at C-Block. Soils were encountered generally from 0 to 2 ft in each of the borings and weathered sandstone bedrock was encountered at the range of 2 to 6 ft when installing the C-Block monitoring wells. Fine to medium grained, light brown to reddish brown sandstone was cored and described to depths reaching from 6 ft bgs to a maximum depth of 50 ft bgs. The boring logs, which detail the vertical lithologic sequences, are found in Appendix H.

# 2.4.1 Glacial Deposits

Subsurface lithology at C-Block Quarry contains information from borings placed adjacent to the quarry, and consists mostly of sand-rich silt tills overlying bedrock consisting of sandstones and minor interbedded shales. These deposits are generally firm, moderately plastic, and tend to hold water where encountered. Groundwater was encountered 30 to 40 ft bgs during drilling of the groundwater monitoring wells. Cross-sections of the subsurface at C-Block Quarry illustrate the lateral distribution and variation of these discontinuous glaciated sediments (Figures CBL-1 through CBL-4).

#### 2.4.2 Sedimentary Rocks

The exposed formation at C-Block Quarry consists of Massillon Sandstone (Pennsylvanian System, Pottsville Group). Weathered fine-grained, light brown sandstone bedrock was encountered at 2 to 6 ft bgs. White, brown, tan and reddish brown, medium to fine grained sandstone was cored and described to depths reaching from 6 ft bgs to a maximum depth of 50 ft bgs. Additionally, dark red to black shale partings were described at various steps in the borings when installing the C-Block monitoring wells.

#### 2.5 SOIL

According to the Soil Survey of Portage County, Ohio (USDASCS, 1978), RVAAP soils are described as being nearly level to gently sloping, and are poor to moderately well drained. Four soil types are found in the areas adjacent to the C-Block Quarry. Any soil materials found in the quarry were placed there by previous RVAAP operations or washed in from the lane ditch within C-Block Quarry: the silt loam (2 to 6 percent slopes) on west and east of the quarry, Mitiwanga silt loam (2 to 6 percent slopes) at within the quarry, Rittman silt loam (2 to 6 percent slopes) on west side of the AOC. Sloped soil along drainage pathways, rapid runoff and severe erosion are general characteristics of the Wadsworth silt loam. Deep, poorly-drained soil generally characterizes the Mitiwangra silt loam. Rittman silt loam is generally deep, moderately-well drained, gently sloping to steep soils with a medium runoff, slow permeability and seasonal wetness.

# 2.6 HYDROGEOLOGY

Volume 1, Section 2.6 describes the unconsolidated sediments and bedrock which influence the hydrogeological characteristics at RVAAP. In addition to the general regional information included in Volume 1, information about the bedrock found beneath C-Block Quarry was obtained when monitoring wells were installed and groundwater discharge points (springs) were identified within the area of the AOC. Based upon three independent rounds of water level measurements (February, March and April 2005), the bedrock groundwater flow in the vicinity of C-Block Quarry appears to be in a west-southwest direction. Figures CBL-9, 10 and 11 show the potentiometric surface and flow direction at the site. Additionally, four springs were identified northeast of C-Block Quarry. These springs are located along



lane C-5 (the springs are represented in Figures CBL-6 and CBL-7 as the Sediment/Surface water sampling locations), and, based upon elevation, appear to represent the potentiometric surface of groundwater in the area. However the correlation between the groundwater elevations between the installed monitoring wells and these springs can only be inferred. Hence figures CBL-9, 10 and 11 strictly correlate monitoring well groundwater elevations. The C-Block Quarry well logs indicate that fine grained sandstone was encountered at depths ranging from 2 to 6 ft.

#### 2.7 DEMOGRAPHY AND LAND USE

Demographics and land use are discussed in Volume 1, Section 2.7.

# 2.8 ECOLOGY

Ecological information is provided in Volume I, Section 2.8.



# 3.0 C-BLOCK QUARRY CHARACTERIZATION ACTIVITIES

This section describes the field and analytical methods implemented during the RVAAP 14 AOC Characterization at C-Block Quarry (CBL). The field and analytical programs were conducted in accordance with the RVAAP Facility Wide Sampling and Analysis Plan (FWSAP) (USACE, 2001a) and the RVAAP 14 AOC FWSAP Addendum (MKM, 2004). Investigation objectives, rationale for sampling locations, and sampling methods are briefly discussed in this section.

# **3.1 FIELD ACTIVITIES**

Field activities conducted from October 2004 thru May 2005 included:

- Collecting multi-increment (MI) surface soil (0-1 ft) samples (11-04-04 11-11-04);
- Collecting MI sediment samples from drainage pathways (11-08-04 11-11-04);
- Collecting surface water samples from drainage pathways (11-08-04 11-11-04);
- Installing four groundwater monitoring wells (12-13-04 01-04-05);
- Collecting geotechnical samples from the borings (Shelby Tubes) (11-08-04 01-04-05);
- Conducting well slug tests (01-26-05);
- Collecting groundwater samples from monitoring wells (01-12-05 01-20-05); and
- Surveying sampling and monitoring well locations (12-13-04 01-28-05).

Sampling points for the characterization of this AOC were located to assess the impact that C-Block Quarry operations may have had on soil, sediment, surface water, and groundwater; and to evaluate where contaminants related to the former operations may be impacting the AOC. The following sections describe the rationales for, and methods of sample, collection employed during the characterization activities. Information from previous assessments and evaluations plus institutional knowledge about the disposal that occurred at the quarry were used to determine the sampling locations, type of media collected, analyses run and numbers of samples for this characterization activity. Because of the possible disposal of annealing wastes, all samples were analyzed for Chromium +6. Table CBL-1 summarizes the types and numbers of samples that were collected and the analyses conducted on the samples. A photolog of the investigation activities is provided in Appendix C. Figure CBL-5 shows the locations of the monitoring wells installed during the characterization activities and Figure CBL-6 show the actual sample locations for all other media collected at this AOC.

#### 3.1.1 MI Surface Soil (0-1 ft) Sampling

MI surface soil (0-1 ft) samples were collected at this AOC to:

- Assess the potential impact of C-Block Quarry operations on the soils within the AOC; and
- Determine the nature of contamination (if present).

The floor of C-Block Quarry was divided into six grids. Each MI surface soil (0-1 ft) samples grid is considered an exposure unit. One MI surface soil (0-1 ft) sample was collected from each grid. Multi-increment samples were collected as described in Volume I, Section 3.1.10.1. One split sample was collected and submitted for analysis by an independent, USACE-approved laboratory. Analysis of MI surface soils (0-1 ft) for CBL included the following parameters: TAL Metals, Explosives and Cr+6.



VOC samples were collected as discrete samples to fulfill the 10 percent full suite requirement and the FWSAP approved VOC collection methods. Section 3.1.10.3 of Volume I describes the procedure used to collect discrete surface soils (0-1 ft) samples. Discrete VOC samples were not subjected to MI sample drying or processing. Field sampling forms documenting the Surface soils (0-1 ft) sampling activities are presented in Appendix E.

# 3.1.2 MI Sediment Sampling

MI sediment samples were collected at this AOC to:

- Evaluate whether sediments are being impacted via surface water runoff at the C-Block Quarry;
- Evaluate the migration pathway for contaminants that may have been suspended in surface water runoff; and
- Evaluate whether contaminants may have migrated beyond the AOC boundaries.

Four locations were selected to evaluate whether the drainage system at C-Block Quarry allowed contaminants to migrate beyond the site boundary. Two of the surface water locations were collected from natural springs and two of the locations were collected from small ponded areas. All MI sediment sampling grids were located in areas containing shallow water and, as a result, samples were able to be collected on foot, using the procedures described in Section 3.1.10.4 of Volume I. Each MI sediment sample grid is considered an exposure unit. One split sample was collected and submitted for analysis to an independent, USACE-approved laboratory. Analysis of sediment for CBL included the following parameters: TAL Metals, Explosives, Cr+6, TOC and grain size.

Field sampling forms from MI sediment sampling are presented in Appendix Q.

#### 3.1.3 Surface Water Sampling

Surface water samples were collected at this AOC to:

- Evaluate whether surface water is being impacted by runoff from C-Block Quarry; and
- Identify the migration pathways for contaminated runoff (if any) from C-Block Quarry.

Four surface water samples were co-located with the MI sediment samples to evaluate whether contaminants could be impacting surface water within the AOC boundary. One surface water sample was collected from each spring/ponded location identified in Section 3.1.2 of this AOC-specific report. Water quality measurements (pH, conductivity, dissolved oxygen content, and temperature) were recorded just prior to sample collection. Surface water samples were collected using the direct fill method, as referenced in Volume I, section 3.1.10.9. One split sample was collected and submitted for analysis to an independent USACE approved laboratory.

Field sampling forms for surface water sampling are presented in Appendix O.



### **3.1.4** Groundwater Investigation Activities

Four boreholes were advanced into the bedrock at C-Block Quarry. Borehole termination depth ranged from 44.0 to 50.0 ft bgs at the C-Block Quarry. Groundwater was encountered at depths ranging from 30 to 40 ft. In CBLmw-004 the first saturated zone was encountered at 16 ft with a second saturated zone at 35 ft.

The groundwater characterization activities included installing four groundwater monitoring wells, conducting slug tests, collecting one round of groundwater samples and measuring groundwater levels on three separate occasions. Those activities were conducted at this AOC to:

- Determine whether contaminants from the quarrying and fill operations had adversely impacted groundwater quality underlying the AOC;
- Evaluate the quality of groundwater upgradient of C-Block Quarry; and
- Collect data pertaining to the groundwater flow regime at C-Block Quarry.

Surface topography and regional bedrock maps indicated the C-Block Quarry is located on a bedrock high. Therefore, the four groundwater monitoring wells were placed in an orientation that assured that representative upgradient and downgradient wells would be installed. Potentiometric maps drawn using groundwater level information from the four new monitoring wells indicate that groundwater flow direction is South-Southwest. Wells CBLmw-001 and CBLmw-002 are located downgradient and Wells CBLsw-003 and CBLmw-004 are located upgradient of C-Block Quarry.

#### 3.1.4.1 Monitoring Well Installation and Development

An 11.25 in. OD hollow-stem auger was used to advance each borehole through the unconsolidated material found at C-Block Quarry. Bedrock was encountered in all four boring locations at depths of 1.9 ft. bgs (CBLmw-001), 6.0 ft bgs (CBLmw-002), 2.5 ft bgs (CBLmw-003) and 5.0 ft bgs (CBLmw-004). Upon encountering bedrock, a 6 in. OD air rotary hammer with 3.95 in. core barrel was used to advance the boring. The average total depth of the boreholes was 14.04 m (46.08 ft) bgs.

Monitoring well installation and development at C-Block Quarry followed the procedures reported in Volume I, Section 3.1.6. Well construction diagrams and well development records are provided in Appendix H.

#### 3.1.4.2 Geotechnical Sample Collection (Shelby Tubes)

Geotechnical samples were collected during groundwater monitoring well installation. Two Shelby tubes were collected at Monitoring Well Locations CBLmw-001 (0 to 2 ft) and CBLmw-004 (2 to 4 ft) and sent to the laboratory for analysis. Geotechnical sample collection was conducted as specified in Section 4.4.2.4.1 of the FWSAP. Goetechnical Analysis of Shelby tubes included the following parameters: Atterberg Limits, moisture content, total organic content, specific gravity and pH. The geotechnical analytical results can be found in Appendix J.



# 3.1.4.3 Groundwater Sampling

All groundwater sampling was conducted as outlined in Section 3.1.10.11, Volume I of this characterization report. No detections were observed in the PID readings for the wells at C-Block Quarry. This information is provided on the field forms located in Appendix H. Specific information related to the type of PID used and calibration is included in Section 3.1.5 of Volume 1. Samples were prepared, packaged and shipped per Volume I, Section 3.1.14. One split sample was collected and submitted for analysis to an independent, USACE-approved laboratory. Well purging and sampling records are provided at Appendix H and analytical results from the samples are presented in Appendix L. All groundwater sampling was conducted in accordance with the procedures provided in Section 4.3.4 and 4.3.5 of the FWSAP. Section 3.1.10.11 of Volume 1 also discusses the groundwater sampling procedures used for this project. Analysis of groundwater at CBL included the following parameters: TAL Metals, Explosives, Propellants, VOCs, SVOCs, Cr+6, Pesticides and PCBs.

#### 3.1.4.4 In-Situ Permeability Testing

Slug tests were performed at the four C-Block Quarry monitoring wells as discussed in Volume I, Section 3.1.10.12. Slug test data records are provided at Appendix K. The testing results are presented in Section 4.5.

#### 3.1.4.5 Water Level Measurements

Water level measurements were performed at the four C-Block Quarry monitoring wells as discussed in Volume I, Section 3.1.10.13. Groundwater elevation data are included in Appendix M.

#### 3.1.5 Sample Location and Monitoring Well Survey

The sample location and monitoring well survey at C-Block Quarry was conducted per the specifications in Section 3.1.11, in Volume I of this characterization report. The monitoring well survey report can be found in Appendix N and sample location survey data in Appendix S.

#### **3.2** DEVIATIONS FROM THE WORK PLAN

Every effort was made to complete the field activities as specified in the FWSAP and the approved RVAAP 14 AOC FWSAP Addendum. However, in some instances, circumstances or field conditions necessitated a modification. Changes made during the C-Block Quarry investigation are noted below.

- When Surface Water Sample CBLsw-004-SW was being collected, the water quality meter malfunctioned. Therefore, the water quality measurements (pH, conductivity, dissolved oxygen content and temperature) were collected at a later date.
- Because the MI sampling grids were small, ten aliquots were collected rather than 30.
- At CBLsw-004-SW, a surface water sample and co-located MI sediment sample were collected as contingency samples from a spring. The contingency samples were collected to more fully characterize C-Block Quarry's surface water.



- The well construction of the four C-Block Quarry wells was modified to cover a potential cap zone. Monitoring Wells CBLmw-001, CBLmw-002, CBLmw-003 and CBLmw-004 were constructed with 5 ft of sand above the screen rather than the 3 ft of sand specified in the FWSAP. CBLmw-004 was constructed with 3.7 ft of bentonite rather than the 3 ft stipulated in the FWSAP.
- The approved work plan for the characterization activities stipulated that monitoring wells be developed no earlier than one day, and no later than seven days, after the grout set. Due to the Christmas holidays, development of Monitoring Wells CBLmw-002 and CBLmw-003 was not initiated until 13 days after the grout was set.

Although some deviations were implemented, the objectives of characterizing the C-Block Quarry AOC were still achieved.



# 4.0 NATURE OF CONTAMINATION AT C-BLOCK QUARRY

This section summarizes the analytical results obtained from the environmental sampling conducted at the C-Block Quarry. The results are organized by media: surface soils (0-1 ft), groundwater, surface water, and sediment. The number of samples collected and the number of analytical results that exceeded either the RVAAP background criteria or Region 9 residential Preliminary Remediation Goals are listed in each subsection. The evaluation completed in this section is a preliminary comparison and is not intended to be used alone for making risk management decisions. The risk screening, presented later in this AOC-specific report, further discusses and evaluates the contaminants detected during this AOC characterization. The following sections present a summation and initial screening of the analytical data for samples collected during the AOC characterization.

# 4.1 MI SURFACE SOIL (0-1 FT)

Seven MI Surface Soil (0-1 ft) samples (six regular and one QC) were collected during the C-Block Quarry characterization activities. Additionally, one discrete surface soils (0-1 ft) sample was collected for VOC analysis. All positive detections were compared to RVAAP background (discrete background values from the Winklepeck Burning Grounds Phase II RI, 1999) and PRG values as previously discussed.

Surface Soil (0-1 ft) results at or above detection limits are presented in Table CBL-2. All Surface Soil (0-1 ft) analytical results are presented in Table CBL-6. Locations where Surface Soil (0-1 ft) analytes were detected at or above RVAAP-specific background concentrations and PRGs are illustrated in Figure CBL-7. Laboratory analytical reports are provided in Appendix F.

The Surface Soil (0-1 ft) analytical results are summarized as follows:

- Aluminum exceeded the Region 9 PRG in five samples with a maximum concentration of 12000 mg/kg.
- Arsenic exceeded the Region 9 PRG in six samples and exceeded background and the Region 9 PRG in one sample with a maximum concentration of 19 mg/kg.
- **Chromium** exceeded background in one sample and exceeded background and the Region 9 PRG in five samples with a **maximum concentration of 920 mg/kg**.
- Copper exceeded background in four samples with a maximum concentration of 78 mg/kg.
- Iron exceeded the Region 9 PRG in five samples with a maximum concentration of 22000 mg/kg.
- Lead exceeded background in one sample with a maximum concentration of 43 mg/kg.
- Manganese exceeded the Region 9 PRG in six samples with a maximum concentration of 950 mg/kg.
- Potassium exceeded background in one sample with a maximum concentration of 960 mg/kg.
- Sodium exceeded background in seven samples with a maximum concentration of 310 mg/kg.
- Vanadium exceeded the Region 9 PRG in six samples with a maximum concentration of 24 mg/kg.



- Mercury exceeded background in four samples with a maximum concentration of 0.073 mg/kg.
- Thallium exceeded background in two samples with a maximum concentration of 0.36 mg/kg.
- 2,4,6-TNT exceeded the Region 9 PRG in one sample with a maximum concentration of 22 mg/kg.
- 2-Amino-4,6-Dinitrotoluene exceeded laboratory detection limits in two samples with a maximum concentration of 0.64 mg/kg.
- Nitrocellulose exceeded laboratory detection limits in one sample with a maximum concentration of 1.3 mg/kg.
- VOCs, SVOCs, pesticides and PCBs were below Region 9 PRGs and/or laboratory detection limits.

### 4.2 SEDIMENTS

Six sediment samples (four regular and two QC) were collected during the AOC characterization at CBL. Of the six sediment samples collected, two contained VOC aliquots which were collected discretely. Results from the sediment samples were compared to facility-wide background (discrete background values from the Winklepeck Burning Grounds Phase II RI, 1999) concentrations for sediments and/or PRGs for residential soil.

Sediment results at or above detection limits are presented in Table CBL-3. All sediment analytical results are presented in Table CBL-7. Locations where sediment analytes were detected at or above background concentrations and PRGs are illustrated in Figure CBL-7. Laboratory analytical reports are provided in Appendix R.

Other details pertinent to the sediment analytical results:

- Aluminum exceeded the Region 9 PRG in four samples and exceeded background and the Region 9 PRG in one sample with a maximum concentration of 14000 mg/kg.
- Arsenic exceeded the Region 9 PRG in five samples with a maximum concentration of 15 mg/kg.
- Beryllium exceeded background in five samples with a maximum concentration of 1.2 mg/kg.
- Cadmium exceeded background in one sample with a maximum concentration of 0.12 mg/kg.
- Cobalt exceeded background in two samples with a maximum concentration of 9.3 mg/kg.
- Iron exceeded the Region 9 PRG in five samples with a maximum concentration of 26000 mg/kg.
- Manganese exceeded the Region 9 PRG in three samples with a maximum concentration of 970 mg/kg.
- Potassium exceeded background in one sample with a maximum concentration of 960 mg/kg.
- Sodium exceeded background in four samples with a maximum concentration of 350 mg/kg.
- Vanadium exceeded the Region 9 PRG in three samples, and exceeded background and the Region 9 PRG in two samples with a maximum concentration of 29 mg/kg.
- Mercury exceeded background in one sample with a maximum concentration of 0.062 mg/kg.
- Thallium exceeded the Region 9 PRG in one sample with a maximum concentration of 0.64 mg/kg.
- VOCs, SVOCs, pesticides, PCBs, explosives and propellants were below Region 9 PRGs and/or laboratory detection limits.



#### 4.3 SURFACE WATER

Five surface water samples (four regular and one QC) were collected during the C-Block Quarry characterization. Results from analyses were compared to surface water background concentrations (USACE, 2001b) and/or USEPA Region 9 tap water PRGs.

Surface water results at or above detection limits are presented in Table CBL-4. All surface water analytical results are presented in Table CBL-8. Locations where surface water analytes were detected at or above background concentrations and PRGs are illustrated in Figure CBL-7. Laboratory analytical reports are provided in Appendix P. Analysis of surface water at CBL included the following parameters: TAL Metals, Explosives, Propellants, VOCs, SVOCs, Cr+6, Pesticides and PCBs.

Other details pertinent to the surface water analytical results:

- Barium exceeded background in two samples with a maximum concentration of 120 µg/L.
- Chromium exceeded background in two samples with a maximum concentration of 2.0 µg/L.
- Cobalt exceeded background in five samples with a maximum concentration of 9.0 µg/L.
- Iron exceeded the Region 9 PRG in five samples, and exceeded background and the Region 9 PRG in one sample with a maximum concentration of 23000 µg/L.
- Manganese exceeded the background in one sample, and exceeded background and the Region 9 PRG in four samples with a maximum concentration of 4100 µg/L.
- Nickel exceeded background in three samples with a maximum concentration of 7.4 µg/L.
- Potassium exceeded background in four samples with a maximum concentration of 12000 µg/L.
- Vanadium exceeded background in one sample with a maximum concentration of 2.7 µg/L.
- Arsenic exceeded background and the Region 9 PRG in four samples with a maximum concentration of  $11 \mu g/L$ .
- Hexavalent Chromium exceeded background in one sample with a maximum concentration of 22 µg/L.
- Lead exceeded background in one sample with a maximum concentration of 1.0 µg/L.
- Mercury exceeded background in two samples with a maximum concentration of 0.066 µg/L.
- Thallium exceeded background in one sample with a maximum concentration of 1.7 µg/L.
- Methylene Chloride exceeded the Region 9 PRG in one sample with a maximum concentration of 130 μg/L. All other VOCs were below the Region 9 PRGs and/or detection limits.
- **Bis(2-ethylhexyl)phthalate** exceeded the Region 9 PRG in one sample with a **maximum concentration of 130 µg/L.** All other **SVOCs** were below the Region 9 PRGs and/or detection limits.
- **Pesticides, PCBs, explosives and propellants** were below Region 9 PRGs and/or laboratory detection limits.

#### 4.4 **GROUNDWATER**

Five groundwater samples (four regular and one QC) were collected from the four newly installed monitoring wells (CBLmw-001 through CBLmw 004) during the C-Block Quarry characterization. Groundwater samples were collected to identify any subsurface contamination of the shallow water table.



The groundwater analytical results were compared to background values and USEPA Region 9 tap water PRGs.

Groundwater results at or above detection limits are presented in Table CBL-5. All groundwater analytical results are presented in Table CBL-9. Locations where groundwater analytes were detected at or above background concentrations and PRGs are illustrated in Figure CBL-8. Laboratory analytical reports are provided in Appendix L.

Other details pertinent to the groundwater analytical results:

- Cobalt exceeded background in three samples with a maximum concentration of 2.6 µg/L.
- Copper exceeded background in five samples with a maximum concentration of 11 µg/L.
- Hexavalent Chromium exceeded background in four samples with a maximum concentration of 7.7 μg/L.
- Benzo(a)anthracene exceeded the Region 9 residential PRG in one sample with a maximum concentration of 0.16 J  $\mu$ g/L. J value indicates an estimated result.
- Benzo(a)pyrene exceeded the Region 9 residential PRG in one sample with a maximum concentration of 0.17 J  $\mu$ g/L. J value indicates an estimated result.
- Benzo(b)fluoranthene exceeded the Region 9 residential PRG in one sample with a maximum concentration of 0.13 J  $\mu$ g/L. J value indicates an estimated result.
- **Bis(2-ethylhexyl)phthalate** exceeded the Region 9 residential PRG in two samples with a **maximum** concentration of 400 µg/L.
- Indeno(1,2,3-cd)pyrene exceeded the Region 9 residential PRG in one sample with a maximum concentration of 0.14 J µg/L. J value indicates an estimated result.
- VOCs, pesticides, PCBs, explosives and propellants were below Region 9 residential PRGs and/or laboratory detection limits.

#### 4.5 GEOTECHNICAL

Geotechnical analysis was conducted during groundwater monitoring well installation. Two Shelby tubes were collected at monitoring well locations CBLmw-001 (0 to 2 ft) and CBLmw-004 (2 to 4 ft). The results of the geotechnical analysis are summarized in the following table.

| Sample<br>Number       | Depth feet | Moisture<br>Content % | Liquid<br>Limit % | Plastic<br>Limit % | Plastic<br>Index | Agg. % | C Sand % | M Sand % | F Sand % | Silt & Clay % | Soil<br>Descr.                                 | Class Sym. | рН  | Specific<br>Gravity |
|------------------------|------------|-----------------------|-------------------|--------------------|------------------|--------|----------|----------|----------|---------------|------------------------------------------------|------------|-----|---------------------|
| CBLmw-001<br>(0-2 ft.) | 1.7        | 18.0                  | 31                | 21                 | 10               | 12.1   | 12.2     | 9.3      | 17.5     | 49.0          | Mottled brown<br>clayey sand,<br>little gravel | SC         | 6.9 | 2.760               |
| CBLmw-004<br>(2-4 ft.) | 3.7        | 14.5                  | 17                | 17                 | NP               | 2.9    | 3.1      | 10.3     | 34.1     | 49.6          | Brown silty<br>sand, trace<br>gravel           | SM         | 8.4 | 2.767               |



#### 4.6 IN SITU PERMEABILITY TESTING RESULTS

Following installation of the monitoring wells, a slug test was completed to determine the in-situ permeability of the aquifer underlying the C-Block Quarry. The following table shows the results of the slug tests performed in January and February 2005.

| Monitoring<br>Well ID | Screened Interval<br>Depth (ft) | Total<br>Borehole<br>Depth (ft) | Geologic Material Adjacent<br>to Screen | Hydraulic<br>conductivity (cm/s) |
|-----------------------|---------------------------------|---------------------------------|-----------------------------------------|----------------------------------|
| MW-001                | 39-49                           | 50                              | sandstone                               | 1.75 E-4                         |
| MW-002                | 34.5-44.5                       | 45.3                            | sandstone                               | 4.14 E-4                         |
| MW-003                | 33-43                           | 44                              | sandstone                               | 3.69 E-4                         |
| MW-004                | 34-44                           | 45                              | sandstone                               | 5.62 E-4                         |

#### Hydraulic Conductivities in C-Block Quarry Monitoring Wells

Based on the results of the slug tests, the hydraulic conductivities arithmetic average is  $3.80 \times 10^{-4}$  cm/s in the soil underlying C-Block Quarry. This conductivity rate is average for RVAAP. Previous slug tests performed at wells located at other sites within RVAAP indicate average hydraulic conductivities between  $3.87 \times 10^{-2}$  cm/s to  $4.46 \times 10^{-6}$  cm/s (USACE, 2001b). The field measurements and test data are provided in Appendix K along with the calculation worksheets for the tests.

Data from the three rounds of well gauging were used to produce potentiometric surface maps for C-Block Quarry (Figures CBL-9 through CBL-11). The water level data suggest that groundwater flows to the west-southwest at a gradient of approximately 0.005 ft/ft.



# 5.0 HUMAN HEALTH AND ECOLOGICAL RISK SCREENING FOR C-BLOCK QUARRY

This section details both the human health and ecological risk screening performed at C-Block Quarry.

#### 5.1 HUMAN HEALTH RISK SCREENING

Volume 1, Section 5.1 explains how the C-Block Quarry data were screened to determine human health contaminants of concern (COPCs). Total chromium analytical results were conservatively screened against  $1/10^{\text{th}}$  of the PRG value; therefore, a screening value of 21 mg/kg was used rather than 210 mg/kg.

#### 5.1.1 Surface Soil (0-1 ft)

Table CBL-10 presents the human health screening table for Surface Soil (0-1 ft) in C-Block Quarry. A total of 34 constituents were detected including metals and semi-volatile organic compounds (SVOCs):

- Eight constituents had detections greater than background concentrations: arsenic, chromium, copper, lead, potassium, sodium, mercury and thallium.
- Seven constituents had detections above the adjusted Region 9 residential PRGs: aluminum, arsenic, chromium, iron, manganese, vanadium and 2,4,6-TNT.
- Concentrations of two constituents, arsenic and chromium, exceeded both the RVAAP-specific background value established for that compound and the Region 9 PRG.
- Five constituents have no established background value or Region 9 PRG: benzo(g,h,i)perylene, phenanthrene, 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, and nitrocellulose.

Based on these comparisons, eight chemicals of potential concern (COPCs) were identified in Surface Soil (0-1 ft) in C-Block Quarry: arsenic, chromium, benzo(g,h,i)perylene, phenanthrene, 2,4,6-TNT, 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, and nitrocellulose. Of these COPCs only arsenic, chromium, and 2,4,6-TNT were above either background concentrations or PRGs. All other COPCs were identified as COPCs because no screening criteria have been established.

#### 5.1.2 Sediment

Table CBL-11 presents the human health screening table for sediment in C-Block Quarry. Twenty-four constituents were detected in sediment. These constituents included 21 metals, one volatile organic compound (VOC), and two SVOCs.

- Seven constituents had detected concentrations greater than background values: aluminum, beryllium, cadmium, cobalt, sodium, vanadium, and mercury.
- Six constituents had detections above the adjusted Region 9 residential PRGs: aluminum, arsenic, iron, manganese, vanadium, and thallium.



• Concentrations of two constituents, arsenic and vanadium, exceeded both the RVAAP-specific background value established for that compound and the Region 9 PRG.

Of these constituents, aluminum and vanadium, which had detected concentrations above both background and PRGs, were identified as COPCs.

### 5.1.3 Surface Water

Table CBL-12 presents the human health screening table for surface water in C-Block Quarry. Analysis of five C-Block Quarry surface water samples resulted in a total of 31 detected constituents.

- Thirteen constituents had detections greater than background values: arsenic, barium, chromium, cobalt, hexavalent chromium, iron, lead, manganese, nickel, potassium, vanadium, mercury, and thallium.
- Five constituents had detections above the Region 9 PRGs: arsenic, iron, manganese, methylene chloride and bis(2-ethylhexyl)phthalate.
- Iron, manganese, and arsenic had detected concentrations above both background and PRGs.

Based on these comparisons, five COPCs were identified in C-Block Quarry surface water: arsenic, iron, manganese, methylene chloride, and bis(2-ethylhexyl)phthalate. All COPCs were either above PRGs or both background and PRGs.

#### 5.1.4 Groundwater

Table CBL-13 presents the human health screening table for groundwater in C-Block Quarry. Twenty-four constituents were detected in groundwater, including metals and SVOCs.

- Three constituents had detections greater than background concentrations: cobalt, copper, and hexavalent chromium.
- Five constituents had detections above the Region 9 PRGs: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, bis(2-ethylhexyl)-phthalate, and indeno(1,2,3-cd)pyrene.
- Two constituents, 2-methylnaphthalene and penanthrene, had no established screening values.

Based on these comparisons, seven COPCs were identified in groundwater including 2methylnaphthalene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, bis(2ethylhexyl)phthalate, indeno(1,2,3-cd)pyrene, and phenanthrene. All COPCs were identified based on an exceedance of the PRG except 2-methylnaphthalene and phenanthrene which were identified as COPC due to the lack of appropriate screening criteria.

# 5.2 ECOLOGICAL RISK SCREENING

See Volume I, Section 5.2 for an explanation of the procedures used to conduct this ecological risk screen.



#### 5.2.1 Surface Soil (0-1 ft)

Table CBL-14 presents the ecological screening table for Surface Soil (0-1 ft) at the C-Block Quarry. A total of 34 constituents were detected.

- Seven constituents had detections greater than background concentrations: chromium; copper; lead; potassium; sodium; mercury; and thallium.
- Ten constituents had detections above ecological screening values: aluminum; chromium; copper; iron; lead; manganese; selenium; vanadium; zinc; and mercury.
- Four constituents (chromium, copper, lead and mercury) had reported concentrations that exceeded Region 9 PRGs and the background value established for RVAAP Surface Soil (0-1 ft)s.
- Three explosives (2,4,6-TNT; 2-amino-4,6-dinitrotoluene; and 4-amino-2,6-dinitrotoluene) and one propellant (nitrocellulose), which were detected in C-Block Quarry Surface Soil (0-1 ft)s, have no screening values.

Based on these comparisons, eight constituents were identified as chemicals of potential ecological concern (COPECs) in Surface Soil (0-1 ft) at the C-Block Quarry: chromium, copper, lead, mercury, 2,4,6-TNT, 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, and nitrocellulose. Of these COPECs, 2,4,6-TNT, 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, and nitrocellulose were identified due to the lack of screening criteria.

#### 5.2.2 Sediment

Table CBL-15 presents the ecological screening table for sediment at the C-Block Quarry. Twenty-five constituents were detected in sediment.

- Seven constituents had detected concentrations greater than background values: aluminum; beryllium; cadmium; cobalt; sodium; vanadium; and mercury.
- One constituent, acetone, had detections above the ecological screening value.
- Nine constituents have no screening value. Of the nine, three constituents (aluminum, beryllium and vanadium) exceed the background value established for RVAAP.

Based on these comparisons, five constituents were identified as COPECs: aluminum, beryllium, vanadium, mercury, and acetone. Aluminum, beryllium, and vanadium were identified as COPECs due to the lack of screening criteria and the fact that they exceed the RVAAP background value. Mercury was identified as a COPEC in sediment because it is considered to be persistent, bioaccumulative, and toxic.

#### 5.2.3 Surface Water

Table CBL-16 presents the ecological screening table for surface water at the C-Block Quarry. Thirty-one constituents were detected in surface water.



- Thirteen constituents had detections greater than background values: barium; chromium; cobalt; iron; manganese; nickel; potassium; vanadium; arsenic; hexavalent chromium; lead; mercury; and thallium.
- One constituent, hexavalent chromium, was detected above ecological screening values.
- Seven constituents (aluminum, iron, magnesium, manganese, acetone, benzoic acid and benzyl alcohol) had no screening values. Of those seven, two constituents (iron and manganese) also exceed the background values established for RVAAP.

Based on these comparisons, seven constituents were identified as COPECs in surface water at the C-Block Quarry: iron; manganese; hexavalent chromium; mercury; acetone; benzoic acid; and benzyl alcohol. All COPECs, except hexavalent chromium and mercury, were identified due to the lack of screening criteria. Mercury was identified as a COPEC in surface water because it is considered to be persistent, bioaccumulative, and toxic.



# 6.0 SUMMARY AND CONCLUSION FOR THE CHARACTERIZATION OF C-BLOCK QUARRY

This section briefly summarizes the existing conditions that were found during the AOC characterization at C-Block Quarry and the risk screening tasks that were completed.

# 6.1 NATURE OF CONTAMINATION

Contaminants were detected above screening criteria in four media: Surface Soil (0-1 ft), sediment, surface water and groundwater. Seven constituents other than inorganics were detected above screening criteria in the samples collected from the various media. Explosives were detected above screening criteria in only one out of seven soil sample locations; SVOCs in one out of five surface water samples and three out of five groundwater samples; and VOCs in one out of four surface water samples. Therefore, no inferences can be made regarding contaminant distribution in any of the media because of the low frequency of detection.

Contaminants detected in soil above background and/or PRG screening values included metals, SVOCs, explosives and propellants.

In sediment, 11 metals, one VOC and two SVOCs were detected at concentrations above background and/or PRG screening values.

In surface water, 12 metals were detected above background and/or PRG screening values as well as one VOCs and one SVOCs.

In groundwater, three metals and five SVOCs were detected above background and/or PRG screening values. Generally, constituents in the downgradient well (CBLmw-002-GW) were detected at higher concentrations than those in the upgradient wells.

# 6.2 HUMAN HEALTH RISK SCREENING

An HHRS was conducted to compare the concentrations detected in the C Block Quarry samples to RVAAP-specific background values and U.S. EPA Region 9 PRGs. This preliminary screen was conducted to identify potential COPCs. The following table identifies the COPCs by media.



| Table CBL-18                              |          |                            |                            |  |  |  |  |  |  |  |
|-------------------------------------------|----------|----------------------------|----------------------------|--|--|--|--|--|--|--|
| Chemical of Potential Concern - All Media |          |                            |                            |  |  |  |  |  |  |  |
| Soils                                     | Sediment | Surface Water              | Groundwater                |  |  |  |  |  |  |  |
| Arsenic                                   | Aluminum | Arsenic                    | 2-methylnaphthalene        |  |  |  |  |  |  |  |
| Chromium                                  | Vanadium | Iron                       | Benzo(a)anthracene         |  |  |  |  |  |  |  |
| Benzo(g,h,i)perylene                      |          | Manganese                  | Benzo(a)pyrene             |  |  |  |  |  |  |  |
| Phenanthrene                              |          | Methylene Chloride         | Benzo(b)fluoranthene       |  |  |  |  |  |  |  |
| 2,4,6-TNT                                 |          | Bis(2-ethylhexyl)phthalate | Bis(2-ethylhexyl)phthalate |  |  |  |  |  |  |  |
| 2-amino-4,6-dinitrotoluene                |          |                            | Indeno(1,2,3-cd)pyrene     |  |  |  |  |  |  |  |
| 4-amino-2,6-dinitrotoluene                |          |                            | Phenanthrene               |  |  |  |  |  |  |  |
| Nitrocellulose                            |          |                            |                            |  |  |  |  |  |  |  |

# 6.3 ECOLOGICAL RISK SCREENING

An ERS was performed to compare contaminant concentrations detected in C-Block Quarry to RVAAP-specific background values and ecological screening values. The ERS was conducted as outlined in Volume 1, Section 5.2. The ERS identified COPECs for C-Block Quarry. The following table summarizes those COPECs by media.

| Table CBL-19                                         |           |                     |                   |  |  |  |  |  |  |
|------------------------------------------------------|-----------|---------------------|-------------------|--|--|--|--|--|--|
| Chemicals of Potential Ecological Concern– All Media |           |                     |                   |  |  |  |  |  |  |
| Soils Sediment Surface Water Groundwate              |           |                     |                   |  |  |  |  |  |  |
| Arsenic                                              | Beryllium | Iron                | Groundwater not   |  |  |  |  |  |  |
| Chromium                                             | Acetone   | Manganese           | evaluated for ERS |  |  |  |  |  |  |
| Copper                                               |           | Hexavalent Chromium |                   |  |  |  |  |  |  |
| Lead                                                 |           | Mercury             |                   |  |  |  |  |  |  |
| Mercury                                              |           | Acetone             |                   |  |  |  |  |  |  |
| 2,4,6-TNT                                            |           | Benzoic Acid        |                   |  |  |  |  |  |  |
| 2-amino-4,6-dinitrotoluene                           |           | Benzyl Alcohol      |                   |  |  |  |  |  |  |
| 4-amino-2,6-dinitrotoluene                           |           |                     |                   |  |  |  |  |  |  |
| Nitrocellulose                                       |           |                     |                   |  |  |  |  |  |  |

# 6.4 CONCLUSION

Based on the COPCs presented in Section 6.2 and the COPECs presented in Section 6.3, a full risk evaluation should be considered in the overall risk management decisions that are made for C-Block Quarry.















| CBLSS-004M-SU                                                                                       | nalyte Resu         | ult Units     | Qualifier | Analyte              | Result                 | Units   | Qualifier         |
|-----------------------------------------------------------------------------------------------------|---------------------|---------------|-----------|----------------------|------------------------|---------|-------------------|
| Analyte Result Units Qualifier                                                                      | Aluminum 1          | 12000 mg      | kg        | Aluminum             | 9600                   | mg/kg   |                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                              | Arsenic             | 13 mg         | kg        | Arsenic              | 13                     | mg/kg   |                   |
|                                                                                                     | Chromium            | 240 mg        | kg        | Chromium             | 250                    | mg/kg   |                   |
|                                                                                                     | Copper              | 31 mg/        | kg        | Copper               | 31                     | mg/kg   |                   |
| Sodium 130 mg/kg                                                                                    | Iron 2<br>Mangapaga | 20000 mg      | kg        | Iron                 | 20000                  | mg/kg   |                   |
| Mercury 0.051 mg/kg                                                                                 | Sodium              | 310 mg        | kg<br>ka  | Sodium               | 730                    | mg/kg   |                   |
|                                                                                                     | Vanadium            | 23 mg         | ka        | Vanadium             | 10                     | mg/kg   |                   |
|                                                                                                     | Mercury             | 0.063 mg      | kσ        | Mercury              | 0.072                  | mg/kg   |                   |
|                                                                                                     | Thallium            | 0.19 mg       | kg        | index,               | 0.072                  |         |                   |
| Analyte Result Units Qualifier                                                                      |                     |               | 0         |                      |                        | _       |                   |
| 2.4.6-TNT 22 mg/kg                                                                                  |                     | r             |           |                      |                        | (       | )                 |
|                                                                                                     |                     | کم .          |           |                      |                        |         | ر /               |
|                                                                                                     |                     | _ر            |           |                      |                        |         |                   |
|                                                                                                     |                     | $\mathcal{I}$ |           |                      |                        |         |                   |
|                                                                                                     |                     | _ کړ          |           | MKM En               | aineers                | Inc     |                   |
|                                                                                                     |                     |               | (         | MKM                  | gineers,               | , 1110. |                   |
| Legend                                                                                              |                     |               | -         | 4153 Blue            | ponnett L              | Jrive   |                   |
|                                                                                                     |                     |               |           | Stafford             | I, TX 774 <sup>-</sup> | 77      |                   |
| Surface Soil (0-1                                                                                   | ft) Multi-increment |               |           |                      |                        |         |                   |
| Vegetation 10 ft Contour Lines Sample J cation                                                      |                     |               | Ravon     | na Army Amr          | munit                  | ion E   | Dlant             |
| Gampie Local of                                                                                     |                     |               | aveni     |                      | num                    |         | ant               |
|                                                                                                     |                     |               |           | Ravenna (            | Ohio                   |         |                   |
| Sediment Multi-ir                                                                                   | ncrement and        |               |           | ravenna, v           |                        |         |                   |
| Surface Water St                                                                                    | ample Location      |               |           | Figure CB            | L-7                    |         |                   |
|                                                                                                     |                     |               |           |                      |                        |         |                   |
| Surface Soil (0-1 ft) / Sediment                                                                    |                     |               |           | U-BIOCK QL           | Jarry                  |         |                   |
| Discrete Sample Location                                                                            |                     |               | Surfac    | 0-1 ft)/Sc           | dimon                  | t/Disci | roto              |
|                                                                                                     |                     |               | Sunac     |                      |                        |         |                   |
|                                                                                                     |                     |               | é         | and Surface Wat      | er San                 | nple    |                   |
| Netes                                                                                               |                     |               | •         |                      |                        |         |                   |
| Notes:                                                                                              |                     |               |           | Location Exce        | eaence                 | S       |                   |
| If Result = or > Background, then the value is presented with a shaded/highlighted style            |                     |               | Drover    | Dur Checked Dur Date |                        | Droject | No                |
| If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style. |                     |               | Drawn     | by: Checked By: Date |                        | Project | INU.              |
| If Result = or > PRG, then the value is presented with a bold style.                                |                     |               | R. Have   | rkos MGS 15          | July 06                | 04-02-0 | 1030 <sub>N</sub> |
| Result < PRG & Background, then the value is presented with a normal style.                         |                     |               | 0 7       | 75 150               | 20                     | 20      | Ä                 |
| Ma/KG - Milliorams per Kilogram (parts per million - ppm)                                           |                     |               |           | 5 150                | 30                     |         | W                 |
| Ug/L - Micrograms per Liter (parts per billion - ppb)                                               |                     |               |           |                      |                        | Feet    | V                 |
| -3 (                                                                                                |                     |               |           |                      |                        |         | S                 |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 77-20                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Legend                                                                                                                                                                                                                                                                                                                                                                                                                                           | MKM Engineers, Inc.<br>4153 Bluebonnett Drive<br>Stafford, TX 77477<br>Ravenna Army Ammunition Plant |
| Vegetation       Road       2 ft Contour Lines       Monitoring Well Locations         Streams / Ditches       10 ft Contour Lines       Steam Line Post                                                                                                                                                                                                                                                                                         | Ravenna, Ohio<br>Figure CBL-8<br><i>C-Block Quarry</i><br>Groundwater Sample Locations Exceedences   |
| Notes:<br>J - estimated value<br>If Result = or > Background, then the value is presented with a shaded/highlighted style<br>If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style.<br>If Result = or > PRG, then the value is presented with a bold style.<br>Result < PRG & Background, then the value is presented with a normal style.<br>Ug/L - Micrograms per Liter (parts per billion - ppb) | Drawn By: Checked By: Date Drawn: Project No.:<br>R. Haverkos MGS 15 July 06 04-02-0030              |






# Table CBL-1C-Block Quarry Summary of Sampling and AnalysisRVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

| SAMPLE PREFIX               |                         | VOC            | SVOC           | Explosives       | Propellants     | TAL Metals      | Chrome +6        | Pesticides     | PCB         | Cvanides    | Nitrate    | TOC        | Geo-Tech  | Grain                                 |                                       |                                                                                                                 | EIFI DOMO       | COMPLES    |                                       |              |
|-----------------------------|-------------------------|----------------|----------------|------------------|-----------------|-----------------|------------------|----------------|-------------|-------------|------------|------------|-----------|---------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|------------|---------------------------------------|--------------|
| CRI                         |                         |                |                |                  |                 | 1               |                  |                |             |             |            | 100        | Apalysis  | Size                                  | Multi-Incremental                     | 1                                                                                                               | THEED QAVQ      | C SAMPLES  |                                       | 1            |
| CBL                         | SAMPLE ID               | 8260B          | 8270C          | 8330             | 3532/8330       | 6010/7000       | 7196A            | 8081A          | 8082B       | 9010A/9012A | EPA 353 2  | EPA 415 1  | (Various) | ASTM D422                             |                                       | Duplicate Sample                                                                                                | Equipment Blank | Trip Blank | MS/MSD                                | USACE Split  |
| MULTI-INCREMENTAL           | SOILS                   |                |                |                  |                 |                 |                  |                |             |             |            |            | (various) |                                       |                                       |                                                                                                                 | +               |            |                                       |              |
| Surface Soils               | SS-001M                 |                |                | 1                |                 | 1               | 1                |                |             |             |            |            |           |                                       |                                       |                                                                                                                 |                 |            |                                       |              |
|                             | SS-002M                 |                |                | 1                |                 | 1               | 1                |                |             |             |            | 1          |           |                                       |                                       |                                                                                                                 |                 |            |                                       |              |
|                             | SS-003M                 |                |                | 1                |                 | 1               | 1                |                |             |             |            |            |           | · · · · · · · · · · · · · · · · · · · |                                       | 1                                                                                                               |                 |            | · · · · · · · · · · · · · · · · · · · |              |
|                             | SS-004M                 |                |                | 1                |                 | 1               | 1                |                |             |             |            |            |           |                                       | <u> </u>                              | 1                                                                                                               |                 |            | !                                     | 1            |
|                             | SS-005M                 | 1              | 1              | 1                | 1               | 1               | NT               | 1              | 1           |             |            |            |           |                                       |                                       |                                                                                                                 | ++              |            |                                       |              |
|                             | SS-006M                 |                |                | 1                |                 | 1               | 1                |                |             |             |            |            |           |                                       |                                       |                                                                                                                 |                 |            |                                       |              |
|                             |                         | 1              | 1.5            | 6 .              | 1               | 6               | 5                | * I _ `        | . L.        |             | 0          | 0.55       | 0         |                                       | 0-                                    | 1                                                                                                               | 0               | 0          |                                       | 1            |
| GROUNDWATER                 | MW-001                  | 1              | 1              | 1                | 1               | 1               | 1                | 1              | 1           | 1           |            | 1          | 1         | 1                                     |                                       | 1                                                                                                               | 1               | ž.         | 1                                     | i<br>1       |
|                             | MW-002                  | 1              | 1              | 1                | 1               | 1               | 1                | 1              | 1           |             |            |            |           |                                       |                                       | -                                                                                                               |                 |            | <b>`</b>                              |              |
|                             | MW-003                  | 1              | 1              | 11               | 1               | 1               | 1                | 1              | 1           |             |            |            |           |                                       |                                       |                                                                                                                 |                 |            |                                       |              |
|                             | MW-004                  | 1              | 1              | 1                | 1               | 1               | 1                | 1              | 1           |             |            |            | 1         | 1                                     |                                       |                                                                                                                 | +               |            |                                       |              |
|                             |                         | 4              | 4 👙            | 4                | - 4 - <u>*</u>  | . 4             | 4 🦉              | 4              | 4           | 0           |            | 0          | 2         | -2                                    | 0                                     |                                                                                                                 | <u>()</u>       | 0          |                                       | 1            |
| SURFACE WATER               | SW-001                  | 1              | 1              | 1                | 1               | 1               | 1                | 1              | 1           |             |            |            | ]         | [                                     |                                       |                                                                                                                 |                 |            |                                       |              |
| Spring                      | SW-002                  | 1              | 1              | 1                | 1               | 1               | 1                | 1              | 1           |             |            |            |           |                                       |                                       | 1                                                                                                               |                 |            |                                       |              |
|                             | SW-003                  | 1              | 1              | 1                | 1               | 1               | 1                | 1              | 1           |             |            |            |           |                                       |                                       | 1                                                                                                               |                 |            | ······                                | 1            |
| Contingency                 | SW-004                  | 1              | 1              | 1                | 1               | 1               | 1                | 1              | 1           |             |            |            |           |                                       | · · · · · · · · · · · · · · · · · · · |                                                                                                                 |                 |            |                                       |              |
|                             |                         | 4              | 4              | 4 4              | 4               | 2 4 X           | . 4 .            | 4              | - 4         | 0           | 0          | <u>0 5</u> | 0         | 0                                     | - 0                                   | 1.2.3                                                                                                           | <u> </u>        |            |                                       | -            |
| SEDIMENT                    | SD-001M                 |                |                | 1                | -               | 1               | 1                |                |             | 1           |            | 1          |           | 1                                     |                                       | A AND A A |                 |            | U                                     | 1            |
| Spring                      | SD-002M                 | 1              | 1              | 1                | 1               | 1               | 1                | 1              | 1           |             |            | 1          |           | 1                                     |                                       | 1 1 1/00                                                                                                        |                 |            |                                       |              |
|                             | SD-003M                 |                |                | 1                |                 | 1               | 1                |                | <b>1</b>    |             |            | 1          |           | 1                                     |                                       | I - only VOC                                                                                                    | <u> </u>        |            |                                       | 1 - only VOC |
| Contingency                 | SD-004M                 |                |                | 1                |                 | 1               | 1                |                |             |             |            | 1          |           | 1                                     |                                       |                                                                                                                 | <u> </u>        |            |                                       |              |
|                             |                         | 1              | 1              | · 4              | 1.5             | 4               | 4                |                |             | 0           | 2 · 0 ///2 | 2 4        |           | 1                                     | A 444                                 | 1                                                                                                               |                 |            |                                       | 1            |
|                             |                         |                |                |                  |                 |                 |                  |                |             |             |            | 2 T        | N N       | 3.72° <b>4</b>                        | and the second                        |                                                                                                                 | U               | 0 10       | 0 3                                   | 1            |
| Notes:                      |                         |                |                |                  |                 |                 |                  |                |             |             |            |            |           |                                       |                                       |                                                                                                                 |                 |            |                                       |              |
| Blank cell indicates that e | ither the sample was r  | ot analyzed f  | or that comp   | ound and/or the  | e sample did no | ot have a OC of | t Split sample a | ssociated with | the regular | sample      |            |            |           |                                       |                                       |                                                                                                                 | ·               |            |                                       |              |
| Geo-tech analysis consists  | s of Moisture Content   | (ASTM D22)     | 6), Atterburg  | g Limits (ASTN   | A D4318), UC    | S (ASTM D24     | 87) pH (EPA 1    | 50 1) & Spec   | fic Gravity | (ASTM D854) |            |            |           |                                       |                                       |                                                                                                                 | ·····           |            |                                       |              |
| Grainsize and TOC are tal   | ken at "all major drain | ageway" sedi   | ments          |                  |                 |                 | ,,, p11 (D1711   |                | une Gravity | (101110004) |            |            |           |                                       |                                       |                                                                                                                 |                 |            |                                       |              |
| All shelby tubes taken dur  | ing MW installatinons   | s will have fu | ll geo-tech ar | id grainsize and | alvses          |                 |                  |                |             |             |            |            |           |                                       |                                       |                                                                                                                 |                 |            |                                       |              |
|                             |                         |                |                | grant and        |                 |                 |                  |                |             | 1.          |            |            |           |                                       |                                       |                                                                                                                 |                 |            |                                       |              |

#### C-Block Quarry Summary of Surface Soil (0-1 ft) Detections RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

|             |                |                             |                     |             | s                                      | ample Date: | OS-W100-ss7<br>B174/2004 | CBI <sup>285-002M-SO</sup> | dnG-WE003W-DND | OS-WE00-587<br>BD<br>11/4/2004 | CBLss-004M-SO | OS-0250-SS<br>CBLss-005D-SO<br>11/4/2004 | OS-W2002W-SO |
|-------------|----------------|-----------------------------|---------------------|-------------|----------------------------------------|-------------|--------------------------|----------------------------|----------------|--------------------------------|---------------|------------------------------------------|--------------|
|             |                |                             |                     |             | Sa                                     | mple Depth: | 0-1 ft                   | 0-1 ft                     | 0-1 ft         | 0-1 ft                         | 0-0.5 ft      | 0-1 ft                                   | 0-1 ft       |
| Group       | Method         | Parameter                   | Region 9<br>(Res Se | PRG<br>oil) | Surface Soil<br>Background<br>Criteria | Units       |                          |                            |                |                                |               |                                          |              |
| Metals      | 6010B          | Aluminum                    | 7614                | nc          | 17700                                  | mg/kg       | 11000                    | 8200                       | 9600           | 12000                          | 1800          |                                          | 11000        |
|             | 6010B          | Arsenic                     | 0.39                | ca          | 15.4                                   | mg/kg       | 19                       | 14                         | 13             | 13                             | 6.7           |                                          | 14           |
|             | 6010B          | Barium                      | 538                 | nc          | 88.4                                   | mg/kg       | 74                       | 63                         | 79             | 79                             | 23            |                                          | 84           |
|             | 6010B          | Beryllium                   | 15                  | nc          | 0.88                                   | mg/kg       | 0.69                     | 0.49                       | 0.65           | 0.71                           | 0.22          |                                          | 0.7          |
|             | 6010B          | Calcium                     | [n]                 |             | 15800                                  | mg/kg       | 1300                     | 620                        | 370            | 350                            | 960           |                                          | 830          |
|             | 6010B          | Chromium                    | 1000                | nc          | 17.4                                   | mg/kg       | 17                       | 430                        | 250            | 240                            | 150           |                                          | 920          |
|             | 6010B          | Cobalt                      |                     | ca          | 10.4                                   | mg/kg       | 9.6                      | 5.6                        | 8.4            | 8.6                            | 1.7           |                                          | 8.3          |
|             | 6010B          | Copper                      | 313                 | nc          | 17.7                                   | mg/kg       | 16                       | 35                         | 31             | 31                             | 17            |                                          | 78           |
| - ·         | 16010B         | lron                        | 2346                | nc          | 23100                                  | mg/kg       | 21000                    | 20000                      | 20000          | 20000                          | 9900          |                                          | 22000        |
|             | 6010B          | Lead                        | 400                 | pbk         | 26.1                                   | mg/kg       | 21                       | 43                         | 22             | 21                             | 17            |                                          | 24           |
|             | 6010B          | Magnesium                   | [n]                 |             | 3030                                   | mg/kg       | 2100                     | 1500                       | 1700           | 1800                           | 270           |                                          | 1900         |
|             | 6010B          | Manganese                   | 176                 | nc          | 1450                                   | mg/kg       | 950                      | 370                        | 730            | 760                            | 140           |                                          | 820          |
|             | 6010B          | Nickel                      | 156                 | nc          | 21,1                                   | mg/kg       | 16                       | 13                         | 15             | 15                             | 13            |                                          | 16           |
|             | 6010B          | Potassium                   | [n]                 |             | 927                                    | mg/kg       | 870                      | 960                        | 640            | 910                            | 360           |                                          | 890          |
|             | 6010B          | Selenium                    | 39                  | nc          | 1.4                                    | mg/kg       | 0.84                     | 0.64                       |                | 0.85                           | 0.48          |                                          | 0.79         |
|             | 6010B          | Sodium                      | [n]                 |             | 123                                    | mg/kg       | 280                      | 290                        | 260            | 310                            | 130           |                                          | 290          |
|             | 6010B          | Vanadium                    | 7.8                 | nc          | 31.1                                   | mg/kg       | 21                       | 19                         | 19             | 23                             | 5.3           |                                          | 24           |
|             | 6010B          | Zinc                        | 2346                | nc          | 61.8                                   | mg/kg       | 57                       | 47                         | 54             | 56                             | 34            |                                          | 59           |
|             | 7196A          | Hexavalent Chromium         | 30                  | ca          | 17.4                                   | mg/kg       |                          |                            |                | 5.4 J                          |               |                                          |              |
|             | 7471A          | Mercury                     | 2.3                 | nc          | 0.04                                   | mg/kg       |                          |                            | 0.072          | 0.063                          | 0.051         |                                          |              |
| 01/00       | /841           | Thallum                     | 0.52                | nc          | 0.00                                   | mg/kg       |                          | 0.36                       |                | 0.19                           |               |                                          |              |
| SVUCs       | 8270C          | Benzo(a)anthracene          | 0.62                | ca          |                                        | mg/kg       |                          |                            |                |                                |               |                                          | 0.017 J      |
|             | 8270C          | Benzo(b)fluoranthene        | 0.62                | ca          |                                        | mg/kg       |                          |                            |                |                                |               |                                          | 0.036 J      |
|             | 8270C          | Benzo(g,h,1)perylene        |                     |             |                                        | mg/kg       |                          |                            |                |                                |               |                                          | 0.019 J      |
|             | 8270C          | Benzo(k)fluoranthene        | 6.2                 | ca          |                                        | mg/kg       |                          |                            |                |                                |               |                                          | 0.019 J      |
|             | 8270C          | Bis(2-ethylhexyl) phthalate | 35                  | ca          |                                        | mg/kg_      |                          |                            |                |                                |               |                                          | 0.054 J      |
|             | 8270C          | Chrysene                    | 62                  | ca          |                                        | mg/kg       |                          |                            |                |                                |               |                                          | 0.028 J      |
|             | 8270C          | Fluoranthene                | 229                 | nc          |                                        | mg/kg       |                          |                            |                |                                |               |                                          | 0.036 J      |
|             | 8270C          | Phenanthrene                | <u> </u>            |             |                                        | mg/kg       |                          |                            |                |                                |               |                                          | 0.017 J      |
| E-          | 18270C         | Pyrene                      | 232                 | nc          |                                        | mg/kg       |                          |                            |                |                                |               |                                          | 0.027 J      |
| Explosives  | 8330           | 2,4,0-1NT                   | 16                  | ca          |                                        | mg/kg       |                          |                            | 0.085 J        | 0.092 J                        | 22            |                                          | 0.15         |
|             | 8330           | 2-Amino-4,6-Dinitrotoluene  |                     |             |                                        | mg/kg       |                          |                            |                |                                | 0.54          |                                          | 0.19 J       |
| D 11        | 8330           | 4-Amino-2,6-Dinitrotoluene  |                     |             |                                        | mg/kg       |                          |                            |                |                                | 0.64          |                                          | 0.12 J       |
| Propellants | 353.2 Modified | Nitrocellulose              |                     |             |                                        | mg/kg       |                          |                            |                |                                |               |                                          | 1.3          |

Notes:

-- no background/PRG value is available for this analyte blank cells indicated the analyte was a non-detect (with "U" qualifier) or analysis was not performed

mg/kg - means milligrams per Kilogram (parts per million - ppm) PRG - preliminary remediation goals

nc - non-cancer basis, value is 1/10 the published PRG

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

J - estimated value

If Result = or > Background, then the value is presented with a shaded/highlighted style If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style If Result = or > PRG, then the value is presented with a bold style

If Result < PRG & Background, then the value is presented with a normal style.

| 4 | CBLss-006M-SO |
|---|---------------|
|   | 0-1 ft        |
|   |               |
|   | 7100          |
|   | 12            |
|   | 50            |
|   | 0.55          |
|   | 890           |
|   | 19            |
|   | 6.8           |
|   | 15            |
|   | 18000         |
| - | 21            |
|   | 1300          |
|   | 540           |
|   | 15            |
| - | 650           |
| - | 030           |
|   | 220           |
| - | 230           |
| - | 10            |
|   | 52            |
|   | 0.073         |
|   |               |
|   |               |
|   |               |
|   |               |
| 1 |               |
| ╈ |               |
| + |               |
| + |               |
| ╉ |               |
| + |               |
| + |               |
| + |               |
| + |               |
| 1 |               |

#### C-Block Quarry Summary of Sediment Detections RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

|        |        |                      |                     |             |                                    |             | CBLsd-001M-SD | CBLsd-002D-DUP | CBLsd-002D-SD | CBLsd-002M-SD | CBLsd-003M-SD | CBLsd-004M-DUP | CBLsd-004M-SD |
|--------|--------|----------------------|---------------------|-------------|------------------------------------|-------------|---------------|----------------|---------------|---------------|---------------|----------------|---------------|
|        |        |                      |                     |             | Sa                                 | ample Date: | 11/9/2004     | 11/9/2004      | 11/9/2004     | 11/9/2004     | 11/8/2004     | 11/11/2004     | 11/11/2004    |
|        |        |                      |                     |             | Sar                                | nple Depth: | 0-0.5 ft      | 0-0.5 ft       | 0-0.5 ft      | 0-0.5 ft      | 0-0.5 ft      | 0-0.5 ft       | 0-0.5 ft      |
| Group  | Method | Parameter            | Region 9<br>(Res So | PRG<br>oil) | Sediment<br>Background<br>Criteria | Units       |               |                |               |               |               |                |               |
| Metals | 6010B  | Aluminum             | 7614                | nc          | 13900                              | mg/kg       | 13000         |                |               | 10000         | 14000         | 12000          | 11000         |
|        | 6010B  | Arsenic              | 0.39                | ca          | 19.5                               | mg/kg       | 15            |                |               | 15            | 9.4           | 4.4            | 6.4           |
|        | 6010B  | Barium               | 538                 | nc          | 123                                | mg/kg       | 52            |                |               | 63            | 77            | 96             | 82            |
|        | 6010B  | Beryllium            | 15                  | nc          | 0.38                               | mg/kg       | 0.78          |                |               | 0.77          | 0.76          | 0.8            | 12            |
|        | 6010B  | Cadmium              | 3.7                 | nc          | 0.00                               | mg/kg       |               |                |               | 0.12          |               |                |               |
|        | 6010B  | Calcium              | [n]                 |             | 5510                               | mg/kg       | 310           |                |               | 2200          | 910           | 380            | 560           |
|        | 6010B  | Chromium             | 1000                | nc          | 18.1                               | mg/kg       | 15            |                |               | 14            | 16            | 14             | 13            |
|        | 6010B  | Cobalt               | 30                  | ca          | 9.1                                | mg/kg       | 9.3           |                |               | 14            | 9             | 3.6            | 2.9           |
|        | 6010B  | Copper               | 313                 | nc          | 27.6                               | mg/kg       | 9.3           |                |               | 14            | 18            | 7              | 7.8           |
|        | 6010B  | Iron                 | 2346                | nc          | 28200                              | mg/kg       | 26000         |                |               | 23000         | 21000         | 11000          | 15000         |
|        | 6010B  | Lead                 | 400                 | pbk         | 27.4                               | mg/kg       | 15            |                |               | 22            | 15            | 18             | 21            |
|        | 6010B  | Magnesium            | [n]                 |             | 2760                               | mg/kg       | 1600          |                |               | 2100          | 2300          | 1500           | 1200          |
|        | 6010B  | Manganese            | 176                 | nc          | 1950                               | mg/kg       | 970           |                |               | 550           | 200           | 76             | 81            |
|        | 6010B  | Nickel               | 156                 | nc          | 17.7                               | mg/kg       | 11            |                |               | 16            | 17            | 11             | 11            |
|        | 6010B  | Potassium            | [n]                 |             | 1950                               | mg/kg       | 950           |                |               | 780           | 1100          | 860            | 780           |
|        | 6010B  | Selenium             | 39                  | nc          | 1.7                                | mg/kg       | 1.1           |                |               | 0.6           | 1             | 0.85           | 0.97          |
|        | 6010B  | Sodium               | [n]                 |             | 112                                | mg/kg       | 350           |                |               |               | 240           | 310            | 350           |
|        | 6010B  | Vanadium             | 7.8                 | nc          | 26.1                               | mg/kg       | 29            |                |               | 20            | 27            | 25             | 24            |
|        | 6010B  | Zinc                 | 2346                | nc          | 532                                | mg/kg       | 39            |                |               | 62            | 60            | 47             | 45            |
|        | 7471A  | Mercury              | 2.3                 | nc          | 0.06                               | mg/kg       | 0.019         |                |               | 0.015         | 0.062         | 0.054          |               |
|        | 7841   | Thallium             | 0.52                | nc          | 0.89                               | mg/kg       | 0.18          |                |               |               | 0.64          |                |               |
| VOCs   | 8260B  | Acetone              | 1412                | nc          |                                    | mg/kg       |               |                | 0.011 J       |               |               |                |               |
| SVOCs  | 8270C  | Benzo(b)fluoranthene | 0.62                | ca          |                                    | mg/kg       |               |                |               | 0.014 J       |               |                |               |
|        | 8270C  | Fluoranthene         | 229                 | nc          |                                    | mg/kg       |               |                |               | 0.017 J       |               |                |               |

Notes:

-- - no background/PRG value is available for this analyte

blank cells indicated the analyte was a non-detect (with "U" qualifier) or analysis was not performed

mg/kg - means milligrams per Kilogram (parts per million - ppm)

PRG - preliminary remediation goals

nc - non-cancer basis, value is 1/10 the published PRG

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

J - estimated value

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style

If Result = or > PRG, then the value is presented with a bold style

If Result < PRG & Background, then the value is presented with a normal style

#### C-Block Quarry Summary of Surface Water Detections

**RVAAP 14 AOC Characterization** 

Ravenna Army Ammunition Plant, Ravenna, Ohio

|        |        |                             |                     |     | s                                       | ample Date: | DECENTRATION | CBLsw-002-DUP | CBLsw-002-SW         | CBLsw-003-SW | CBLsw-004-SW |
|--------|--------|-----------------------------|---------------------|-----|-----------------------------------------|-------------|--------------|---------------|----------------------|--------------|--------------|
|        |        |                             |                     |     | Sar                                     | nnle Denth  | surface      | surface       | 11/9/2004<br>surface | 11/6/2004    | 11/11/20     |
| Group  | Method | Parameter                   | Region 9<br>(Tap Wa | PRG | Surface Water<br>Background<br>Criteria | Units       |              |               | Junico               | Surrace      | Surrace      |
| Metals | 6010B  | Aluminum                    | 36499               | nc  | 3370                                    | ug/         | 480          | 160           | 160                  | 350          | 200          |
|        | 6010B  | Barium                      | 2555                | nc  | 47.5                                    | ug/1        | 49           | 28            | 32                   | 120          | 36           |
|        | 6010B  | Calcium                     | [n]                 |     | 41400                                   | ug/l        | 4500         | 11000         | 11000                | 17000        | 4900         |
|        | 6010B  | Chromium                    | 109                 | nc  | 0.00                                    | ug/l        | 1.8          |               | 11000                | 2            | 4700         |
|        | 6010B  | Cobalt                      | 730                 | nc  | 0.00                                    | ug/l        | 4.7          | 1.9           | 2                    | 9            | 3.4          |
|        | 6010B  | Copper                      | 1460                | nc  | 7.9                                     | ug/l        | 4.5          | 2.3           | 2.1                  | 3.4          |              |
|        | 6010B  | Iron                        | 10950               | nc  | 2560                                    | ug/l        | 7200         | 2700          | 2900                 | 23000        | 4500         |
|        | 6010B  | Magnesium                   | [n]                 |     | 10800                                   | ug/l        | 1700         | 2300          | 2300                 | 3500         | 1500         |
| 1      | 6010B  | Manganese                   | 876                 | nc  | 391                                     | ug/l        | 2400         | 1400          | 1400                 | 4100         | 690          |
|        | 6010B  | Nickel                      | 730                 | nc  | 0.00                                    | ug/l        | 7.4          |               |                      | 3.9          | 3            |
|        | 6010B  | Potassium                   | [n]                 |     | 3170                                    | ug/l        | 6700         | 4400          | 4500                 | 12000        | 1400         |
|        | 6010B  | Sodium                      | [n]                 |     | 21300                                   | ug/l        |              |               |                      |              | 1600         |
| Į      | 6010B  | Vanadium                    | 36                  | nc  | 0.00                                    | ug/l        | 2.7          |               |                      |              |              |
|        | 6010B  | Zinc                        | 10950               | nc  | 42                                      | ug/l        | 23           |               |                      | 19           |              |
|        | 7060A  | Arsenic                     | 0.045               | ca  | 3.2                                     | ug/l        | -11          | 4             | 4.4                  | 11           |              |
|        | 7196A  | Hexavalent Chromium         | 109                 | nc  | 7.9                                     | ug/l        |              |               |                      | 22           |              |
|        | 7421   | Lead                        | 15                  | mcl | 0.00                                    | ug/l        | 1            |               |                      |              |              |
|        | 7470A  | Mercury                     | 11                  | nc  | 0.00                                    | ug/l        | 0.066        |               |                      | 0.056        |              |
|        | 7841   | Thallium                    | 2.4                 | nc  | 0.00                                    | ug/l        |              |               | 1.7                  |              |              |
| VOCs   | 8260B  | Acetone                     | 5475                | nc  |                                         | ug/l        | 8.6 J        | 8.2 J         | 8.6 J                | 14           |              |
|        | 8260B  | Carbon disulfide            | 1043                | nc  |                                         | ug/l        |              |               |                      | 3.7 J        |              |
|        | 8260B  | Methylene chloride          | 4.3                 | ca  |                                         | ug/l        |              |               |                      |              | 6.4          |
|        | 8260B  | Toluene                     | 723                 | nc  |                                         | ug/l        | 8.6          |               |                      | 64           | 14           |
| SVOCs  | 8270C  | 2,4-Dimethylphenol          | 730                 | nc  |                                         | ug/l        |              |               |                      | 88           |              |
|        | 8270C  | 2-Methylphenol              | 1825                | nc  |                                         | ug/l        | 28           |               |                      | 72           |              |
|        | 8270C  | 4-Methylphenol              | 182                 | nc  |                                         | ug/l        |              |               |                      | 86           | 32           |
|        | 8270C  | Benzoic acid                | 145979              | nc  |                                         | ug/l        |              |               |                      | 410          |              |
|        | 8270C  | Benzyl alcohol              | 10950               | nc  |                                         | ug/l        |              |               |                      | 12 J         | 8.6 .        |
|        | 8270C  | Bis(2-ethylhexyl) phthalate | 4.8                 | ca  |                                         | ug/l        | 130          |               |                      |              |              |
|        | 82700  | Isophorone                  | 71                  | ca  |                                         | ug/l        |              |               |                      | 2.2          |              |
|        | 82/0C  | Inenol                      | 10950               | nc  |                                         | ug/l        |              |               |                      | 68           | 4.3 J        |

Notes:

-- - no background/PRG value is available for this analyte

blank cells indicated the analyte was a non-detect (with "U" qualifier) or analysis was not performed

ug/l means micrograms per Liter (parts per billion - ppb)

PRG - preliminary remediation goals (The screeing value for lead is the Maximum Contaminant level (MCL) from the safe Drinking Water Act)

nc - non-cancer basis

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

J - estimated value

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style.

If Result = or > PRG, then the value is presented with a bold style

If Result < PRG & Background, then the value is presented with a normal style.



C-Block Quarry Summary of Groundwater Detections RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

|        |        |                             |            |     | Sa<br>Sar    | ample Date:<br>nple Depth: | dnQ-100-<br>1/20/2005<br>39.8 ft. | MD-100-CBT um-001-CM<br>1/20/2005<br>39.8 ft. | MD-000-000<br>1/12/2005<br>41.3 ft, | MD-003-00<br>1/12/2005<br>38.1 ft. | 1/1 |
|--------|--------|-----------------------------|------------|-----|--------------|----------------------------|-----------------------------------|-----------------------------------------------|-------------------------------------|------------------------------------|-----|
|        |        |                             |            |     | Consolidated | Description                | C/Filtered                        | C/Filtered                                    | C/Filtered                          | C/Filtered                         |     |
|        |        |                             |            |     | Filtered     |                            |                                   |                                               |                                     | 1                                  |     |
|        |        |                             | Region 9 P | RG  | Groundwater  |                            |                                   |                                               |                                     | 1                                  |     |
| Group  | Method | Parameter                   | (Tap Wate  | er) | Background   | Units                      |                                   |                                               |                                     |                                    |     |
| Metals | 6010B  | Aluminum                    | 36499      | nc  |              | ug/l                       |                                   |                                               | 30                                  |                                    |     |
|        | 6010B  | Barium                      | 2555       | nc  | 256          | ug/l                       | 31                                | 31                                            | 64                                  | 39                                 |     |
|        | 6010B  | Calcium                     | [n]        |     | 53100        | ug/l                       | 3200                              | 3200                                          | 8000                                | 13000                              | e   |
|        | 6010B  | Cobalt                      | 730        | nc  | 0.00         | ug/l                       | 1.6                               | 1.3                                           |                                     |                                    |     |
|        | 6010B  | Copper                      | 1460       | nc  | 0.00         | ug/l                       | 11                                | -11                                           | 2.7                                 |                                    |     |
| [      | 6010B  | Iron                        | 10950      | nc  | 1430         | ug/l                       |                                   |                                               |                                     |                                    |     |
|        | 6010B  | Magnesium                   | [n]        |     | 15000        | ug/l                       | 1500                              | 1500                                          | 4500                                | 2800                               | 2   |
|        | 6010B  | Manganese                   | 876        | nc  | 1340         | ug/l                       | 190                               | 190                                           | 35                                  | 3.8                                |     |
|        | 6010B  | Nickel                      | 730        | nc  | 83.4         | ug/l                       | 6.4                               | 6                                             | 10                                  | 4.7                                |     |
|        | 6010B  | Potassium                   | [n]        |     | 5770         | ug/l                       | 1000                              | 950                                           | 1500                                | 1100                               | 1   |
|        | 6010B  | Sodium                      | [n]        |     | 51400        | ug/l                       | 980                               | 890                                           | 2700                                | 1400                               |     |
|        | 6010B  | Zinc                        | 10950      | nc  | 52.3         | ug/l                       | 25                                | 26                                            | 35                                  | 17                                 |     |
|        | 7196A  | Hexavalent Chromium         | 109        | nc  | 0.00         | ug/l                       | 7.7                               | 5.2                                           | 6.7                                 | 5.3                                |     |
| SVOCs  | 8270C  | 2-Methylnaphthalene         |            |     |              | ug/l                       |                                   |                                               | 0.25 J                              |                                    |     |
|        | 8270C  | Benzo(a)anthracene          | 0.092      | ca  | <del></del>  | ug/l                       |                                   | 0.16 J                                        |                                     |                                    |     |
|        | 8270C  | Benzo(a)pyrene              | 0.0092     | ca  |              | ug/l                       |                                   | 0.17 J                                        |                                     |                                    |     |
|        | 8270C  | Benzo(b)fluoranthene        | 0.092      | _ca |              | ug/l                       |                                   | 0.13 J                                        |                                     |                                    |     |
|        | 8270C  | Benzo(k)fluoranthene        | 0.92       | ca  |              | ug/l                       |                                   | 0.22 J                                        |                                     |                                    |     |
|        | 8270C  | Bis(2-ethylhexyl) phthalate | 4.8        | ca  |              | ug/l                       |                                   |                                               | 400                                 | 31                                 |     |
|        | 8270C  | Chrysene                    | 9.2        | ca  | ·            | ug/l                       |                                   | 0.14 J                                        | 0.12 J                              |                                    |     |
|        | 8270C  | Fluoranthene                | 1460       | nc  |              | ug/l                       |                                   |                                               | 0.32 J                              |                                    |     |
|        | 8270C  | Indeno(1,2,3-cd)pyrene      | 0.092      | ca  |              | ug/l                       |                                   | 0.14 J                                        |                                     |                                    |     |
|        | 82700  | Phenanthrene                |            |     |              | ug/l                       |                                   |                                               | 0.24 J                              |                                    |     |
|        | 8270C  | Pyrene                      | 182        | nc  |              | ug/l                       |                                   |                                               | 0.4 J                               |                                    |     |

Notes:

-- - no background/PRG value is available for this analyte

blank cells indicated the analyte was a non-detect (with "U" qualifier) or analysis was not performed

ug/l means micrograms per Liter (parts per billion - ppb)

UC/Filtered - GW sample was filtered for metals and taken from an unconsolidated MW

C/Filtered - GW sample was filtered for metals and taken from a consolidated (bedrock) MW

PRG - preliminary remediation goals (The screeing value for lead is the Maximum Contaminant level (MCL) from the safe Drinking Water Act)

nc - non-cancer basis

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

J - estimated value

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style

If Result = or > PRG, then the value is presented with a bold style

If Result < PRG & Background, then the value is presented with a normal style



|            |           |                           |          |           |              |             |           |           | L 2       |           |           |           |           |           |
|------------|-----------|---------------------------|----------|-----------|--------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|            |           |                           |          |           |              |             | so        | so        | Ind       | S S       | l og      | l og      | l õ       | l og      |
|            |           |                           |          |           |              |             | Ž         | -Wa       | -W        | M.        | N N       | - d       | - W       | -W        |
|            |           |                           |          |           |              |             | 8         |           | 8         | 00        | 004       | 000       | 002       | 900       |
|            |           |                           |          |           |              |             | Lss       | Lss       | Free      | Lss-      | [] Ss     |           | -ss-      | -SS-      |
|            |           |                           |          |           |              |             | CB        | CB        | E B       | CB        | CB        | CB        | CBI       | CBI       |
|            |           |                           |          |           | S            | ample Date: | 11/4/2004 | 11/4/2004 | 11/4/2004 | 11/4/2004 | 11/4/2004 | 11/4/2004 | 11/4/2004 | 11/4/2004 |
|            |           |                           |          |           | Sa           | mple Depth: | 0-1 ft    | 0-1 ft    | 0-1 ft    | 0-1 ft    | 0-0.5 ft  | 0-1 ft    | 0-1 ft    | 0-1 ft    |
|            |           |                           |          |           | Surface Soil |             |           |           |           |           |           |           |           |           |
| Group      | Method    | Perometer                 | Region 9 | PRG       | Background   |             |           |           |           |           |           |           |           |           |
| Matala     | Intentiou |                           | (Res Sc  | )<br>     | Criteria     | Units       |           |           |           |           |           | -         |           |           |
| Ivietais   | 6010B     | Aluminum                  | 7614     | nc        | 17700        | mg/kg       | 11000     | 8200      | 9600      | 12000     | 1800      |           | 11000     | 7100      |
|            | 6010B     | Arsenic                   | 0.39     | ca        | 15.4         | mg/kg       | 19        | 14        | 13        | 13        | 6.7       |           | 14        | 12        |
|            | 6010B     | Barulium                  |          | nc        | 88.4         | mg/kg       | 74        | 63        | 79        | 79        | 23        |           | 84        | 50        |
|            | 6010B     | Cadmium                   | 27       | nc        | 0.88         | mg/kg       | 0.69      | 0.49      | 0.65      | 0.71      | 0.22      |           | 0.7       | 0.55      |
|            | 6010B     | Calcium                   | [n]      | ne        | 15800        | mg/kg       | 0.13 0    | 0.125 0   | 0.13 0    | 0.12 U    | 0.13 U    |           | 0.13 U    | 0.13 U    |
|            | 6010B     | Chromium                  | 1000     | nc        | 13800        | mg/kg       | 1300      | 620       | 370       | 350       | 960       |           | 830       | 890       |
| 1          | 6010B     | Cobalt                    | 30       | ca        | 10.4         | mg/kg       | 96        | 430       | 230       | 240       | 100       |           | 920       | 19        |
| 1          | 6010B     | Copper                    | 313      | nc        | 17.7         | mg/kg       | 16        | - 35      | 31        | 8.0       | 1.7       |           | 8.3       | 6.8       |
|            | 6010B     | Iron                      | 2346     | nc        | 23100        | mg/kg       | 21000     | 20000     | 20000     | 20000     | 9900      |           | 22000     | 19000     |
|            | 6010B     | Lead                      | 400      | pbk       | 26.1         | mg/kg       | 21        | 43        | 22        | 21        | 17        |           | 22000     | 21        |
|            | 6010B     | Magnesium                 | [n]      |           | 3030         | mg/kg       | 2100      | 1500      | 1700      | 1800      | 270       |           | 1900      | 1300      |
|            | 6010B     | Manganese                 | 176      | nc        | 1450         | mg/kg       | 950       | 370       | 730       | 760       | 140       |           | 820       | 540       |
|            | 6010B     | Nickel                    | 156      | nc        | 21.1         | mg/kg       | 16        | 13        | 15        | 15        | 13        |           | 16        | 15        |
|            | 6010B     | Potassium                 | [n]      |           | 927          | mg/kg       | 870       | 960       | 640       | 910       | 360       |           | 890       | 650       |
|            | 6010B     | Selenium                  | 39       | nc        | 1.4          | mg/kg       | 0.84      | 0.64      | 0.75 U    | 0.85      | 0.48      |           | 0.79      | 0.8 U     |
|            | 6010B     | Silver                    | 39       | nc        | 0.00         | mg/kg       | 0.55 U    | 0.5 U     | 0.5 U     | 0.485 U   | 0.5 U     |           | 0.5 U     | 0.5 U     |
|            | 6010B     | Sodium                    | -[n]     |           | 123          | mg/kg       | 280       | 290       | 260       | 310       | 130       |           | 290       | 230       |
|            | 6010B     | Vanadium                  | 7.8      | nc        | 31.1         | mg/kg       | 21        | 19        | 19        | 23        | 5.3       |           | 24        | 16        |
|            | 6010B     | Zinc                      | 2346     | nc        | 61.8         | mg/kg       | 57        | 47        | 54        | 56        | 34        |           | 59        | 52        |
|            | 7106 4    | Antimony                  | 3.1      | nc        | 0.96         | mg/kg       | 0.7 U     | 0.7 U     | 0.7 U     | 0.65 U    | 0.7 U     |           | 0.75 U    | 0.7 U     |
|            | 7471 4    | Mercury                   | 30       | ca        | 17.4         | mg/kg       | 1.1 U     | 1.1 U     | 1.05 U    | 5.4 J     | 1 U       |           |           | 1 U       |
|            | 7841      | Thailium                  | 2.5      | nc        | 0.04         | mg/kg       | 0.0245 U  | 0.024 0   | 0.072     | 0.063     | 0.051     |           | 0.0245 U  | 0.073     |
| Pesticides | 8081A     | 4 4'-DDD                  | 2.4      | 10        | 0.00         | mg/kg       | 0.3 0     | 02.0      | 0.305 U   | 0.19      | 0.305 U   |           | 0.315 U   | 0.305 U   |
|            | 8081A     | 4 4'-DDE                  | 17       | <u>Ca</u> |              | mg/kg       |           |           |           |           |           |           | 0.0009 U  | <b></b>   |
|            | 8081A     | 4.4'-DDT                  | 1.7      | ca        |              | mg/kg       |           |           |           |           |           |           | 0.00011 U |           |
|            | 8081A     | Aldrin                    | 0.029    | ca        |              | mo/ko       |           |           |           |           |           |           | 0.0009 U  |           |
|            | 8081A     | alpha-BHC                 | 0.09     | sat       |              | mg/kg       |           |           |           |           |           |           | 0.0009 U  |           |
| -          | 8081A     | alpha-Chlordane           | 1.6      | ca        |              | mg/kg       |           |           |           |           |           |           | 0.0009 U  |           |
|            | 8081A     | beta-BHC                  | 0.32     | ca        |              | mg/kg       |           |           |           |           |           |           | 0.0009 U  |           |
|            | 8081A     | delta-BHC                 |          |           |              | mg/kg       |           |           |           |           |           |           | 0.0009 U  |           |
|            | 8081A     | Dieldrin                  | 0.030    | ca        |              | mg/kg       |           |           |           |           |           |           | 0.0009 U  |           |
|            | 8081A     | Endosulfan I              | 37       | nc        |              | mg/kg       |           |           |           |           |           |           | 0.0009 U  |           |
|            | 8081A     | Endosulfan II             | 37       | nc        |              | mg/kg       |           |           |           |           |           |           | 0.0009 U  |           |
|            | 8081A     | Endosulfan sulfate        | 37       | nc        |              | mg/kg       |           |           |           |           |           |           | 0.0009 U  | i         |
|            | 8081A     | Endrin<br>Endrin aldahada | 1.8      | nc        |              | mg/kg       |           |           | -         |           |           |           | 0.0009 U  |           |
|            | 0001A     | Endrin ladenyde           |          |           |              | mg/kg       |           |           |           |           |           |           | 0.0009 U  |           |
|            | 8081 A    | commo BHC                 |          |           |              | mg/kg       |           |           |           |           |           |           | 0.0009 U  |           |
|            | 8081A     | gamma-Chlordone           | 0.44     | ca        |              | mg/kg       |           |           |           |           |           |           | 0.0009 U  |           |
|            | 8081A     | Hentachlor                | 0.11     | ca        |              | mg/kg       |           |           |           |           |           |           | 0.0009 U  |           |
|            | 8081A     | Heptachlor epoxide        | 0.053    | <u>ca</u> |              | mg/kg       |           |           |           |           |           |           | 0.0009 U  |           |
|            | 8081A     | Methoxychlor              | 31       | nc        |              | mg/kg       |           |           |           |           |           | -         | 0.0009 U  |           |
|            |           |                           |          | ine j     |              | mg/kg       |           |           |           |           |           |           | 0.0045 U  |           |

| Sector         Sector<                                                                                                                                                                                                                                                              |        |        |                            |                  |              |             |           |           |           |           |                                       |            |           |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----------------------------|------------------|--------------|-------------|-----------|-----------|-----------|-----------|---------------------------------------|------------|-----------|-----------|
| Nors         Nors <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                              |        |        |                            |                  |              |             |           |           |           |           |                                       |            |           |           |
| NADAL         Pages 0 PA                                                                                                                                                                                                                                                                                                                                                                                                                        |        |        |                            |                  |              |             |           |           |           |           |                                       |            |           |           |
| Number         Numer         Numer         Numer <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>S S</td> <td>So So</td> <td>na</td> <td>so</td> <td>so</td> <td>8</td> <td>so</td> <td>SO</td>                                                                                                   |        |        |                            |                  |              |             | S S       | So So     | na        | so        | so                                    | 8          | so        | SO        |
| Sample Date         Single Date                                                                                                                                  |        |        |                            |                  |              |             | ž I       | W         | 3M-       | , M       | - Mt                                  | -Ci        | -M        | ۲.        |
| Simple Ref         9         9         9         9         9         9         9         9         9         9         9         9         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |        |                            |                  |              |             | 9         | 00        | i op a    | 8         | 00                                    | 500-       | -00       | l 8       |
| Simple Date         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C <thc< th=""> <thc< th=""> <thc< <="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Lss</td><td>Lss</td><td>Lss</td><td>Lss.</td><td>Lss.</td><td>Lss-</td><td>Lss.</td><td></td></thc<></thc<></thc<>                                                                                                                                                                                                                                                                        |        |        |                            |                  |              |             | Lss       | Lss       | Lss       | Lss.      | Lss.                                  | Lss-       | Lss.      |           |
| Normal         Numbers         Numbers <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>CB</td><td>B</td><td>8</td><td>B</td><td>CB .</td><td>CB</td><td>CB</td><td>CB</td></th<>                                                                            |        |        |                            |                  |              |             | CB        | B         | 8         | B         | CB .                                  | CB         | CB        | CB        |
| Serific Sol         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <th< td=""><td></td><td></td><td></td><td></td><td>S</td><td>ample Date:</td><td>11/4/2004</td><td>11/4/2004</td><td>11/4/2004</td><td>11/4/2004</td><td>11/4/2004</td><td>11/4/2004</td><td>11/4/2004</td><td>11/4/2004</td></th<>                                                                                                                                              |        |        |                            |                  | S            | ample Date: | 11/4/2004 | 11/4/2004 | 11/4/2004 | 11/4/2004 | 11/4/2004                             | 11/4/2004  | 11/4/2004 | 11/4/2004 |
| Native         Parameter         Resigner PRG         Units         Constrained         Units           0501A         Tocaphont         0.047         Tocaphont         0.057         0.009 U           PCBa         0052         Anoder 1015         0.139         no         -n.gkg         0         0.009 U           PCBa         0052         Anoder 1015         0.23         no         -n.gkg         0         0.008 U           9832         Anoder 1242         0.22         no         -n.gkg         0         0.008 U           9832         Anoder 1243         0.22         no         -n.gkg         0         0.018 U           9832         Anoder 1243         0.22         no         -n.gkg         0         0.018 U           9832         Anoder 1240         0.22         no         -n.gkg         0         0.018 U           9832         Anoder 1240         0.23         no         n.gkg         0         0.018 U           9832         Anoder 1240         0.23         no         n.gkg         0         0.018 U           9832         Anoder 1240         0.22         no         -n.gkg         0         0.0035 U         0 <t< td=""><td></td><td></td><td></td><td></td><td>Sat</td><td>mple Depth:</td><td>0-1 ft</td><td>0-1 ft</td><td>0-1 ft</td><td>0-1 ft</td><td>0-0.5 ft</td><td>0-1 ft</td><td>0-1 ft</td><td>0-1 ft</td></t<>                                                                                                                                                                                              |        |        |                            |                  | Sat          | mple Depth: | 0-1 ft    | 0-1 ft    | 0-1 ft    | 0-1 ft    | 0-0.5 ft                              | 0-1 ft     | 0-1 ft    | 0-1 ft    |
| Betod         Parameter         Relation PROJ         Relationed Units         Units         Parameter         Parameter           808 A.         Torophone         0.44         cs         -         ng/kg          0.005 U           808 A.         Torophone         0.44         cs         -         ng/kg          0.005 U           802         Ancoler 122         0.22         cs         -         ng/kg          0.005 U           802         Ancoler 123         0.22         cs         -         ng/kg          0.008 U           802         Ancoler 124         0.22         cs         -         ng/kg          0.008 U           802         Ancoler 124         0.22         cs         -         ng/kg          0.008 U           802         Ancoler 124         0.22         cs         -         ng/kg          0.003 U         0.008 U           802         Ancoler 124         0.22         cs         -         ng/kg          0.003 U         0.003 U           802         Ancoler 124         0.22         cs         -         ng/kg          0.003 U         0.003 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |                            |                  | Surface Soil |             |           |           |           |           |                                       |            |           |           |
| Oktop         Indicadu         Patha         Cutera         Units         Image                                                                                                                                                                                                                                                                                                      | Ground | Mathad | D                          | Region 9 PRG     | Background   |             |           |           |           |           |                                       |            |           |           |
| B8LA         Toughers         0.44         cs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Group  | Method | Parameter                  | (Res Soil)       | Criteria     | Units       | L         |           |           |           |                                       |            |           |           |
| BS.2.         Arcist 100         0.39         nc         -         ng/kg         -         0.018 U           BS.2.         Arceler 121         0.22         cs         -         ng/kg         -         0.008 U           BS.2.         Arceler 122         0.22         cs         -         ng/kg         -         0.008 U           BS.2.         Arceler 123         0.22         cs         -         ng/kg         -         0.009 U           BS.2.         Arceler 123         0.22         cs         -         ng/kg         -         0.009 U           BS.2.         Arceler 123         0.22         cs         -         ng/kg         -         0.009 U           BS.2.         Arceler 124         0.22         cs         -         ng/kg         -         0.009 U           BS.2.         Arceler 124         0.22         cs         -         ng/kg         -         0.009 U           BS.2.         Arceler 124         0.22         cs         -         ng/kg         -         0.0033 U         -           BS.2.         Arceler 124         -         ng/kg         -         0.0033 U         -         -           BS.00                                                                                                                                                                                                                                                                                                                                                                                                                         | DOD    | 8081A  | Toxaphene                  | 0.44 ca          |              | mg/kg       |           |           |           |           |                                       |            | 0.009 U   |           |
| bls.         Abdolf 121         0.22         a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PCBs   | 8082   | Aroclor 1016               | 0.39 nc          |              | mg/kg       |           |           |           |           |                                       |            | 0.018 U   |           |
| 2036         Arching         0.22         ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 8082   | Arocior 1221               | 0.22 ca          |              | mg/kg       |           |           |           |           |                                       |            | 0.018 U   |           |
| bits         product         p                                                                                                                                                                                                                                   |        | 8082   | Aroclor 1232               | 0.22 ca          |              | mg/kg       |           |           |           |           |                                       |            | 0.009 U   |           |
| bits         code         code <thcod< th="">         code         code         c</thcod<>                                                                                                                                                                                                                                                                                                                         |        | 8082   | Arocior 1242               | 0.22 ca          |              | mg/kg       |           |           |           |           |                                       |            | 0.018 U   |           |
| Busic         Dock for 120         D.2         cit         m         Busic         DOCS                                                                                                                                                                                                                                                                                                                                         |        | 8082   | Aroclor 1248               | 0.22 ca          |              | mg/kg       |           |           |           |           |                                       |            | 0.009 U   |           |
| VOCs         S2000         11.1 Trichlorestiane         0.00         mgkg         0.0035 U           S2000         11.2 Trichlorestiane         0.41         a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 8082   | Aroclor 1254               | 0.22 Ca          |              | mg/kg       |           |           |           |           | · · · · · · · · · · · · · · · · · · · |            | 0.018 U   |           |
| Store         11.2-1 transhorouthane         0.41 $a$ $m_{g}k_{g}$ 0.00355 U           S261B         1.1.2-Trichhorouthane         0.73 $a$ $$ $m_{g}k_{g}$ 0.00335 U           S261B         1.1.2-Trichhorouthane         0.73 $a$ $$ $m_{g}k_{g}$ 0.00335 U           S261B         1.1-Dehlorouthane         1 $n$ $$ $m_{g}k_{g}$ 0.00335 U           S261B         1.1-Dehlorouthane         0.23 $a$ $$ $m_{g}k_{g}$ 0.00335 U           S261B         1.2-Dehlorouthane         0.23 $a$ $$ $m_{g}k_{g}$ 0.00335 U           S261B         1.2-Dehlorouthane         0.23 $a$ $$ $m_{g}k_{g}$ 0.00335 U           S261B         1.2-Dehlorouthane         0.23 $a$ $$ $m_{g}k_{g}$ 0.0005 U           S260B         1.2-Dehlorouthane         0.23 $a$ $$ $m_{g}k_{g}$ 0.001 U           S260B         2-Hexanone         530 $n$ $$ $m_{g}k_{g}$ 0.001 U           S260B         2-Hexanone         530 <td>VOCs</td> <td>8260B</td> <td>1 1 1-Trichloroethane</td> <td>1200 sot</td> <td></td> <td>mg/kg</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00005.11</td> <td>0.018 U</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VOCs   | 8260B  | 1 1 1-Trichloroethane      | 1200 sot         |              | mg/kg       |           |           |           |           |                                       | 0.00005.11 | 0.018 U   |           |
| 82018         11.27-finitorethane         0.73         cs $mg/kg$ 0.00335 U           82018         1.1.Deblorethane         31         nc $$ $mg/kg$ 0.00335 U           82018         1.1.Deblorethane         0.2 $$ $mg/kg$ 0.00335 U           82018         1.2.Deblorethane         0.023 $$ $mg/kg$ 0.00335 U           82018         1.2.Deblorethane         0.28 $$ $mg/kg$ 0.00335 U           82008         1.2.Deblorethane         0.28 $$ $mg/kg$ 0.00353 U           82008         1.2.Deblorethane         0.28 $$ $mg/kg$ 0.00053 U           82008         1.2.Deblorethane         0.28 $$ $mg/kg$ 0.0005 U           82008         2.4Ucanone         233         nc $$ $mg/kg$ 0.0005 U           82008         4.Mettyl-2pertanone         528         nc $$ $mg/kg$ 0.00335 U           82008         Berzone         0.64 $$ $mg/kg$ 0.00335 U            82008         Berzone         0.64         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 8260B  | 1 1 2 2-Tetrachloroethane  | 0.41 ca          |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| South         1.1-Dicklorentame         91         00         000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 8260B  | 1.1.2-Trichloroethane      | 0.73 ca          |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| S409B         1.1-Dichlorothene         12         ne         mg/kg         0.00335 U           S209B         1.2-Dichlorothane         0.033 U         0.00335 U         0.00335 U           S209B         1.2-Dichlorothane (total)         6.9         ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 8260B  | 1.1-Dichloroethane         | 51 nc            |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| B200B         12-Dicklorentane         0.02         cs $ mg/kg$ 0.00335 U           B200B         12-Dicklorentene (total)         0.9         cs $ mg/kg$ 0.00335 U         0.00335 U           B200B         12-Dicklorentene (total)         0.9 $ mg/kg$ 0.00355 U         0.00355 U           B200B         12-Dicklorentene (total)         0.9 $ mg/kg$ 0.00355 U         0.00355 U           B200B         2-blatione         0.34         cs $ mg/kg$ 0.0005 U         0.0005 U           B200B         2-tlexanne         530         nc $ mg/kg$ 0.0005 U         0.0005 U           B200B         Acotne         1412         nc $ mg/kg$ 0.00335 U         0.00335 U           B200B         Baronolonomethane         0.22         ca $ mg/kg$ 0.00335 U         0.00335 U           B200B         Bromolonomethane         0.82         ca $ mg/kg$ 0.00335 U         0.00335 U           B200B         Bromolonomethane         0.22         ca $ mg/kg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 8260B  | 1,1-Dichloroethene         | 12 nc            |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| B260B         1.2-Dichlorothane         0.28         cs         mg/kg         0.00335 U           8260B         1.2-Dichlorothane (total)         6.9         nc         mg/kg         0.0005 U         0.00035 U           8260B         1.2-Dichlorothane         0.231 nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 8260B  | 1,2-Dibromoethane          | 0.032 ca         |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| 8200B         12-Dicklorosthene (total)         6.9         nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | 8260B  | 1,2-Dichloroethane         | 0.28 ca          |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| S200B         1.2-Dickloropropane $0.34$ $cn$ $-mg/kg$ $0.00335$ U           S200B         2-Butanone         231 $nc$ $-mg/kg$ $0.01$ U $0.01$ U           S200B         2-Hexanone         520 $nc$ $-mg/kg$ $0.01$ U $0.0665$ U           S200B         Acctone         1412 $nc$ $-mg/kg$ $0.01$ U $0.0035$ U           S200B         Brance         0.64 $a$ $-mg/kg$ $0.01$ U $0.0035$ U           S200B         Bromochloromethane $0.64$ $a$ $-mg/kg$ $0.00335$ U $0.00335$ U           S200B         Bromochloromethane $0.82$ $ca$ $-mg/kg$ $0.00335$ U $0.00335$ U           S260B         Bromochloromethane $0.82$ $ca$ $-mg/kg$ $0.00335$ U $0.00335$ U           S260B         Bromochloromethane $0.92$ $a$ $-mg/kg$ $0.00335$ U $0.00335$ U           S260B         Carlon testralboride $0.5$ $a$ $-mg/kg$ $0.00335$ U $0.00335$ U           S260B         Chlororohenzen <td></td> <td>8260B</td> <td>1,2-Dichloroethene (total)</td> <td>6.9 nc</td> <td></td> <td>mg/kg</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0065 U</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 8260B  | 1,2-Dichloroethene (total) | 6.9 nc           |              | mg/kg       |           |           |           |           |                                       | 0.0065 U   |           |           |
| 8200B         2-bitanone         2231         nc         -         mg/kg         0         0.01 U           8200B         2-Hexanone         300         nc         -         mg/kg         0.0065 U         0.0065 U           8200B         Accone         1412         nc         -         mg/kg         0.01 U         0.0055 U           8200B         Accone         1412         nc         -         mg/kg         0.01 U         0.00335 U           8200B         Berzene         0.64         ca         -         mg/kg         0.00335 U         0.00335 U           8200B         Bromochloromethane          mg/kg         0.00335 U         0.00335 U           8200B         Bromodichloromethane         0.82         ca         -         mg/kg         0.00335 U         0.00335 U           8200B         Bromodichane         0.39         nc         -         mg/kg         0.00335 U         0.00335 U           8200B         Carbon terachloride         0.25         ca         -         mg/kg         0.00335 U         0.00335 U           8200B         Chloroberazene         15         nc         -         mg/kg         0.00335 U         0.00335 U      <                                                                                                                                                                                                                                                                                                                                                                                 |        | 8260B  | 1,2-Dichloropropane        | 0.34 ca          |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| 8200B       2-Hexanone       530       nc        mg/kg       0       0.0065 U       1 $8260B$ Acetone       1412       nc        mg/kg       0       0.0055 U       1 $8260B$ Acetone       0.64       ca        mg/kg       0       0.00335 U       1 $8260B$ Bronechloromethane         mg/kg       0       0.00335 U       1 $8260B$ Bronechloromethane       0.82       ca        mg/kg       0       0.00335 U       1 $8260B$ Bronechloromethane       0.82       ca        mg/kg       0       0.00335 U       1       1 $8260B$ Bronomethane       0.39       nc        mg/kg       0       0.00335 U       1       1 $8260B$ Carbon disulfide       36       nc        mg/kg       0       0.00335 U       1       1 $8260B$ Chorobenzane       15       nc        mg/kg       0       0.00335 U       1       1 $8260B$ Chlororbenhane       0.22       ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 8260B  | 2-Butanone                 | 2231 nc          |              | mg/kg       |           |           |           |           |                                       | 0.01 U     |           |           |
| 8260B         4-Methyl-2-pentanone         528         nc          mg/kg         0         0.0065 U         1           8260B         Benzene         0.64         ca          mg/kg         0.0035 U         0           8260B         Bromochloromethane          mg/kg         0.00335 U         0         0           8260B         Bromochloromethane         0.2         ca          mg/kg         0.00335 U         0           8260B         Bromochloromethane         0.22         ca          mg/kg         0.00335 U         0           8260B         Bromochloromethane         0.39         nc          mg/kg         0.00335 U         0         0           8260B         Carbon disulfide         36         nc          mg/kg         0.00335 U         0         0           8260B         Chlorobenzene         15         nc          mg/kg         0.00335 U         0         0           8260B         Chlorobenzene         3.0         ca          mg/kg         0.00335 U         0         0           8260B         Chlororomethane         4.7         nc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 8260B  | 2-Hexanone                 | 530 nc           |              | mg/kg       |           |           |           |           |                                       | 0.0065 U   |           |           |
| 8260B         Acctone         1412         nc         mg/kg         0         0         0         0           8260B         Bernzene         0.64         ca          mg/kg         0.00335 U         0           8260B         Bromochloromethane          mg/kg         0.00335 U         0         0.00335 U           8260B         Bromochloromethane         0.82         ca          mg/kg         0.00335 U         0           8260B         Bromochorom         62         ca          mg/kg         0.00335 U         0           8260B         Bromochorom         62         ca          mg/kg         0.00335 U         0           8260B         Carbon disulfide         36         ne          mg/kg         0.00335 U         0           8260B         Chlorobenzene         15         nc          mg/kg         0.00335 U         0           8260B         Chlorobenzene         15         nc          mg/kg         0.00335 U         0           8260B         Chlorobenzene         4.7         nc          mg/kg         0.000335 U         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 8260B  | 4-Methyl-2-pentanone       | 528 nc           |              | mg/kg       |           |           |           |           |                                       | 0.0065 U   |           |           |
| 8260B         Benzene $0.64$ ca $$ $mg/kg$ $$ $mg/kg$ $$ $0.00335$ U $$ 8260B         Bromodichormethane $0.82$ ca $$ $mg/kg$ $$ $0.00335$ U $$ 8260B         Bromoform $62$ ca $$ $mg/kg$ $$ $0.00335$ U $$ 8260B         Bromomethane $0.2$ ca $$ $mg/kg$ $$ $0.00335$ U $$ 8260B         Carbon sisulfide $36$ nc $$ $mg/kg$ $$ $0.00335$ U $$ 8260B         Carbon sisulfide $0.25$ ca $$ $mg/kg$ $$ $0.00335$ U $$ 8260B         Chlorobenzene $15$ $nc$ $$ $mg/kg$ $$ $0.00335$ U $$ 8260B         Chlorobenzene $3.0$ ca $$ $mg/kg$ $$ $0.00335$ U $$ 8260B         Chlorobenzene $3.0$ ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 8260B  | Acetone                    | 1412 nc          |              | mg/kg       |           |           |           |           |                                       | 0.01 U     |           |           |
| Bromochloromethane          mg/kg         0         0.00335 U         0           8260B         Bromochloromethane         0.82 ca          mg/kg         0.00335 U         0           8260B         Bromochloromethane         0.39 nc          mg/kg         0.00335 U         0           8260B         Bromomethane         0.39 nc          mg/kg         0.00335 U         0.00335 U           8260B         Carbon tetrachloride         0.25 ca          mg/kg         0.00335 U         0.00335 U           8260B         Carbon tetrachloride         0.25 ca          mg/kg         0.00335 U         0.00335 U           8260B         Chlorobenzene         15 nc         -         mg/kg         0.00335 U         0.00335 U           8260B         Chloroferm         0.22 ca          mg/kg         0.00335 U         0.00335 U           8260B         Chlorofermethane         4.7 nc         -         mg/kg         0.00335 U         0.00335 U           8260B         cisl-1,2-Dichlorotentene         4.3 nc         -         mg/kg         0.00335 U         0.00335 U           8260B         cisl-1,3-Dichloropropene         0.78 ca         - <td></td> <td>8260B</td> <td>Benzene</td> <td>0.64 ca</td> <td></td> <td>mg/kg</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00335 U</td> <td></td> <td></td>                                                                                                                                                                                                                        |        | 8260B  | Benzene                    | 0.64 ca          |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| Bromodchioromethane         0.82         ca          mg/kg         0.00335 U         0.00335 U           8260B         Bromoferm         6.2          mg/kg         0.00335 U         0.00335 U           8260B         Bromoferm         0.3         nc          mg/kg         0.00335 U         0.00335 U           8260B         Carbon disulfide         36         nc          mg/kg         0.00335 U         0.00335 U           8260B         Carbon disulfide         0.25         ca          mg/kg         0.00335 U         0.00335 U           8260B         Chlorobenzene         15         nc          mg/kg         0.00335 U         0.00335 U           8260B         Chlorobenzene         3.0         ca          mg/kg         0.00335 U         0.00335 U           8260B         Chloroform         0.22         ca          mg/kg         0.00335 U         0.00335 U           8260B         chloroformethane         4.7         nc          mg/kg         0.00335 U         0.00335 U           8260B         cis-1,2-Dichloroethane         4.3         nc          mg/kg         0.00335 U                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 8260B  | Bromochloromethane         |                  |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| Bromotorm         62         ca          mg/kg          mg/kg         0.00335 U           8260B         Bromoethane         0.9         nc          mg/kg         0.00335 U            8260B         Carbon disulfide         36         nc          mg/kg         0.00335 U            8260B         Carbon tetrachloride         0.25         ca          mg/kg         0.00335 U            8260B         Chloroethane         1.0         ca          mg/kg         0.00335 U            8260B         Chloroethane         3.0         ca          mg/kg         0.00335 U            8260B         Chloroethane         3.0         ca          mg/kg         0.00335 U            8260B         Chloroethane         4.7         nc          mg/kg         0.00335 U            8260B         cis-1,2-Dichloroethene         4.7         nc          mg/kg         0.00335 U            8260B         Dibromochloromethane         1.1         ca          mg/kg         0.00335 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 8260B  | Bromodichloromethane       | 0.82 ca          |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| Boom methane         0.39         nc         -         mg/kg         0.00335 U           8260B         Carbon disulfide         36         nc         -         mg/kg         0.00335 U         0.00335 U           8260B         Carbon tetrachloride         0.25         ca         -         mg/kg         0.00335 U         0.00335 U           8260B         Chlorobenzne         15         nc         -         mg/kg         0.00335 U         0.00335 U           8260B         Chlorobenzne         3.0         ca         -         mg/kg         0.00335 U         0.00335 U           8260B         Chloroform         0.22         ca         -         mg/kg         0.00335 U         0.00335 U           8260B         cis-1,2-Dichloroethane         4.7         nc         -         mg/kg         0.00335 U         0.00335 U           8260B         cis-1,2-Dichloroethane         4.3         nc         -         mg/kg         0.00335 U         0.00335 U           8260B         Dibromchloromethane         1.1         ca         -         mg/kg         0.00335 U         0.00335 U           8260B         Ethylbenzene         395         sat         -         mg/kg         0.00055 U                                                                                                                                                                                                                                                                                                                                                       |        | 8260B  | Bromotorm                  | 62 ca            |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| b         Carbon terachloride         3c         nc          mg/kg         0.00335 U         0.00335 U           8260B         Chlorobenzene         15         nc          mg/kg         0.00335 U         0.00335 U         0.00335 U           8260B         Chlorobenzene         15         nc          mg/kg         0.00335 U         0.00335 U         0.00335 U           8260B         Chlorobrane         3.0         ca          mg/kg         0.00335 U         0.00035 U         0.00055 U         0.00055 U         0.00055 U         0.00055 U         0.00035 U         0.00035 U         0.000335 U         0.000335 U </td <td></td> <td>8260B</td> <td>Bromometnane</td> <td>0.39 nc</td> <td></td> <td>mg/kg</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00335 U</td> <td></td> <td></td>                                                                                            |        | 8260B  | Bromometnane               | 0.39 nc          |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| 3200B       Calobrie defaultified       0.25       cal        mg/kg       0.00335 U       0.00335 U         8260B       Chlorobenzee       15       nc        mg/kg       0.00335 U       0.00335 U         8260B       Chlorobenzee       3.0       ca        mg/kg       0.00335 U       0.00335 U         8260B       Chlorobenzee       4.7       nc        mg/kg       0.00335 U       0.00335 U         8260B       Chlorobenzee       4.7       nc        mg/kg       0.00335 U       0.00335 U         8260B       cis-1,2-Dichloroethene       4.3       nc        mg/kg       0.00335 U       0.00335 U         8260B       cis-1,3-Dichloropropene       0.78       ca        mg/kg       0.00335 U       0.00335 U         8260B       Dibromochloromethane       1.1       ca        mg/kg       0.00335 U       0.00335 U         8260B       mkp-Xylenes       27       nc        mg/kg       0.00335 U       0.00065 U         8260B       Metrylene chloride       9.1       ca        mg/kg       0.00335 U       0.00065 U         8260B       O-Kylene </td <td></td> <td>8260B</td> <td>Carbon disuinde</td> <td>36 nc</td> <td></td> <td>mg/kg</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00335 U</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                               |        | 8260B  | Carbon disuinde            | 36 nc            |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| Bood         Chlorobertarie         15         16          Img/kg         0         0.00335 U         0           8260B         Chloroform         0.22         ca          mg/kg         0.00335 U         0           8260B         Chloroform         0.22         ca          mg/kg         0.00335 U         0           8260B         Chloromethane         4.7         nc          mg/kg         0.00335 U         0           8260B         cis-1,2-Dichloroethene         4.3         nc          mg/kg         0.00335 U         0           8260B         cis-1,3-Dichloropropene         0.78         ca          mg/kg         0.00335 U         0           8260B         Dibromochloromethane         1.1         ca          mg/kg         0.00335 U         0         0           8260B         Ethylbenzene         395         sat          mg/kg         0.00335 U         0         0           8260B         m&-         mg/kg         0.0065 U         0.0035 U         0         0           8260B         Mehylene chloride         9.1         ca          mg/kg         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 8260B  | Chlorobenzene              | 0.25 Ca          |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| Bit Description         J.O. ca         Imp/kg         <                                                                                                                                                                                                                                                          |        | 8260B  | Chloroethane               | 15 IIC<br>3.0 co |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| Bits         Children         Children <thchildren< th="">         Children         <thc< td=""><td></td><td>8260B</td><td>Chloroform</td><td>0.22 ca</td><td></td><td>mg/kg</td><td></td><td></td><td></td><td></td><td></td><td>0.00335 U</td><td></td><td></td></thc<></thchildren<> |        | 8260B  | Chloroform                 | 0.22 ca          |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| 8260B       cis-1,2-Dichloroethene       4.3       nc        mg/kg       0.00335 U       0.00335 U         8260B       cis-1,3-Dichloropropene       0.78       ca        mg/kg       0.00335 U       0.00335 U         8260B       Dibromochloromethane       1.1       ca        mg/kg       0.00335 U       0.00335 U         8260B       Ethylbenzene       395       sat        mg/kg       0.00335 U       0.00355 U         8260B       mkp-Xylenes       27       nc        mg/kg       0.0065 U       0.0065 U         8260B       Methylene chloride       9.1       ca        mg/kg       0.00355 U       0.0065 U         8260B       O-Xylene       27       nc        mg/kg       0.00355 U       0.00355 U         8260B       O-Xylene       27       nc        mg/kg       0.00355 U       0.00355 U         8260B       Styrene       1700       sat        mg/kg       0.00335 U       0.00335 U         8260B       Tetrachloroethene       0.48       ca        mg/kg       0.00335 U       0.00335 U         8260B       Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 8260B  | Chloromethane              | 47 nc            |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| 8260B         cis-1,3-Dichloropropene         0.78         ca         mg/kg         0.00335 U         0.00335 U           8260B         Dibromochloromethane         1.1         ca          mg/kg         0.00335 U         0.00335 U         0.00335 U         0.00335 U         0.00035 U         0.000355 U         0.00035 U         0.00035 U         0.00035 U         0.00035 U         0.00035 U         0.00035 U         0.00055 U         0.00055 U         0.00055 U         0.00055 U         0.00055 U         0.00055 U         0.00035 U         0.00035 U         0.00035 U         0.00035 U         0.00055 U         0.00035 U         0.00055 U         0.00055 U         0.00035 U         0                                                                                                                                                                                                        |        | 8260B  | cis-1.2-Dichloroethene     | 4.3 nc           |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| 8260B         Dibromochloromethane         1.1         ca          mg/kg         0.00335 U         0.00335 U           8260B         Ethylbenzene         395         sat          mg/kg         0.00335 U         0.00335 U         0.00335 U         0.00335 U         0.00035 U         0.00035 U         0.00055 U         0.00055 U         0.00055 U         0.00055 U         0.00055 U         0.00055 U         0.00035 U                                                                                                                                                                                                                             |        | 8260B  | cis-1,3-Dichloropropene    | 0.78 ca          |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| 8260B         Ethylbenzene         395         sat          mg/kg         0.00335 U         0.00335 U           8260B         m&p-Xylenes         27         nc          mg/kg         0.00035 U         0.0005 U         0.0005 U           8260B         Methylene chloride         9.1         ca          mg/kg         0.0005 U         0.0005 U         0.0005 U           8260B         o-Xylene         27         nc          mg/kg         0.00035 U         0.00035 U         0.00035 U         0.00035 U         0.00035 U         0.00035 U         0.000335 U         0.00035 U         0.000335 U         0.0000335 U         0.000335                                                                                                                                                                                                                                                                         |        | 8260B  | Dibromochloromethane       | 1.1 ca           |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| 8260B         m&p-Xylenes         27         nc          mg/kg         0.0065 U         0.0065 U           8260B         Methylene chloride         9.1         ca          mg/kg         0.0065 U         0.0065 U         0.0065 U         0.0065 U         0.00335 U         0.00035 U         0.000035 U         0.00035 U         0.0                                                                                                                                                                                                                           |        | 8260B  | Ethylbenzene               | 395 sat          |              | mg/kg       |           |           |           |           |                                       | 0.00335 11 |           |           |
| 8260B         Methylene chloride         9.1         ca          mg/kg         0.0000 U         0.0005 U         0.00035 U         0.000335 U         0.0000335 U         0.000335                                                                                                                                                                     |        | 8260B  | m&p-Xylenes                | 27 nc            |              | mg/kg       | _         |           |           |           |                                       | 0.0065 U   |           |           |
| 8260B         o-Xylene         27         nc          mg/kg         0.00335 U         0.00335 U           8260B         Styrene         1700         sat          mg/kg         0.00335 U         0.00335 U         0.00335 U           8260B         Tetrachloroethene         0.48         ca          mg/kg         0.00335 U         0.00335 U         0.00335 U           8260B         Toluene         520         sat          mg/kg         0.00335 U         0.00335 U         0.00335 U           8260B         Toluene         520         sat          mg/kg         0.00335 U         0.000335 U         0.00335 U         0.000335 U         0.000335 U         0.000335 U         0.00035 U <td< td=""><td></td><td>8260B</td><td>Methylene chloride</td><td>9.1 ca</td><td></td><td>mg/kg</td><td></td><td></td><td></td><td></td><td></td><td>0.0065 U</td><td></td><td></td></td<>                                                                                                                                   |        | 8260B  | Methylene chloride         | 9.1 ca           |              | mg/kg       |           |           |           |           |                                       | 0.0065 U   |           |           |
| 8260B         Styrene         1700         sat          mg/kg         0.00335 U         0.00335 U           8260B         Tetrachloroethene         0.48         ca          mg/kg         0.00335 U         0.00335 U         0.00335 U           8260B         Toluene         520         sat          mg/kg         0.00335 U         0.00335 U         0.00335 U           8260B         Toluene         520         sat          mg/kg         0.00035 U         0.00035 U         0.00035 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 8260B  | o-Xylene                   | 27 nc            |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| 8260B         Tetrachloroethene         0.48         ca          mg/kg         0.00335 U         0.00335 U           8260B         Toluene         520         sat          mg/kg         0.00335 U         0.00335 U         0.00335 U           8260B         Total Xylenes         27         nc          mg/kg         0.0005 U         0.0005 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 8260B  | Styrene                    | 1700 sat         |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| 8260B         Toluene         520         sat          mg/kg         0.00335 U         0.00335 U           8260B         Total Xylenes         27         nc          mg/kg         0.0065 U         0.0065 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 8260B  | Tetrachloroethene          | 0.48 ca          |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
| 8260B Total Xylenes 27 nc mg/kg 0.0065 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 8260B  | Toluene                    | 520 sat          |              | mg/kg       |           |           |           |           |                                       | 0.00335 U  |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 8260B  | 1 otal Xylenes             | 27 nc            |              | mg/kg       |           |           |           |           |                                       | 0.0065 U   |           |           |

|       |        |                             |               |              |             | so        | SO SO     | ind ind   | S<br>S    | 20        | 0         | g         | l og      |
|-------|--------|-----------------------------|---------------|--------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|       |        |                             |               |              |             | ×         | -W        | -W        | ×.        | -W        | - G       | М-2       | W-W       |
|       |        |                             |               |              |             | 100       | 002       | 003       | 003       | 004       | 005       | 005       | 900       |
|       |        |                             |               |              |             | SS        | -ss       | -SS-      | -ss-      | -SS-      | -SS'      | I-SS      | -SS       |
|       |        |                             |               |              |             | CBI       | GBI       | CBI       | CBI       | BI        | BL        | BL        | l Ig      |
|       |        |                             |               | S            | ample Date: | 11/4/2004 | 11/4/2004 | 11/4/2004 | 11/4/2004 | 11/4/2004 | 11/4/2004 | 11/4/2004 | 11/4/2004 |
|       |        |                             |               | Sa           | nple Depth: | 0-1 ft    | 0-1 ft    | 0-1 ft    | 0-1 ft    | 0-0.5 ft  | 0-1 ft    | 0-1 ft    | 0-1 ft    |
|       |        |                             |               | Surface Soil | T           |           |           |           |           | 0 010 11  | 011       | 011       | <u> </u>  |
|       |        |                             | Region 9 PRG  | Background   |             |           | -         |           |           |           |           |           |           |
| Group | Method | Parameter                   | (Res Soil)    | Criteria     | Units       |           |           |           |           |           |           |           |           |
|       | 8260B  | trans-1,2-Dichloroethene    | 6.9 nc        |              | mg/kg       |           |           |           |           |           | 0.00335 U |           |           |
|       | 8260B  | trans-1,3-Dichloropropene   | 0.78 ca       |              | mg/kg       |           |           |           |           |           | 0.00335 U |           |           |
|       | 8260B  | Trichloroethene             | 0.053 ca      |              | mg/kg       |           |           |           |           |           | 0.00335 U | -         |           |
|       | 8260B  | Vinyl chloride              | 0.079 ca      |              | mg/kg       |           |           |           |           |           | 0.00335 U |           |           |
| SVOCs | 8270C  | 1,2,4-Trichlorobenzene      | 6.2 nc        |              | mg/kg       |           |           |           |           |           |           | 0.09 U    |           |
|       | 8270C  | 1,2-Dichlorobenzene         | 600 sat       |              | mg/kg       |           |           |           |           |           |           | 0.09 U    |           |
|       | 8270C  | 1,3-Dichlorobenzene         | <u>53</u> nc  |              | mg/kg       |           |           |           |           |           |           | 0.09 U    |           |
|       | 8270C  | 2.2 cogchie (1 chloronnone) | <u>3.4 ca</u> |              | mg/kg       |           |           |           |           |           |           | 0.09 U    |           |
|       | 8270C  | 2.4.5-Trichlorophenol       | <u>2.9 ca</u> |              | mg/kg       |           |           |           |           |           |           | 0.09 U    |           |
|       | 8270C  | 2.4.6-Trichlorophenol       | 0.61 nc       |              | mg/kg       |           |           |           |           |           |           | 0.18 U    | -         |
|       | 8270C  | 2.4-Dichlorophenol          | 18 nc         |              | mg/kg       |           |           |           |           |           |           | 0.09 U    |           |
|       | 8270C  | 2.4-Dimethylphenol          | 122 nc        |              | mg/kg       |           |           |           |           |           |           | 0.18 U    |           |
|       | 8270C  | 2,4-Dinitrophenol           | 12 nc         |              | mg/kg       |           |           |           |           |           |           | 0.18 U    |           |
|       | 8270C  | 2,4-Dinitrotoluene          | 12 nc         |              | mg/kg       |           |           |           |           |           |           | 0.018 II  |           |
|       | 8270C  | 2,6-Dinitrotoluene          | 6.1 nc        |              | mg/kg       |           |           |           |           |           |           | 0.018 U   |           |
|       | 8270C  | 2-Chloronaphthalene         | 494 nc        |              | mg/kg       |           |           |           |           |           |           | 0.09 U    |           |
|       | 8270C  | 2-Chlorophenol              | 6.3 nc        |              | mg/kg       |           |           |           |           |           |           | 0.09 U    |           |
|       | 8270C  | 2-Methylnaphthalene         | -             |              | mg/kg       |           |           |           |           |           |           | 0.018 U   |           |
|       | 8270C  | 2-Methylphenol              | 306 nc        |              | mg/kg       |           |           |           |           |           |           | 0.0365 U  |           |
|       | 8270C  | 2-Nitroaniline              | 18.3 nc       |              | mg/kg       |           |           |           |           |           |           | 0.09 U    |           |
|       | 8270C  | 2-Nitrophenol               |               |              | mg/kg       |           |           |           |           |           |           | 0.18 U    |           |
|       | 82700  | 2 Nitroopiline              | 1.1 ca        |              | mg/kg       |           |           |           |           |           |           | 0.09 U    |           |
|       | 8270C  | 4 6-Dinitro-2-methylphenol  | 1.8 nc        |              | mg/kg       |           |           |           |           |           |           | 0.365 U   |           |
|       | 8270C  | 4-Bromonhenyl phenyl ether  | 0.01 110      |              | mg/kg       |           |           |           |           |           |           | 0.365 U   |           |
|       | 8270C  | 4-Chloro-3-methylphenol     |               |              | mg/kg       |           |           |           |           |           |           | 0.09 U    |           |
|       | 8270C  | 4-Chloroaniline             | 24 nc         |              | mg/kg       |           |           |           |           |           |           | 0.16 U    |           |
|       | 8270C  | 4-Chlorophenyl phenyl ether |               |              | mg/kg       |           |           |           |           |           |           | 0.0011    |           |
|       | 8270C  | 4-Methylphenol              | 31 nc         |              | mg/kg       |           |           |           |           |           |           | 0.0365 U  |           |
|       | 8270C  | 4-Nitroaniline              | 23 ca         |              | mg/kg       |           |           |           |           |           |           | 0.365 U   |           |
|       | 8270C  | 4-Nitrophenol               |               |              | mg/kg       |           |           |           |           |           |           | 0.365 U   |           |
|       | 8270C  | Acenaphthene                | 368 nc        |              | mg/kg       |           |           |           |           |           |           | 0.018 U   |           |
|       | 8270C  | Acenaphthylene              |               |              | mg/kg       |           |           |           |           |           |           | 0.018 U   |           |
|       | 8270C  | Anthracene                  | 2189 nc       |              | mg/kg       |           |           |           |           |           |           | 0.018 U   |           |
|       | 82700  | Benzo(a)anthracene          | 0.62 ca       |              | mg/kg       |           |           |           |           |           |           | 0.017 J   |           |
|       | 82700  | Benzo(b)fluoranthana        | 0.002 ca      |              | mg/kg       |           |           |           |           |           |           | 0.018 U   |           |
|       | 82700  | Benzo(g h i)nervlene        | 0.02 Ca       |              | mg/Kg       |           |           |           |           |           |           | 0.036 J   |           |
|       | 8270C  | Benzo(k)fluoranthene        | 62 02         |              | mg/kg       |           |           |           |           |           |           | 0.019 J   |           |
|       | 8270C  | Benzoic acid                | 100000 max    |              | mg/kg       |           |           |           |           |           |           | U.UI9 J   |           |
|       | 8270C  | Benzyl alcohol              | 1833 nc       |              | mg/ko       |           |           |           |           |           |           | - K       |           |
|       | 8270C  | Bis(2-chloroethoxy)methane  |               |              | mg/kg       |           |           |           |           |           |           | 0.0365 II |           |
|       | 8270C  | Bis(2-chloroethyl) ether    | 0.22 ca       |              | mg/kg       |           |           |           |           |           |           | 0.0365 U  |           |
|       |        |                             |               |              | <u>v</u>    | I         |           |           |           |           |           | 0.0000 0  |           |

#### C-Block Quarry Summary of All Surface Soil (0-1 ft) Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

-

|              |                 |                             |              |              |              | 4-SO     | 1-SO          | 1-DUP     | 1-SO      | I-SO         | -SO       | OS-I      | I-SO      |
|--------------|-----------------|-----------------------------|--------------|--------------|--------------|----------|---------------|-----------|-----------|--------------|-----------|-----------|-----------|
| 1            |                 |                             |              |              |              | 010      | 02N           | 03N       | 03N       | 04N          | 05D       | DSN       | No<br>No  |
|              |                 |                             |              |              |              | ss-0     | 0-%           | 0-s       | ss-0      | -00<br>ss-00 | 0-s       | 0-s-0(    | s-0(      |
|              |                 |                             |              |              |              | BLs      | BLs           | BLs       | BLs       | BLs          | 3Ts       | 3Ls       | 3Ls       |
|              |                 |                             |              | 0            |              | 0        | 0             | 0         | 0         | 0            | <u> </u>  | Ū         | 5         |
|              |                 |                             |              | 5            | ample Date:  | 0.1.4    | 0.1.0         | 11/4/2004 | 11/4/2004 | 11/4/2004    | 11/4/2004 | 11/4/2004 | 11/4/2004 |
|              |                 |                             |              | Surface Sail | Inple Depth. | 0-111    | <u>0-1 ft</u> | 0-1π      | 0-1 π     | 0-0.5 ft     | 0-1 ft    | 0-1 ft    | 0-1 ft    |
|              |                 |                             | Region 9 PRG | Background   |              |          |               |           |           |              |           |           |           |
| Group        | Method          | Parameter                   | (Res Soil)   | Criteria     | Units        |          |               |           |           |              |           |           |           |
|              | 8270C           | Bis(2-ethylhexyl) phthalate | 35 02        |              | ma/ka        |          | 1             |           |           |              | <u> </u>  | 0.054 1   |           |
|              | 8270C           | Butylbenzyl phthalate       | 1222 nc      |              | mg/kg        |          |               | -         |           |              |           | 0.054 J   |           |
|              | 8270C           | Carbazole                   | 24 ca        |              | mo/kg        |          |               |           |           |              |           | 0.0303 U  |           |
|              | 8270C           | Chrysene                    | 62 ca        |              | mg/kg        | 1        |               |           |           |              |           | 0.09 0    |           |
|              | 8270C           | Dibenzo(a,h)anthracene      | 0.062 ca     |              | mg/kg        | 1        |               | 1         |           |              |           | 0.018 IT  |           |
|              | 8270C           | Dibenzofuran                | 15 nc        |              | mg/kg        |          |               |           |           |              |           | 0.0365 U  |           |
|              | 8270C           | Diethyl phthalate           | 4888 nc      |              | mg/kg        |          |               |           |           |              | [         | 0.0365 U  |           |
|              | 8270C           | Dimethyl phthalate          | 100000 max   |              | mg/kg        |          |               |           |           |              |           | 0.0365 U  | 1         |
|              | 8270C           | Di-n-butyl phthalate        | 611 nc       |              | mg/kg        |          | 1             |           |           |              |           | 0.09 U    |           |
|              | 8270C           | Di-n-octyl phthalate        | 244 nc       |              | mg/kg        |          |               |           |           |              |           | 0.18 U    |           |
|              | 8270C           | Fluoranthene                | 229 nc       |              | mg/kg        |          |               |           |           |              |           | 0.036 J   |           |
|              | 8270C           | Fluorene                    | 275 nc       |              | mg/kg        |          |               |           |           |              |           | 0.018 U   |           |
|              | 8270C           | Hexachlorobenzene           | 0.30 ca      |              | mg/kg        |          |               |           |           |              |           | 0.018 U   |           |
| 1            | 8270C           | Hexachlorobutadiene         | 6.2 ca       |              | mg/kg        |          |               | -         |           |              |           | 0.09 U    |           |
|              | 8270C           | Hexachlorocyclopentadiene   | 37 nc        | -            | mg/kg        |          |               |           |           |              |           | 0.55 U    |           |
|              | 8270C           | Hexachloroethane            | 35 ca        | -            | mg/kg        |          |               |           |           |              |           | 0.09 U    |           |
|              | 8270C           | Indeno(1,2,3-cd)pyrene      | 0.62 ca      |              | mg/kg        |          |               | -         |           |              |           | 0.018 U   |           |
|              | 8270C           | Isophorone                  | 512 ca       |              | mg/kg        |          |               |           |           |              |           | 0.09 U    |           |
|              | 8270C           | Naphthalene                 | 5.6 nc       |              | mg/kg        |          |               |           |           |              |           | 0.018 U   |           |
|              | 8270C           | Nitrobenzene                | 2 nc         |              | mg/kg        |          |               |           |           |              |           | 0.018 U   |           |
| 2<br>2       | 8270C           | n-Nitroso-di-n-propylamine  | 0.069 ca     |              | mg/kg        |          |               |           |           |              |           | 0.0365 U  |           |
|              | 8270C           | n-Nitrosodiphenylamine      | 99 ca        |              | mg/kg        |          |               |           |           |              |           | 0.018 U   |           |
|              | 8270C           | Pentachlorophenol           | 3.0 ca       |              | mg/kg        |          |               |           |           |              |           | 0.18 U    |           |
|              | 8270C           | Phenanthrene                |              |              | mg/kg        |          |               |           |           |              |           | 0.017 J   |           |
|              | 8270C           | Phenol                      | 1833 nc      |              | mg/kg        |          |               |           |           |              |           | 0.09 U    |           |
| Frantssierss | 82700           | Pyrene                      | 232 nc       |              | mg/kg        |          |               |           |           |              |           | 0.027 J   |           |
| Explosives   | 8330            | 1,3,5-1rinitrobenzene       | 183 nc       |              | mg/kg        | 0.049 U  | 0.049 U       | 0.0495 U  | 0.05 U    | 0.05 U       |           | 0.0495 U  | 0.05 U    |
|              | 8330            | 1,3-Dinitrobenzene          | 0.61 nc      |              | mg/kg        | 0.049 U  | 0.049 U       | 0.0495 U  | 0.05 U    | 0.05 U       |           | 0.0495 U  | 0.05 U    |
|              | 8330            | 2,4,0-1N1                   | 16 ca        |              | mg/kg        | 0.049 U  | 0.049 U       | 0.085 J   | 0.092 J   | 22           |           | 0.15      | 0.05 U    |
|              | 8330            | 2.6 Dinitrotoluono          | 12 nc        |              | mg/kg        | 0.049 U  | 0.049 U       | 0.0495 U  | 0.05 U    | 0.05 U       |           | 0.0495 U  | 0.05 U    |
|              | 8330            | 2.4 mino 4.6 Dinitrataluana | 0.1 nc       |              | mg/kg        | 0.1 U    | 0.1 U         | 0.1 U     | 0.1 U     | 0.1 U        |           | 0.1 U     | 0.1 U     |
|              | 8330            | 2-Nitrotoluene              | 0.88 001     |              | mg/kg        | 0.1 U    | 0.1 U         | 0.1 U     | 0.1.0     | 0.54         |           | 0.19 J    | 0.1 U     |
|              | 8330            | 3-Nitrotoluene              | 73 pc        |              | mg/kg        | 0.1 U    | 0.1 U         | 0.1 U     | 0.1 U     | U 1.0        |           | 0.1 U     | 0.1 U     |
|              | 8330            | 4-Amino-2 6-Dinitrotoluene  | 75 110       |              | ma/kg        | 0.1.0    | 0.145 U       | 0.1 U     | 0.1 0     | 0.1 0        |           | 0.1 0     | 0.1 U     |
|              | 8330            | 4-Nitrotoluene              | 12 02        |              | mg/kg        | 0.145 0  | 0.145 0       | 0.15 U    | 0.15 U    | 0.04         | · · · ·   | U.12 J    | 0.15 U    |
|              | 8330            | HMX                         | 306 nc       |              | mg/kg        | 0111     | 0.1 U         | 0.1 U     | 0.1 U     | 0.1 U        |           | 0.1 U     | 0.1 U     |
|              | 8330            | Nitrobenzene                | 2 nc         |              | mg/kg        | 0.049 11 | 0.049 11      | 0.0495 11 | 0.05 11   | 0.10         |           | 0.0495 TT | 0.1.0     |
|              | 8330            | RDX                         | 4.4 ca       |              | mg/kg        | 0111     | 0111          | 0111      | 01 11     | 0.05.0       |           | 0.0495 0  | 0.05 0    |
|              | 8330            | Tetryl                      | 61 nc        |              | mg/kg        | 0.195 U  | 0.195 U       | 0.195 U   | 02 11     | 0211         |           | 0 195 11  | 0.10      |
| Propellants  | 353.2 Modified  | Nitrocellulose              |              |              | mg/kg        |          | 0.1/0         | 0.195 0   | V.2 U     | 0.2.0        |           | 1 2       | V.2 U     |
| -            | 8332            | Nitroglycerine              | 35 ca        |              | mg/kg        |          |               |           |           |              |           | 0.25 IT   |           |
|              | SW8330 Modified | Nitroguanidine              | 611 nc       |              | mg/kg        |          |               |           |           |              |           | 0.125 11  |           |

#### C-Block Quarry Summary of All Surface Soil (0-1 ft) Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

|       |        | <b>、</b>  |                            |                                        |            | CBLss-001M-SO | CBLss-002M-SO | CBLss-003M-DUP | CBLss-003M-SO | CBLss-004M-SO | CBLss-005D-SO | CBLss-005M-SO | CBLss-006M-SO |
|-------|--------|-----------|----------------------------|----------------------------------------|------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|
|       |        |           |                            | Sa                                     | mple Date: | 11/4/2004     | 11/4/2004     | 11/4/2004      | 11/4/2004     | 11/4/2004     | 11/4/2004     | 11/4/2004     | 11/4/2004     |
|       |        |           | ······                     | San                                    | ple Depth: | 0-1 ft        | 0-1 ft        | 0-1 ft         | 0-1 ft        | 0-0.5 ft      | 0-1 ft        | 0-1 ft        | 0-1 ft        |
| Group | Method | Parameter | Region 9 PRG<br>(Res Soil) | Surface Soil<br>Background<br>Criteria | Units      |               |               |                |               |               |               |               |               |

Notes:

--- no background/PRG value is available for this analyte

blank cells indicated the analyte was a non-detect (with "U" qualifier) or analysis was not performed

mg/kg - means milligrams per Kilogram (parts per million - ppm)

PRG - preliminary remediation goals

nc - non-cancer basis, value is 1/10 the published PRG

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

U - analyte not detected

J - estimated value

R - result rejected during ADR validation

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style

If Result = or > PRG, then the value is presented with a bold style

If Result < PRG & Background, then the value is presented with a normal style.

|            |                |                                  |           |          |            |             |           |           |           |                 | *         |            |            |
|------------|----------------|----------------------------------|-----------|----------|------------|-------------|-----------|-----------|-----------|-----------------|-----------|------------|------------|
|            |                |                                  |           |          |            |             | -001M-SD  | -002D-DUP | -002D-SD  | -002M-SD        | -003M-SD  | -004M-DUP  | -004M-SD   |
|            |                |                                  |           |          |            |             | lLsc      | ILSC      | ILsd      | Lsd             | Lsd       | Lsd        | Lsd        |
|            |                |                                  |           |          |            |             | CB        | CB ·      | CB        | CB              | B         | E E        | CB         |
|            |                |                                  |           |          | S          | ample Date: | 11/9/2004 | 11/9/2004 | 11/9/2004 | 11/9/2004       | 11/8/2004 | 11/11/2004 | 11/11/2004 |
|            |                |                                  |           |          | Sa         | mple Depth: | 0-0.5 ft  | 0-0.5 ft  | 0-0.5 ft  | 0-0.5 ft        | 0-0.5 ft  | 0-0.5 ft   | 0-0.5 ft   |
|            |                |                                  |           |          | Sediment   |             |           |           |           |                 |           |            |            |
| Group      | Method         | Parameter                        | Region 91 | PRG      | Background | I Inde      |           |           |           |                 |           |            |            |
| Motolo     | 60100          |                                  | (Res So   | 11)      | Criteria   | Units       |           |           |           |                 |           |            |            |
| Iviciais   | 6010B          | Aluminum                         | /614      | nc       | 13900      | mg/kg       | 13000     |           |           | 10000           | 14000     | 12000      | 11000      |
|            | 6010B          | Barium                           | 0.39      | ca       | 19.5       | mg/kg       | 15        |           |           | 15              | 9.4       | 4.4        | 6.4        |
|            | 6010B          | Beryllium                        |           | nc       | 123        | mg/kg       | 52        |           |           | 63              | 77        | 96         | 82         |
|            | 6010B          | Cadmium                          | 37        | ne       | 0.00       | mg/kg       | 0.78      |           |           | 0.77            | 0.76      | 0.8        | 1.2        |
|            | 6010B          | Calcium                          |           | - 110    | 5510       | mg/kg       | 210       |           |           | 0.12            | 0.215 0   | 0.19 U     | 0.21 0     |
|            | 6010B          | Chromium                         | 1000      | nc       | 18.1       | mg/kg       | 15        |           |           | 2200            | 910       | 380        | 560        |
|            | 6010B          | Cobalt                           | 30        | ca       | 91         | mg/kg       | 93        |           |           | 14              | 10        | 14         | 13         |
|            | 6010B          | Copper                           | 313       | nc       | 27.6       | mg/kg       | 93        |           |           | 14              | 18        | 3.6        | 2.9        |
|            | 6010B          | Iron                             | 2346      | nc       | 28200      | mg/kg       | 26000     |           |           | 23000           | 21000     | 11000      | 15000      |
|            | 6010B          | Lead                             | 400       | pbk      | 27.4       | mg/kg       | 15        |           |           | 22              | 15        | 11000      | 21         |
|            | 6010B          | Magnesium                        | [n]       |          | 2760       | mg/kg       | 1600      |           |           | 2100            | 2300      | 1500       | 1200       |
|            | 6010B          | Manganese                        | 176       | nc       | 1950       | mg/kg       | 970       |           |           | 550             | 200       | 76         | 81         |
|            | 6010B          | Nickel                           | 156       | nc       | 17.7       | mg/kg       | 11        |           |           | 16              | 17        | 11         | 11         |
| 1          | 6010B          | Potassium                        | [n]       |          | 1950       | mg/kg       | 950       |           |           | 780             | 1100      | 860        | 780        |
|            | 6010B          | Selenium                         | 39        | nc       | 1.7        | mg/kg       | 1.1       |           |           | 0.6             | 1         | 0.85       | 0.97       |
|            | 6010B          | Silver                           | 39        | nc       | 0.00       | mg/kg       | 0.45 U    |           |           | 0.75 U          | 0.85 U    | 0.75 U     | 0.85 U     |
|            | 6010B          | Sodium                           | [n]       |          | 112        | mg/kg       | 350       |           |           | 220 U           | 240       | 310        | 350        |
|            | 6010B          | Vanadium                         | 7.8       | nc       | 26.1       | mg/kg       | - 29      |           |           | 20              | 27        | 25         | 24         |
|            | 0010B          |                                  | 2346      | nc       | 532        | mg/kg       | 39        |           |           | 62              | 60        | 47         | 45         |
|            | 7041           | Hawayalant Chamium               | 3.1       | nc       | 0.00       | _mg/kg      | 0.65 U    |           |           | 0.95 U          | 1.1 U     | 1.05 U     | 1.15 U     |
|            | 74714          | Mercury                          | 30        | ca       | 27.6       | mg/kg       | - R       |           |           | 1.2 U           | 1.5 U     | 1.4 U      | 1.45 U     |
|            | 7841           | Thallium                         | 2.3       | nc       | 0.06       | mg/kg       | 0.019     |           |           | 0.015           | 0.062     | 0.054      | 0.0225 U   |
| Pesticides | 8081A          | 4 4'-DDD                         | 2.4       | 10       | 0.89       | mg/kg       | 0.18      |           |           | 0.415 U         | 0.64      | 0.45 U     | 0.5 U      |
|            | 8081A          | 4 4'-DDE                         | 17        | ca       |            | mg/kg       |           |           |           | 0.012 U         |           |            |            |
|            | 8081A          | 4,4'-DDT                         | 1.7       | ca       |            | mg/kg       |           |           |           | 0.014 U         | <u> </u>  |            |            |
|            | 8081A          | Aldrin                           | 0.029     | ca       |            | mg/kg       |           |           |           | 0.012 U         |           |            |            |
|            | 8081A          | alpha-BHC                        | 0.09      | sat      |            | mg/kg       |           |           |           | 0.012 U         |           |            |            |
|            | 8081A          | alpha-Chlordane                  | 1.6       | ca       |            | mg/kg       |           |           |           | 0.012 U         |           |            |            |
|            | 8081A          | beta-BHC                         | 0.32      | ca       |            | mg/kg       |           |           |           | 0.012 U         |           |            | ·          |
|            | 8081A          | delta-BHC                        |           |          |            | mg/kg       |           |           |           | 0.012 U         |           |            |            |
|            | 8081A          | Dieldrin                         | 0.030     | ca       |            | mg/kg       |           |           |           | 0.012 U         |           |            |            |
|            | 8081A          | Endosulfan I                     | 37        | nc       |            | mg/kg       |           |           |           | 0.012 UJ        |           |            |            |
|            | 8081A          | Endosulfan II                    | 37        | nc       |            | mg/kg       |           |           |           | 0.012 U         |           |            |            |
|            | 8081A          | Endosulfan sulfate               | 37        | nc       |            | mg/kg       |           |           |           | 0.012 U         |           |            |            |
|            | 8081A          | Endrin                           | 1.8       | nc       |            | mg/kg       |           |           |           | 0.012 U         |           |            |            |
|            | 8081A          | Endrin aldehyde                  |           |          |            | mg/kg       |           |           |           | 0.012 U         |           |            | l          |
|            | 0001A          |                                  |           |          |            | mg/kg       |           |           |           | 0.012 U         |           |            |            |
|            | 8081 A         | gamma Chlordona                  | 0.44      | ca       |            | mg/kg       |           |           |           | 0.012 U         |           |            |            |
|            | 10001A         | igamma-Cinordane                 | 1.0       | ca       |            | mg/kg       |           |           |           | 0.012 U         |           |            |            |
|            | 80814          | Hentachior                       | [ Λ11     | <u>^</u> |            | m ~ /       |           |           |           | A A 4 4 4 4 4 1 |           |            |            |
|            | 8081A<br>8081A | Heptachlor<br>Heptachlor epoxide | 0.11      | ca       |            | mg/kg       |           |           |           | 0.012 UJ        |           |            |            |

|       |        |                            |                   |            |             | M-SD      | D-DUP      | D-SD      | M-SD      | M-SD      | M-DUP    | M-SD     |
|-------|--------|----------------------------|-------------------|------------|-------------|-----------|------------|-----------|-----------|-----------|----------|----------|
|       |        |                            |                   |            |             | 001       | 002        | 002]      | 0021      | 0031      | 0041     | 0041     |
|       |        |                            |                   |            |             | -ps       | -ps        | -ps       | ps-l      | sd-(      | )-ps     | sd-C     |
|       |        |                            |                   |            |             | BL        | BL         | BL        | BL        | BL        | BL       | BL       |
|       |        |                            |                   | S          | ample Date  | 11/9/2004 | 11/9/2004  | 11/9/2004 | 11/0/2004 | 11/8/2004 | 0        | 0        |
|       |        |                            |                   | Sa         | mple Depth: | 0-0.5 ft  | 0-0.5 ft   | 0-0.5 ft  | 0-0.5 ft  | 0-0.5.#   | 0-0.5.0  | 0.05#    |
|       |        |                            |                   | Sediment   |             | 0 010 10  | 0000       | 0.0.0 11  | 0 0.0 1   | 0-0.5 11  | 0-0.5 11 | 0-0.5 II |
|       |        |                            | Region 9 PRG      | Background |             |           |            |           |           |           |          |          |
| Group | Method | Parameter                  | (Res Soil)        | Criteria   | Units       |           |            |           |           |           |          |          |
|       | 8081A  | Toxaphene                  | 0.44 ca           |            | mg/kg       |           |            |           | 0.115 U   |           |          |          |
| PCBs  | 8082   | Aroclor 1016               | 0.39 nc           |            | mg/kg       |           |            |           | 0.023 U   |           |          |          |
|       | 8082   | Aroclor 1221               | 0.22 ca           |            | mg/kg       |           |            |           | 0.023 U   |           |          |          |
|       | 8082   | Aroclor 1232               | 0.22 ca           |            | mg/kg       |           |            |           | 0.0115 U  |           |          |          |
|       | 8082   | Aroclor 1242               | 0.22 ca           |            | mg/kg       |           |            |           | 0.023 U   |           |          |          |
|       | 8082   | Aroclor 1248               | 0.22 ca           |            | mg/kg       |           |            |           | 0.0115 U  |           |          |          |
|       | 8082   | Aroclor 1254               | 0.22 ca           |            | mg/kg       |           |            |           | 0.023 U   |           |          |          |
|       | 8082   | Aroclor 1260               | 0.22 ca           |            | mg/kg       |           |            |           | 0.023 U   |           |          | -        |
| VOCs  | 8260B  | 1,1,1-Trichloroethane      | 1200 sat          |            | mg/kg       | -         | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | 1,1,2,2-Tetrachloroethane  | 0.41 ca           |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          | -        |
|       | 8260B  | 1,1,2-Trichloroethane      | 0.73 ca           |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8200B  | 1,1-Dichloroethane         | 51 nc             |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | 1,1-Dichloroethene         | 12 nc             |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | 1,2-Diblomoethane          | 0.032 ca          |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           | -         |          |          |
|       | 8260B  | 1,2-Dichloroethene (total) | 0.28 ca           |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | 1.2-Dichloropropage        | 0.9 110           |            | mg/kg       |           | 0.0065 U   | 0.007 U   |           |           |          |          |
|       | 8260B  | 2-Butanone                 | 2231 nc           |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | 2-Hexanone                 | 530 nc            |            | mg/kg       |           | 0.010      | 0.011 0   |           |           |          |          |
|       | 8260B  | 4-Methyl-2-pentanone       | 528 nc            |            | mg/kg       |           | 0.0005 U   | 0.007 U   |           |           |          |          |
|       | 8260B  | Acetone                    | 1412 nc           |            | mg/kg       |           | 0.01 II    | 0.007 0   |           |           |          |          |
|       | 8260B  | Benzene                    | 0.64 ca           |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | Bromochloromethane         |                   |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | Bromodichloromethane       | 0.82 ca           |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | Bromoform                  | 62 ca             |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | Bromomethane               | 0.39 nc           |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | Carbon disulfide           | 36 nc             |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | Carbon tetrachloride       | 0.25 ca           |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | Chlorobenzene              | 15 nc             |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | Chloroethane               | 3.0 ca            |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8200B  | Chloromothene              | 0.22 ca           |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | Chioromethane              | 4.7 nc            |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | cis-1,2-Dichloropropene    | 4.3 nc            |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | Dibromochloromethane       | 0.78 Ca           |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | Fthylbenzene               | 1.1 Ca<br>305 sat |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | m&p-Xylenes                | 27 nc             |            | mg/kg       |           | 0.00525 U  | 0.0030 U  |           |           |          |          |
|       | 8260B  | Methylene chloride         | 9.1 ca            |            | mg/kg       |           | 0.0065 11  | 0.007 0   |           |           |          |          |
|       | 8260B  | o-Xylene                   | 27 nc             |            | mg/kg       |           | 0.00325 11 | 0.007.0   |           |           |          |          |
|       | 8260B  | Styrene                    | 1700 sat          |            | mg/kg       |           | 0.00325 U  | 0.0036 11 |           |           |          |          |
|       | 8260B  | Tetrachloroethene          | 0.48 ca           |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | Toluene                    | 520 sat           |            | mg/kg       |           | 0.00325 U  | 0.0036 U  |           |           |          |          |
|       | 8260B  | Total Xylenes              | 27 nc             |            | mg/kg       |           | 0.0065 U   | 0.007 U   |           |           |          |          |
|       |        |                            |                   |            |             | l.        |            |           |           |           |          |          |

|     |        |                              |               |          |             | QS-A      | -DUP      | OS-0      | 4-SD      | 4-SD      | 4.DUP      | QS-J       |
|-----|--------|------------------------------|---------------|----------|-------------|-----------|-----------|-----------|-----------|-----------|------------|------------|
|     |        |                              |               |          |             | 010       | 021       | 021       | 02N       | 031       | 40         | 44         |
|     |        |                              |               |          |             | 0-p       | O-B       | 0-5       | d-00      | 0-        | 00-        | 00-1       |
|     |        |                              |               |          |             | 3Ls       | 3Ls       | 3Ls       | 3Ls       | Ts        | ILse       | IL Se      |
|     |        |                              |               |          |             | Ū         | Ü         | 5         | CE        | C         | CE         | CE         |
|     |        |                              |               | S        | ample Date: | 11/9/2004 | 11/9/2004 | 11/9/2004 | 11/9/2004 | 11/8/2004 | 11/11/2004 | 11/11/2004 |
|     |        |                              |               | Sa       | mple Depth: | 0-0.5 ft   | 0-0.5 ft   |
|     |        |                              | Design 0 DDC  | Sediment |             |           |           |           |           |           | · · · ·    |            |
| oup | Method | Parameter                    | (Res Soil)    | Criteria | Unito       |           |           |           |           |           |            |            |
|     | 8260B  | trong 1.2 Dicklorgothers     | (1(0) 501)    | Cilicita | Units       |           |           |           |           |           |            |            |
|     | 8260B  | trans 1.2 Dichloropronono    | 0.79 nc       |          | mg/kg       |           | 0.00325 U | 0.0036 U  |           |           |            |            |
|     | 8260B  | Trichloroethene              | 0.78 ca       |          | mg/kg       |           | 0.00325 U | 0.0036 U  |           |           |            | -          |
|     | 8260B  | Vinyl chloride               | 0.033 Ca      |          | mg/kg       |           | 0.00325 U | 0.0036 U  |           |           |            |            |
| OCs | 8270C  | 1 2 4-Trichlorobenzene       | 62 0          |          | mg/kg       |           | 0.00325 0 | 0.0036 U  | 0.10.17   |           |            |            |
| 000 | 8270C  | 1.2-Dichlorobenzene          | 600 sat       |          | mg/kg       |           |           |           | 0.12 U    |           |            |            |
|     | 8270C  | 1.3-Dichlorobenzene          | 53 pc         |          | mg/kg       |           |           |           | 0.12 U    |           |            |            |
|     | 8270C  | 1.4-Dichlorobenzene          | 3.4 ca        |          | mg/kg       |           |           |           | 0.12 U    |           |            |            |
|     | 8270C  | 2,2-oxybis (1-chloropropane) | 2.9 ca        |          | mg/kg       |           |           |           | 0.12 U    |           |            |            |
|     | 8270C  | 2,4,5-Trichlorophenol        | 611 nc        |          | mg/kg       |           |           |           | 0.12 0    |           |            |            |
|     | 8270C  | 2,4,6-Trichlorophenol        | 0.61 nc       |          | mg/kg       |           |           |           | 0.12 U    |           |            |            |
|     | 8270C  | 2,4-Dichlorophenol           | 18 nc         |          | mg/kg       |           |           |           | 0.235 U   |           |            |            |
|     | 8270C  | 2,4-Dimethylphenol           | 122 nc        |          | mg/kg       |           |           |           | 0.235 U   |           |            |            |
|     | 8270C  | 2,4-Dinitrophenol            | 12 nc         |          | mg/kg       |           |           |           | - R       |           |            |            |
|     | 8270C  | 2,4-Dinitrotoluene           | 12 nc         |          | mg/kg       |           |           |           | 0.0235 U  |           |            |            |
|     | 8270C  | 2,6-Dinitrotoluene           | 6.1 nc        |          | mg/kg       |           |           |           | 0.0235 U  |           |            |            |
|     | 8270C  | 2-Chloronaphthalene          | 494 nc        |          | mg/kg       |           |           |           | 0.12 U    |           |            |            |
|     | 8270C  | 2-Chlorophenol               | 6.3 nc        |          | mg/kg       |           |           |           | 0.12 U    |           |            |            |
|     | 8270C  | 2-Methylnaphthalene          |               |          | mg/kg       |           |           |           | 0.0235 U  |           |            |            |
|     | 8270C  | 2-Methylphenol               | <u>306 nc</u> |          | mg/kg       |           |           |           | 0.048 U   |           |            |            |
|     | 8270C  | 2-Nitroaniline               | 18.3 nc       |          | mg/kg       |           |           |           | 0.12 U    |           |            |            |
|     | 82700  | 2-Nitrophenol                |               |          | mg/kg       |           |           |           | 0.235 U   |           |            |            |
|     | 8270C  | 2 Nitesen iline              | <u>1.1 ca</u> |          | mg/kg       |           |           |           | 0.12 U    |           |            |            |
|     | 82700  | 3-Nitroaniline               | 1.8 nc        |          | mg/kg       |           |           |           | 0.48 U    |           |            |            |
|     | 8270C  | 4,0-Dillito-2-methylphenol   | 0.61 nc       |          | mg/kg       |           |           |           | 0.48 U    |           |            |            |
|     | 8270C  | 4-Chloro-3-methylphenol      |               |          | mg/kg       |           |           |           | 0.12 U    |           |            |            |
|     | 8270C  | 4-Chloroaniline              | 24 pc         |          | mg/kg       |           |           |           | 0.235 U   |           |            |            |
|     | 8270C  | 4-Chlorophenyl phenyl ether  | 24 110        |          | mg/kg       |           |           |           | 0.48 U    |           |            |            |
|     | 8270C  | 4-Methylphenol               | 31 nc         |          | mg/kg       |           |           |           | 0.12 0    |           |            |            |
|     | 8270C  | 4-Nitroaniline               | 23 ca         |          | mg/kg       |           |           |           | 0.048 U   |           |            |            |
|     | 8270C  | 4-Nitrophenol                |               |          | mg/kg       |           |           |           | 0.48 U    |           |            |            |
|     | 8270C  | Acenaphthene                 | 368 nc        |          | mg/kg       |           |           |           | 0.0235 U  |           | ·          |            |
|     | 8270C  | Acenaphthylene               |               |          | mg/kg       |           |           |           | 0.0235 U  |           |            |            |
|     | 8270C  | Anthracene                   | 2189 nc       |          | mg/kg       |           |           |           | 0.0235 U  |           |            |            |
|     | 8270C  | Benzo(a)anthracene           | 0.62 ca       |          | mg/kg       |           |           |           | 0.0235 U  |           |            |            |
|     | 8270C  | Benzo(a)pyrene               | 0.062 ca      |          | mg/kg       |           |           |           | 0.0235 U  |           |            |            |
|     | 8270C  | Benzo(b)fluoranthene         | 0.62 ca       |          | mg/kg       |           |           |           | 0.014 J   |           |            |            |
|     | 8270C  | Benzo(g,h,i)perylene         | -             |          | mg/kg       |           |           |           | 0.0235 U  |           |            |            |
|     | 8270C  | Benzo(k)fluoranthene         | 6.2 ca        |          | mg/kg       |           |           |           | 0.0235 U  |           |            |            |
|     | 8270C  | Benzoic acid                 | 100000 max    |          | mg/kg       |           |           |           | - R       |           |            |            |
|     | 8270C  | Benzyl alcohol               | 1833 nc       |          | mg/kg       |           |           |           | 0.48 U    |           |            |            |
|     | 8270C  | Bis(2-chloroethoxy)methane   |               |          | mg/kg       |           |           |           | 0.048 U   |           |            |            |
|     | 8270C  | Bis(2-chloroethyl) ether     | 0.22 ca       |          | mg/kg       |           |           |           | 0.048 U   |           |            |            |

| <b>Г</b>                                |                |                             |          |          |            |             |            |             |            |            |                                               |                 |            |
|-----------------------------------------|----------------|-----------------------------|----------|----------|------------|-------------|------------|-------------|------------|------------|-----------------------------------------------|-----------------|------------|
|                                         |                |                             |          |          |            |             |            |             |            |            |                                               |                 |            |
|                                         |                |                             |          |          |            |             | sd-001M-SD | sd-002D-DUP | sd-002D-SD | sd-002M-SD | sd-003M-SD                                    | sd-004M-DUP     | sd-004M-SD |
|                                         |                |                             |          |          |            |             | E I        | BL          | BL         | BL         | BL                                            | BL              | BL         |
|                                         |                |                             |          |          | s          | ample Date: | 11/0/2004  | 11/0/2004   | 11/0/2004  | 11/0/2004  | 0                                             | 0               | 0          |
|                                         |                |                             |          |          | 5<br>\$9   | mnle Denth  | 0.05.0     | 0.05.0      | 11/9/2004  | 11/9/2004  | 11/8/2004                                     | 11/11/2004      | 11/11/2004 |
|                                         |                |                             | 1        |          | Sediment   |             | 0-0.5 11   | 0-0.5 11    | 0-0.5 ft   | 0-0.5 π    | 0-0.5 π                                       | <u>0-0.5 ft</u> | 0-0.5 ft   |
|                                         |                |                             | Region 9 | PRG      | Background |             |            |             |            |            |                                               |                 |            |
| Group                                   | Method         | Parameter                   | (Res So  | il)      | Criteria   | Units       |            |             |            |            |                                               |                 |            |
|                                         | 8270C          | Bis(2-ethylhexyl) phthalate | 35       |          |            | malka       |            |             |            | 0.10.11    | +                                             | +               | +          |
|                                         | 8270C          | Butylbenzyl phthalate       | 1222     | nc       |            | mg/kg       |            |             |            | 0.12 U     | <u>                                      </u> | +               |            |
|                                         | 8270C          | Carbazole                   | 24       | ca       |            | mg/kg       |            |             |            | 0.048 U    | <u> </u>                                      |                 | +          |
|                                         | 8270C          | Chrysene                    | 62       | ca       |            | mg/kg       |            |             |            | 0.12 0     |                                               | +               |            |
|                                         | 8270C          | Dibenzo(a,h)anthracene      | 0.062    | ca       |            | mg/kg       |            |             |            | 0.0235 U   | 1                                             | <u> </u>        |            |
|                                         | 8270C          | Dibenzofuran                | 15       | nc       |            | mg/kg       |            |             |            | 0.0233 0   | <u> </u>                                      | <u> </u>        | +          |
|                                         | 8270C          | Diethyl phthalate           | 4888     | nc       | ,          | mg/kg       |            |             |            | 0.048 U    |                                               | 1               |            |
|                                         | 8270C          | Dimethyl phthalate          | 100000   | max      |            | mg/kg       |            |             |            | 0.048 U    | <u> </u>                                      | +               | +          |
| 1                                       | 8270C          | Di-n-butyl phthalate        | 611      | nc       |            | mg/kg       |            |             |            | 0.12 U     | <u> </u>                                      |                 |            |
|                                         | 8270C          | Di-n-octyl phthalate        | 244      | nc       |            | mg/kg       |            |             |            | 0 235 U    |                                               |                 |            |
|                                         | 8270C          | Fluoranthene                | 229      | nc       | ·          | mg/kg       |            |             |            | 0.017 J    |                                               | <b></b>         |            |
|                                         | 8270C          | Fluorene                    | 275      | nc       |            | mg/kg       |            |             |            | 0.0235 U   |                                               |                 | <u>+</u>   |
|                                         | 8270C          | Hexachlorobenzene           | 0.30     | ca       |            | mg/kg       |            |             |            | 0.0235 U   |                                               |                 |            |
|                                         | 8270C          | Hexachlorobutadiene         | 6.2      | ca       |            | mg/kg       |            |             |            | 0.12 U     |                                               |                 |            |
|                                         | 8270C          | Hexachlorocyclopentadiene   | 37       | nc       |            | mg/kg       |            |             |            | 0.7 U      |                                               |                 |            |
|                                         | 8270C          | Hexachloroethane            | 35       | ca       |            | mg/kg       |            |             |            | 0.12 U     |                                               |                 | 1          |
|                                         | 8270C          | Indeno(1,2,3-cd)pyrene      | 0.62     | ca       |            | mg/kg       |            |             |            | 0.0235 U   |                                               |                 |            |
|                                         | 8270C          | Isophorone                  | 512      | ca       |            | mg/kg       |            |             |            | 0.12 U     |                                               |                 |            |
|                                         | 8270C          | Naphthalene                 | 5.6      | nc       |            | mg/kg       |            |             |            | 0.0235 U   |                                               |                 | 1          |
|                                         | 8270C          | Nitrobenzene                | 2        | nc       |            | mg/kg       |            |             |            | 0.0235 U   |                                               |                 |            |
|                                         | 8270C          | n-Nitroso-di-n-propylamine  | 0.069    | ca       |            | mg/kg       |            |             |            | 0.048 U    |                                               |                 |            |
|                                         | 8270C          | n-Nitrosodiphenylamine      | 99       | ca       |            | mg/kg       |            |             |            | 0.0235 U   |                                               |                 |            |
|                                         | 8270C          | Pentachlorophenol           | 3.0      | ca       |            | mg/kg       |            |             |            | 0.235 U    |                                               |                 |            |
|                                         | 8270C          | Phenanthrene                |          |          |            | mg/kg       |            |             |            | 0.036 U    |                                               |                 |            |
|                                         | 8270C          | Phenol                      | 1833     | nc       |            | mg/kg       |            |             |            | 0.12 U     |                                               |                 |            |
| <b>D</b> 1 1                            | 8270C          | Pyrene                      | 232      | nc       |            | mg/kg       |            |             |            | 0.036 U    |                                               |                 |            |
| Explosives                              | 8330           | 1,3,5-Trinitrobenzene       | 183      | nc       |            | mg/kg       | 0.05 U     |             |            | 0.0495 U   | 0.0495 U                                      | 0.049 U         | 0.0495 U   |
|                                         | 8330           | 1,3-Dinitrobenzene          | 0.61     | nc       |            | mg/kg       | 0.05 U     |             |            | 0.0495 U   | 0.0495 U                                      | 0.049 U         | 0.0495 U   |
|                                         | 8330           | 2,4,6-1N1                   | 16       | ca       |            | mg/kg       | 0.05 U     |             |            | 0.0495 U   | 0.0495 U                                      | 0.049 U         | 0.0495 U   |
|                                         | 8330           | 2,4-Dinitrotoluene          | 12       | nc       |            | mg/kg       | 0.05 U     |             |            | 0.0495 U   | 0.0495 U                                      | 0.049 U         | 0.0495 U   |
|                                         | 8330           | 2,0-Dinitrotoluene          | 6.1      | nc       |            | mg/kg       | 0.1 U      |             |            | 0.1 U      | 0.1 U                                         | 0.1 U           | 0.1 U      |
|                                         | 8220           | 2-Amino-4,6-Dinitrotoluene  |          |          |            | mg/kg       | 0.1 U      |             |            | 0.1 U      | 0.1 U                                         | 0.1 U           | 0.1 U      |
|                                         | 8330           | 2 Nitrotoluono              | 0.88     | ca       |            | mg/kg       | 0.1 U      |             |            | 0.1 U      | 0.1 U                                         | 0.1 U           | 0.1 U      |
|                                         | 8330           | 4 Amino 2 6 Dinitrata huma  | /3       | nc       |            | mg/kg       | 0.1 U      |             |            | 0.1 U      | 0.1 U                                         | 0.1 U           | 0.1 U      |
|                                         | 8330           | 4-Allino-2,0-Dimurotoiuene  |          |          |            | mg/kg       | 0.15 U     |             |            | 0.15 U     | 0.15 U                                        | 0.145 U         | 0.15 U     |
|                                         | 8330           | HMY                         | 206      | ca       |            | mg/kg       | 0.1 U      |             |            | 0.1 U      | 0.1 U                                         | 0.1 U           | 0.1 U      |
|                                         | 8330           | Nitrohenzene                | 300      | nc       |            | mg/Kg       | 0.1 U      |             |            | 0.1 U      | 0.1 U                                         | 0.1 U           | 0.1 U      |
|                                         | 8330           | RDX                         |          | nc       |            | mg/kg       | 0.05 U     |             |            | 0.0495 U   | 0.0495 U                                      | 0.049 U         | 0.0495 U   |
|                                         | 8330           | Tetryl                      | 61       | ca<br>no |            | mg/kg       | 0.1 U      |             |            | 0.1 U      | 0.1 U                                         | 0.1 U           | 0.1 U      |
| Propellants                             | 353 2 Modified | Nitrocellulose              | 01       | ne       |            | mg/Kg       | 0.2 0      |             |            | 0.2 U      | 0.195 U                                       | 0.195 U         | 0.2 U      |
| - · · · · · · · · · · · · · · · · · · · | 555.2 Woullou  | 1 THE OCCITATION            |          |          |            | mg/Kg       |            |             |            | 0.405 U    |                                               |                 |            |
|                                         | 8332           | Nitroglycerine              | 25       | 001      | 1          | ma/1        | 1          |             |            | 000        | 1                                             |                 | •          |

#### C-Block Quarry Summary of All Sediment Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

|       |        |           |                            |                                    |             | OIM-SD    | 002D-DUP  | 02D-SD    | 02M-SD    | 03M-SD    | 04M-DUP    | 04M-SD     |
|-------|--------|-----------|----------------------------|------------------------------------|-------------|-----------|-----------|-----------|-----------|-----------|------------|------------|
|       |        |           |                            |                                    |             | CBLsd-(   | CBLsd-(   | CBLsd-0   | CBLsd-0   | CBLsd-0   | CBLsd-0    | CBLsd-0    |
|       |        |           |                            | Sa                                 | ample Date: | 11/9/2004 | 11/9/2004 | 11/9/2004 | 11/9/2004 | 11/8/2004 | 11/11/2004 | 11/11/2004 |
|       |        |           |                            | San                                | nple Depth: | 0-0.5 ft   | 0-0.5 ft   |
| Group | Method | Parameter | Region 9 PRG<br>(Res Soil) | Sediment<br>Background<br>Criteria | Units       |           |           |           |           |           |            |            |

Notes:

-- - no background/PRG value is available for this analyte

blank cells indicated the analyte was a non-detect (with "U" qualifier) or analysis was not performed

mg/kg - means milligrams per Kilogram (parts per million - ppm)

PRG - preliminary remediation goals

nc - non-cancer basis, value is 1/10 the published PRG

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

U - analyte not detected

J - estimated value

R - result rejected during ADR validation

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style.

If Result = or > PRG, then the value is presented with a bold style

If Result < PRG & Background, then the value is presented with a normal style

#### C-Block Quarry Summary of All Surface Water Results RVAAP 14 AOC Characterization

Ravenna Army Ammunition Plant, Ravenna, Ohio

| 1          |        |                     |        |        |               |               | -           |            |           |           |            |
|------------|--------|---------------------|--------|--------|---------------|---------------|-------------|------------|-----------|-----------|------------|
|            |        |                     |        |        |               |               |             |            |           |           |            |
|            |        |                     |        |        |               |               | ≥           | 45         | 3         | 8         | >          |
|            |        |                     |        |        |               |               | 1-S'        | 2-D        | 2-S1      | 3-SV      | 1-SV       |
|            |        |                     |        |        |               |               | 00-         | 00-        | l õ       | 00        | 00         |
|            |        |                     |        |        |               |               | Lsw         | L_SW       | - Sw      | MS        | NS N       |
|            |        |                     |        |        |               |               | 8           | B          | CB        | E I       | CBI        |
|            |        |                     |        |        | S             | ample Date:   | : 11/9/2004 | 11/9/2004  | 11/9/2004 | 11/8/2004 | 11/11/2004 |
|            |        |                     |        |        | Sa            | mple Depth:   | surface     | surface    | surface   | surface   | surface    |
|            |        |                     |        |        | Surface Water |               |             |            |           |           |            |
| Group      | Method | Parameter           | Region | 9 PRG  | Background    |               | l           |            |           |           |            |
| Metals     | 6010B  | Aluminum            | (1ap)  | water) | Criteria      | Units         |             |            |           |           |            |
| 1010talis  | 6010B  | Barium              | 2555   | nc nc  | 3370          | ug/l          | 480         | 160        | 160       | 350       | 200        |
|            | 6010B  | Bervllium           | 73     | nc     | 47.3          | ug/l          | 49          | 28         | 32        | 120       | 36         |
|            | 6010B  | Cadmium             | 18     | nc     | 0.00          | ng/l          | 1 1 11      | 10         |           |           | 10         |
|            | 6010B  | Calcium             | [n]    |        | 41400         | ug/1          | 4500        | 11000      | 11000     | 17000     | 10         |
|            | 6010B  | Chromium            | 109    | nc     | 0.00          | ug/l          | 1.8         | 5 U        | 5 U       | 2         | 5 11       |
|            | 6010B  | Cobalt              | 730    | nc     | 0.00          | ug/l          | 4.7         | 1.9        | 2         | 9         | 3.4        |
|            | 6010B  | Copper              | 1460   | nc     | 7.9           | ug/l          | 4.5         | 2.3        | 2.1       | 3.4       | 5 U        |
|            | 6010B  | Iron                | 10950  | ) nc   | 2560          | ug/l          | 7200        | 2700       | 2900      | 23000     | 4500       |
|            | 6010B  | Magnesium           | [n]    |        | 10800         | ug/l          | 1700        | 2300       | 2300      | 3500      | 1500       |
|            | 6010B  | Manganese           | 876    | nc     | 391           | ug/l          | 2400        | 1400       | 1400      | 4100      | 690        |
|            | 6010B  | Detection           | 730    | nc     | 0.00          | ug/l          | 7.4         | <u>5 U</u> | 5 U       | 3.9       | 3          |
|            | 6010B  | Selenium            | [n]    |        | 3170          | ug/l          | 6700        | 4400       | 4500      | 12000     | 1400       |
|            | 6010B  | Silver              | 182    | nc     | 0.00          | ug/l          | 7.5 U       | 7.5 U      | 7.5 U     | 7.5 U     | 7.5 U      |
|            | 6010B  | Sodium              |        | uc     | 21300         | ug/1          | <u>50</u>   | <u> </u>   | <u> </u>  | 50        | 5 U        |
|            | 6010B  | Vanadium            | 36     | nc     | 0.00          | ug/I          | 730 0       | 750 0      | 750 U     | 750 U     | 1600       |
|            | 6010B  | Zinc                | 10950  | nc     | 42            | ng/1          | 23          | 15 11      | 15 11     | 10        | <u> </u>   |
|            | 7041   | Antimony            | 15     | nc     | 0.00          | ug/1          | 3.75 U      | 3.75 U     | 3 75 11   | 3 75 11   | 3 75 11    |
|            | 7060A  | Arsenic             | 0.045  | ca     | 3.2           | ug/l          | 11          | 4          | 4.4       | 11        | <u> </u>   |
|            | 7196A  | Hexavalent Chromium | 109    | nc     | 7.9           | ug/l          | 5 U         | 5 U        | 5 U       | 22        | 5 UI       |
|            | 7421   | Lead                | 15     | mcl    | 0.00          | ug/l          | 1           | 1.5 U      | 1.5 U     | 1.5 U     | 1.5 U      |
|            | 7470A  | Mercury             | 11     | nc     | 0.00          | ug/l          | 0.066 -     | 0.1 U      | 0.1 U     | 0.056     | 0.1 U      |
| D          | 7841   | Thallium            | 2.4    | nc     | 0.00          | ug/l          | 2 U         | 2 U        | 1.7       | 2 U       | 2 U        |
| Pesticides | 8081A  | 4,4'-DDD            | 0.28   | ca     |               | ug/l          | 0.11 U      | 0.055 U    | 0.055 U   | 0.105 U   | 0.105 U    |
|            | 8081A  | 4,4-DDE             | 0.20   | ca     |               | ug/l          | 0.1 U       | 0.0485 U   | 0.05 U    | 0.095 U   | 0.095 U    |
|            | 8081 A | 4,4-DD1             | 0.20   | ca     |               | ug/l          | 0.15 U      | 0.075 U    | 0.075 U   | 0.145 U   | 0.145 U    |
|            | 8081A  | alpha-BHC           | 0.0040 | ca     |               | ug/l          | 0.1 U       | 0.0485 U   | 0.05 U    | 0.095 U   | 0.095 U    |
|            | 8081A  | alpha-Chlordane     | 0.011  | 110    |               | ug/1          | 0.15 U      | 0.075 U    | 0.075 U   | 0.145 U   | 0.145 U    |
|            | 8081A  | beta-BHC            | 0.037  | ca     |               | ng/l          | 0.0495 0    | 0.0245 U   | 0.025 U   | 0.048 U   | 0.048 U    |
|            | 8081A  | delta-BHC           |        |        |               | 119/1         | 0.1 U       | 0.0485 U   | 0.05 U    | 0.095 U   | 0.095 U    |
|            | 8081A  | Dieldrin            | 0.0042 | ca     |               | ug/1          | 0.1 U       | 0.0485 U   | 0.05 U    | 0.095 U   | 0.095 U    |
|            | 8081A  | Endosulfan I        | 220    | nc     |               | ug/l          | 0.1 U       | 0.0485 U   | 0.05 U    | 0.095 U   | 0.095 U    |
|            | 8081A  | Endosulfan II       | 220    | nc     |               | ug/l          | 0.15 U      | 0.075 U    | 0.075 U   | 0.145 U   | 0.145 U    |
|            | 8081A  | Endosulfan sulfate  | 220    | nc     |               | ug/l          | 0.15 U      | 0.075 U    | 0.075 U   | 0.145 U   | 0.145 U    |
|            | 8081A  | Endrin              | 11     | nc     |               | ug/l          | 0.1 U       | 0.0485 U   | 0.05 U    | 0.095 U   | 0.095 U    |
|            | 8081A  | Endrin aldehyde     |        |        |               | ug/l          | 0.15 U      | 0.075 U    | 0.075 U   | 0.145 U   | 0.145 U    |
|            | 8081A  | Endrin ketone       |        |        |               | ug/l          | 0.1 U       | 0.0485 U   | 0.05 U    | 0.095 U   | 0.095 U    |
|            | 8081 A | gamma-BHC           | 0.052  | ca     |               | ug/l          | 0.15 U      | 0.075 U    | 0.075 U   | 0.145 U   | 0.145 U    |
|            | 8081 A | Hentachlor          | 0.19   | ca     |               | ug/l          | 0.1 U       | 0.0485 U   | 0.05 U    | 0.095 U   | 0.095 U    |
|            | 8081A  | Heptachlor enovide  | 0.015  | ca     |               | ug/l          | 0.15 U      | 0.075 U    | 0.075 U   | 0.145 U   | 0.145 U    |
|            | 8081A  | Methoxychlor        | 182    | ca     |               | ug/I          | 0.15 U      | 0.075 U    | 0.075 U   | 0.145 U   | 0.145 U    |
|            | 8081A  | Toxaphene           | 0.061  |        |               | ug/1<br>110/1 | 0.0 U       | 0.29 U     | 0.5 U     | 0.6 U     | 0.6 U      |
| PCBs       | 8082   | Aroclor 1016        | 0.96   | ca     |               | no/l          | 0 205 11    | 0.245 0    | 0.25 U    | 0.48 U    | 0.48 U     |
|            | 8082   | Aroclor 1221        | 0.034  | ca     |               | 11g/1         | 0.65 II     | 0.65 11    | 0.5 U     | 0.29 UJ   | 0.29 0     |
|            | 8082   | Aroclor 1232        | 0.034  | ca     | -             | ug/l          | 0.65 U      | 0.65 II    | 0.65 U    | 0.0 0.0   | 0.0 U      |
|            | 8082   | Aroclor 1242        | 0.034  | ca     |               | ug/l          | 0.65 U      | 0.65 U     | 0.65 U    | 0.6 111   | 0.00       |
|            | 8082   | Aroclor 1248        | 0.034  | ca     |               | ug/l          | 0.75 U      | 0.75 U     | 0.75 U    | 0.7 UJ    | 0.7 U      |
|            |        |                     |        |        |               |               |             |            |           |           |            |



| r     |        |                              |          |           |               |                |                   |                 | _          |           |               |
|-------|--------|------------------------------|----------|-----------|---------------|----------------|-------------------|-----------------|------------|-----------|---------------|
|       |        |                              |          |           |               |                |                   |                 |            |           |               |
|       |        |                              |          |           |               |                |                   |                 |            |           |               |
|       |        |                              |          |           |               |                | 2                 | 6               |            |           |               |
| 1     |        |                              |          |           |               |                | -SI               | I Q             | AS-        | -Sv       | -sv           |
|       |        |                              |          |           |               |                | 00                | 002             | 002        | 003       | 004           |
| ł     |        |                              |          |           |               |                |                   | - 20            |            |           | )-<br>M       |
|       |        |                              |          |           |               |                | BL                | BI              | BLs        | 3Ls       | 31's          |
| 1     |        |                              |          |           | ~             |                | 0                 | <u> </u>        | 5          | <u> </u>  | G             |
|       |        |                              |          |           | S             | ample Date:    | 11/9/2004         | 11/9/2004       | 11/9/2004  | 11/8/2004 | 11/11/2004    |
|       |        | 1                            | 1        |           | Surface Water | Inple Depth:   | surface           | surface         | surface    | surface   | surface       |
|       |        |                              | Region 9 | PRG       | Background    |                |                   |                 |            |           |               |
| Group | Method | Parameter                    | (Tap Wa  | ter)      | Criteria      | Units          |                   | ĺ               | 1          |           |               |
|       | 8082   | Aroclor 1254                 | 0.034    | ca        |               | ug/]           | 0.65 U            | 0.65 H          | 0.65.11    | 06 111    | 0.6 11        |
|       | 8082   | Aroclor 1260                 | 0.034    | ca        |               | ug/l           | 0.295 U           | 0.29 U          | 0.03 U     | 0.0 03    | 0.0 0         |
| VOCs  | 8260B  | 1,1,1-Trichloroethane        | 3172     | nc        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 11        |
|       | 8260B  | 1,1,2,2-Tetrachloroethane    | 0.055    | ca        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
| ĺ     | 8260B  | 1,1,2-Trichloroethane        | 0.20     | ca        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | 1,1-Dichloroethane           | 811      | nc        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
| 1     | 8260B  | 1,1-Dichloroethene           | 339      | nc        |               | ug/l           | 0.5 UJ            | 0.5 UJ          | 0.5 UJ     | 0.5 U     | 0.5 UJ        |
|       | 8260B  | 1,2-Dibromoethane            | 0.0056   | ca        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
| 1     | 8260B  | 1,2-Dichloroethane           | 0.12     | ca        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | 1,2-Dichloroethene (total)   | 120      | nc        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
| ĺ     | 8260B  | 1,2-Dichloropropane          | 0.16     | ca        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | 2-Butanone                   | 6968     | nc        |               | ug/l           | 5 U               | 5 U             | 5 U        | 5 U       | 5 U           |
|       | 8260B  | 2-Hexanone                   | 2000     | nc        |               | ug/l           | 5 U               | 5 U             | 5 U        | 5 U       | 5 U           |
|       | 8200B  | 4-Methyl-2-pentanone         | 1993     | nc        |               | ug/l           | 5 U               | 5 U             | 5 U        | 5 U       | 5 U           |
|       | 8260B  | - Acetone                    | 5475     | nc        |               | ug/l           | 8.6 J             | 8.2 J           | 8.6 J      | 14        | 5 UJ          |
|       | 8260B  | Bromachlaramathana           | 0.35     | ca        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | Bromodichloromethane         | 0.19     |           |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | Bromoform                    | 0.18     | ca        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | Bromomethane                 | 8.5      |           |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | Carbon disulfide             | 1043     | nc        |               | ug/1           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | Carbon tetrachloride         | 0.17     |           |               | ug/1           | 2.5 UJ            | 2.5 UJ          | 2.5 UJ     | 3.7 J     | - R           |
|       | 8260B  | Chlorobenzene                | 106      | nc        |               | ug/1<br>110/1  | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | Chloroethane                 | 4.6      | ca        |               | 110/1          | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | Chloroform                   | 0.17     | ca        |               | 10g/1<br>10g/1 | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | Chloromethane                | 158      | nc        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | cis-1,2-Dichloroethene       | 61       | nc        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 0     | 0.5 U         |
|       | 8260B  | cis-1,3-Dichloropropene      | 0.40     | ca        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | Dibromochloromethane         | 0.13     | ca        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | Ethylbenzene                 | 1340     | nc        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | m&p-Xylenes                  | 206      | nc        |               | ug/l           | 1 U               | 1 U             | 1 U        | 1 U       | 1 U           |
|       | 8260B  | Methylene chloride           | 4.3      | ca        |               | ug/l           | 0.75 U            | 0.75 U          | 0.75 U     | 0.75 U    | 6.4           |
|       | 8260B  | o-Xylene                     | 206      | nc        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | Styrene                      | 1641     | nc        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | Tetrachloroethene            | 0.10     | ca        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | Toluene                      | 723      | nc        |               | ug/l           | 8.6               | 0.5 U           | 0.5 U      | 64        | 14            |
|       | 8200B  | Total Xylenes                | 206      | nc        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | trans-1,2-Dichloroethene     | 122      | nc        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 UJ        |
|       | 8260B  | Trichloroothono              | 0.40     | ca        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
|       | 8260B  | Vinyl chloride               | 0.028    | ca        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 U         |
| SVOCs | 82700  | 124-Trichlorobangana         | 0.020    | ca        |               | ug/l           | 0.5 U             | 0.5 U           | 0.5 U      | 0.5 U     | 0.5 UJ        |
|       | 82700  | 1 2-Dichlorohenzene          | 1.2      | nc        |               | ug/l           | 0.95 U            | 1 U             | 1 U        | 1 U       | 0.95 U        |
|       | 8270C  | 1 3-Dichlorobenzene          | 192      | nc        |               | ug/l           | 0.95 U            | <u>1 U</u>      | 1 U        | 1 U       | 0.95 U        |
|       | 8270C  | 1 4-Dichlorohenzene          | 182      | nc        |               | ug/l           | 0.95 U            | 1 U             | <u>1 U</u> | 1 U       | 0.95 U        |
|       | 8270C  | 2.2-oxybis (1-chloropropage) | 0.30     | <u>ca</u> |               | ug/1           | 0.95 U            | 10              | 10         | 1 U       | 0.95 U        |
|       | 8270C  | 2.4.5-Trichlorophenol        | 3650     | no        |               | ug/1           | 1 05 11           | <u>U 1</u>      | I U        | 1 01      | <u>0.95 U</u> |
|       | 8270C  | 2.4.6-Trichlorophenol        | 3.6      | nc        |               | ug/I           | 4.03 U            | 4.9 U           | 255 11     | 4.95 U    | 4.8 U         |
|       | 8270C  | 2,4-Dichlorophenol           | 109      | nc        |               | ug/1<br>110/1  | 2,45 U<br>4 85 II | 2.45 U          | 2.55 U     | 4.5 U     | 2,4 U         |
|       | 8270C  | 2,4-Dimethylphenol           | 730      | nc        |               | 11g/l          | 4 85 11           | 4.9 U<br>4 Q TT | 5 U        | 4.95 U    | 4.8 U         |
|       |        |                              | ·        |           |               |                |                   |                 | 201        | 00        | 7.0 0 1       |



|     |        |                             |          |       |               |              | . A       |           | B         | A N       | B              |
|-----|--------|-----------------------------|----------|-------|---------------|--------------|-----------|-----------|-----------|-----------|----------------|
|     |        |                             |          |       |               |              | 11-S      | 52-I      | 12-S      | 3-5       | 4-S            |
|     |        |                             |          |       |               |              | 00-       | 00        | e e       | l ô       | - <sup>0</sup> |
|     |        |                             |          |       |               |              | NS.       | l su      | NS NS     | Sw        | MS             |
|     |        |                             |          |       |               |              | BI        | CBI       | CBI       | BI        | BI D           |
|     |        |                             |          |       | Sa            | ample Date:  | 11/9/2004 | 11/9/2004 | 11/9/2004 | 11/8/2004 | 11/11/2004     |
|     |        |                             |          |       | San           | nple Depth:  | surface   | surface   | surface   | surface   | surface        |
|     |        |                             |          |       | Surface Water | 1            |           |           |           |           |                |
|     |        |                             | Region 9 | PRG   | Background    |              |           |           |           |           |                |
| oup | Method | Parameter                   | (Tap Wa  | ater) | Criteria      | Units        | ĺ         |           |           |           |                |
|     | 8270C  | 2,4-Dinitrophenol           | 73       | nc    |               | ug/l         | 9.5 U     | 10 U      | 10 U      | 10 U      | 9.5 U          |
|     | 8270C  | 2,4-Dinitrotoluene          | 73       | nc    |               | ug/l         | 0.485 U   | 0.49 U    | 0.5 U     | 0.495 U   | 0.48 U         |
|     | 8270C  | 2,6-Dinitrotoluene          | 36       | nc    |               | ug/l         | 0.245 U   | 0.245 U   | 0.255 U   | 0.25 U    | 0.24 U         |
|     | 8270C  | 2-Chloronaphthalene         | 487      | nc    |               | ug/l         | 0.95 U    | 1 U       | 1 U       | 1 U       | 0.95 U         |
|     | 8270C  | 2-Chlorophenol              | 30       | nc    |               | ug/l         | 2.45 U    | 2.45 U    | 2.55 U    | 2.5 U     | 2.4 U          |
|     | 8270C  | 2-Methylnaphthalene         |          |       |               | ug/l         | 0.245 U   | 0.245 U   | 0.255 U   | 0.25 U    | 0.24 U         |
|     | 8270C  | 2-Methylphenol              | 1825     | nc    |               | ug/l         | 28        | 1 U       | 1 U       | 72        | 0.95 U         |
|     | 8270C  | 2-Nitroaniline              | 109      | nc    | -             | ug/l         | 2.45 U    | 2.45 U    | 2.55 U    | 2.5 U     | 2.4 U          |
|     | 8270C  | 2-Nitrophenol               |          |       |               | ug/l         | 4.85 U    | 4.9 U     | 5 U       | 4.95 U    | 4.8 U          |
|     | 8270C  | 3,3'-Dichlorobenzidine      | 0.15     | ca    |               | ug/l         | 2.45 U    | 2.45 U    | 2.55 U    | 2.5 U     | · 2.4 U        |
|     | 8270C  | 3-Nitroaniline              | 3.2      | ca    |               | ug/l         | 4.85 U    | 4.9 U     | 5 U       | 4.95 U    | 4.8 U          |
|     | 8270C  | 4,6-Dinitro-2-methylphenol  | 3.6      | nc    |               | ug/l         | 9.5 U     | 10 U      | 10 U      | 10 U      | 9.5 U          |
|     | 82700  | 4-Bromophenyl phenyl ether  |          |       |               | ug/l         | 2.45 U    | 2.45 U    | 2.55 U    | 2.5 U     | 2.4 U          |
|     | 82700  | 4-Chloro-3-methylphenol     |          |       |               | ug/l         | 4.85 U    | 4.9 U     | 5 U       | 4.95 U    | 4.8 U          |
|     | 8270C  | 4-Chlorophonyl phonyl other | 140      | nc    |               | ug/l         | 4.85 U    | 4.9 U     | 50        | 4.95 U    | 4.8 U          |
|     | 8270C  | 4 Methylphonol              | 102      |       |               | ug/l         | 2.45 U    | 2.45 U    | 2.55 U    | 2.5 U     | 2.4 U          |
|     | 8270C  | 4 Nitroaniline              | 102      | пс    |               | ug/1         | 0.95 U    | 10        | 10        | 86        | 32             |
|     | 8270C  | 4-Nitrophenol               | 5.2      | u     |               | ug/1         | 4.65 U    | 4.9 U     | <u> </u>  | 4.95 U    | 4.8 U          |
|     | 8270C  | Acenaphthene                | 365      | nc    |               | ug/1         | 9.5 U     | 0.49 U    | 0.5 U     | 0.405 U   | 9.5 U          |
|     | 8270C  | Acenaphthylene              |          |       |               | ug/1<br>11/1 | 0.485 11  | 0.49 U    | 0.5 U     | 0.495 U   | 0.48 U         |
|     | 8270C  | Anthracene                  | 1825     | nc    |               | 110/I        | 0.485 U   | 0.49 U    | 0.5 U     | 0.495 U   | 0.48 U         |
|     | 8270C  | Benzo(a)anthracene          | 0.092    | ca    |               | ug/1         | 0.095 U   | 011       | 0.5 0     | 0.1 U     | 0.95 U         |
|     | 8270C  | Benzo(a)pyrene              | 0.0092   | ca    |               | ug/l         | 0.195 U   | 0.195 U   | 0.1 U     | 0.1 0     | 0.095 U        |
|     | 8270C  | Benzo(b)fluoranthene        | 0.092    | ca    |               | ug/l         | 0.195 U   | 0.195 U   | 0.2 U     | 0.2 U     | 0 19 11        |
|     | 8270C  | Benzo(g,h,i)perylene        |          |       |               | ug/l         | 0.485 U   | 0.49 U    | 0.5 U     | 0.495 U   | 0.48 U         |
|     | 8270C  | Benzo(k)fluoranthene        | 0.92     | ca    |               | ug/l         | 0.195 U   | 0.195 U   | 0.2 U     | 0.2 U     | 0.19 U         |
|     | 8270C  | Benzoic acid                | 145979   | nc    |               | ug/l         | 9.5 U     | 10 U      | 10 U      | 410       | 9.5 U          |
|     | 8270C  | Benzyl alcohol              | 10950    | nc    |               | ug/l         | 9.5 U     | 10 U      | 10 U      | 12 J      | 8.6 J          |
|     | 8270C  | Bis(2-chloroethoxy)methane  |          |       |               | ug/l         | 0.95 U    | 1 U       | 1 U       | 1 U       | 0.95 U         |
|     | 8270C  | Bis(2-chloroethyl) ether    | 0.010    | ca    |               | ug/l         | 0.95 U    | 1 U       | 1 U       | 1 U       | 0.95 U         |
|     | 8270C  | Bis(2-ethylhexyl) phthalate | 4.8      | ca    | -             | ug/l         | 130       | 7.5 U     | 7.5 U     | 7.5 U     | 7 U            |
|     | 8270C  | Butylbenzyl phthalate       | 7300     | nc    |               | ug/l         | 0.95 U    | 1 U       | 1 U       | 1 U       | 0.95 U         |
|     | 8270C  | Carbazole                   | 3.4      | ca    |               | ug/l         | 2.45 U    | 2.45 U    | 2.55 U    | 2.5 U     | 2.4 U          |
|     | 8270C  | Chrysene                    | 9.2      | ca    |               | ug/l         | 0.245 U   | 0.245 U   | 0.255 U   | 0.25 U    | 0.24 U         |
|     | 8270C  | Dibenzo(a,h)anthracene      | 0.0092   | ca    |               | ug/l         | 0.195 U   | 0.195 U   | 0.2 U     | 0.2 U     | 0.19 U         |
|     | 8270C  | Dibenzoturan                | 12       | nc    |               | ug/l         | 0.95 U    | 1 U       | 1 U       | 1 U       | 0.95 U         |
|     | 8270C  | Directly i phthalate        | 29199    | nc    |               | ug/l         | 0.95 U    | 1 U       | 1 U       | 1 U       | 0.95 U         |
|     | 82700  | Dimethyl phthalate          | 364867   | nc    | -             | ug/l         | 0.95 U    | 1 U       | 1 U       | 1 U       | 0.95 U         |
|     | 82700  | Di-n-outyl phinaiate        | 3650     | nc    |               | ug/l         | 2.45 U    | 2.45 U    | 2.55 U    | 2.5 U     | 2.4 U          |
|     | 82700  | Elucronthono                | 1400     | nc    |               | ug/i         | 4.85 U    | 4.9 U     | 5 U       | 4.95 U    | 4.8 U          |
|     | 82700  | Fluorene                    | 242      | nc    |               | ug/l         | 0.485 U   | 0.49 U    | 0.5 U     | 0.495 U   | 0.48 U         |
|     | 82700  | Heyachlorobenzene           | 0.042    | 10    |               | ug/1         | 0.465 U   | 0.49 U    | 0.5 U     | 0.495 U   | 0.48 U         |
|     | 02700  |                             | 0.042    | Ua    | 1             | ug/i         | 0.245 0 1 | V.245 U   | 0.255 0 1 | V.23 U I  | V.24 U         |



#### C-Block Quarry Summary of All Surface Water Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

|             |                   |                            |                     |             |                                         |             | CBLsw-001-SW | CBLsw-002-DUP | CBLsw-002-SW | CBLsw-003-SW | CBLsw-004-SW |
|-------------|-------------------|----------------------------|---------------------|-------------|-----------------------------------------|-------------|--------------|---------------|--------------|--------------|--------------|
|             |                   |                            |                     |             | S                                       | ample Date: | 11/9/2004    | 11/9/2004     | 11/9/2004    | 11/8/2004    | 11/11/200    |
|             |                   | 1                          |                     |             | Sa                                      | mple Depth: | surface      | surface       | surface      | surface      | surface      |
| Group       | Method            | Parameter                  | Region 9<br>(Tap Wa | PRG<br>ter) | Surface Water<br>Background<br>Criteria | Units       |              |               |              |              |              |
|             | 8270C             | Hexachlorobutadiene        | 0.86                | ca          |                                         | ug/l        | 2.45 U       | 2.45 U        | 2.55 U       | 2.5 U        | 2.4 U        |
|             | 8270C             | Hexachlorocyclopentadiene  | 219                 | nc          |                                         | ug/l        | - R          | - R           | - R          | - R          | - R          |
|             | 8270C             | Hexachloroethane           | 4.8                 | ca          |                                         | ug/l        | 2.45 U       | 2.45 U        | 2.55 U       | 2.5 U        | 2.4 U        |
|             | 8270C             | Indeno(1,2,3-cd)pyrene     | 0.092               | ca          |                                         | ug/l        | 0.195 U      | 0.195 U       | 0.2 U        | 0.2 U        | 0.19 L       |
|             | 8270C             | Isophorone                 | 71                  | ca          |                                         | ug/l        | 0.95 U       | 1 U           | 1 U          | 2.2          | 0.95 U       |
|             | 8270C             | Naphthalene                | 6.2                 | nc          |                                         | ug/l        | 0.485 U      | 0.49 U        | 0.5 U        | 0.495 U      | 0.48 U       |
|             | 8270C             | Nitrobenzene               | 3.4                 | nc          |                                         | ug/l        | 0.485 U      | 0.49 U        | 0.5 U        | 0.495 U      | 0.48 U       |
| 1           | 8270C             | n-Nitroso-di-n-propylamine | 0.0096              | ca          |                                         | ug/l        | 0.245 U      | 0.245 U       | 0.255 U      | 0.25 U       | 0.24 U       |
|             | 8270C             | n-Nitrosodiphenylamine     | 14                  | ca          |                                         | ug/l        | 0.485 U      | 0.49 U        | 0.5 U        | 0.495 U      | 0.48 U       |
|             | 8270C             | Pentachlorophenol          | 0.56                | ca          |                                         | ug/l        | 4.85 U       | 4.9 U         | 5 U          | 4.95 U       | 4.8 U        |
| [           | 8270C             | Phenanthrene               |                     |             |                                         | ug/l        | 0.485 U      | 0.49 U        | 0.5 U        | 0.495 U      | 0.48 U       |
|             | 8270C             | Phenol                     | 10950               | nc          |                                         | ug/l        | 2.45 U       | 2.45 U        | 2.55 U       | 68           | 4.3 J        |
|             | 8270C             | Pyrene                     | 182                 | nc          |                                         | ug/l        | 0.485 U      | 0.49 U        | 0.5 U        | 0.495 U      | 0.48 U       |
| Explosives  | 8330              | 1,3,5-Trinitrobenzene      | 1095                | nc          |                                         | ug/l        | 0.125 U      | 0.1 U         | 0.115 U      | 0.105 U      | 0.1 U        |
|             | 8330              | 1,3-Dinitrobenzene         | 3.6                 | nc          |                                         | ug/l        | 0.125 U      | 0.1 U         | 0.115 U      | 0.105 U      | 0.1 U        |
| 1           | 8330              | 2,4,6-TNT                  | 2.2                 | ca          |                                         | ug/l        | 0.155 U      | 0.125 U       | 0.14 U       | 0.135 U      | 0.125 U      |
|             | 8330              | 2,4-Dinitrotoluene         | 73                  | nc          |                                         | ug/l        | 0.225 U      | 0.18 U        | 0.205 U      | 0.19 U       | 0.18 U       |
|             | 8330              | 2,6-Dinitrotoluene         | 36                  | nc          |                                         | ug/l        | 0.27 U       | 0.215 U       | 0.245 U      | 0.23 U       | 0.215 U      |
|             | 8330              | 2-Amino-4,6-Dinitrotoluene |                     |             |                                         | ug/l        | 0.225 U      | 0.18 U        | 0.205 U      | 0.19 U       | 0.18 U       |
|             | 8330              | 2-Nitrotoluene             | 0.049               | ca          |                                         | ug/l        | 0.195 U      | 0.155 U       | 0.175 U      | 0.165 U      | 0.155 U      |
|             | 8330              | 3-INITrotoluene            | 122                 | nc          |                                         | ug/l        | 0.195 U      | 0.155 U       | 0.175 U      | 0.165 U      | 0.155 U      |
|             | 8220              | 4-Amino-2,0-Dinitrotoluene |                     |             |                                         | ug/l        | 0.205 U      | 0.165 U       | 0.185 U      | 0.175 U      | 0.165 U      |
|             | 8220              | 4-INITOTOTUENE             | 0.66                | ca          |                                         | ug/l        | 0.195 U      | 0.155 U       | 0.175 U      | 0.165 U      | 0.155 U      |
|             | 8330              | Nitrohannan                | 1825                | nc          |                                         | ug/l        | 0.195 U      | 0.155 U       | 0.175 U      | 0.165 U      | 0.155 U      |
|             | 8220              | Nitrobenzene               | 3.4                 | nc          |                                         | ug/l        | 0.1 U        | 0.08 U        | 0.09 U       | 0.085 U      | 0.08 U       |
|             | 8330              | Tatrul                     | 0.61                | ca          |                                         | ug/l        | 0.125 U      | 0.1 U         | 0.115 U      | 0.105 U      | 0.1 U        |
| Propellants | 252 2 Modified    | Nitrocollulose             | 303                 | nc          |                                         | ug/l        | 0.49 U       | 0.39 U        | 0.44 U       | 0.415 U      | 0.39 U       |
| ropenants   | 1333.2 iviouified | Nitrochussing              |                     |             |                                         | ug/l        | 250 U        | 250 U         | 250 U        | 250 UJ       | 250 U        |
|             | SW8330 Modifie    | d Nitroguanidina           | 4.8                 | ca          |                                         | ug/l        | 0.6 U        | 0.5 U         | 0.55 U       | 5.5 U        | 0.5 U        |
|             | 13 W 8330 WIODINE | ultrinoguanidine           | 3650                | nc          |                                         | ug/l        | 10 Ŭ         | 10 U          | 10 U         | 10 U         | 10 U         |

Notes:

--- no background/PRG value is available for this analyte

blank cells indicated the analyte was a non-detect (with "U" qualifier) or analysis was not performed

ug/l means micrograms per Liter (parts per billion - ppb)

PRG - preliminary remediation goals (The screeing value for lead is the Maximum Contaminant level (MCL) from the safe Drinking Water Act)

nc - non-cancer basis

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

U - analyte not detected

J - estimated value

R - result rejected during ADR validation

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style.

If Result = or > PRG, then the value is presented with a bold style

If Result < PRG & Background, then the value is presented with a normal style



|            |        |                     |            |         |              |                     | I-DUP           | I-GW       | 2-GW       | -GW        | MĐ-t       |
|------------|--------|---------------------|------------|---------|--------------|---------------------|-----------------|------------|------------|------------|------------|
|            |        |                     |            |         |              |                     | Lmw-00          | Lmw-00     | Lmw-00     | Lmw-00     | Lmw-00     |
|            |        |                     |            |         |              |                     | CB              | CB         | CB         | CB         | CB         |
|            |        |                     |            |         |              | Sample Date:        | 1/20/2005       | 1/20/2005  | 1/12/2005  | 1/12/2005  | 1/17/2005  |
|            |        |                     |            |         | Sa           | ample Depth:        | <u>39.8 ft.</u> | 39.8 ft.   | 41.3 ft.   | 38.1 ft.   | 41 ft.     |
|            |        |                     |            |         |              | Description         | C/Filtered      | C/Filtered | C/Filtered | C/Filtered | C/Filtered |
|            |        |                     |            |         | Consolidated |                     |                 |            |            | 1          |            |
|            |        |                     | Region 9 F | RG      | Groundwater  |                     |                 | 1          |            |            |            |
| Group      | Method | Parameter           | (Tap Wat   | er)     | Background   | Units               |                 |            |            |            |            |
| Metals     | 6010B  | Aluminum            | 36499      | nc      |              | 110/1               | 75 11           | 75 11      | 30         | 75 11      | 25         |
|            | 6010B  | Barium              | 2555       | nc      | 256          | ug/1                | 31              | 31         | 64         | 39         | 23         |
|            | 6010B  | Beryllium           | 73         | nc      | 0.00         | ug/l                | 1 U             | 10         | 1 U        | 111        | 1 11       |
|            | 6010B  | Cadmium             | 18         | nc      | 0.00         | ug/l                | 10              | 10         | 10         | 10         | 10         |
|            | 6010B  | Calcium             | [n]        |         | 53100        | ug/l                | 3200            | 3200       | 8000       | 13000      | 6000       |
|            | 6010B  | Chromium            | 109        | nc      | 0.00         | ug/l                | 5 U             | 5 U        | 5 U        | 5 U        | 5 U        |
|            | 6010B  | Cobalt              | 730        | nc      | 0.00         | ug/l                | 1.6             | 1.3        | 2.5 U      | 2.5 U      | 2.6        |
|            | 6010B  | Copper              | 1460       | nc      | 0.00         | ug/l                | 11              | + 11       | 2.7        | 5 U        | 2.2        |
|            | 6010B  | Iron                | 10950      | nc      | 1430         | ug/l                | 60 U            | 60 U       | 60 U       | 60 U       | 43         |
|            | 6010B  | Magnesium           |            |         | 15000        | ug/l                | 1500            | 1500       | 4500       | 2800       | 2300       |
|            | 6010B  | Manganese           | 8/6        | nc      | 1340         | ug/l                | 190             | 190        | 35         | 3.8        | 140        |
|            | 6010B  | Dotogojum           | /30        | nc      | 83.4         | ug/l                | 6.4             | 6          | 10         | 4.7        | 14         |
|            | 6010B  | Selenium            | [n]        |         | 5770         | ug/l                | 1000            | 950        | 1500       | 1100       | 1300       |
|            | 6010B  | Silver              | 182        | nc      | 0.00         | ug/l                | 7.5 U           | 7.5 0      | 7.5 U      | 7.5 U      | 7.5 U      |
|            | 6010B  | Sodium              | 102        | ne      | 51400        | ug/1                | <u> </u>        | <u> </u>   | 3 0        | <u> </u>   | 5 U        |
|            | 6010B  | Vanadium            | 36         | nc      | 0.00         | <u>ug/1</u><br>ug/1 | 900<br>5 TT     | <u> </u>   | 2700       | 1400       | 1000 U     |
|            | 6010B  | Zinc                | 10950      | nc      | 52.3         | 110/I               | 25              | 26         | 3.0        | 17         | 12         |
|            | 7041   | Antimony            | 15         | nc      | 0.00         | 119/1               | 3 75 U          | 3 75 11    | 3 75 11    | 3 75 11    | 3 75 11    |
|            | 7060A  | Arsenic             | 0.045      | ca      | 0.00         | ug/l                | 1 U             | <u> </u>   | <u> </u>   | <u> </u>   | <u> </u>   |
|            | 7196A  | Hexavalent Chromium | 109        | nc      | 0.00         | ug/l                | 7.7             | 5.2        | 6.7        | 53         | 51         |
|            | 7421   | Lead                | 15         | mcl     | 0.00         | ug/l                | 1.5 U           | 1.5 U      | 1.5 U      | 0.475 U    | 1.5 U      |
|            | 7470A  | Mercury             | 11         | nc      | 0.00         | ug/l                | 0.1 U           | 0.1 UJ     | 0.1 U      | 0.1 U      | 0.1 U      |
|            | 7841   | Thallium            | 2.4        | nc      | 0.00         | ug/l                | 2 U             | 2 U        | 2 U        | 2 U        | 2 U        |
| Pesticides | 8081A  | 4,4'-DDD            | 0.28       | ca      |              | ug/l                | 0.055 U         | 0.055 U    | 0.055 U    | 0.055 U    | 0.06 U     |
|            | 8081A  | 4,4'-DDE            | 0.20       | ca      |              | ug/l                | 0.0485 U        | 0.048 U    | 0.05 U     | 0.0485 U   | 0.055 U    |
|            | 8081A  | 4,4'-DDT            | 0.20       | ca      |              | ug/l                | 0.075 U         | 0.07 U     | 0.075 U    | 0.075 U    | 0.08 U     |
|            | 8081A  | Aldrin              | 0.0040     | ca      |              | ug/l                | 0.0485 U        | 0.048 U    | 0.05 U     | 0.0485 U   | 0.055 U    |
|            | 8081 A | alpha-BHC           | 0.011      | nc      |              | ug/l                | 0.075 U         | 0.07 U     | 0.075 U    | 0.075 U    | 0.08 U     |
|            | 8081A  | beta-BHC            | 0.19       | ca      |              | ug/l                | 0.0245 U        | 0.024 U    | 0.0255 U   | 0.0245 U   | 0.0265 U   |
|            | 8081A  | delta-BHC           | 0.037      | ca      |              | ug/l                | 0.0485 U        | 0.048 U    | 0.05 U     | 0.0485 U   | 0.055 U    |
|            | 8081A  | Dieldrin            | 0.0042     | <u></u> |              | ug/1                | 0.0485 U        | 0.048 U    | 0.05 U     | 0.0485 U   | 0.055 U    |
|            | 8081A  | Endosulfan I        | 220        | nc      |              | ug/1                | 0.0485 11       | 0.048 11   | 0.05 U     | 0.0485 U   | 0.055 U    |
|            | 8081A  | Endosulfan II       | 220        | nc      |              | ug/1                | 0.075 U         | 0.07 11    | 0.075 11   | 0.0465 0   | 0.055 0    |
|            | 8081A  | Endosulfan sulfate  | 220        | nc      |              | ug/l                | 0.075 U         | 0.07 U     | 0.075 U    | 0.075 U    | 0.08 11    |
|            | 8081A  | Endrin              | 11         | nc      |              | ug/1                | 0.0485 U        | 0.048 U    | 0.05 U     | 0.0485 U   | 0.055 U    |
|            | 8081A  | Endrin aldehyde     |            |         |              | ug/l                | 0.075 U         | 0.07 U     | 0.075 U    | 0.075 U    | 0.08 U     |
|            | 8081A  | Endrin ketone       |            |         |              | ug/l                | 0.0485 U        | 0.048 U    | 0.05 UJ    | 0.0485 UJ  | 0.055 U    |
|            | 8081A  | gamma-BHC           | 0.052      | ca      |              | ug/l                | 0.075 U         | 0.07 U     | 0.075 U    | 0.075 U    | 0.08 U     |
|            | 8081A  | gamma-Chlordane     | 0.19       | ca      |              | ug/l                | 0.0485 U        | 0.048 U    | 0.05 U     | 0.0485 U   | 0.055 U    |
|            | 8081A  | Heptachlor          | 0.015      | ca      |              | ug/l                | 0.075 U         | 0.07 U     | 0.075 U    | 0.075 U    | 0.08 U     |

|       |        |                            |          |      |               |              | e.            | >          | >          | >          |          |
|-------|--------|----------------------------|----------|------|---------------|--------------|---------------|------------|------------|------------|----------|
|       |        |                            |          |      |               |              | ļ j           | 6          | - 6        | - P        |          |
|       |        |                            |          |      |               |              | 100           | 001        | 302        | 03         |          |
|       |        |                            |          |      |               |              | -ML           | -MI        | -MI        | )-MI       |          |
|       |        |                            |          |      |               |              | J. The second | En         | l n        | ll.m       |          |
|       |        |                            |          |      |               |              | CE            | 5          | CE         | CB         |          |
|       |        |                            |          |      | S             | Sample Date: | 1/20/2005     | 1/20/2005  | 1/12/2005  | 1/12/2005  | 1/1      |
|       |        |                            |          |      | Sa            | mple Depth:  | 39.8 ft.      | 39.8 ft.   | 41.3 ft.   | 38.1 ft.   | 4        |
|       |        |                            |          |      |               | Description  | C/Filtered    | C/Filtered | C/Filtered | C/Filtered | C/F      |
|       |        |                            |          |      | Consolidated  |              |               |            |            |            |          |
|       |        |                            | Region 9 | PRG  | Groundwater   |              |               |            |            |            |          |
| froup | Method | Parameter                  | (Tap Wa  | ter) | Background    | Units        |               |            |            |            |          |
|       | 8081A  | Heptachlor epoxide         | 0.0074   |      | Dubligi bullu | 01165        | 0.075 11      | 0.07.11    | 0.077.11   | 0.075.11   |          |
|       | 8081A  | Methoxychlor               | 182      | nc   |               | ug/1         | 0.075 U       | 0.07 U     | 0.075 U    | 0.075 0    |          |
|       | 8081A  | Toxaphene                  | 0.061    | ca   |               | ug/1         | 0.29 0        | 0.29 U     | 0.305 U    | 0.29 0     |          |
| CBs   | 8082   | Aroclor 1016               | 0.96     | ca   |               | ng/l         | 0.245 U       | 0.24 0     | 0.255 U    | 0.243 0    |          |
|       | 8082   | Aroclor 1221               | 0.034    | ca   |               | ug/1         | 0.25 U        | 0.29 0     | 0.505 U    | 0.29 0     |          |
|       | 8082   | Aroclor 1232               | 0.034    | ca   |               | ug/l         | 0.65 U        | 0.0 U      | 0.65 U     | 0.65 U     | -        |
|       | 8082   | Aroclor 1242               | 0.034    | ca   |               | ug/l         | 0.65 U        | 0.6 U      | 0.65 U     | 0.65 U     |          |
|       | 8082   | Aroclor 1248               | 0.034    | ca   | -             | ug/l         | 0.75 U        | 0.7 U      | 0.75 U     | 0.75 U     | <u> </u> |
|       | 8082   | Aroclor 1254               | 0.034    | ca   | ·             | ug/l         | 0.65 U        | 0.6 U      | 0.65 U     | 0.65 U     |          |
|       | 8082   | Aroclor 1260               | 0.034    | ca   |               | ug/l         | 0.29 U        | 0.29 U     | 0.305 U    | 0.29 U     | 0.       |
| OCs   | 8260B  | 1,1,1-Trichloroethane      | 3172     | nc   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | 1,1,2,2-Tetrachloroethane  | 0.055    | ca   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | 1,1,2-Trichloroethane      | 0.20     | ca   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | 1,1-Dichloroethane         | 811      | nc   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | 1,1-Dichloroethene         | 339      | nc   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | 1,2-Dibromoethane          | 0.0056   | ca   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | 1,2-Dichloroethane         | 0.12     | ca   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | 1,2-Dichloroethene (total) | 120      | nc   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8200B  | 1,2-Dichloropropane        | 0.16     | ca   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | 2-Butanone                 | 6968     | nc   |               | ug/l         | 5 U           | 5 U        | 5 U        | 5 U        |          |
|       | 8260B  | 4 Mothryl 2 nontonone      | 2000     | nc   |               | ug/l         | 5 U           | 5 U        | 5 U        | 5 U        |          |
|       | 8260B  | Acetone                    | 1993     | nc   |               | ug/l         | 50            | <u>5 U</u> | 5 U        | 5 U        |          |
|       | 8260B  | Benzene                    | 0.25     | nc   |               | ug/l         | <u> </u>      | <u>5 U</u> | 5 U        | 5 U        |          |
|       | 8260B  | Biomochloromethane         | 0.35     | ca   |               | ug/1         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | Bromodichloromethane       | 0.18     |      |               | ug/1         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 0      |          |
|       | 8260B  | Bromoform                  | 85       | ca   |               | ug/1         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | Bromomethane               | 8.7      | nc   |               | 110/1        | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | Carbon disulfide           | 1043     | nc   |               | 110/1        | 25 11         | 25 11      | 25 U       | 25.11      |          |
|       | 8260B  | Carbon tetrachloride       | 0.17     | ca   |               | ug/1         | 0.5 U         | 0.5 U      | 0.5 U      | 05.U       |          |
|       | 8260B  | Chlorobenzene              | 106      | nc   |               | ug/1         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | Chloroethane               | 4.6      | ca   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | Chloroform                 | 0.17     | ca   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | Chloromethane              | 158      | nc   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | cis-1,2-Dichloroethene     | 61       | nc   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | cis-1,3-Dichloropropene    | 0.40     | ca   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      | (        |
|       | 8260B  | Dibromochloromethane       | 0.13     | ca   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      |          |
|       | 8260B  | Ethylbenzene               | 1340     | nc   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      | (        |
|       | 8260B  | m&p-Xylenes                | 206      | nc   |               | ug/l         | 1 U           | 1 U        | 1 U        | 1 U        |          |
|       | 8260B  | Methylene chloride         | 4.3      | ca   |               | ug/l         | 0.75 U        | 0.75 U     | 0.75 U     | 0.75 U     | 0.       |
|       | 8200B  | jo-Xylene                  | 206      | nc   |               | ug/l         | 0.5 U         | 0.5 U      | 0.5 U      | 0.5 U      | (        |

| CBLmw-004-GW<br>11/2005<br>41 ft.<br>Filtered |
|-----------------------------------------------|
| 0.00.77                                       |
| 0.08 U                                        |
| 0.315 U                                       |
| ).265 U                                       |
| 0.315 U                                       |
| 0.7 0                                         |
| 0.7 U                                         |
| 0.70                                          |
| 0.8 0                                         |
| 0.70                                          |
| 0.315 0                                       |
| 0.5 U                                         |
| 0.5 0                                         |
| 0.5 U                                         |
| 0.5 0                                         |
| 0.5 U                                         |
| 50                                            |
| 50                                            |
| 50                                            |
| 0.5.11                                        |
| 0.5 U                                         |
| 0.5 0                                         |
| 0511                                          |
| 0.5 U                                         |
| 2.5 U                                         |
| 0.5 U                                         |
| 1 U                                           |
| ).75 U                                        |
| 0.5 U                                         |
|                                               |

Q

|      |         |                              |           |      |                          |             | 01-DUP     | 01-GW      | 02-GW         | 33-GW      |     |
|------|---------|------------------------------|-----------|------|--------------------------|-------------|------------|------------|---------------|------------|-----|
|      |         |                              |           |      |                          |             | BLmw-0     | BLmw-0     | BLmw-0        | BLmw-0     |     |
|      |         |                              |           |      |                          | Sample Date | 1/20/2005  | 1/20/2005  | 1/12/2005     | 1/12/2005  | 1/1 |
|      |         |                              |           |      | S                        | ample Depth | 39.8 ft    | 39.8 ft    | 41 3 ft       | 3810       | 1/1 |
|      |         |                              |           |      | -                        | Description | C/Filtered | C/Filtered | C/Filtered    | C/Filtered | C/I |
|      |         |                              |           |      | Consolidated<br>Filtered |             |            |            |               |            |     |
|      |         |                              | Region 91 | PRG  | Groundwater              |             |            |            | ]             |            |     |
| roup | Wiethod | Parameter                    | (Tap Wa   | ter) | Background               | Units       |            |            |               |            |     |
|      | 8260B   | Styrene                      | 1641      | nc   |                          | ug/l        | 0.5 U      | 0.5 U      | 0.5 U         | 0.5 U      |     |
|      | 8260B   | Tetrachloroethene            | 0.10      | ca   |                          | ug/l        | 0.5 U      | 0.5 U      | 0.5 U         | 0.5 U      |     |
|      | 8260B   | Toluene                      | 723       | nc   |                          | ug/l        | 0.5 U      | 0.5 U      | 0.5 U         | 0.5 U      |     |
|      | 8260B   | Total Xylenes                | 206       | nc   |                          | ug/l        | 0.5 U      | 0.5 U      | 0.5 U         | 0.5 U      |     |
|      | 8260B   | trans-1,2-Dichloroethene     | 122       | nc   |                          | ug/l        | 0.5 U      | 0.5 U      | 0.5 U         | 0.5 U      |     |
|      | 8260B   | trans-1,3-Dichloropropene    | 0.40      | ca   |                          | ug/l        | 0.5 U      | 0.5 U      | 0.5 U         | 0.5 U      |     |
|      | 8260B   | Irichloroethene              | 0.028     | ca   |                          | ug/l        | 0.5 U      | 0.5 U      | 0.5 U         | 0.5 U      |     |
| 100- | 8260B   | Vinyl chloride               | 0.020     | ca   |                          | ug/l        | 0.5 U      | 0.5 U      | 0.5 U         | 0.5 U      |     |
| VUCS | 8270C   | 1,2,4-Trichlorobenzene       | 7.2       | nc   |                          | ug/l        | 0.95 U     | 10         | 1 U           | 1 U        |     |
|      | 82700   | 1,2-Dichlorobenzene          | 370       | nc   |                          | ug/l        | 0.95 U     | 1 U        | 1 U           | 1 U        |     |
|      | 8270C   | 1,3-Dichlorobenzene          | 182       | nc   |                          | ug/l        | 0.95 U     | 1 U        | 1 U           | 1 U        |     |
|      | 82700   | 1,4-Dichlorobenzene          | 0.50      | ca   |                          | ug/l        | 0.95 U     | <u>1 U</u> | 1 U           | 1 U        |     |
|      | 8270C   | 2,2-oxybis (1-chloropropane) | 0.27      | ca   |                          | ug/l        | 0.95 U     | <u>1 U</u> | <u>1 U</u>    | 1 U        |     |
|      | 82700   | 2,4,5-1 richlorophenol       | 3650      | nc   |                          | ug/l        | 4.8 U      | 4.95 U     | 5 U           | 5 U        |     |
|      | 82700   | 2,4,0-1 Tichlorophenol       | 3.0       | nc   |                          | ug/l        | 2.4 U      | 2.5 U      | 2.55 U        | 2.55 U     |     |
|      | 82700   | 2,4-Dictitorophenol          | 720       | nc   |                          | ug/l        | 4.8 U      | 4.95 U     | <u>5 U</u>    | 50         |     |
|      | 82700   | 2.4-Dinietnyiphenol          | 730       | nc   |                          | ug/l        | 4.8 U      | 4.95 U     | <u>5 U</u>    | 50         |     |
|      | 8270C   | 2.4-Dinitrotolyono           | 73        | nc   |                          | ug/1        | 9.5 U      | 10 U       | 10 U          | 10 U       |     |
|      | 8270C   | 2.6-Dinitrotoluene           | 26        | nc   |                          | ug/1        | 0.48 U     | 0.495 U    | 0.5 U         | 0.5 U      | -   |
|      | 8270C   | 2.Chloronanhthalene          | 497       | ne   |                          | ug/1        | 0.24 0     | 0.25 U     | 0.255 U       | 0.255 U    | (   |
|      | 8270C   | 2-Chloronhenol               | 30        | ne   |                          |             | 0.95 U     | <u> </u>   | 1 U           | 10         |     |
|      | 8270C   | 2-Methylnaphthalene          |           | ne   |                          | ug/1        | 2.4 U      | 2.5 U      | 2.55 U        | 2.55 U     |     |
|      | 8270C   | 2-Methylphenol               | 1825      | nc   |                          | ug/1        | 0.24 0     | 0.23 U     | 0.25 J        | 0.255 U    | (   |
|      | 8270C   | 2-Nitroaniline               | 1025      | nc   |                          | ug/1        | 24.11      | 25 11      | 255 11        | 255 U      |     |
|      | 8270C   | 2-Nitrophenol                |           |      |                          | 110/1       | 4811       | 4 95 11    | 2.55 U        | 2.55 U     |     |
|      | 8270C   | 3,3'-Dichlorobenzidine       | 0.15      | ca   |                          | 110/1       | 24 11      | 25 11      | 2 55 11       | 2 55 11    |     |
|      | 8270C   | 3-Nitroaniline               | 3.2       | ca   |                          | ug/1        | 48 11      | 4 95 U     | <u>2.55 U</u> | 2.55 U     |     |
|      | 8270C   | 4,6-Dinitro-2-methylphenol   | 3.6       | nc   |                          | ug/l        | 9.5 U      | 10 U       | 10 11         | 10 11      | 1   |
|      | 8270C   | 4-Bromophenyl phenyl ether   |           |      |                          | ug/l        | 2.4 U      | 25 U       | 2.55 U        | 2.55 U     |     |
|      | 8270C   | 4-Chloro-3-methylphenol      |           |      |                          | ug/l        | 4.8 U      | 4 95 U     | 2.55 U        | 5 11       |     |
|      | 8270C   | 4-Chloroaniline              | 146       | nc   |                          | ug/l        | 4.8 U      | 4.95 U     | 5 U           | 5 U        |     |
|      | 8270C   | 4-Chlorophenyl phenyl ether  | ·         |      |                          | ug/l        | 2.4 U      | 2.5 U      | 2.55 U        | 2.55 U     |     |
|      | 8270C   | 4-Methylphenol               | 182       | nc   |                          | ug/l        | 0.95 U     | 1 U        | 1 U           | 1 U        | 1   |
|      | 8270C   | 4-Nitroaniline               | 3.2       | ca   |                          | ug/l        | 4.8 U      | 4.95 U     | 5 U           | 5 U        |     |
|      | 8270C   | 4-Nitrophenol                |           |      |                          | ug/l        | 9.5 U      | 10 U       | 10 U          | 10 U       | 1   |
|      | 8270C   | Acenaphthene                 | 365       | nc   |                          | ug/l        | 0.48 U     | 0.495 U    | 0.5 U         | 0.5 U      |     |
|      | 8270C   | Acenaphthylene               |           |      |                          | ug/l        | 0.48 U     | 0.495 U    | 0.5 U         | 0.5 U      |     |
|      | 8270C   | Anthracene                   | 1825      | nc   |                          | ug/l        | 0.48 U     | 0.495 U    | 0.5 U         | 0.5 U      |     |
|      | 8270C   | Benzo(a)anthracene           | 0.092     | ca   |                          | ug/l        | 0.095 U    | 0.16 J     | 0.1 U         | 0.1 U      | 0.1 |
|      | 8270C   | Benzo(a)pyrene               | 0.0092    | ca   |                          | ug/l        | 0.19 U     | 0.17 J     | 0.205 U       | 0.2 U      | 0.2 |
|      | 8270C   | Benzo(b)fluoranthene         | 0.092     | ca   |                          | ug/l        | 0.19 U     | 0.13 J     | 0.205 U       | 0.2 U      | 0.2 |

| M:0-600-000-000-000-000-000-000-000-000-0             |
|-------------------------------------------------------|
| 0.5 U<br>0.5 U<br>0.5 U<br>0.5 U                      |
| 0.5 U<br>0.5 U<br>0.5 U<br>0.5 U<br>1.05 U            |
| 1.05 U<br>1.05 U<br>1.05 U<br>1.05 U<br>1.05 U<br>5 U |
| 2.6 U<br>5 U<br>5 U<br>10.5 U                         |
| 0.3 U<br>0.26 U<br>1.05 U<br>2.6 U<br>0.26 U          |
| 1.05 U<br>2.6 U<br>5 U<br>2.6 U                       |
| 10.5 U<br>2.6 U<br>5 U<br>5 U                         |
| 2.6 U<br>1.05 U<br>5 U<br>10.5 U                      |
| 0.5 U<br>0.5 U<br>0.105 U<br>0.205 U<br>0.205 U       |
| 0.203 0                                               |

| 1          |        |                             |            |      |              |             |            |            |            |            |          |
|------------|--------|-----------------------------|------------|------|--------------|-------------|------------|------------|------------|------------|----------|
|            |        |                             |            |      |              |             |            |            |            |            | Τ        |
|            |        |                             |            |      |              |             | 6          | 3          | 8          | 3          |          |
|            |        |                             |            |      |              |             | <u> </u>   | 6          | 5-G        | 5          |          |
|            |        |                             |            |      |              |             | 8          | 8          | 00         | 000        |          |
|            |        |                             |            |      |              |             | Ň          | - Mu       | i iii      | nw.        |          |
|            |        |                             |            |      |              |             | BL 1       | BLI        | BLi        | BLr        |          |
|            |        |                             |            |      |              | amula Datas | 1/20/2005  | 0          | 0          | 0          |          |
| 1          |        |                             |            |      | 3<br>50      | male Denth: | 1/20/2005  | 1/20/2005  | 1/12/2005  | 1/12/2005  |          |
|            |        |                             |            |      | 5a           | Description | C/Filtered | C/Filtered | C/Filterad | 38.1 ft.   |          |
|            |        |                             |            |      | Consolidated |             | CiThlefeu  | C/Thickey  | C/Tilleleu | C/Filleleu |          |
|            |        |                             |            |      | Filtered     |             |            |            |            |            |          |
|            |        |                             | Region 9 I | PRG  | Groundwater  |             |            |            |            |            |          |
| Group      | Method | Parameter                   | (Tap Wat   | ter) | Background   | Units       |            |            |            |            |          |
|            | 8270C  | Benzo(g,h,i)pervlene        |            |      |              | 110/1       | 0.48 U     | 0.495 11   | 0.5.11     | 05.11      | +        |
|            | 8270C  | Benzo(k)fluoranthene        | 0.92       | ca   |              | 110/1       | 0.19 U     | 0.493 0    | 0.5 0      | 0.3 0      | +        |
|            | 8270C  | Benzoic acid                | 145979     | nc   |              | ug/l        | 9.5 U      | 10 U       | 10 U       | 10 U       |          |
|            | 8270C  | Benzyl alcohol              | 10950      | nc   |              | ug/l        | 9.5 U      | 10 U       | 10 U       | 10 U       |          |
|            | 8270C  | Bis(2-chloroethoxy)methane  |            |      |              | ug/l        | 0.95 U     | 1 U        | 1 U        | 1 11       |          |
|            | 8270C  | Bis(2-chloroethyl) ether    | 0.010      | ca   |              | ug/l        | 0.95 U     | 1 U        | 1 U        | 1 U        |          |
|            | 8270C  | Bis(2-ethylhexyl) phthalate | 4.8        | ca   |              | ug/l        | 7 U        | 7.5 U      | 400        | 31         | <u> </u> |
|            | 8270C  | Butylbenzyl phthalate       | 7300       | nc   |              | ug/l        | 0.95 U     | 1 U        | 1 U        | 1 U        |          |
|            | 8270C  | Carbazole                   | 3.4        | ca   |              | ug/l        | 2.4 U      | 2.5 U      | 2.55 U     | 2.55 U     | <u> </u> |
|            | 8270C  | Chrysene                    | 9.2        | ca   |              | ug/l        | 0.24 U     | 0.14 J     | 0.12 J     | 0.255 U    |          |
|            | 8270C  | Dibenzo(a,h)anthracene      | 0.0092     | ca   |              | ug/l        | 0.19 U     | 0.2 U      | 0.205 U    | 0.2 U      | 0        |
|            | 8270C  | Dibenzofuran                | 12         | nc   |              | ug/l        | 0.95 U     | 1 U        | 1 U        | 1 U        |          |
|            | 8270C  | Diethyl phthalate           | 29199      | nc   |              | ug/l        | 0.95 U     | 1 U        | 1 U        | 1 U        |          |
|            | 8270C  | Dimethyl phthalate          | 364867     | nc   |              | ug/l        | 0.95 U     | 1 U        | 1 U        | 1 U        |          |
|            | 8270C  | Di-n-butyl phthalate        | 3650       | nc   |              | ug/l        | 2.4 U      | 2.5 U      | 2.55 U     | 2.55 U     |          |
|            | 8270C  | Di-n-octyl phthalate        | 1460       | nc   |              | ug/l        | 4.8 U      | 4.95 U     | 5 U        | 5 U        |          |
|            | 8270C  | Fluoranthene                | 1460       | nc   |              | ug/l        | 0.48 U     | 0.495 U    | 0.32 J     | 0.5 U      |          |
|            | 8270C  | Fluorene                    | 243        | nc   |              | ug/l        | 0.48 U     | 0.495 U    | 0.5 U      | 0.5 U      |          |
|            | 8270C  | Hexachlorobenzene           | 0.042      | ca   |              | ug/l        | 0.24 U     | 0.25 U     | 0.255 U    | 0.255 U    | (        |
|            | 8270C  | Hexachlorobutadiene         | 0.86       | ca   |              | ug/l        | 2.4 U      | 2.5 U      | 2.55 U     | 2.55 U     |          |
|            | 8270C  | Hexachlorocyclopentadiene   | 219        | nc   |              | ug/l        | 9.5 U      | 10 U       | 10 U       | 10 U       | 3        |
|            | 82700  | Hexachloroethane            | 4.8        | ca   |              | ug/l        | 2.4 U      | 2.5 U      | 2.55 U     | 2.55 U     |          |
|            | 8270C  | Indeno(1,2,3-cd)pyrene      | 0.092      | ca   |              | ug/l        | 0.19 U     | 0.14 J     | 0.205 U    | 0.2 U      | 0.       |
|            | 82700  | Norhthalana                 | /1         | ca   |              | ug/l        | 0.95 U     | 1 U        | 1 U        | 1 U        | 1        |
|            | 82700  | Nitrohenzene                | 0.2        | nc   |              | ug/l        | 0.48 U     | 0.495 U    | 0.5 U      | 0.5 U      |          |
|            | 8270C  | n-Nitroso-di-n-propylamine  | 0.0006     | nc   |              | ug/l        | 0.48 U     | 0.495 U    | 0.5 U      | 0.5 U      |          |
|            | 8270C  | n-Nitrosodinhenvlamine      | 14         |      |              | ug/l        | 0.24 U     | 0.25 U     | 0.255 U    | 0.255 U    | (        |
|            | 8270C  | Pentachlorophenol           | 0.56       |      |              | ug/l        | 0.48 U     | 0.495 U    | 0.5 U      | 0.5 U      |          |
|            | 8270C  | Phenanthrene                | 0.50       | - ta |              | ug/1        | 4.8 U      | 4.95 U     | <u> </u>   | 50         |          |
|            | 8270C  | Phenol                      | 10950      | nc   |              | ug/1        | 24 U       | 0.495 U    | 0.24 J     | 0.5 U      |          |
|            | 8270C  | Pvrene                      | 182        | nc   |              | ug/1        | 2.4 U      | 2.5 U      |            | 2.55 U     |          |
| Explosives | 8330   | 1.3.5-Trinitrobenzene       | 1095       | nc   |              | ug/1        | 0.48 0     | 0.495 0    | 0.4 J      | 0.5 U      |          |
|            | 8330   | 1,3-Dinitrobenzene          | 36         | nc   |              | ug/1        | 0.11 U     | 0.15 U     | 0.145 U    | 0.105 U    |          |
|            | 8330   | 2.4.6-TNT                   | 2.2        | ca   |              | ug/1        | 0.135 U    | 0.15 U     | 0.145 U    | 0.105 U    | 0        |
|            | 8330   | 2,4-Dinitrotoluene          | 73         | pc   |              | 110/1       | 0.195 11   | 0.19 0     | 0.10 0     | 0.15 U     |          |
|            | 8330   | 2,6-Dinitrotoluene          | 36         | nc   |              | 110/1       | 0.235 U    | 0.32 11    | 0.20 0     | 0.183 U    | 0        |
|            | 8330   | 2-Amino-4,6-Dinitrotoluene  |            |      |              | ug/l        | 0.195 U    | 0.27 II    | 0.26 11    | 0.185 11   |          |
|            | 8330   | 2-Nitrotoluene              | 0.049      | ca   |              | ug/l        | 0.17 U     | 0.23 U     | 0 225 11   | 0.16 U     | 0.1      |
|            | 8330   | 3-Nitrotoluene              | 122        | nc   |              | ug/l        | 0.17 U     | 0.23 11    | 0.225 U    | 0.16 11    | 0.1      |
|            | 8330   | 4-Amino-2,6-Dinitrotoluene  |            |      | 1            | ug/I        | 0.18 U     | 0.25 U     | 0.24 U     | 0.17 U     | 0.1      |
|            | 8330   | 4-Nitrotoluene              | 0.66       | ca   |              | ug/l        | 0.17 U     | 0.23 U     | 0.225 U    | 0.16 U     | 0 1      |

| M9-900-001-001-001-001-001-001-001-001-00 |   |
|-------------------------------------------|---|
|                                           |   |
| 0.5 U                                     | _ |
| 10.5 U                                    |   |
| 10.5 U                                    |   |
| 10.5 U                                    | - |
| 1.05 U                                    | - |
| 7.5 Ù                                     |   |
| 1.05 U                                    |   |
| 2.6 U                                     |   |
| 0.26 U                                    |   |
| 0.205 U                                   |   |
| 1.05 U                                    |   |
| 1.05 U                                    |   |
| 1.05 U                                    |   |
| 2.6 U                                     | - |
| 0511                                      |   |
| 0.5 U                                     |   |
| 0.26 U                                    |   |
| 2.6 U                                     |   |
| 10.5 U                                    |   |
| 2.6 U                                     |   |
| .205 U                                    |   |
| 1.05 U                                    |   |
| 0.5 U                                     |   |
| 0.5 0                                     |   |
| 0.20 0                                    |   |
| 5 U                                       | 1 |
| 0.5 U                                     |   |
| 2.6 U                                     |   |
| 0.5 U                                     |   |
| 0.12 U                                    |   |
| 0.12 U                                    | ļ |
| 0.15 U                                    |   |
| 215 U                                     |   |
| 215 II                                    |   |
| 185 U                                     |   |
| 185 U                                     |   |
| 0.2 U                                     |   |
| 185 U                                     |   |
|                                           |   |

#### C-Block Quarry Summary of All Groundwater Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

| 1           |                 |                |                        |             |                                                       |              |               | 1            |              |              |   |
|-------------|-----------------|----------------|------------------------|-------------|-------------------------------------------------------|--------------|---------------|--------------|--------------|--------------|---|
|             |                 |                |                        |             |                                                       |              | CBLmw-001-DUP | CBLmw-001-GW | CBLmw-002-GW | CBLmw-003-GW |   |
|             |                 |                |                        |             |                                                       | Sample Date: | 1/20/2005     | 1/20/2005    | 1/12/2005    | 1/12/2005    |   |
|             |                 |                |                        |             | S                                                     | ample Depth: | 39.8 ft.      | 39.8 ft.     | 41.3 ft.     | 38.1 ft.     |   |
|             |                 |                |                        |             |                                                       | Description  | C/Filtered    | C/Filtered   | C/Filtered   | C/Filtered   |   |
| Group       | Method          | Parameter      | Region 9 I<br>(Tap Wat | PRG<br>ter) | Consolidated<br>Filtered<br>Groundwater<br>Background | Units        |               | -            |              |              |   |
|             | 8330            | HMX            | 1825                   | nc          |                                                       | ug/l         | 0.17 U        | 0.23 U       | 0 225 U      | 0 16 U       |   |
|             | 8330            | Nitrobenzene   | 3.4                    | nc          |                                                       | ug/l         | 0.085 U       | 0.12 U       | 0.115 U      | 0.085 U      | - |
|             | 8330            | RDX            | 0.61                   | ca          |                                                       | ug/l         | 0.11 U        | 0.15 U       | 0.145 U      | 0.105 U      |   |
|             | 8330            | Tetryl         | 365                    | nc          |                                                       | ug/l         | 0.425 U       | 0.6 U        | 0.55 U       | 0.405 U      | - |
| Propellants | 353.2 Modified  | Nitrocellulose |                        |             |                                                       | ug/l         | 250 U         | 250 U        | 250 U        | 250 U        |   |
|             | 8332            | Nitroglycerine | 4.8                    | ca          |                                                       | ug/l         | 0.55 U        | 0.75 U       | 0.75 U       | 0.5 U        |   |
|             | SW8330 Modified | Nitroguanidine | 3650                   | nc          |                                                       | ug/l         | 10 U          | 10 U         | 10 U         | 10 U         |   |

Notes:

--- no background/PRG value is available for this analyte

blank cells indicated the analyte was a non-detect (with "U" qualifier) or analysis was not performed

ug/l means micrograms per Liter (parts per billion - ppb)

PRG - preliminary remediation goals (The screeing value for lead is the Maximum Contaminant level (MCL) from the safe Drinking Water Act)

nc - non-cancer basis

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

UC/Filtered - GW sample was filtered for metals and taken from an unconsolidated MW

C/Filtered - GW sample was filtered for metals and taken from a consolidated (bedrock) MW

[n] - nutrient

U - analyte not detected

J - estimated value

R - result rejected during ADR validation

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style.

If Result = or > PRG, then the value is presented with a bold style

If Result < PRG & Background, then the value is presented with a normal style.



# Table CBL-13C-Block Quarry Human Health Risk Screening Tables for GroundwaterRVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

| Parameter                   | Region 9 Pl<br>(Tap Wate | RG<br>r) | Consolidated<br>Filtered<br>Groundwater<br>Background | Maximum<br>Detected<br>C/Filtered | Frequency of Detection | COPC       |
|-----------------------------|--------------------------|----------|-------------------------------------------------------|-----------------------------------|------------------------|------------|
| Aluminum                    | 36499                    | nc       |                                                       | 30                                | 2/5                    | No         |
| Barium                      | 2555                     | nc       | 256                                                   | 64                                | 5/5                    | No         |
| Calcium                     | [n]                      |          | 53100                                                 | 13000                             | 5/5                    | No         |
| Cobalt                      | 730                      | nc       | 0.00                                                  | 2.6                               | 3/5                    | No         |
| Copper                      | 1460                     | nc       | 0.00                                                  | 11                                | 4/5                    | No         |
| Iron                        | 10950                    | nc       | 1430                                                  | 43                                | 1/5                    | No         |
| Magnesium                   | [n]                      |          | 15000                                                 | 4500                              | 5/5                    | No         |
| Manganese                   | 876                      | nc       | 1340                                                  | 190                               | 5/5                    | No         |
| Nickel                      | 730                      | nc       | 83.4                                                  | 14                                | 5/5                    | No         |
| Potassium                   | [n]                      |          | 5770                                                  | 1500                              | 5/5                    | No         |
| Sodium                      | [n]                      |          | 51400                                                 | 2700                              | 4/5                    | No         |
| Zinc                        | 10950                    | nc       | 52.3                                                  | 35                                | 5/5                    | No         |
| Hexavalent Chromium         | 109                      | nc       | 0.00                                                  | 7.7                               | 4/5                    | No         |
| 2-Methylnaphthalene         |                          |          | <u></u>                                               | 0.25                              | 1/5                    | Yes, NTX   |
| Benzo(a)anthracene          | 0.092                    | ca       |                                                       | 0.16                              | 1/5                    | Yes, > PRG |
| Benzo(a)pyrene              | 0.0092                   | ca       |                                                       | 0.17                              | 1/5                    | Yes, > PRG |
| Benzo(b)fluoranthene        | 0.092                    | ca       |                                                       | 0.13                              | 1/5                    | Yes, > PRG |
| Benzo(k)fluoranthene        | 0.92                     | ca       |                                                       | 0.22                              | 1/5                    | No         |
| Bis(2-ethylhexyl) phthalate | 4.8                      | ca       |                                                       | 400                               | 2/5                    | Yes, > PRG |
| Chrysene                    | 9.2                      | ca       |                                                       | 0.14                              | 2/5                    | No         |
| Fluoranthene                | 1460                     | nc       |                                                       | 0.32                              | 1/5                    | No         |
| Indeno(1,2,3-cd)pyrene      | 0.092                    | ca       |                                                       | 0.14                              | 1/5                    | Yes, > PRG |
| Phenanthrene                |                          |          |                                                       | 0.24                              | 1/5                    | Yes, NTX   |
| Pyrene                      | 182                      | nc       |                                                       | 0.4                               | 1/5                    | No         |

#### Notes:

Г

-- - no value available BKG - site specific background PRG - USEPA Region 9 Preliminary Remediation Goals NTX - no toxicity screening value available nc - non-cancer basis ca - cancer basis pbk - based on PBK modeling mel - based on CWA maximum contaminant level max - ceiling limit sat - soil saturation [n] - nutrient

\*Concentration Units ug/L

# Table CBL-12C-Block Quarry Human Health Risk Screening Tables for SurfaceWaterRVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

| Parameter                   | Region 9 PRC<br>Water) | G (Tap | Surface Water<br>Background | Maximum<br>Detected | Frequency of<br>Detection | СОРС             |
|-----------------------------|------------------------|--------|-----------------------------|---------------------|---------------------------|------------------|
| Aluminum                    | 36499                  | nc     | 3370                        | 480                 | 5/5                       | No               |
| Barium                      | 2555                   | nc     | 47.5                        | 120                 | 5/5                       | No               |
| Calcium                     | [n]                    |        | 41400                       | 17000               | 5/5                       | No               |
| Chromium                    | 109                    | nc     | 0.00                        | 2                   | 2/5                       | No               |
| Cobalt                      | 730                    | nc     | 0.00                        | 9                   | 5/5                       | No               |
| Copper                      | 1460                   | nc     | 7.9                         | 4.5                 | 4/5                       | No               |
| Iron                        | 10950                  | nc     | 2560                        | 23000               | 5/5                       | Yes, > BKG & PRG |
| Magnesium                   | [n]                    |        | 10800                       | 3500                | 5/5                       | No               |
| Manganese                   | 876                    | nc     | 391                         | 4100                | 5/5                       | Yes, > BKG & PRG |
| Nickel                      | 730                    | nc     | 0.00                        | 7.4                 | 3/5                       | No               |
| Potassium                   | [n]                    |        | 3170                        | 12000               | 5/5                       | No               |
| Sodium                      | [n]                    |        | 21300                       | 1600                | 1/5                       | No               |
| Vanadium                    | 36                     | nc     | 0.00                        | 2.7                 | 1/5                       | No               |
| Zinc                        | 10950                  | nc     | 42                          | 23                  | 2/5                       | No               |
| Arsenic                     | 0.045                  | ca     | 3.2                         | 11                  | 4/5                       | Yes, > BKG & PRG |
| Hexavalent Chromium         | 109                    | nc     | 7.9                         | 22                  | 1/5                       | No               |
| Lead                        | 15                     | mcl    | 0.00                        | 1                   | 1/5                       | No               |
| Mercury                     | 11                     | nc     | 0.00                        | 0.066               | 2/5                       | No               |
| Thallium                    | 2.4                    | nc     | 0.00                        | 1.7                 | 1/5                       | No               |
| Acetone                     | 5475                   | nc     |                             | 14                  | 4/5                       | No               |
| Carbon disulfide            | 1043                   | nc     |                             | 3.7                 | 1/4                       | No               |
| Methylene chloride          | 4.3                    | ca     |                             | 6.4                 | 1/5                       | Yes, > PRG       |
| Toluene                     | 723                    | nc     |                             | 64                  | 3/5                       | No               |
| 2,4-Dimethylphenol          | 730                    | nc     |                             | 88                  | 1/5                       | No               |
| 2-Methylphenol              | 1825                   | nc     |                             | 72                  | 2/5                       | No               |
| 4-Methylphenol              | . 182                  | nc     |                             | 86                  | 2/5                       | No               |
| Benzoic acid                | 145979                 | nc     |                             | 410                 | 1/5                       | No               |
| Benzyl alcohol              | 10950                  | nc     |                             | 12                  | 2/5                       | No               |
| Bis(2-ethylhexyl) phthalate | 4.8                    | ca     |                             | 130                 | 1/5                       | Yes, > PRG       |
| Isophorone                  | 71                     | ca     |                             | 2.2                 | 1/5                       | No               |
| Phenol                      | 10950                  | nc     |                             | 68                  | 2/5                       | No               |

Notes:

-- - no value available

BKG - site specific background

PRG - USEPA Region 9 Preliminary Remediation Goals

NIX - no toxicity screening value available

nc - non-cancer basis

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

\*Concentration Units ug/L

# Table CBL-11C-Block Quarry Human Health Risk Screening Tables for SedimentRVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

COPC Region 9 PRG Sediment Maximum Frequency of Parameter (Res Soil) Background Detected Detection Aluminum 7614 13900 14000 5/5 Yes, > BKG & PRG nc 0.39 Arsenic 19.5 ca 15 5/5 No 538 Barium 123 96 5/5 nc No Beryllium 15 0.38 1.2 5/5 nc No Cadmium 3.7 nc 0.00 0.12 1/5 No Calcium --[n] 5510 2200 5/5 No 1000 Chromium nc 18.1 16 5/5 No Cobalt 30 9.1 5/5 14 ca No 27.6 313 5/5 Copper nc 18 No 5/5 2346 28200 26000 Iron nc No Lead 400 22 5/5 pbk 27.4 No Magnesium --[n] 2760 2300 5/5 No Manganese 176 1950 970 5/5 nc No Nickel 156 17.7 17 5/5 No nc 1100 Potassium --[n] 1950 5/5 No Selenium 39 nc 1.7 1.1 5/5 No Sodium 350 --[n] 112 4/5 No Vanadium 26.1 29 Yes, > BKG & PRG 5/5 7.8 nc Zinc 2346 532 62 5/5 nc No Mercury 2.3 0.06 0.062 nc 4/5 No Thallium 0.52 0.89 0.64 2/5 nc No Acetone 1412 nc 0.011 1/2 ---No Benzo(b)fluoranthene 0.62 ca ---0.014 1/1 No 229 Fluoranthene nc ---0.017 1/1 No

Notes:

-- - no value available

BKG - site specific background

PRG - USEPA Region 9 Preliminary Remediation Goals, non-cancer values adjusted to 1/10 the published value

NIX - no toxicity screening value available

nc - non-cancer basis, value is 1/10 the published PRG

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

\*Concentration Units mg/kg

# Table CBL-10C-Block Quarry Human Health Risk Screening Tables for Surface Soil (0-1 ft)RVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

| Parameter                   | Region 9 P<br>(Res Soi | PRG<br>I) | Surface Soil<br>Background | Maximum<br>Detected | Frequency of Detection | COPC             |
|-----------------------------|------------------------|-----------|----------------------------|---------------------|------------------------|------------------|
| Aluminum                    | 7614                   | nc        | 17700                      | 12000               | 7/7                    | No               |
| Arsenic                     | 0.39                   | ca        | 15.4                       | 19                  | 7/7                    | Yes, > BKG & PRG |
| Barium                      | 538                    | nc        | 88.4                       | 84                  | 7/7                    | No               |
| Beryllium                   | 15                     | nc        | 0.88                       | 0.71                | 7/7                    | No               |
| Calcium                     | [n]                    |           | 15800                      | 1300                | 7/7                    | No               |
| Chromium                    | 1000                   | nc        | 17.4                       | 920                 | 7/7                    | No               |
| Cobalt                      | 30                     | ca        | 10.4                       | 9.6                 | 7/7                    | No               |
| Copper                      | 313                    | nc        | 17.7                       | 78                  | 7/7                    | No               |
| Iron                        | 2346                   | nc        | 23100                      | 22000               | 7/7                    | No               |
| Lead                        | 400                    | pbk       | 26.1                       | 43                  | 7/7                    | No               |
| Magnesium                   | [n]                    |           | 3030                       | 2100                | 7/7                    | No               |
| Manganese                   | 176                    | nc        | 1450                       | 950                 | 7/7                    | No               |
| Nickel                      | 156                    | nc        | 21.1                       | 16                  | 7/7                    | No               |
| Potassium                   | [n]                    |           | 927                        | 960                 | 7/7                    | No               |
| Selenium                    | 39                     | nc        | 1.4                        | 0.85                | 5/7                    | No               |
| Sodium                      | [n]                    |           | 123                        | 310                 | 7/7                    | No               |
| Vanadium                    | 7.8                    | nc        | 31.1                       | 24                  | 7/7                    | No               |
| Zinc                        | 2346                   | nc        | 61.8                       | 59                  | 7/7                    | No               |
| Hexavalent Chromium         | 30                     | ca        | 17.4                       | 5.4                 | 1/6                    | No               |
| Mercury                     | 2.3                    | nc        | 0.04                       | 0.073               | 4/7                    | No               |
| Thallium                    | 0.52                   | nc        | 0.00                       | 0.36                | 2/7                    | No               |
| Benzo(a)anthracene          | 0.62                   | ca        |                            | 0.017               | 1/1                    | No               |
| Benzo(b)fluoranthene        | 0.62                   | ca        |                            | 0.036               | 1/1                    | No               |
| Benzo(g,h,i)perylene        |                        |           |                            | 0.019               | 1/1                    | Yes, NTX         |
| Benzo(k)fluoranthene        | 6.2                    | ca        |                            | 0.019               | 1/1                    | . No             |
| Bis(2-ethylhexyl) phthalate | 35                     | ca        |                            | 0.054               | 1/1                    | No               |
| Chrysene                    | 62                     | ca        |                            | 0.028               | 1/1                    | No               |
| Fluoranthene                | 229                    | nc        |                            | 0.036               | 1/1                    | No               |
| Phenanthrene                |                        |           |                            | 0.017               | 1/1                    | Yes, NTX         |
| Pyrene                      | 232                    | nc        |                            | 0.027               | 1/1                    | No               |
| 2,4,6-TNT                   | 16                     | ca        |                            | 22                  | 4/7                    | Yes, > PRG       |
| 2-Amino-4,6-Dinitrotoluene  |                        |           |                            | 0.54                | 2/7                    | Yes, NTX         |
| 4-Amino-2,6-Dinitrotoluene  | <u> </u>               |           |                            | 0.64                | 2/7                    | Yes, NTX         |
| Nitrocellulose              |                        |           |                            | 1.3                 | 1/1                    | Yes, NTX         |

Notes:

-- - no value available

BKG - site specific background

PRG - USEPA Region 9 Preliminary Remediation Goals, non-cancer values adjusted to 1/10 the published value

NTX - no toxicity screening value available

nc - non-cancer basis, value is 1/10 the published PRG

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

\*Concentration Units mg/kg

# C-Block Quarry Ecological Risk Screening Tables for Surface Soil (0-1 ft)

RVAAP 14 AOC Characterization

Ravenna Army Ammunition Plant, Ravenna, Ohio

|             |                             |              |               | Maximum       |       | Surface Soil  | Maximum         |                 | Maximum         |     |      |           |
|-------------|-----------------------------|--------------|---------------|---------------|-------|---------------|-----------------|-----------------|-----------------|-----|------|-----------|
|             |                             | Frequency of | Average       | Detected      |       | Background    | Concentration > |                 | Concentration > |     |      | COPC      |
| Group       | Parameter                   | Detection    | Concentration | Concentration | Units | Concentration | Background      | Screening Value | Screening value | PBT | COPC | Rationale |
| Metals      | Aluminum                    | 7/7          | 8671          | 12000         | mg/kg | 17700         | No              | 600 ss2         | Yes             | No  | No   | BLBKG     |
|             | Arsenic                     | 7/7          | 13            | 19            | mg/kg | 15.4          | Yes             | 9.9 ss1         | Yes             | No  | Yes  | ASL       |
|             | Barium                      | 7/7          | 65            | 84            | mg/kg | 88.4          | No              | 283 ss1         | No              | No  | No   | BLBKG     |
|             | Beryllium                   | 7/7          | 0.57          | 0.71          | mg/kg | 0.88          | No              | 10 ss1          | No              | No  | No   | BLBKG     |
|             | Calcium                     | 7/7          | 760           | 1300          | mg/kg | 15800         | No              | NUT             | No              | No  | No   | BLBKG     |
|             | Chromium                    | 7/7          | 289           | 920           | mg/kg | 17.4          | Yes             | 0.4 ss1         | Yes             | No  | Yes  | ASL       |
|             | Cobalt                      | 7/7          | 7.0           | 9.6           | mg/kg | 10.4          | No              | 20 ss1          | No              | No  | No   | BLBKG     |
|             | Copper                      | 7/7          | 32            | 78            | mg/kg | 17.7          | Yes             | 60 ss1          | Yes             | No  | Yes  | ASL       |
|             | Iron                        | 7/7          | 18700         | 22000         | mg/kg | 23100         | No              | 200 ss2         | Yes             | No  | No   | BLBKG     |
|             | Lead                        | 7/7          | 24            | 43            | mg/kg | 26.1          | Yes             | 40.5 ss1        | Yes             | No  | Yes  | ASL       |
|             | Magnesium                   | 7/7          | 1510          | 2100          | mg/kg | 3030          | No              | NUT             | No              | No  | No   | BLBKG     |
|             | Manganese                   | 7/7          | 616           | 950           | mg/kg | 1450          | No              | 100 ss2         | Yes             | No  | No   | BLBKG     |
|             | Nickel                      | 7/7          | 15            | 16            | mg/kg | 21.1          | No              | 30 ss1          | No              | No  | No   | BLBKG     |
|             | Potassium                   | 7/7          | 754           | 960           | mg/kg | 927           | Yes             | NUT             | No              | No  | No   | BSL       |
|             | Selenium                    | 5/7          | 0.74          | 0.85          | mg/kg | 1.4           | No              | 0.21 ss1        | Yes             | No  | No   | BLBKG     |
|             | Sodium                      | 7/7          | 256           | 310           | mg/kg | 123           | Yes             | NUT             | No              | No  | No   | BSL       |
|             | Vanadium                    | 7/7          | 18            | 24            | mg/kg | 31.1          | No              | 2 ss1           | Yes             | No  | No   | BLBKG     |
|             | Zinc                        | 7/7          | 51            | 59            | mg/kg | 61.8          | No              | 8.5 ss1         | Yes             | No  | No   | BLBKG     |
|             | Hexavalent Chromium         | 1/6          | 1.8           | 5.4           | mg/kg | 17.4          | No              | -               | NSL             | No  | No   | BLBKG     |
|             | Mercury                     | 4/7          | 0.047         | 0.073         | mg/kg | 0.04          | Yes             | 0.00051 ss1     | Yes             | Yes | Yes  | ASL       |
|             | Thallium                    | 2/7          | 0.30          | 0.36          | mg/kg | 0.00          | Yes             | 1 ss1           | No              | No  | No   | BSL       |
| SVOCs       | Benzo(a)anthracene          | 1/1          | 0.017         | 0.017         | mg/kg |               | NA              | 5.21 ss4        | No              | No  | No   | BSL       |
|             | Benzo(b)fluoranthene        | 1/1          | 0.036         | 0.036         | mg/kg |               | NA              | 59.8 ss4        | No              | No  | No   | BSL       |
|             | Benzo(g,h,i)perylene        | 1/1          | 0.019         | 0.019         | mg/kg |               | NA              | 119 ss4         | No              | No  | No   | BSL       |
|             | Benzo(k)fluoranthene        | 1/1          | 0.019         | 0.019         | mg/kg |               | NA              | 148 ss4         | No              | No  | No   | BSL       |
|             | Bis(2-ethylhexyl) phthalate | 1/1          | 0.054         | 0.054         | mg/kg |               | NA              | 0.925 ss4       | No              | No  | No   | BSL       |
|             | Chrysene                    | 1/1          | 0.028         | 0.028         | mg/kg |               | NA              | 4.73 ss4        | No              | No  | No   | BSL       |
|             | Fluoranthene                | 1/1          | 0.036         | 0.036         | mg/kg |               | NA              | 122 ss4         | No              | No  | No   | BSL       |
|             | Phenanthrene                | 1/1          | 0.017         | 0.017         | mg/kg |               | NA              | 45.7 ss4        | No              | No  | No   | BSL       |
|             | Ругепе                      | 1/1          | 0.027         | 0.027         | mg/kg |               | NA              | 78.5 ss4        | No              | No  | No   | BSL       |
| Explosives  | 2,4,6-TNT                   | 4/7          | 3.2           | 22            | mg/kg |               | NA              |                 | NSL             | No  | Yes  | NSL       |
|             | 2-Amino-4,6-Dinitrotoluene  | 2/7          | 0.18          | 0.54          | mg/kg |               | NA              |                 | NSL             | No  | Yes  | NSL       |
|             | 4-Amino-2,6-Dinitrotoluene  | 2/7          | 0.21          | 0.64          | mg/kg |               | NA              |                 | NSL             | No  | Yes  | NSL       |
| Propellants | Nitrocellulose              | 1/1          | 1.3           | 1.3           | mg/kg |               | NA              |                 | NSL             | No  | Yes  | NSL       |

Notes:

-- - no value available

mg/kg - means milligrams per Kilogram (parts per million - ppm)

ss1 - Preliminary Remediation Goals (Efroymson et al., 1997a)

ss2 - Toxiclogolgical Benchmarks for Soil and Litter Invertebrates (Efrymonson et al 1997b)

ss3 - Toxiclogolgical Benchmarks for Terrestrial Plants (Efrymonson et al 1997c)

ss4- Ecological Data Quality Level (USEPA Region 5, 1999)

NA - not applicable

NUT - nutrient

BLBKG - below background concentration

PBT- persistent, bioaccumulative and toxic

NSL - no screening level

ASL- above screening level

BSL - below screening level

# Table CBL-15C-Block Quarry Ecological Risk Screening Tables for Sediment

RVAAP 14 AOC Characterization

Ravenna Army Ammunition Plant, Ravenna, Ohio

|        |                      |              |               | Maximum       |       | Sediment      | Maximum         |       | Maximum         |                 | Maximum         |     |      |           |
|--------|----------------------|--------------|---------------|---------------|-------|---------------|-----------------|-------|-----------------|-----------------|-----------------|-----|------|-----------|
|        |                      | Frequency of | Average       | Detected      |       | Background    | Concentration > |       | Concentration > |                 | Concentration > |     |      | COPC      |
| Group  | Parameter            | Detection    | Concentration | Concentration | Units | Concentration | Background      | SRV   | SRV             | Screening Value | Screening value | PBT | COPC | Rationale |
| Metals | Aluminum             | 5/5          | 12000         | 14000         | mg/kg | 13900         | Yes             | 29000 | No              |                 | NSL             | No  | No   | BLSRV     |
|        | Arsenic              | 5/5          | 10            | 15            | mg/kg | 19.5          | No              | 25    | No              | 9.79 sd1        | Yes             | No  | No   | BLBKG     |
|        | Barium               | 5/5          | 74            | 96            | mg/kg | 123           | No              | 190   | No              |                 | NSL             | No  | No   | BLBKG     |
|        | Beryllium            | 5/5          | 0.86          | 1.2           | mg/kg | 0.38          | Yes             | 0.8   | Yes             |                 | NSL             | No  | Yes  | NSL       |
|        | Cadmium              | 1/5          | 0.17          | 0.12          | mg/kg | 0.00          | Yes             | 0.79  | No              | 0.99 sd1        | No              | No  | No   | BLSRV     |
|        | Calcium              | 5/5          | 872           | 2200          | mg/kg | 5510          | No              | 21000 | No              | NUT             | No              | No  | No   | BLBKG     |
|        | Chromium             | 5/5          | 14            | 16            | mg/kg | 18.1          | No              | 29    | No              | 43.4 sd1        | No              | No  | No   | BLBKG     |
|        | Cobalt               | 5 / 5        | 7.8           | 14            | mg/kg | 9.1           | Yes             | 12    | Yes             | 50 sd2          | No              | No  | No   | BSL       |
|        | Copper               | 5/5          | 11            | 18            | mg/kg | 27.6          | No              | . 32  | No              | 31.6 sd1        | No              | No  | No   | BLBKG     |
|        | Iron                 | 5/5          | 19200         | 26000         | mg/kg | 28200         | No              | 41000 | No              |                 | NSL             | No  | No   | BLBKG     |
|        | Lead                 | 5/5          | 18            | 22            | mg/kg | 27.4          | No              | 47    | No              | 35.8 sd1        | No              | No  | No   | BLBKG     |
|        | Magnesium            | 5/5          | 1740          | 2300          | mg/kg | 2760          | No              | 7100  | No              | NUT             | No              | No  | No   | BLBKG     |
|        | Manganese            | 5/5          | 375           | 970           | mg/kg | 1950          | No              | 1500  | No              |                 | NSL             | No  | No   | BLBKG     |
|        | Nickel               | 5/5          | 13            | 17            | mg/kg | 17.7          | No              | 33    | No              | 22.7 sd1        | No              | No  | No   | BLBKG     |
|        | Potassium            | 5/5          | 894           | 1100          | mg/kg | 1950          | No              | 6800  | No              | NUT             | No              | No  | No   | BLBKG     |
|        | Selenium             | 5/5          | 0.90          | 1.1           | mg/kg | 1.7           | No              | 1.7   | No              |                 | NSL             | No  | No   | BLBKG     |
|        | Sodium               | 4 / 5        | 294           | 350           | mg/kg | 112           | Yes             |       | NA              | NUT             | No              | No  | No   | BSL       |
|        | Vanadium             | 5/5          | 25            | 29            | mg/kg | 26.1          | Yes             | 40    | No              |                 | NSL             | No  | No   | BLSRV     |
|        | Zinc                 | 5/5          | 51            | 62            | mg/kg | 532           | No              | 160   | No              | 121 sd1         | No              | No  | No   | BLBKG     |
|        | Mercury              | 4/5          | 0.034         | 0.062         | mg/kg | 0.06          | Yes             | 0.12  | No              | 0.18 sd1        | No              | Yes | No   | BLSRV     |
|        | Thallium             | 2/5          | 0.44          | 0.64          | mg/kg | 0.89          | No              | 4.7   | No              |                 | NSL             | No  | No   | BLBKG     |
| VOCs   | Acetone              | 1/2          | 0.010         | 0.011         | mg/kg |               | NA              |       | NA              | 0.0099 sd2      | Yes             | No  | Yes  | ASL       |
| SVOCs  | Benzo(b)fluoranthene | 1/1          | 0.014         | 0.014         | mg/kg |               | NA              |       | NA              | 10.4 sd2        | No              | No  | No   | BSL       |
|        | Fluoranthene         | 1/1          | 0.017         | 0.017         | mg/kg |               | NA              |       | NA              | 0.423 sd1       | No              | No  | No   | BSL       |
|        | Total PAHs (1)       | 1/1          | 0.39          | 0.031         | mg/kg |               | NA              |       | NA              | 1.610 sd1       | No              | No  | No   | BSL       |

Notes:

--- - no value available

mg/kg - means milligrams per Kilogram (parts per million - ppm)

sd1 - Threshold Effects Concentration from McDonald et al., (2000)

sd2 - Ecological Data Quality Level (USEPA Region 5, 1999)

NUT - nutrient

NA - not applicable

BLBKG - below background concentration

PBT- persistent, bioaccumulative and toxic

NSL - no screening level

ASL- above screening level

BSL - below screening level

SRV-Sediment Reference Value (OEPA, 2003)

BLSRV-Below Sediment Reference Value

(1) - maximum detected concentration of total PAHs was calculated by summing positive detections

# C-Block Quarry Ecological Risk Screening Tables for Surface Water

RVAAP 14 AOC Characterization

Ravenna Army Ammunition Plant, Ravenna, Ohio

|        |                             |              |               | Maximum       |       | Surface Water | Maximum         |                 | Maximum         |     |      |           |
|--------|-----------------------------|--------------|---------------|---------------|-------|---------------|-----------------|-----------------|-----------------|-----|------|-----------|
|        |                             | Frequency of | Average       | Detected      |       | Background    | Concentration > |                 | Concentration > |     |      | COPC      |
| Group  | Parameter                   | Detection    | Concentration | Concentration | Units | Concentration | Background      | Screening Value | Screening value | PBT | COPC | Rationale |
| Metals | Aluminum                    | 5/5          | 270           | 480           | ug/l  | 3370          | No              | ***             | NSL             | No  | No   | BLBKG     |
|        | Barium                      | 5/5          | 53            | 120           | ug/l  | 47.5          | Yes             | 2000 sw1        | No              | No  | No   | BSL       |
|        | Calcium                     | 5/5          | 9680          | 17000         | ug/l  | 41400         | No              | NUT             | No              | No  | No   | BLBKG     |
|        | Chromium                    | 2/5          | 3.8           | 2             | ug/l  | 0.00          | Yes             | 727 sw1[H]      | No              | No  | No   | BSL       |
|        | Cobalt                      | 5/5          | 4.2           | 9             | ug/l  | 0.00          | Yes             | 220 sw1         | No              | No  | No   | BSL       |
|        | Copper                      | 4 / 5        | 3.5           | 4.5           | ug/l  | 7.9           | No              | 4.9 sw1[H]      | No              | No  | No   | BLBKG     |
|        | Iron                        | 5/5          | 8060          | 23000         | ug/l  | 2560          | Yes             |                 | NSL             | No  | Yes  | NSL       |
|        | Magnesium                   | 5/5          | 2260          | 3500          | ug/l  | 10800         | No              | NUT             | No              | No  | No   | BLBKG     |
|        | Manganese                   | 5/5          | 1998          | 4100          | ug/l  | 391           | Yes             |                 | NSL             | No  | Yes  | NSL       |
|        | Nickel                      | 3/5          | 4.9           | 7.4           | ug/l  | 0.00          | Yes             | 184 sw1[H]      | No              | No  | No   | BSL       |
|        | Potassium                   | 5/5          | 5800          | 12000         | ug/l  | 3170          | Yes             | NUT             | No              | No  | No   | BSL       |
|        | Sodium                      | 1/5          | 920           | 1600          | ug/l  | 21300         | No              | NUT             | No              | No  | No   | BLBKG     |
|        | Vanadium                    | 1/5          | 4.5           | 2.7           | ug/l  | 0.00          | Yes             | 150 sw1         | No              | No  | No   | BSL       |
|        | Zinc                        | 2/5          | 17            | 23            | ug/l  | .42           | No              | 47 sw1[H]       | No              | No  | No   | BLBKG     |
|        | Arsenic                     | 4/5          | 6.3           | 11            | ug/l  | 3.2           | Yes             | 340 sw1         | No              | No  | No   | BSL       |
| ĺ      | Hexavalent Chromium         | 1/5          | 8.4           | 22            | ug/l  | 7.9           | Yes             | 16 sw1          | Yes             | No  | Yes  | ASL       |
|        | Lead                        | 1/5          | 1.4           | 1             | ug/l  | 0.00          | Yes             | 30 sw1[H]       | No              | No  | No   | BSL       |
|        | Mercury                     | 2/5          | 0.084         | 0.066         | ug/l  | 0.00          | Yes             | 1.7 sw1         | No              | Yes | Yes  | PBT       |
|        | Thallium                    | 1/5          | 1.9           | 1.7           | ug/l  | 0.00          | Yes             | 79 sw1          | No              | No  | No   | BSL       |
| VOCs   | Acetone                     | 4/5          | 8.9           | 14            | ug/l  |               | NA              |                 | NSL             | No  | Yes  | NSL       |
|        | Carbon disulfide            | 1/4          | 2.8           | 3.7           | ug/l  |               | NA              | 130 sw1         | No              | No  | No   | BSL       |
|        | Methylene chloride          | 1/5          | 1.9           | 6.4           | ug/l  |               | NA              | 11000 sw1       | No              | No  | No   | BSL       |
|        | Toluene                     | - 3/5        | 18            | 64            | ug/l  |               | NA              | 560 sw1         | No              | No  | No   | BSL       |
| SVOCs  | 2,4-Dimethylphenol          | 1/5          | 22            | 88            | ug/l  |               | NA              | 140 sw1         | No              | No  | No   | BSL       |
|        | 2-Methylphenol              | 2/5          | 21            | 72            | ug/l  |               | NA              | 600 sw1         | No              | No  | No   | BSL       |
|        | 4-Methylphenol              | 2/5          | 24            | 86            | ug/l  |               | NA              | 480 sw1         | No              | No  | No   | BSL       |
|        | Benzoic acid                | 1/5          | 90            | 410           | ug/l  |               | NA              |                 | NSL             | No  | Yes  | NSL       |
|        | Benzyl alcohol              | 2/5          | 10            | 12            | ug/l  |               | NA              |                 | NSL             | No  | Yes  | NSL       |
|        | Bis(2-ethylhexyl) phthalate | 1/5          | 32            | 130           | ug/l  |               | NA              | 1100 sw1        | No              | No  | No   | BSL       |
|        | Isophorone                  | 1/5          | 1.2           | 2.2           | ug/l  |               | NA              | 7500 sw1        | No              | No  | No   | BSL       |
|        | Phenol                      | 2/5          | 16            | 68            | ug/l  |               | NA              | 4700 sw1        | No              | No  | No   | BSL       |

Notes:

-- - no value available

ug/l - means micrograms per Liter (parts per billion - ppb)

sw1 - Ohio Water Quality Criteria (Reg 3745-1-07)

sw1[H] - Ohio Water Quality Criteria (Reg 3745-1-07) based on a site specific hardness of 33 (mg/l)

NA - not applicable

ID - insufficient data to calculate screening value

NUT - nutrient

BLBKG - below background concentration

PBT- persistent, bioaccumulative and toxic

NSL - no screening level

ASL- above screening level

# C-Block Quarry Ecological Risk Summary of Quantitative and Qualitative COPECs for Environmental Media

RVAAP 14 AOC Characterization

Ravenna Army Ammunition Plant, Ravenna, Ohio

| Group       | Parameter                  | Shallow Soil | Sediment | Surface Water |
|-------------|----------------------------|--------------|----------|---------------|
| Metals      | Aluminum                   |              |          |               |
|             | Beryllium                  |              |          |               |
|             | Chromium                   | X            |          |               |
|             | Copper                     | X            |          |               |
|             | Iron                       |              |          | Q             |
|             | Lead                       | X            |          |               |
|             | Manganese                  |              |          | Q             |
|             | Vanadium                   |              |          |               |
|             | Hexavalent Chromium        |              |          | X             |
|             | Lead                       | X            |          |               |
|             | Mercury                    | X            |          | X             |
|             | Thallium                   |              |          |               |
| VOCs        | Acetone                    |              |          | Q             |
| SVOCs       | Benzoic acid               |              |          | Q             |
|             | Benzyl alcohol             |              |          | Q             |
| Explosives  | 2,4,6-TNT                  | Q            |          |               |
|             | 2-Amino-4,6-Dinitrotoluene | Q            |          |               |
|             | 4-Amino-2,6-Dinitrotoluene | Q            |          |               |
| Propellants | Nitrocellulose             | Q            |          |               |

Notes

COPEC - chemical of potential ecological concern

X - quantitative COPEC

Q - qualitatative COPEC

blank cell indicates that the analyte was not identified as a COPEC for the media

Page 1 of 1



# LOAD LINE 12 TABLE OF CONTENTS

| 1.0 | INT   | RODUCTION1                                                   |
|-----|-------|--------------------------------------------------------------|
| 1.1 | Р     | URPOSE AND SCOPE1                                            |
| 1.2 | В     | ACKGROUND INFORMATION1                                       |
| 1   | .2.1  | AOC Description and History1                                 |
| 1   | .2.2  | Previous Investigation                                       |
| 1   | .2.3  | Regulatory Authorities                                       |
| 1   | .2.4  | Regulatory Status of Load Line 12                            |
| 2.0 | EN    | VIRONMENTAL SETTING AT LOAD LINE 129                         |
| 2.1 | S     | URFACE FEATURES                                              |
| 2.2 | Ν     | 1eteorology and Climate9                                     |
| 2.3 | S     | URFACE WATER HYDROLOGY9                                      |
| 2.4 | G     | EOLOGY                                                       |
| 2   | 2.4.1 | Glacial Deposits                                             |
| 2.5 | S     | OIL                                                          |
| 2.6 | Н     | YDROGEOLOGY10                                                |
| 2   | 2.6.1 | Unconsolidated Sediments                                     |
| 2   | 2.6.2 | Bedrock                                                      |
| 2.7 | D     | EMOGRAPHY AND LAND USE                                       |
| 2.8 | E     | COLOGY                                                       |
| 3.0 | CH    | ARACTERIZATION ACTIVITIES AT LOAD LINE 12 12                 |
| 3.1 | F     | IELD ACTIVITIES                                              |
| Ĵ   | 8.1.1 | Groundwater Investigation Activities                         |
| Ĵ   | 8.1.2 | Monitoring Well Survey                                       |
| 3.2 | D     | EVIATIONS FROM THE WORK PLAN                                 |
| 4.0 | NA    | <b>FURE OF CONTAMINATION AT LOAD LINE 1216</b>               |
| 4.1 | G     | ROUNDWATER                                                   |
| 4.2 | I     | N SITU PERMEABILITY TESTING RESULTS                          |
| 5.0 | HU    | MAN HEALTH AND ECOLOGICAL RISK SCREENING FOR LOAD LINE 12 19 |
| 6.0 | SUN   | MMARY AND CONCLUSION FOR THE CHARACTERIZATION OF             |
| 6.1 | Ν     | ATURE OF CONTAMINATION                                       |



# LOAD LINE 12 FIGURES

- Figure L12-1 Load Line 12 Geologic Cross Section
- Figure L12-2 Load Line 12 Geologic Cross Section A
- Figure L12-3 Load Line 12 Geologic Cross Section B
- Figure L12-4 Load Line 12 Geologic Cross Section C
- Figure L12-5 Load Line 12 Geologic Cross Section D
- Figure L12-6 Load Line 12 Monitoring Well Locations
- Figure L12-7 Load Line 12 Monitoring Well Exceedences
- Figure L12-8 Load Line 12 Potentiometric Surface Map A
- Figure L12-9 Load Line 12 Potentiometric Surface Map B
- Figure L12-10 Load Line 12 Potentiometric Surface Map C

# LOAD LINE 12 TABLES

- Table L12-1Load Line 12 Summary of Sampling and Analysis
- Table L12-2
   Load Line 12 Summary of Groundwater Detections
- Table L12-3
   Load Line 12 Summary of All Groundwater Results



# 1.0 INTRODUCTION

This report documents the results of Load Line 12 (LL12) (AOC-12) sampling effort that was completed as part of the characterization of the 14 Ravenna Army Ammunition Plant (RVAAP) Area of Concern (AOCs). This document summarizes the results of the field activities conducted from October 2004 to May 2005.

### 1.1 PURPOSE AND SCOPE

Characterization activities were conducted at LL12 to collect sufficient data for all applicable media to allow efficient planning and execution of future environmental actions.

The characterization effort for the LL12 was undertaken to accomplish the following:

- Develop and/or update the Conceptual Site Model to identify the key elements that should be considered in future actions;
- Assess AOC-specific physical characteristics;
- Assess potential sources of contamination;
- Allow initial assessment of the nature and lateral extent of groundwater contamination (the depth of contamination was not evaluated for this characterization effort)

The rationale for the AOC-specific sampling plan was biased based on historical information including past usage, past investigations, ecological settings, climatic conditions, and geological and hydrologic characteristics. The field program was conducted in general accordance with the revised (USACE, 2001a) and the Final Sampling and Analysis Plan Addendum FSAP for the characterization of 14 RVAAP AOCs (MKM, 2004).

### **1.2 BACKGROUND INFORMATION**

This section briefly describes the previous investigations conducted at LL12 and the regulatory status of LL12.

### **1.2.1** AOC Description and History

LL12 is 30.4 ha (75 acre) that is located in the southeastern part of the facility at the northeast corner of the intersection of South Service Road and Paris-Windham Road. LL12 was constructed in 1940 to 1941 as an ammonium nitrate plant. Figure 1-2, Volume I shows the location of LL12 in relation to the RVAAP facility. The plant was operated by the Atlas Powder Company from 1941 to May, 1943. After the termination of ammonium nitrate production, LL12 was used for various production, renovation and demilitarization operations.

The Ammonium Nitrate Plant (at LL12) was operated to produce ammonium nitrate for explosives and fertilizers. There were no wash water collection tanks or settling ponds in LL12 during these operations. All residues, dusts and spills were washed into the storm drainage system.


Load Line 12 was leased by the Silas Mason Company from 1946 to 1949 for the production of fertilizergrade ammonium nitrate. In 1944, Buildings 900, 904 and 905 were converted and used for the demilitarization of munitions. From 1965 to 1967, Hercules Alcor, Inc. leased Building FF-19 for the production of aluminum chloride. In the late 1970s, contaminated pink water washout was collected in settling sumps and treated through sawdust filters. In 1981, the Army constructed the L12 Pink Water Treatment Plant. The Army declared L12 inactive in 1992. Demolition and salvage operations were completed by MKM in June 2000. All buildings, associated structures, including the pink water plant, and walkways were removed.

The LL12 Pink Water Treatment Plant consisted of a dual mode activated carbon filtration system for filtering pink water. Twin 907.2-kilogram (2000 pound) carbon units were enclosed in a 6 by 13.2 meter (20 by 40 foot) steel girder and metal-sided building which rested on a concrete slab. The spent carbon was stored in Building 1601 until transported off site for disposal. The AOC was constructed in 1981, within the confines of LL12, and was fully operational for two years. During operation, plant effluent was stored in a 38,000-liter (10,000 gallon) concrete holding tank. When processing, the effluent was pumped through a bag prefilter that removed the particulate matter. After the prefilter, the effluent was pumped through a series of two activated carbon units to another holding tank. Approximately 30 minutes of carbon bed contact time was maintained during the treatment process.

#### **1.2.2** Previous Investigation

The specific findings and conclusions for these previous investigations at LL12 are presented below.

#### 1.2.2.1 1996 USACHPPM Relative Risk Site Evaluation

This assessment identified the following conditions at RVAAP:

- Potential chemicals of concern (PCOCs) at RVAAP sites were identified explosives (TNT, RDX, HMX, RDXX, composition B, and lead azide) and heavy metals (lead and mercury).
- The primary sources of potential contamination at RVAAP were identified as wastewater effluent from munitions assembly and demilitarization process, open burning and detonation of explosives, and landfill operations.
- Primary contaminant release mechanisms from load lines were process effluent discharges to surface water (drainage ditches, settling ponds, and streams) and process building wastewater wash-out on to surface soils. Media of concern were identified as a soil, sediment, groundwater and surface water.
- The greatest potential for release of contaminants to groundwater from load lines likely was identified as wastewater effluent discharge to unlined earthen settling ponds. Concrete settling tanks, open drainage ditches, and storm sewers were also identified as a concern relative to groundwater.
- The primary contaminant release mechanism from open burning and detonation areas resulted from the burning and detonation of off-specification explosives on the ground surface. Media of concern was identified as soils, groundwater, surface water and sediment.



- The primary release mechanism at landfills was identified as a result of potential leaching of contaminants from buried/disposal materials. Groundwater and soils were selected as media of concern.
- Known releases of contamination to surface water and soils have occurred from load line (assembly and demilitarization) operations and from open burning and detonation operations.
- Known releases of contamination to groundwater were noted to have occurred from quarry landfill operations.
- The greatest potential for off-site migration of contaminants during load line operations was identified as surface water. The greatest potential for current off-site migration of contaminants was identified as groundwater and surface water.

Based on qualitative assessment of the potential hazards, release mechanisms, and environmental conditions at RVAAP, LL-12, Building 1200 and the Landfill N. of Winklepeck Burning Grounds were considered among the higher priority sites in this assessment.

#### 1.2.2.2 Preliminary Assessment for the Ravenna Army Ammunition Plant (USACE 1996)

This assessment identified the following conditions at RVAAP:

- Potential chemicals of concern (PCOCs) at RVAAP sites are predominately explosives (TNT, RDX, HMX, RDXX, composition B, and lead azide) and heavy metals (lead and mercury).
- The primary sources of potential contamination at RVAAP are wastewater effluent from munitions assembly and demilitarization process, open burning and detonation of explosives, and landfill operations.
- Primary contaminant release mechanisms from load lines were process effluent discharges to surface water (drainage ditches, settling ponds, and streams) and process building wastewater wash-out on to surface soils. Media of concern are soil, sediment, groundwater and surface water.
- The greatest potential for release of contaminants to groundwater from load lines likely occurs from wastewater effluent discharge to unlined earthen settling ponds. Concrete settling tanks, open drainage ditches, and storm sewers are also of concern relative to groundwater.
- The primary contaminant release mechanism from open burning and detonation areas resulted from the burning and detonation of off-specification explosives on the ground surface. Media of concern are soils, groundwater, surface water and sediment.
- The primary release mechanism at landfills is a result of potential leaching of contaminants from buried/disposal materials. Media of concern are groundwater and soils.
- Known releases of contamination to surface water and soils have occurred from load line (assembly and demilitarization) operations and from open burning and detonation operations.
- Known releases of contamination to groundwater have occurred from quarry landfill operations.
- The potential impact to groundwater from many sites at RVAAP is currently unknown.
- Hydrogeologic conditions underlying sites at RVAAP are not well defined.



- The greatest potential for off-site migration of contaminants during load line operations was via surface water. The greatest potential for current off-site migration of contaminants is via groundwater and surface water.
- Based on qualitative assessment of the potential hazards, release mechanisms, and environmental conditions at RVAAP, LL-12, Building 1200 and the Landfill N. of Winklepeck Burning Grounds were considered among the higher priority sites in this assessment.
- Based on interviews with former employees of varying expertise, the Pistol Range and NACA Test Area were also cited in this assessment. These sites had no documentation to support their existence and were listed as undocumented sites.

#### 1.2.2.3 Phase I Remedial Investigation for High-Priority Areas of Concern at the Ravenna Army Ammunition Plant (SAIC 1998)

TNT and other explosives, inorganics, and organics occur at elevated concentrations in soil throughout this AOC. Explosives are concentrated around the Building 904 (demilitarization facility), Building 900 ferilizer/demilitarization operations facility, and the Nitrate Settling Basin and Filter Bed Facility. Cadmium, chromium, lead, and mercury are also concentrated at these three areas and Building FF-19. Other organic contaminants detected include PAHs in the Building 904 area, and pesticides/PCBs in the vicinity of Buildings 900 and FF-19. Sediments also exhibited elevated concentrations of the explosives TNT and DNT, inorganics, and organics. Explosive concentrations were several orders of magnitude lower in sediment than in soil, and the maximum concentration was detected in the area of the Nitrate Settling Basin and Filter Beds. The maximum concentration of many inorganics and organic compounds was in the sample adjacent to Building FF-19. There does appear to be some migration of contaminants in sediment, with likely sources at Buildings 904, 900, FF-19 and the Nitrate Settling Basin and Filter Beds. The extent of sediment contamination beyond the AOC boundary was not determined at this AOC during the Phase I RI. There were no detections in the single groundwater sample analyzed for VOCs from this AOC.

#### 1.2.2.4 Phase II Remedial Investigations (SAIC 2004)

This Phase II Remedial Investigation (RI) was conducted to characterizes the nature and extent of contamination, evaluate the fate and transport of contaminants, and assess potential risk to human health and the environment resulting from former operations at Load Line 12. The AOC was spatially subdivided into aggregates based upon the former load line process and function for soils, sediments, and surface water. The findings were as follows:

#### Western Soil Aggregate

• The primary identified source areas in the Western Soil Aggregate include Buildings 900, 904, 905, and FF-19. Metals (Building FF-19), explosives (Buildings 900, 904, and 905), and PAHs represent the most pervasive SRCs in the former production area. The spatial distribution and concentrations of contaminants were highly variable in the vicinity of these source areas. With respect to vertical distribution, the numbers and concentrations of SRCs in subsurface soil at



these source areas decreased significantly relative to surface soil.

- Sampling of locations around the AOC perimeter indicated a source area north of Load Line 12 in an apparent former staging area (Team Track Area). Other than the Team Track Area, perimeter sampling locations did not indicate substantial contamination outside of the former process area.
- Fate and transport modeling predict that leaching of metals and explosives compounds at Buildings 904, 905, and FF-19 will result in concentrations at the groundwater table in excess of PRGs in the future. The migration of metals and explosives constituents from the source areas to the closest groundwater discharge point at concentrations in excess of MCLs or PRGs is also predicted to occur within a time frame of 1,000 years from Building FF-19 and the Team Track Area. Modeling of groundwater transport from source areas to the AOC boundary shows that RDX is predicted to reach the AOC boundary at concentrations above PRGs/MCLs from Buildings 904 and 905. Migration of most of the constituents is attenuated because of moderate to high retardation factors, as well as degradation of organic compounds; these processes are not reflected in the conservative modeling results.
- Soil contamination in the vicinity of the identified source areas is currently at concentrations sufficient to result in chemical hazards and cancer risks for humans in excess of the minimum acceptable level under the most likely land use scenario (National Guard/managed recreational).
- Comparison of concentrations of COCs in surface soil to preliminary minimum RGOs (1E-06 risk and/or HI=0.1) shows that a total of 10 chemicals exceed their respective criteria for the National Guard, recreational, and residential land use scenarios. A number of the individual exceedances represent cases where the method reporting limit was greater than the minimum RGO. The locations where multiple sample stations had chemicals in excess of minimum RGOs include Buildings 900, 901, 902, 904, 905, and FF-19 and the Team Track Area. Areas having only single sample stations with at least one chemical above RGOs included Buildings 52, 903, and FN-54; two transformer pads; and two bare soil areas located east of Buildings 904 and 905. Building 906 had no chemicals above RGOs in surface soil.
- Fewer contaminants exceed minimum RGOs for subsurface soil, and almost all of the exceedances observed at specific sampling stations are associated with the residential receptor. The majority of exceedances of minimum RGOs in subsurface soil for the residential receptor occurred at sampling
- Stations at Buildings FF-19, 901, 904, 905, and FE-17 (Power House). Four compounds [benzo(*a*)pyrene; dibenz(*a*,*h*)anthracene; 2,4,6-TNT; and RDX] exceeded minimum RGOs for the National Guard scenario at only nine sampling stations, although several of the exceedances represent method reporting limits in excess of RGOs.
- HQs for terrestrial and aquatic ecological receptors suggest that such receptors are potentially at risk from exposure to surface soil.

#### Eastern Soil Aggregate

- In the Eastern Soil Aggregate outside of the former production area, no contaminant source areas were identified in the contaminant nature and extent evaluation. Sporadic occurrences of metals may or may not be directly related to past AOC operations; these metals may represent residues from slag.
- Modeling results indicate that chromium and nickel are predicted to leach to groundwater with



concentrations exceeding the groundwater PRGs/MCLs beneath sampling points. Groundwater transport modeling indicates that no constituent will migrate to receptors or the AOC boundary in excess of PRGs within a 1,000-year time frame.

- No COCs were identified for the most likely land use scenario, and only two compounds were identified as COCs under the most conservative potential future land use scenario.
  Benzo(*a*)pyrene was the only chemical reported above minimum RGOs at three sampling stations for the residential land use scenario; however, two of the reported concentrations represent method reporting limits.
- Some ecological receptors are at risk, but much less so than in the Western Soil Aggregate.

#### Surface Water and Sediment

- Explosives contamination in sediment is not widespread and occurs near Building 905 and at the station furthest downstream of the process area near Upper Cobb's Pond.
- Ditch sediment near Buildings FF-19 and 905 is most contaminated with metals. The presence of SVOCs (primarily PAHs) was noted in the upgradient sample location (L12-228) and in sediment near Buildings FF-19, 901, 902, and FN-54. Thus, the presence of SVOCs in the Active Area Channel and North of the Active Area may not be due to activities at Load Line 12, but rather due to inputs from the Atlas scrap yard or the roadway at the western AOC boundary. Additionally, controlled open burning of several buildings during demolition work in the 1980s may have contributed to observed PAH contamination. Arochlor-1254 and Arochlor-1260 were detected in sediment near Buildings 902, 905, FF-19, and FN-54, but were absent from the stream channel in the North of the Active Area segment.
- At the exit point from the AOC, 1,3-DNB; antimony; cadmium; cobalt; mercury; nickel; silver; 2butanone; acetone; benzo(*b*)fluoranthene; and fluoranthene were identified as SRCs, indicating previous migration and deposition of contaminants in the active area channel.
- Explosives were detected in all surface water aggregates; however, surface water in the Active Area Channel has been most impacted by explosives contamination. Explosives were not detected in surface water at the station furthest downstream near Upper Cobb's Pond (L12-229).
- As with sediment, surface water in ditches just downstream of major source areas is most contaminated with metals. Barium, cadmium, chromium, cobalt, copper, nickel, and zinc were detected frequently at concentrations exceeding their respective site background concentrations. Nitrate was detected at times the MCL in surface water near Building 900.
- SVOCs and VOCs are not widespread, and pesticides/PCBs are absent from surface water at Load Line 12. At the AOC exit point, cobalt, nickel, and vanadium exceeded background criteria.
- Sediment and surface water present significantly lower risks than soil under the most likely land use scenarios. A total of nine chemicals exceeded minimum RGOs for sediment at 20 sampling stations. The majority of these exceedances for sediment were related to benzo(*a*)pyrene, and most were for the residential land use scenario. The notable exception was the Main Ditch Aggregate where arsenic and/or PCBs exceeded National Guard, recreational, and residential minimum RGOs at all four stations sampled in this aggregate. In addition, sediment at the upgradient station contained five PAHs in excess of minimum RGOs. For surface water, five



chemicals exceeded minimum RGOs for the residential land use scenario only. A majority of these exceedances relate to bis(2-ethylhexyl)phthalate and 2,4-DNT and represent reporting limits in excess of the minimum residential RGO.

#### Groundwater

- Groundwater within the AOC contains explosives compounds and metals in excess of background values. Wells in the northern half of the AOC, particularly near Building 900, the northern boundary, and the Team Track Area, are most contaminated.
- Filtered samples show exceedances of primary federal drinking water MCLs for arsenic near Building 904 and for thallium near Building FF-19; these exceedances correspond to hot spots for these metals in either surface or subsurface soil. Nitrate concentrations much greater than federal drinking water MCLs were observed near Buildings 900, FF-19, and 901. The fact that nitrate was detected only in wells adjacent to primary ammonium nitrate production areas suggests that contaminants have not migrated far from source areas.
- SVOCs and PCBs/pesticides are minor contaminants in Load Line 12 groundwater.
- Chemical hazards and risks associated with arsenic and nitrate in groundwater under hypothetical future National Guard and residential land use scenarios exceed the upper bound of the CERCLA risk range.
- Nitrate; aldrin; bis(2-ethylhexyl)phthalate; 2,4-DNT; and RDX exceed minimum RGOs for the National Guard and residential land use scenarios. However, a majority of the exceedances reflect method reporting limits in excess of the minimum RGOs.

#### Sanitary Sewer Water and Sediment

- Explosive compounds were detected at low concentrations in water samples collected at all locations from the sanitary sewer.
- Sediment and water at stations L12-218 and L12-219 are also contaminated with metals (mercury in particular), SVOCs (primarily PAHs), and pesticides/PCBs. Nitrate was detected in water samples at every station sampled and was detected once in sediment at station L12-219. Cyanide was not detected in water or sediment at any station sampled. Only one pesticide, heptachlor epoxide, was detected in sewer water at 3 stations. No SVOCs or VOCs were detected in sewer water.

Although the sanitary sewer system cannot be confirmed as a secondary source for contaminants to groundwater, the presence of nitrate in both sewer water and groundwater indicates some connection via cracks or seepage points in the pipe system. Therefore, the sewer system may represent a preferential pathway for contaminant movement within the AOC.



1.2.2.5 Phase II Remedial Investigation Supplemental Report for Load Line 12 (RVAAP-12) at the Ravenna Army Ammunition Plant (SAIC 2005).

This document was written to provide an updated assessment of the site conditions at LL12. Data generated since the Phase II Remedial Investigations (SAIC 2004) including the groundwater from the 14 AOC characterization, was compared to a baseline human health risk assessment to determine whether any new COPCs emerged.

#### **1.2.3 Regulatory Authorities**

Volume 1, Section 1.2.3 identifies the regulatory authorities that oversee remedial activities for this AOC.

#### 1.2.4 Regulatory Status of Load Line 12

Volume I, Section 1.2.4 identifies the regulatory status for this AOC.



## 2.0 ENVIRONMENTAL SETTING AT LOAD LINE 12

This section describes the physical characteristics of LL12 that are factors in interpreting the potential contaminant transport pathways, receptor populations, and exposure scenarios with respect to the evaluation of human health and ecological risks. The Load Line is generally open with some wooded areas along the west and southwest borders. The AOC is flat with elevation change across the site being less than 10 feet. All of the load line buildings and structures were removed prior to 2000. Several ponds are located in the central portion of the AOC that were formally used during operations of the facility for settling basins. A large area to the west of the AOC boundary is wet or covered by surface water from biological impoundment. South Service Road is located immediately south of LL 12. Newton Falls Road bounds the AOC to the north.

#### 2.1 SURFACE FEATURES

The topography at LL12 slopes slightly from east to west. Ground elevations adjacent to the five monitoring wells installed at this AOC ranged from 977.50 to 982 ft amsl (Figure L12-6). Surface features at LL12 consist of a one-lane mostly gravel road running throughout the interior of the AOC. All of the former buildings and above-ground structures from the former operations have been removed. There are two former railroad tracks that extend completely through the AOC, running north and south, and several short former spurs in the southern portion of the AOC.

#### 2.2 METEOROLOGY AND CLIMATE

Meteorology and climate are addressed in Volume 1, Section 2.2.

#### 2.3 SURFACE WATER HYDROLOGY

Because the AOC is relatively flat, surface water drainage is localized and ponding is prevalent. However, there are two significant drainage ditches on the AOC. The first ditch runs north and south, and is parallel with the two former railroad tracks that serviced LL12; the other ditch runs east and west intersecting the first ditch (Figure L12-6). There is a smaller ditch between the former railroad tracks that may be seasonally wet. The ditches tend to hold water for extended periods of time due to the low permeability of soils.

#### 2.4 GEOLOGY

Lithologic logs from five borings, advanced during the characterization activities and completed as monitoring wells, were used to characterize the subsurface geology at LL12. The boring logs which detail the vertical lithologic sequences are found in Appendix H.

#### 2.4.1 Glacial Deposits

Subsurface lithology at LL12 consists mostly of silts and silty clays with interbedded sands. These deposits are generally firm with low to moderate plasticity. Cross-sections of the subsurface, based on data from the previous investigations as well as the current characterization effort at LL12, illustrate the lateral distribution and variation of these discontinuous glaciated sediments (Figures L12-1 to L12-5).



#### 2.5 SOIL

According to the Soil Survey of Portage County, Ohio (USDASCS, 1978), RVAAP soils are described as being nearly level to gently sloping, and are poor to moderately well drained. Two soil types are found at LL12: the Mahoning silt loam (0 to 2 percent slopes) and the Trumbull silt loam (0 to 2 percent slopes). The Trumbull silt loam covers the majority of the AOC. The Mahoning silt loam is found in the northeastern and southeastern portions of the AOC.

Trumbull silt loam consists of deep, poorly drained, nearly level soils. These soils formed in silty clay loam, clay loam, or silty clay glacial till. Permeability is very slow in the subsoil and underlying glacial till. Runoff is slow, and ponding is common after heavy rains. Trumbull soils are slow to dry in the spring. Trumbull silt loam (0 to 2 percent slopes) is a nearly level soil mainly along small drainageways or in small depressions adjacent to the better drained Mahoning soils. Seasonal wetness and very slow permeability are limitations.

The Mahoning series consists of deep, somewhat poorly drained, nearly level to gently sloping soils that formed in silty clay loam or clay loam glacial till. The Mahoning Silt Loam (0 to 2 percent slopes) is characterized by nearly level soil in upland areas between drainageways with slow to ponded runoff. Seasonal wetness and slow permeability characterize this soil types.

#### 2.6 HYDROGEOLOGY

All monitoring wells were located in a manner that would allow stratigraphic correlation across the site. Potentiometric maps (figures L12-8 to L12-10) were drafted from the groundwater level information from the newly installed wells.

#### 2.6.1 Unconsolidated Sediments

Saturated soil was encountered at approximately 14 to 25 ft bgs during drilling of the five groundwater monitoring wells.

Because the topography is relatively flat and the top of the bedrock appears to slope to the south (USGS Bedrock Topography Map), the groundwater in the east, south and central portions of the AOC flow toward the southern half of the AOC. In the northwest portion of the AOC groundwater flow is in a northerly direction.

#### 2.6.2 Bedrock

No weathered or competent bedrock was encountered during the drilling of the five monitor wells. Volume I presents a bedrock description for the RVAAP facility.



#### 2.7 DEMOGRAPHY AND LAND USE

A description of demography and land use is discussed in Volume 1, Section 2.7.

#### 2.8 ECOLOGY

Ecology is discussed in Volume 1, Section 2.8.



# 3.0 CHARACTERIZATION ACTIVITIES AT LOAD LINE 12

This section describes the field and analytical methods identified during the RVAAP 14 AOC characterization activities at LL12. The field and analytical programs were conducted in accordance with the RVAAP Facility Wide Sampling and Analysis Plan (FWSAP) (USACE, 2001), the RVAAP 14 AOC FWSAP Addendum (MKM, 2004) and the Work Plan for the RVAAP 14 AOC (MKM, 2004). Investigation objectives, sampling methods, and sampling locations are briefly discussed in this section.

#### 3.1 FIELD ACTIVITIES

Field activities conducted from October 2004 thru February 2005 included:

- Installing five groundwater monitoring wells (11-09-04 11-10-04);
- Collecting geotechnical samples from the borings (11-10-04);
- Conducting well slug tests (01-25-05);
- Collecting groundwater samples from existing and newly installed monitoring wells (10-26-04 11-30-04); and
- Conducting a monitoring well survey (01-17-05 01-28-05).

Monitoring well locations for the characterization of this AOC were located to assess the impact that LL12 operations may have had on groundwater and to evaluate where contaminants related to the former operations may have impacted the AOC.

Information from previous assessments, evaluations and investigations, plus institutional knowledge about the operations that occurred at L12, were used to determine the monitoring well locations. Table L12-1 summarizes the types and numbers of samples that were collected, rationale for collecting the samples and the analyses conducted on the samples. A photo log of the investigation activities is provided in Appendix C. Figure L12-6 shows the monitoring well locations at this AOC.

#### 3.1.1 Groundwater Investigation Activities

Five boreholes were advanced into unconsolidated materials. Borehole termination depth ranged from 24.0 to 32.0 ft bgs at L12 (Figure 3-3). At four locations, saturation was encountered between 14 ft and 17 ft; at one well (MW-246), saturation was not encountered until 25 ft. Additionally, groundwater samples were collected from all pre-existing groundwater monitoring wells. The groundwater activities at this AOC were conducted to:

- Determine whether contaminants from the previous operations at LL12 had adversely impacted groundwater quality underlying the AOC;
- Evaluate the quality of groundwater upgradient of LL12; and
- Collect additional data pertaining to the groundwater flow regime at LL12.



One round of groundwater sampling and slug tests were conducted and three rounds of water level data were collected.

#### 3.1.1.1 Monitoring Well Installation and Development

An 11.25 in. OD, HSA was used to advance the borehole through unconsolidated material to an average depth of 8.61 m (28.26 ft) bgs. Bedrock was not encountered in any of the boring locations. Section 4.4.2.4 and 4.4.2.5 of the FWSAP describe the HSA drilling method.

Monitoring wells were constructed in each borehole, following termination of drilling at the appropriate depth. A 3.05 m (10 ft) section of new, pre-cleaned 5.0 cm (2.0 inch) Schedule 40 polyvinyl chloride (PVC) 0.010 slot screen was set to straddle the static water level determined during drilling activities. The well was completed to the surface using new, schedule 40 PVC riser. The screen and riser were placed into the borehole through the drill stem augers during well construction. Placement of clean Global No. 5 sand filter pack was tremied in place from the bottom of the boring to approximately 0.6 m (2 ft) above the top of the well screen. The filter pack was sealed with 0.6 m (2 ft) of bentonite pellets. A Type 1 Portland cement with 7 percent bentonite grout was tremied to complete the remainder of annular space to the surface. Each well was finished at the surface with protective steel surface casing. Three steel posts were installed around each well. At least five borehole volumes (maximum of seven borehole volumes) and five times any hydration volume were removed from each well using a submersible pump. Pre-existing monitoring wells were gauged to determine whether re-development was required. One pre-existing well required re-development (L12mw-113-GW) prior to sample collection. The installation, development, and sampling of monitoring wells were conducted in accordance with the Section 4.3.2 of the FWSAP. Well construction diagrams and well development records are provided in Appendix H.

#### 3.1.1.2 Geotechnical Sample Collection

Geotechnical samples were collected during groundwater monitoring well installation. Four Shelby tubes were advanced at monitoring well locations L12mw-242 (8 to 10 ft. and 12 to 14 ft), L12mw-043 (8 to 10 ft) and L12mw-044 (6 to 8 ft), and sent to the laboratory for analysis. Geotechnical sample collection was conducted in accordance with Section 4.4.2.4.1 of the FWSAP. The geotechnical analytical data can be found in Appendix J.

#### 3.1.1.3 In-Situ Permeability Testing

Slug tests were performed at the five newly installed monitoring wells at LL12 to estimate the hydraulic conductivity of the media surrounding each well screen. A transducer was used to collect the falling and rising head data. First, the rising head test was conducted by inserting a stainless steel slug into the well and recording water levels until the groundwater returned to static levels. After it was determined that the groundwater elevations had stabilized, the falling head test was conducted by removing the slug and collecting data until static conditions were achieved. The monitoring well slug test was conducted in accordance with the Characterization of 14 RVAAP AOCs SOW (May 2004). Slug test data records are provided in Appendix K and resulting hydraulic conductivities arithmetic can be found in Section 5.2.



#### 3.1.1.4 Groundwater Sampling

Before collecting groundwater samples, each newly installed monitoring well's condition was evaluated and noted in accordance with Sections 4.3.2.3.11.4 and 4.3.2.3.13 of the FWSAP. Casing headspace was field screened at each well using a handheld PID. No detections were observed in the PID readings for the wells at LL12. This information is provided on the field forms located in Appendix H. Specific information related to the type of PID used and calibration is included in Section 3.1.5 of Volume 1. The depth to water and depth to the bottom of the well casing were measured and recorded. Each well was purged using micropurge technology. Purging continued until measurements of water quality indicators (pH, temperature, dissolved oxygen, and conductivity) were within 10 percent of each other for three consecutive readings. Analysis of groundwater at L12 included the following parameters: TAL Metals, Explosives, Propellants, VOCs, SVOCs, Nitrate, Pesticides and PCBs.

Groundwater was collected from each of the five newly installed wells and from 14 pre-existing monitoring wells at LL12 and placed into pre-cleaned bottles. Samples that were to be analyzed for TAL dissolved metals were field-filtered during collection. Once they were containerized, samples were immediately placed into a cooler containing ice and submitted to the laboratory under a completed chain of custody. All groundwater sampling was conducted in accordance with the procedures provided in Section 4.3.4 and 4.3.5 of the FWSAP. Section 3.1.10.11 of Volume 1 also discusses the groundwater sampling procedures used for this project.

Two split samples were collected and submitted for analysis to an independent USACE approved laboratory. One split sample was collected from the newly installed wells and one from the preexisting wells. Well purging and sampling records are provided at Appendix H and analytical results from the samples are presented in Appendix L.

#### 3.1.1.5 Water Level Measurements

Static water level and total depth measurements were taken and recorded at each monitoring well (preexisting and newly installed) on three separate occasions to provide data about the groundwater flow regime underlying the LL12. These water level readings were collected during February, March, and May 2005. Water level measurements were collected in accordance with Section 4.3.2.6 of the FWSAP. Groundwater elevation data are included in Appendix M.

#### 3.1.2 Monitoring Well Survey

Monitoring well survey vertical control was within 0.01 ft accuracy and horizontal control was within 1-ft accuracy. Vertical datum was in 1929 NGVD and Ohio State plane coordinates were in NAD83. Surveying was conducted in accordance with Section 4.3.2.3.12 of the FWSAP. The survey report and sample location survey maps can be found in Appendix N.



#### 3.2 DEVIATIONS FROM THE WORK PLAN

Every effort was made to complete the field activities in accordance with the FWSAP and the approved RVAAP 14 AOC FWSAP Addendum. However, in some instances, circumstances or field conditions necessitated a modification. Changes made during the LL12 characterization are noted below.

- Although the FWSAP specifies that 3 ft of sand be placed above the screen, the depth of sand in three wells deviated from that depth. The deviations were caused by too much sand being poured into the well too quickly, not allowing for the proper gauging for depth.
  - MW-242 was constructed with 3.5 ft of sand above the screen
  - MW-244 was constructed with 3.5 ft of sand above the screen
  - MW-246 was constructed with 4.5 ft of sand above the screen
- L12mw-113-GW (existing well from previous phase) was re-developed due to the presence of 1.3 feet of sediment in the well screen. The MW is a low yield well and required three days to extract seven borehole volumes (Some weather delays were encountered due to electrical storms). The turbidity was consistently at or greater than 1000 NTUs through all seven borehole volumes. The turbidity does not meet the 5 NTU criteria set forth in the FWSAP with no indication of reduction through seven borehole volumes. Based upon the level of effort through purge volumes and the fact that the other water quality parameters were stable, MKM notified the Ohio EPA and received verbal approval to consider development sufficient for proceeding to the purge/sampling phase.

Although deviations were identified, the objectives of the LL12 AOC characterization were still achieved.



## 4.0 NATURE OF CONTAMINATION AT LOAD LINE 12

This section summarizes the groundwater analytical results obtained from the environmental sampling conducted at LL12. Groundwater was the only media evaluated at this AOC. The number of samples collected and the number of analytical results that exceeded either the RVAAP background criteria or Region 9 residential Preliminary Remediation Goals is listed in each subsection. The evaluation completed in this section is a preliminary comparison and is not intended to be used alone for making risk management decisions.

#### 4.1 GROUNDWATER

Six groundwater samples (five regular and one QC) were collected from five newly installed monitoring wells (MW-242 to MW-246) during the AOC characterization at LL12. Additionally, 15 groundwater samples (14 regular and one QC) were collected from 14 existing monitoring wells (MW-088, MW-107, MW-113, MW-128, MW-153, MW-154, MW-182, MW-183, MW-184, MW-185, MW-186, MW-187, MW-188 and MW-189). Groundwater samples were collected in order to identify any subsurface contamination of the shallow water table. The groundwater analytical results were compared to background values and USEPA Region 9 tap water PRGs.

A summary of results at or above detection limits are presented in Table LL12-2. All groundwater analytical results are presented in Table L12-3. The locations where groundwater analytes were detected at or above background levels and tap water PRGs are illustrated on figure L12-7. Laboratory analytical reports are provided in Appendix L.

Groundwater analytical results are summarized as follows:

- Barium exceeded background in six samples with a maximum concentration of 490 µg/L.
- Cadmium exceeded background in one sample with a maximum concentration of 0.31 µg/L.
- Calcium exceeded background in 13 samples with a maximum concentration of 940000 µg/L.
- Cobalt exceeded background in seven samples with a maximum concentration of 8.0 µg/L.
- Copper exceeded background in nine samples with a maximum concentration of 3.4 µg/L.
- Iron exceeded background in 16 samples with a maximum concentration of 5900 mg/kg.
- Magnesium exceeded background in 16 samples with a maximum concentration of 270000 mg/kg.
- Manganese exceeded background and the Region 9 tap water PRG in three samples with a maximum concentration of 1800 mg/kg.
- Nickel exceeded background in 11 samples with a maximum concentration of 16 mg/kg.
- Potassium exceeded background in 18 samples with a maximum concentration of 60000 mg/kg.
- Selenium exceeded background in six samples with a maximum concentration of 10 mg/kg.
- Sodium exceeded background in two samples with a maximum concentration of 54000 mg/kg.
- Zinc exceeded background in one sample with a maximum concentration of  $69 \mu g/L$ .



- Arsenic exceeded the Region 9 tap water PRG in six samples and exceeded background and the Region 9 tap water PRG in 13 samples with a **maximum concentration of 61 mg/kg.**
- Lead exceeded background in seven samples with a maximum concentration of 8.6 mg/kg.
- Mercury exceeded background in four samples with a maximum concentration of 0.19 mg/kg.
- Thallium exceeded background and the Region 9 tap water PRG in one sample with a maximum concentration of 2.9 mg/kg.
- Benzo(a)anthracene exceeded the Region 9 tap water PRG in two samples with a maximum concentration of 0.27 µg/L.
- Benzo(a)pyrene exceeded the Region 9 tap water PRG in two samples with a maximum concentration of 0.29 J µg/L. J value indicates an estimated result.
- Benzo(b)fluoranthene exceeded the Region 9 tap water PRG in one sample with a maximum concentration of 0.2 J µg/L. J value indicates an estimated result.
- Benzo(g,h,i)perylene exceeded the laboratory detection limit in two samples with a maximum concentration of 0.81 J. J value indicates an estimated result.
- **Bis(2-ethylhexyl)phthalate** exceeded the Region 9 tap water PRG in three samples with a **maximum concentration of 59 µg/L.**
- Dibenzo(a,h)anthracene exceeded the Region 9 tap water PRG in two samples with a maximum concentration of 0.95 J μg/L. J value indicates an estimated result.
- Indeno(1,2,3-cd)pyrene exceeded the Region 9 tap water PRG in two samples with a maximum concentration of 0.81 µg/L.
- 2,4,6-TNT exceeded the Region 9 tap water PRG in one sample with a maximum concentration of 3.0 μg/L.
- 2-Amino-4,6-Dinitrotoluene exceeded the laboratory detection limit in one sample with a maximum concentration of 2.5  $\mu$ g/L.
- 4-Amino-2,6-Dinitrotoluene exceeded the laboratory detection limit in one sample with a maximum concentration of  $3.2 \mu g/L$ .
- **RDX** exceeded the Region 9 tap water PRG in one sample with a **maximum concentration of 1.5 μg/L.**
- Nitrocellulose exceeded the laboratory detection limit in three samples with a maximum concentration of 9400 µg/L.
- Nitrate exceeded the Region 9 tap water PRG in two samples with a maximum concentration of 1200000 µg/L.
- **VOCs, pesticides and PCBs** were below Region 9 tap water PRGs and/or laboratory detection limits.

#### 4.2 IN SITU PERMEABILITY TESTING RESULTS

Following installation of the monitoring wells, a slug test was completed to determine the in-situ permeability of the aquifer underlying the LL12. The following table shows the results of the slug tests performed in January to February 2005.



| Monitoring<br>Well ID | Screened Interval<br>Depth (ft) | Total<br>Borehole<br>Depth (ft) | Geologic Material Adjacent<br>to Screen | Hydraulic<br>conductivity (cm/s) |
|-----------------------|---------------------------------|---------------------------------|-----------------------------------------|----------------------------------|
| MW-242                | 15.5-25.5                       | 26.3                            | clayey silt w/silty sand<br>interbeds   | 1.20 E-4                         |
| MW-243                | 13-23                           | 24                              | clayey silt                             | 8.44 E-5                         |
| MW-244                | 19.5-29.5                       | 30                              | clayey silt w/silty sand<br>interbeds   | 9.86 E-5                         |
| MW-245                | 18-28                           | 29                              | clayey silt                             | 2.42 E-4                         |
| MW-246                | 21.5-31.5                       | 32                              | clayey silt w/silty sand<br>interbeds   | 1.05 E-4                         |

Hydraulic Conductivity in Load Line 12 Monitoring Wells

Based on the results of the slug tests, hydraulic conductivities have an arithmetic average  $1.30 \times 10^{-4}$  cm/s in the soil underlying LL12. The field measurements and test data are provided in Appendix K along with the calculation worksheets for the tests. Previous slug tests performed at wells located at other AOCs within RVAAP indicate average hydraulic conductivities ranging between 3.87 x  $10^{-2}$  cm/s and 4.46 x  $10^{-6}$  cm/s (USACE, 1999).

Data from the three rounds of well gauging were used to produce potentiometric surface maps for LL12 (Figures L12-8 through L12-10). The water level data suggests that groundwater potentiometric surface is dominated by two "highs." One of the potentiometric highs is located in the northwest portion of the load line at L12mw-188 with the potentiometric surface decreasing in elevation both to the north and south. The other potentiometric high is located in the south central portion of the load line at L12mw-088. The southern potentiometric surface high decreases in elevation to the northwest and southeast. Potentiometric surface elevations "lows" are located in the lower east side and upper northwest side. Groundwater flow in the northeast component flows at a gradient of approximately 0.007 ft/ft.



# 5.0 HUMAN HEALTH AND ECOLOGICAL RISK SCREENING FOR LOAD LINE 12

Due to the previous completion of Phase I and II RIs at LL12, Human Health and Ecological Risk Screenings were not included in the SOW for this AOC. Groundwater was the only media sampled during the characterization.



# 6.0 SUMMARY AND CONCLUSION FOR THE CHARACTERIZATION OF LOAD LINE 12

This section briefly summarizes the existing conditions that were found during the AOC characterization at LL12. The 2005 Performance Based Contract addresses the groundwater risk in all of the high risk sites (including LL12).

#### 6.1 NATURE OF CONTAMINATION

This characterization examined the nature of contamination in groundwater. Contaminants were detected above screening criteria in all the groundwater samples. Very few constituents other than inorganics were detected above screening criteria in the groundwater samples collected. Most of the organic compounds that were detected were found in very few samples. For example, two explosive compounds were detected above screening criteria in only one sample location, nitrate in two sample locations and SVOCs in five sample locations.

Two explosive compounds were found at location MW-243. RDX was found with a concentration of 1.5  $\mu$ g/L and 2,4,6-TNT was found with a concentration of 3  $\mu$ g/L. A high concentration of nitrate (PRG=10000  $\mu$ g/L) was observed at locations MW-185 with a concentration of 16000  $\mu$ g/L and MW-187 with a concentration of 20000  $\mu$ g/L. Only one SVOC Bis(2-ethylhexyl)phthalate (PRG=4.8  $\mu$ g/L) was detected above the screening level with a value of 59 ug/L at sample location MW-187. An elevated concentration of manganese (PRG=876  $\mu$ g/L and BKG=1020  $\mu$ g/L) was detected at locations MW-113 with a concentration of 1400  $\mu$ g/L, MW-185 with a concentration of 1700  $\mu$ g/L and MW-187 with a concentration of 1800  $\mu$ g/L.

Contaminants detected in groundwater above RVAAP background and/or PRG screening values included metals, SVOCs, nitrate, and two explosive compounds (2,4,6-TNT and RDX).





















# Table L12-1Load Line 12 Summary of Sampling and AnalysisRVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

| SAMPLE PREFIX             |                          | VOC            | SVOC           | Explosives      | Propellants    | TAL Metals     | Chrome +6      | Pesticides      | PCB          | Cvanides                         | Nitrate   | TOC       | Geo Tech  | Grain       |                  |                                       | FIELDOVO                              | CAMPLES                               |          |             |
|---------------------------|--------------------------|----------------|----------------|-----------------|----------------|----------------|----------------|-----------------|--------------|----------------------------------|-----------|-----------|-----------|-------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------|-------------|
| 112                       |                          |                |                |                 |                |                |                |                 |              | - Cjundos                        | Tituate   | 100       | A nalveis | Size        | Multi-Incrementa | 1                                     | FIELD QAQU                            | C SAMPLES                             | 1        | 1           |
| 112                       | SAMPLE ID                | 8260B          | 8270C          | 8330            | 3532/8330      | 6010/7000      | 7196A          | 8081A           | 8082B        | 9010A/9012A                      | FPA 353 2 | FPA 415 1 | (Various) | A STM D422  |                  | Duplicate Sample                      | e Equipment Blank                     | Trip Blank                            | MS/MSD   | USACE Split |
| GROUNDWATER               | MW-242                   | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            | 201010201211                     | 1         | LIA 13.1  | (various) | ASTIVI D422 | QA               | 1                                     |                                       |                                       | <u> </u> | <u> </u>    |
| Newly Installed Wells     | MW-243                   | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           |           |             |                  | 1                                     |                                       |                                       |          | 1           |
|                           | MW-244                   | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           | 1         | 1           |                  | l                                     |                                       | ·····                                 |          |             |
|                           | MW-245                   | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           | I         | I           |                  |                                       |                                       |                                       |          | ·           |
|                           | MW-246                   | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           |           |             |                  |                                       |                                       |                                       |          |             |
|                           |                          | 5              | 5              | 5 *             | 5              | 5              | 0              | 2:5             | 5            | 2 <sup>45</sup> 0.2 <sup>7</sup> | 5         | <u> </u>  | .2. 9     | 3           | in the second    |                                       |                                       |                                       |          |             |
| GROUNDWATER               | L12MW-088                | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            | 1                                | 1         |           |           | 1           |                  |                                       | · · · · · · · · · · · · · · · · · · · | · v                                   |          |             |
| Existing Wells            | L12MW-107                | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           |           |             |                  |                                       |                                       |                                       |          |             |
|                           | L12MW-113                | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           |           |             |                  |                                       |                                       |                                       |          |             |
|                           | L12MW-128                | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           |           |             |                  |                                       |                                       | · · · · · · · · · · · · · · · · · · · |          |             |
|                           | L12MW-153                | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           |           |             |                  | NI                                    |                                       |                                       |          |             |
|                           | L12MW-154                | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           |           |             |                  |                                       |                                       |                                       |          |             |
|                           | L12MW-182                | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           |           |             | ·                | 1                                     |                                       |                                       |          |             |
|                           | L12MW-183                | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           |           |             |                  | 1                                     |                                       |                                       |          | 1           |
|                           | L12MW-184                | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           |           |             |                  |                                       |                                       |                                       | t'       |             |
|                           | L12MW-185                | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           |           |             |                  |                                       |                                       |                                       | ļ        |             |
|                           | L12MW-186                | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           |           |             |                  |                                       |                                       |                                       |          |             |
|                           | L12MW-187                | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           |           |             |                  |                                       |                                       |                                       | t        |             |
|                           | L12MW-188                | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           |           |             |                  |                                       | · · · · · · · · · · · · · · · · · · · |                                       | h        |             |
|                           | L12MW-189                | 1              | 1              | 1               | 1              | 1              |                | 1               | 1            |                                  | 1         |           |           | ·           |                  |                                       |                                       |                                       |          |             |
|                           |                          | 14             | 14             | 14              | at 14          | 14             | 0              | _14             | -14          | 0                                | 14        | 0         | 0         | 0.24        |                  | 1                                     | n e                                   | 0                                     | 0        |             |
| • •                       |                          |                |                |                 |                |                |                |                 |              |                                  |           |           |           |             |                  |                                       | 1                                     | · · · · · · · · · · · · · · · · · · · | <u></u>  |             |
| Notes:                    |                          |                |                |                 |                |                |                |                 |              |                                  |           |           |           | <u> </u>    |                  |                                       |                                       |                                       |          |             |
| Blank cell indicates that | either the sample was r  | ot analyzed f  | or that comp   | ound and/or th  | e sample did n | ot have a QC o | r Split sample | associated with | h the regula | sample.                          |           |           |           |             |                  |                                       |                                       |                                       |          |             |
| Geo-tech analysis consist | ts of Moisture Content   | (ASTM D221     | 6), Atterbur   | g Limits (ASTI  | M D4318), UC   | S (ASTM D24    | 87), pH (EPA   | 150 1) & Spec   | ific Gravity | (ASTM D854)                      |           |           |           |             |                  |                                       |                                       |                                       |          |             |
| Grainsize and TOC are ta  | aken at "all major drain | ageway" sedi   | ments          |                 |                |                |                |                 |              |                                  |           |           |           |             |                  |                                       |                                       |                                       |          |             |
| All shelby tubes taken du | ring MW installatinons   | s will have fu | Il geo-tech an | nd grainsize an | alyses         |                |                |                 |              |                                  |           |           |           |             |                  |                                       |                                       | •••••                                 | l        |             |
|                           |                          |                |                | T               |                |                |                |                 |              | I                                |           |           |           | 1           |                  | · · · · · · · · · · · · · · · · · · · |                                       |                                       |          |             |

#### Load Line 12 Summary of Groundwater Detections RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

|            |               |                             |          |       |                |                                  | 1           |             | 1           | · · · · · · · · · · · · · · · · · · · |              |              |              |             |                |                |              |              |              |              |
|------------|---------------|-----------------------------|----------|-------|----------------|----------------------------------|-------------|-------------|-------------|---------------------------------------|--------------|--------------|--------------|-------------|----------------|----------------|--------------|--------------|--------------|--------------|
|            |               |                             |          |       |                |                                  |             |             |             |                                       |              |              | 1            |             |                |                |              |              |              |              |
|            |               |                             |          |       |                |                                  |             |             |             |                                       |              |              |              |             |                |                |              |              |              |              |
|            |               |                             |          |       |                |                                  |             |             |             |                                       |              |              |              |             |                |                |              |              |              |              |
|            |               |                             |          |       |                |                                  | 3           | 3           | 2           | 2                                     | 2            | 2            | L E          |             | >              | >              | >            |              | >            | >            |
|            |               |                             |          |       |                |                                  | 5           | 5           | 5           | 5                                     | 5            | 5            | L Z          | 1 3         | 6              | l S            | 6            | 1 8          | 1 8          | S S          |
|            |               |                             |          |       |                |                                  | <b>8</b>    | 3           | 13-         | 8                                     | 23           | 1 7          | 2            | 2           | 2              | 4              | 2-6          | 5            | 1            | 80           |
|            |               |                             |          |       |                |                                  | Q Q         |             |             | -1-                                   | i i          | i i i        | i 7          | - <u>-</u>  | i i i          | - <u>-</u>     | 1 2          | -18          | -18          | -18          |
|            |               |                             |          |       |                |                                  | n n         |             |             | 1 Ma                                  | n v          |              |              | A N         | 2              | N N            | Mu N         | MC N         | l š          | Ň            |
|            |               |                             |          |       |                |                                  | 121         | 121         | 121         | 12r                                   | 12           | 12           | [2n          | $[5^n]$     | 5 <sup>n</sup> | - <sup>7</sup> | 5n           | 2m           | 5n           | 2m           |
|            |               |                             |          |       |                |                                  | L 1         | <u>ل</u>    | L<br>L      |                                       | 1            | 1 3          | 1            | L           | 1              | L 1            | E            | <b>E</b>     | 1 5          | L1           |
|            |               |                             |          |       | S              | ample Date:                      | 10/26/2004  | 10/27/2004  | 11/5/2004   | 10/27/2004                            | 10/28/2004   | 10/28/2004   | 10/29/2004   | 10/29/2004  | 11/1/2004      | 10/29/2004     | 11/1/2004    | 11/1/2004    | 10/29/2004   | 10/28/2004   |
| 1          |               |                             |          |       | Sa             | mple Depth:                      | 17.5 ft.    | 21.5 ft.    | 12.5 ft.    | 23 ft.                                | 13 ft.       | 24 ft.       | 30 ft        | 30 ft       | 24 ft          | 19 ft          | 175 ft       | 11 ft        | 9.82 ft      | 13 ft        |
|            |               |                             |          |       |                | Description                      | UC/Filtered | UC/Filtered | UC/Filtered | LIC/Filtered                          | LIC/Filtered | LIC/Filtered | LIC/Filtered | UC/Filtered | LIC/Filtered   | LIC/Filterad   | LIC/Filtered | LIC/Eiltored | LIC/Eiltarad | LIC/Eiltarad |
|            |               |                             |          |       | TT 111.1       | T                                |             |             |             |                                       |              | 00/1 marcu   | 00/1 mered   | 0C/Filtered | 0C/Filleleu    | UC/I'litelea   | 0C/Filtered  | UC/Filleleu  | UC/Fillelea  | UC/Fillered  |
|            |               |                             |          |       | Unconsolidated |                                  |             |             |             |                                       |              |              |              |             |                |                | 1            |              |              |              |
|            |               |                             |          |       | Filtered       |                                  |             |             |             |                                       |              |              |              |             |                |                |              |              |              |              |
|            |               |                             | Region 9 | PRG   | Groundwater    |                                  |             |             |             |                                       |              |              |              |             |                |                |              |              |              |              |
| Group      | Method        | Parameter                   | (Tap Wa  | ater) | Background     | Units                            |             | 1           |             |                                       |              |              |              |             |                |                |              |              |              |              |
| Metals     | 6010B         | Aluminum                    | 36499    | nc    |                | ug/l                             | 130         | 61          | 1400        | 45                                    | 26           | 31           |              |             |                |                |              | 70           |              | · · · · ·    |
|            | 6010B         | Barium                      | 2555     | nc    | 82.1           | ug/l                             | 400         | 22          | 44          | 64                                    | 07           | 64           | 100          | 100         |                | 10             |              | 10           | 100          |              |
|            | 6010B         | Cadmium                     | 10       |       | 0.00           | ug/1                             | 430         | 32          | 44          | 04                                    | 81           | 04           | 100          | 100         | 64             | 18             | 60.          | 42           | 420          | 46           |
|            | 6010D         | Calaina                     | 10       | ne    | 0.00           | ug/I                             |             |             |             |                                       |              | -            |              |             |                |                |              |              |              |              |
|            | 0010B         | Calcium                     | [n]      |       | 115000         | ug/l                             | 86000       | 150000      | 210000      | 230000                                | 140000       | 140000       | 76000        | 76000       | 81000          | 220000         | 610000       | 130000       | 940000       | 200000       |
|            | 6010B         | Chromium                    | 109      | nc    | 7.3            | ug/l                             | 2           | 2.4         | 2.4         | 1                                     |              | 2            |              |             |                |                |              |              |              |              |
|            | 6010B         | Cobalt                      | 730      | nc    | 0.00           | ug/l                             |             |             | 3.5         |                                       |              |              |              |             |                |                | 3            | 22           | 8            | 12           |
|            | 6010B         | Copper                      | 1460     | nc    | 0.00           | 110/1                            | - 28        | 21          | 3.4         | 18                                    | 1.8          |              |              |             |                |                |              |              |              | 2.2          |
|            | 6010B         | Iron                        | 10950    | nc    | 270            | 1 110/1                          | 1600        | 3200        | 4400        | 5000                                  | 1.0          | 2200         | 700          | 170         |                |                |              | 10.00        |              | 2.0          |
|            | 6010B         | Magnagium                   | 10950    | IIC   | 42200          |                                  | 1000        | 2500        | 4400        | 5900                                  | 4400         | 2300         | /00          | 630         | /30            | 2600           |              | 1900         |              | 780          |
|            | 6010D         |                             | [n]      |       | 43300          | ug/l                             | 25000       | 63000       | 80000       | 130000                                | 77000        | 62000        | 51000        | . 51000     | 39000          | 150000         | 260000       | 54000        | 270000       | 120000       |
|            | 6010B         | Manganese                   | 876      | nc    | 1020           | ug/l                             | 150         | 180         | 1400        | 200                                   | 200          | 74           | 43           | 43          | 56             | 550            | 1700         | 320          | 1800         | 770          |
|            | 6010B         | Nickel                      | 730      | nc    | 0.00           | ug/l                             | 16          |             | 8           |                                       |              |              | 2            |             |                |                | 7.3          | 19           | 14           | 3            |
|            | 6010 <b>B</b> | Potassium                   | [n]      |       | 2890           | ug/l                             | 18000       | 6200        | 7600        | 2900                                  | 3000         | 2800         | 6700         | 6800        | 14000          | 5900           | 12000        | 2000         | 60000        | 3/00         |
|            | 6010B         | Selenium                    | 182      | nc    | 0.00           | 110/1                            |             |             |             |                                       | 6.1          |              |              | 5.2         |                | 50             | 0.7          | 2000         | 10           | 2400         |
|            | 6010B         | Sodium                      | [n]      |       | 45700          | <u>ug/1</u>                      | 10000       | 18000       | 27000       | 26000                                 | 25000        | 22000        | 25000        | 0.0         | 20000          | 5.9            | 0.1          | 1.5000       | 10           |              |
|            | 6010B         | Zino                        | 10050    |       | 43700          | ug/1                             | 19000       | 18000       | 27000       | 20000                                 | 23000        | 23000        | 25000        | 24000       | 30000          | 40000          | 54000        | 15000        | 35000        | 35000        |
|            | 70604         |                             | 10930    | nc    | 60.9           | ug/I                             |             |             | 20          |                                       | 30           |              |              |             |                |                | 21           | 15           | 19           |              |
|            | 7060A         | Arsenic                     | 0.045    | ca    | 11.7           | ug/l                             | 19          | 19          | 12          | 61                                    | 32           | 37           | 42           | 44          | 43             | 19             |              | 5.5          |              | 4.1          |
|            | 7421          | Lead                        | 15       | mcl   | 0.00           | ug/l                             |             | 1           | 3.9         | 0.94                                  |              |              |              |             |                |                |              |              | 0.9          |              |
|            | 7470A         | Mercury                     | 11       | nc    | 0.00           | ug/l                             |             |             |             | 0.19                                  |              |              | 0.059        | -0.078      |                |                |              |              | 0.065        |              |
|            | 7841          | Thallium                    | 2.4      | nc    | 0.00           | ug/l                             |             |             | 2.9         |                                       |              |              | 0.001        | 0.0.0       |                |                |              |              | 0.002        |              |
| VOCs       | 8260B         | 2-Butanone                  | 6968     | nc    |                | ug/l                             | 0 2 T       |             |             |                                       |              |              |              |             |                |                |              |              |              |              |
|            | 8260B         | 4 Mathul 2 nontanana        | 1002     | 110   |                | ug/1                             | 8.3 J       |             |             |                                       |              |              |              |             |                |                |              |              |              |              |
|            | 8200D         | 4-weuryi-z-pentanone        | 1993     | nc    |                | ug/l                             | 8.3 J       |             |             |                                       |              |              |              |             |                |                |              |              |              |              |
|            | 8260B         | Acetone                     | 5475     | nc    |                | ug/l                             | 74          |             |             |                                       |              |              |              |             |                |                |              |              |              |              |
|            | 8260B         | Methylene chloride          | 4.3      | ca    |                | ug/l                             |             |             |             |                                       |              | 1.1 J        |              |             |                |                |              |              |              |              |
| SVOCs      | 8270C         | 4-Methylphenol              | 182      | nc    |                | ug/l                             | 2.9         |             |             |                                       |              |              |              |             |                |                |              |              |              |              |
| 1          | 8270C         | Benzo(a)anthracene          | 0.092    | ca    |                | 110/1                            |             |             |             |                                       |              |              |              |             | 0.14 T         |                |              | 0.27         |              |              |
|            | 8270C         | Benzo(a)pyrene              | 0.0002   |       |                | <u><u><u>n</u></u><u>e</u>/1</u> |             |             |             |                                       |              |              |              |             | 0.14 J         |                |              | 0.2/         |              |              |
|            | 82700         | Banzo(h)fluoronthana        | 0.0092   | ca    |                | ug/I                             |             |             |             |                                       |              |              |              |             | 0.16 J         |                |              | 0.29 J       | · · · · · ·  |              |
|            | 92700         |                             | 0.092    | ca    |                | ug/l                             |             |             |             |                                       |              |              |              |             |                |                |              | 0.2 J        |              |              |
|            | 82700         | Benzo(g,n,1)perylene        |          |       |                | ug/l                             |             |             |             |                                       |              |              |              |             | 0.34 J         | ÷              |              | 0.81 J       |              |              |
|            | 8270C         | Benzo(k)fluoranthene        | 0.92     | ca    |                | ug/l                             |             |             |             |                                       |              |              |              |             | 0.12 J         |                |              | 0.24 J       |              |              |
|            | 8270C         | Benzoic acid                | 145979   | nc    |                | ug/l                             | 15 J        |             |             |                                       |              |              |              |             |                |                |              |              |              |              |
|            | 8270C         | Bis(2-ethylhexyl) phthalate | 4.8      | ca    |                | 110/1                            |             |             |             |                                       |              |              |              | (2 T        |                | <i>E</i> T     |              |              | 50           |              |
|            | 8270C         | Chrysene                    | 0.2      |       |                | ug/1                             |             |             |             |                                       |              |              |              | 0.5 J       |                | . 21           |              |              | 59           |              |
|            | 82700         | Dihanna(a h)anthrasana      | 9.2      | Ca    |                | ug/1                             |             |             |             |                                       |              |              |              |             | 0.15 J         |                |              | 0.25 J       |              |              |
|            | 8270C         | Dibenzo(a,n)anthracene      | 0.0092   | ca    |                | ug/l                             |             |             |             |                                       |              |              |              |             | 0.5 J          |                |              | 0.95 J       |              |              |
|            | 8270C         | Indeno(1,2,3-cd)pyrene      | 0.092    | ca    |                | ug/l                             |             |             |             |                                       |              |              |              |             | 0.37 J         |                |              | 0.81         |              |              |
|            | 8270C         | Phenol                      | 10950    | nc    |                | ug/l                             | 25          |             |             |                                       |              |              | 11           | 9.4         |                | 2.9 I          |              |              | 2.4 I        |              |
|            | 8270C         | Pyrene                      | 182      | nc    |                | ug/l                             |             |             |             |                                       |              |              |              |             |                |                |              | 0 12 T       |              |              |
| Explosives | 8330          | 246-TNT                     | 22       | 69    |                | 110/l                            |             |             |             |                                       |              |              |              |             |                |                | · · · ·      | 0.13 J       |              |              |
|            | 8330          | 2-Amino-4 6-Dinitratalyana  |          | va    |                | ug/1                             |             | · · · · ·   |             |                                       |              |              |              |             |                |                |              |              |              |              |
|            | 9220          | A Amino 2 6 Dinita to 1     |          |       |                | ug/I                             |             |             |             |                                       |              |              |              |             |                |                |              |              |              |              |
|            | 0000          | 4-Ainino-2,0-Dinitrotoluene |          |       |                | ug/l                             |             |             |             |                                       |              |              |              |             |                |                |              |              |              |              |
|            | 8330          | HMX                         | 1825     | nc    |                | ug/l                             |             |             |             |                                       |              |              |              |             |                |                |              |              |              |              |
|            | 8330          | RDX                         | 0.61     | ca    |                | ug/l                             |             |             |             |                                       |              |              |              |             |                |                |              |              |              |              |
|            |               |                             |          |       | -              |                                  |             |             | 1           |                                       |              |              |              |             |                |                |              |              |              |              |

# Table L12-2Load Line 12 Summary of Groundwater DetectionsRVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

|                |                |                      |                             |                                                         |              | L12mw-088-GW | L12mw-107-GW | L12mw-113-GW | L12mw-128-GW | L12mw-153-GW | L12mw-154-GW | L12mw-182-DUP | L12mw-182-GW | L12mw-183-GW | L12mw-184-GW | L12mw-185-GW | L12mw-186-GW | L12mw-187-GW | L12mw-188-GW |
|----------------|----------------|----------------------|-----------------------------|---------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| · ·            |                |                      |                             | 5                                                       | Sample Date: | 10/26/2004   | 10/27/2004   | 11/5/2004    | 10/27/2004   | 10/28/2004   | 10/28/2004   | 10/29/2004    | 10/29/2004   | 11/1/2004    | 10/29/2004   | 11/1/2004    | 11/1/2004    | 10/29/2004   | 10/28/2004   |
|                |                |                      |                             | Sa                                                      | mple Depth:  | 17.5 ft.     | 21.5 ft.     | 12.5 ft.     | 23 ft.       | 13 ft.       | 24 ft.       | 30 ft.        | 30 ft.       | 24 ft.       | 19 ft.       | 17.5 ft.     | 11 ft.       | 9.82 ft.     | 13 ft        |
|                |                |                      |                             |                                                         | Description  | UC/Filtered   | UC/Filtered  | UC/Filtered  | UC/Filtered  | UC/Filtered  | UC/Filtered  | UC/Filtered  | UC/Filtered  |
| Group          | Method         | Parameter            | Region 9 PRG<br>(Tap Water) | Unconsolidated<br>Filtered<br>Groundwater<br>Background | Units        |              |              |              |              |              |              |               |              |              |              |              |              |              |              |
| Propellants    | 353.2 Modified | Nitrocellulose       |                             |                                                         | ug/l         |              |              |              |              |              |              |               |              |              | 180          | 300          |              | 9400         |              |
| L              | 8332           | Nitroglycerine       | 4.8 ca                      |                                                         | ug/l         |              |              |              |              |              |              |               |              |              |              |              |              |              |              |
| Other Analytes | 353.2          | Nitrate as N (NO3-N) | 10000 nc                    |                                                         | ug/l         |              | 570          | 510          |              |              |              |               |              | 270          | 200          | 160000       |              | 1200000      |              |

Notes:

-- - no background/PRG value is available for this analyte

blank cells indicate that the analyte was a non-detect (with a "U" qualifier) or analysis was not performed

UC/Filtered - GW sample was filtered for metals and taken from an unconsolidated MW

C/Filtered - GW sample was filtered for metals and taken from a consolidated (bedrock) MW

ug/l - means micrograms per Liter (parts per billion - ppb)

PRG - preliminary remediation goals (The screeing value for lead is the Maximum Contaminant level (MCL) from the safe Drinking Water Act)

nc - non-cancer basis

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

J - estimated value

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style

If Result = or > PRG, then the value is presented with a bold style

If Result < PRG & Background, then the value is presented with a normal style

#### Load Line 12 Summary of Groundwater Detections RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

|            |        |                             |                     |             |                                                         |               | 89-GW       | 42-DUP      | 42-GW       | 43-GW       | 44-GW       | 45-GW       | 46-GW       |
|------------|--------|-----------------------------|---------------------|-------------|---------------------------------------------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|            |        |                             |                     |             |                                                         |               | L12mw-1     | L12mw-2     | L12mw-2     | L12mw-2     | L12mw-2     | L12mw-2     | L12mw-2     |
|            |        |                             |                     |             | S                                                       | ample Date    | 10/26/2004  | 11/30/2004  | 11/30/2004  | 11/29/2004  | 11/29/2004  | 11/29/2004  | 11/29/2004  |
|            |        |                             |                     |             | Sa                                                      | mple Depth    | 7.83 ft.    | 20 ft.      | 20 ft.      | 10.3 ft.    | 13.2 ft.    | 11.7 ft.    | 17.5 ft.    |
|            |        |                             |                     |             |                                                         | Description   | UC/Filtered |
| Group      | Method | Parameter                   | Region 9<br>(Tap Wa | PRG<br>ter) | Unconsolidated<br>Filtered<br>Groundwater<br>Background | Units         |             |             |             |             |             |             |             |
| Metals     | 6010B  | Aluminum                    | 36499               | nc          |                                                         | 110/1         | 66          |             |             | 42          |             | 140         |             |
|            | 6010B  | Barium                      | 2555                | nc          | 82.1                                                    | 110/1         | 20          | 23          | 20          | 62          | 120         | 54          |             |
|            | 6010B  | Cadmium                     | 18                  | nc          | 0.00                                                    | ug/l          |             |             |             | 0.31        | 150         | 34          | 4/          |
|            | 6010B  | Calcium                     | [n]                 |             | 115000                                                  | υ <u>α/</u> 1 | 170000      | 67000       | 68000       | 130000      | 80000       | 120000      | 110000      |
|            | 6010B  | Chromium                    | 109                 | nc          | 7.3                                                     | ug/l          | 110000      | 0/000       | 00000       | 150000      | 80000       | 120000      | 110000      |
|            | 6010B  | Cobalt                      | 730                 | nc          | 0.00                                                    | uº/l          | 1           |             |             | 14          |             | 1.4         |             |
|            | 6010B  | Copper                      | 1460                | nc          | 0.00                                                    | ug/l          | 2.2         | 3           | 2.8         |             | s           | 1.1         |             |
|            | 6010B  | Iron                        | 10950               | nc          | 279                                                     | ug/l          | 560         | 1000        | 1100        | 240         | 42          | 240         | 1200        |
|            | 6010B  | Magnesium                   | [n]                 |             | 43300                                                   | ug/l          | 77000       | 44060       | 44000       | 77000       | 25000 I     | 60000       | 52000       |
|            | 6010B  | Manganese                   | 876                 | nc          | 1020                                                    | ug/l          | 390         | 84          | 86          | 250         | 160         | 99          | 78          |
|            | 6010B  | Nickel                      | 730                 | nc          | 0.00                                                    | ug/l          |             |             |             | 3.2         | 15          | 43          | 23          |
|            | 6010B  | Potassium                   | [n]                 |             | 2890                                                    | ug/l          | 2600        | 4800        | 4900        | 7100        | 6600        | 5600        | 4400        |
|            | 6010B  | Selenium                    | 182                 | nc          | 0.00                                                    | ug/l          |             |             |             |             |             | 3.4         |             |
|            | 6010B  | Sodium                      | [n]                 |             | 45700                                                   | ug/l          | 53000       | 34000       | 35000       | 21000       | 11000       | 22000       | 23000       |
|            | 6010B  | Zinc                        | 10950               | nc          | 60.9                                                    | ug/l          | 69          | 7.5         | 11          | 40          |             | 31          | 15          |
|            | 7060A  | Arsenic                     | 0.045               | ca          | 11.7                                                    | ug/l          | 2.2         | 25          | 23          | 5           | 11          | 4.9         | 30          |
|            | 7421   | Lead                        | 15                  | mcl         | 0.00                                                    | ug/l          |             |             |             | 8.6         | 1           | 13          | 17          |
|            | 7470A  | Mercury                     | 11                  | nc          | 0.00                                                    | ug/l          |             |             |             |             |             |             |             |
|            | 7841   | Thallium                    | 2.4                 | nc          | 0.00                                                    | ug/l          |             |             |             |             |             |             |             |
| VOCs       | 8260B  | 2-Butanone                  | 6968                | nc          |                                                         | ug/l          |             | 38          | 47          |             |             |             |             |
|            | 8260B  | 4-Methyl-2-pentanone        | 1993                | nc          | ÷-                                                      | ug/l          |             |             |             |             |             |             |             |
|            | 8260B  | Acetone                     | 5475                | nc          |                                                         | ug/l          |             |             |             |             |             |             |             |
|            | 8260B  | Methylene chloride          | 4.3                 | ca          |                                                         | ug/l          |             |             |             |             |             |             |             |
| SVOCs      | 8270C  | 4-Methylphenol              | 182                 | nc          |                                                         | ug/l          |             |             |             |             |             |             |             |
|            | 8270C  | Benzo(a)anthracene          | 0.092               | ca          |                                                         | ug/l          |             |             |             |             |             |             |             |
|            | 8270C  | Benzo(a)pyrene              | 0.0092              | ca          |                                                         | ug/l          |             |             |             |             |             |             |             |
|            | 8270C  | Benzo(b)fluoranthene        | 0.092               | ca          |                                                         | ug/l          |             |             |             |             |             |             |             |
|            | 8270C  | Benzo(g,h,i)perylene        |                     |             | ·                                                       | ug/l          |             |             |             |             |             |             |             |
|            | 8270C  | Benzo(k)fluoranthene        | 0.92                | ca          | -                                                       | ug/l          |             |             |             |             |             |             |             |
| -          | 8270C  | Benzoic acid                | 145979              | nc          |                                                         | ug/l          |             |             |             |             |             |             |             |
|            | 8270C  | Bis(2-ethylhexyl) phthalate | 4.8                 | ca          |                                                         | ug/l          |             |             |             |             |             |             |             |
|            | 8270C  | Chrysene                    | 9.2                 | ca          |                                                         | ug/l          |             |             |             |             |             |             |             |
|            | 8270C  | Dibenzo(a,h)anthracene      | 0.0092              | ca          |                                                         | ug/l          |             |             |             |             |             |             |             |
|            | 8270C  | Indeno(1,2,3-cd)pyrene      | 0.092               | ca          |                                                         | ug/l          |             |             |             |             |             |             |             |
|            | 8270C  | Phenol                      | 10950               | nc          |                                                         | ug/l          |             |             |             |             |             |             |             |
|            | 8270C  | Pyrene                      | 182                 | nc          |                                                         | ug/l          |             |             |             |             |             |             |             |
| Explosives | 8330   | 2,4,6-TNT                   | 2.2                 | ca          |                                                         | ug/l          |             |             |             | 3           |             |             |             |
|            | 8330   | 2-Amino-4,6-Dinitrotoluene  |                     |             |                                                         | ug/l          |             |             |             | 2.5         |             |             |             |
|            | 8330   | 4-Amino-2,6-Dinitrotoluene  |                     |             |                                                         | ug/l          |             |             |             | 3.2         |             |             |             |
|            | 8330   | HMX                         | 1825                | nc          |                                                         | ug/l          |             |             |             | 0.78        |             |             |             |
|            | 8330   | IRDX                        | 0.61                | ca          |                                                         | ug/l          |             |             |             | 1.5         |             |             |             |

#### Load Line 12 Summary of Groundwater Detections RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

| r              |                |                      |              |                                           |             |              |               |               |              |              | •            |              |
|----------------|----------------|----------------------|--------------|-------------------------------------------|-------------|--------------|---------------|---------------|--------------|--------------|--------------|--------------|
|                |                |                      |              |                                           |             | L12mw-189-GW | L12mw-242-DUP | L.12mw-242-GW | L12mw-243-GW | L12mw-244-GW | L12mw-245-GW | L12mw-246-GW |
|                |                |                      |              | Sa                                        | ample Date: | 10/26/2004   | 11/30/2004    | 11/30/2004    | 11/29/2004   | 11/29/2004   | 11/29/2004   | 11/29/2004   |
|                |                |                      |              | Sar                                       | nple Depth: | 7.83 ft.     | 20 ft.        | 20 ft.        | 10.3 ft.     | 13.2 ft.     | 11.7 ft.     | 17.5 ft.     |
|                |                |                      |              |                                           | Description | UC/Filtered  | UC/Filtered   | UC/Filtered   | UC/Filtered  | UC/Filtered  | UC/Filtered  | UC/Filtered  |
|                |                |                      | Region 9 PRG | Unconsolidated<br>Filtered<br>Groundwater |             |              |               |               |              |              |              |              |
| Group          | Method         | Parameter            | (Tap Water)  | Background                                | Units       |              |               |               |              |              |              |              |
| Propellants    | 353.2 Modified | Nitrocellulose       |              |                                           | ug/l        |              |               |               |              |              |              |              |
|                | 8332           | Nitroglycerine       | 4.8 ca       |                                           | ug/l        |              | 0.18 J        |               |              |              |              |              |
| Other Analytes | 353.2          | Nitrate as N (NO3-N) | 10000 nc     |                                           | ug/l        |              |               |               |              |              |              |              |

#### Notes:

--- no background/PRG value is available for this analyte

blank cells indicate that the analyte was a non-detect (with a "U" qualifier) or analysis was not performed

UC/Filtered - GW sample was filtered for metals and taken from an unconsolidated MW

C/Filtered - GW sample was filtered for metals and taken from a consolidated (bedrock) MW

ug/l - means micrograms per Liter (parts per billion - ppb)

PRG - preliminary remediation goals (The screeing value for lead is the Maximum Contaminant level (MCL) from the safe Drinking

nc - non-cancer basis

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

[n] - nutrient

J - estimated value

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style

If Result = or > PRG, then the value is presented with a bold style

If Result < PRG & Background, then the value is presented with a normal style.

#### Load Line 12 Summary of All Groundwater Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

| [          |               |                    |        |           |                 |             |             |                 |              |              |              |              |              |              |              |                 |             |             |             |             |
|------------|---------------|--------------------|--------|-----------|-----------------|-------------|-------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------|-------------|-------------|-------------|-------------|
|            |               |                    |        |           |                 |             |             |                 |              |              | 1            |              |              |              |              |                 |             |             |             |             |
|            |               |                    |        |           |                 |             |             |                 |              |              |              |              |              |              |              |                 |             |             |             |             |
|            |               |                    |        |           |                 |             |             |                 |              |              |              |              |              |              |              |                 |             |             |             |             |
|            |               |                    |        |           |                 |             | No.         | l M5            | M            | N N          | M            | M            | 5            | A N          | N N          | M               | N N         | A N         | B B         |             |
|            |               |                    |        |           |                 |             |             |                 | 3            |              |              | 4            | 2-1          |              |              |                 | 9           | 9           | 0-2         | 0.          |
|            |               |                    |        |           |                 |             | l õ         | 19              | Ē            | 112          | -15          | -15          | P 20         | -18          | -18          | 18              | 18          | 18          | 18          | 18          |
|            |               |                    |        |           |                 |             |             | Ě               | A R          | Mu Nu        | Mu           | - Mu         | Mu Nu        | Mu Nu        | - Mu         | , ż             | Ňu          | Ň           | Ňu          | Ň           |
|            |               |                    |        |           |                 |             | 12          | 12              | 121          | 121          | 121          | 12r          | 12r          | 12r          | 12n          | 12n             | 12n         | 12n         | 12n         | 12n         |
|            |               |                    |        |           | S               | ample Date  | 10/26/2004  | 10/27/2004      | 11/5/2004    | 10/27/2004   | 10/28/2004   | 10/28/2004   |              | 10/20/2004   | 11/1/2004    | H<br>10/20/2004 |             |             | <u> </u>    |             |
|            |               |                    |        |           | Sar             | unple Date. | 175 ft      | 21.5.0          | 125 #        | 22.0         | 10/28/2004   | 10/28/2004   | 10/29/2004   | 10/29/2004   | 11/1/2004    | 10/29/2004      | 17.5.0      | 11/1/2004   | 10/29/2004  | 10/28/2004  |
|            |               |                    |        |           |                 | Description | UC/Filtered | LIC/Filtered    | LIC/Filtered | LIC/Filtered | IJC/Filtered | LIC/Filtered | JIC/Filtarad | JUC/Eiltorod | LIC/Eiltorod | I 19 II.        | I/.5 IL.    | LIOTE       | 9.82 R.     |             |
|            |               |                    |        |           | IInconcolidated | 1           |             | - 0 C/T Intered | 0 C/T Incidu | 00/1 http:// |              | 00/Thered    | 0C/TilleTed  | 0C/Initeled  | 0C/Filleleu  | UC/Filleleu     | UC/Fillered | UC/Filleled | UC/Fillered | UC/Fillered |
| -          |               |                    |        |           | Filtered        |             | 1           |                 |              |              |              |              |              |              |              |                 |             |             |             |             |
|            |               |                    | Region | PRG       | Groundwater     |             |             |                 |              |              |              |              |              |              |              |                 | -           |             |             |             |
| Group      | Method        | Parameter          | (Tap W | ater)     | Background      | Units       |             |                 |              |              |              |              |              |              |              |                 |             |             |             | 1           |
| Metals     | 6010B         | Aluminum           | 36499  | nc        | Duckground      | 110/1       | 130         | 61              | 1400         | 15           | 26           | 21           | 75 11        | 76.11        | 75.11        | 10.6.11         |             |             |             |             |
|            | 6010B         | Barium             | 2555   | nc        | 82.1            | ng/l        | 490         | 32              | 1400         | 43           | 20           | 51           | 100          | 100          | 130          | 12.5 0          | /50         | /8          | 27.0        | /50         |
|            | 6010B         | Beryllium          | 73     | nc        | 0.00            | 119/1       | 1 11        | 1 11            | 1 11         | 1 11         | 1 11         | 111          | 100          | 1 11         | 04           | 10              | 00          | 42          | 420         | 46          |
|            | 6010B         | Cadmium            | 18     | nc        | 0.00            | ug/l        | 1 11        | 1 11            | 1 11         | 1 U          | 1 11         | 1 11         | 10           | 10           | 1 U          | 10              | 1 1 1       |             |             |             |
|            | 6010 <b>B</b> | Calcium            | [n]    |           | 115000          | ug/l        | 86000       | 150000          | 210000       | 230000       | 140000       | 140000       | 76000        | 76000        | <u>81000</u> | 220000          | <u> </u>    | 120000      | 040000      | 200000      |
| 1          | 6010B         | Chromium           | 109    | nc        | 7.3             | ug/l        | 2           | 2.4             | 2.4          | 5 U          | 5 11         | 2            | 5 11         | 5 11         | 5 11         | 5 U             | 5.11        | 5.11        | 5 11        | 200000      |
|            | 6010B         | Cobalt             | 730    | nc        | 0.00            | ug/l        | 2.5 U       | 2.5 U           | 3.5          | 2.5 U        | 25 U         | 2511         | 25 U         | 2511         | 25 11        | 2511            | 30          | 22          | \$0         | 12          |
|            | 6010B         | Copper             | 1460   | nc        | 0.00            | ug/l        | 2.8         | 2.1             | 3.4          | 1.8          | -18          | 5 U          | 5 U          | 5 U          | 5 11         | 5.11            | 5.11        | 5.1         | 5 11        | 26          |
|            | 6010B         | Iron               | 10950  | nc        | 279             | ug/l        | 1600        | 2300            | 4400         | 5900         | 4400         | 2300         | 700          | 650          | 730          | 2600            | 60 U        | 1900        | 60 U        | 780         |
|            | 6010B         | Magnesium          | [n]    |           | 43300           | ug/l        | 25000       | 63000           | 80000        | 130000       | 77000        | 62000        | 51000        | 51000        | 39000        | 150000          | 260000      | 54000       | 270000      | 120000      |
|            | 6010B         | Manganese          | 876    | nc        | 1020            | ug/l        | 150         | 180             | 1400         | 200          | 200          | 74           | . 43         | 43           | 56           | 550             | 1700        | 320         | 1800        | 770         |
|            | 6010B         | Nickel             | 730    | nc        | 0.00            | ug/l        | 16          | 5 U             | 8            | 5 U          | 5 U          | 5 U          | 2            | 5 U          | 5.U          | 5.0             | 73          | 19          | 14          | 3           |
|            | 6010B         | Potassium          | [n]    |           | 2890            | ug/l        | 18000       | 6200            | 7600         | 2900         | 3000         | 2800         | 6700         | 6800         | 14000        | 5900            | 12000       | 2000        | 60000       | 3400        |
|            | 6010B         | Selenium           | 182    | nc        | 0.00            | ug/l        | 7.5 U       | 7.5 U           | 7.5 U        | 7.5 U        | 6.4          | 7.5 U        | 7.5 U        | 5.3          | 7.5 U        | 5.9             | 87          | 7.5 U       | 10          | 7.5 U       |
|            | 6010B         | Silver             | 182    | nc        | 0.00            | ug/l        | 5 U         | 5 U             | 5 U          | 5 U          | 5 U          | 5 U          | 5 U          | 5 U-         | 5 U          | 5 U             | 5 U         | 5 U         | 5 U         | 5 U         |
|            | 6010B         | Sodium             | [n]    |           | 45700           | ug/l        | 19000       | 18000           | 27000        | 26000        | 25000        | 23000        | 25000        | 24000        | 30000        | 40000           | 54000       | 15000       | 35000       | 35000       |
|            | 6010B         | Vanadium           | 36     | nc        | 0.00            | ug/l        | 5 U         | 5 U             | 5 U          | 5 U          | 5 U          | 5 U          | 5 U          | 5 U          | 5 U          | 5 U             | 5 U         | 5 U         | 5 U         | 5 U         |
|            | 6010B         | Zinc               | 10950  | nc        | 60.9            | ug/l        | 15 U        | 15 U            | 20           | 15 U         | 30           | 15 U         | 15 U         | 15 U         | 15 U         | 17              | 21          | 15          | 19          | 15 U        |
|            | 7041          | Antimony           | 15     | nc        | 0.00            | ug/l        | 3.75 U      | 3.75 U          | 3.75 U       | 3.75 U       | 3.75 U       | 3.75 U       | 3.75 U       | 3.75 U       | 3.75 U       | 3.75 U          | 3.75 U      | 3.75 U      | 3.75 U      | 3.75 U      |
|            | 7060A         | Arsenic            | 0.045  | ca        | 11.7            | ug/l        | 19          | 19              | 12           | 61           | 32           | 37           | 42           | 44           | 43           | 19              | 1 U         | 5.5         | 1 U         | 4.1         |
|            | 7421          | Lead               | 15     | mci       | 0.00            | ug/l        | 1.5 U       | 1.5 U           | 3.9          | 0.94         | 1.5 U           | 1.5 U       | 1.5 U       | 0.9         | 1.5 U       |
|            | 7470A         | Thelling           | 11     | nc        | 0.00            | ug/l        | 0.1 U       | 0.1 U           | 0.1 U        | 0.19         | 0.1 U        | 0.1 U        | 0.059        | 0.078        | 0.1 U        | 0.1 U           | 0.1 U       | 0.1 U       | 0.065       | 0.1 U       |
| Destisides | 7041          |                    | 2.4    | nc        | 0.00            | ug/l        | 2 U         | 2 U             | - 2.9        | 2 U          | 2 U          | 2 U          | 2 U          | 2 U          | 2 U          | 2 U             | 2 U         | 2 U         | 2 U         | 2 U         |
| resticides | 8081A         | 4,4-DDD            | 0.28   | ca        |                 | ug/l        | 0.055 U     | 0.055 U         | 0.055 U      | 0.055 U      | 0.055 U      | 0.055 U      | 0.055 U      | 0.055 U      | 0.055 U      | 0.05 U          | 0.055 U     | 0.055 U     | 0.055 U     | 0.055 U     |
|            | 8081A         | 4,4-DDE            | 0.20   | ca        |                 | ug/l        | 0.0495 U    | 0.0495 U        | 0.048 U      | 0.0495 U     | 0.049 U      | 0.05 U       | 0.048 U      | 0.048 U      | 0.0495 U     | 0.0475 U        | 0.05 U      | 0.05 U      | 0.05 U      | 0.049 U     |
|            | 8081A         | 4,4-DD1            | 0.20   | ca        |                 | ug/l        | 0.075 U     | 0.075 U         | 0.07 U       | 0.075 U      | 0.075 U      | 0.075 U      | 0.07 U       | 0.07 U       | 0.075 U      | 0.07 U          | 0.075 U     | 0.075 U     | 0.075 U     | 0.075 U     |
|            | 8081A         | alpha-BHC          | 0.0040 | ca        |                 | ug/l        | 0.0495 U    | 0.0495 U        | 0.048 U      | 0.0495 U     | 0.049 U      | 0.05 U       | 0.048 U      | 0.048 U      | 0.0495 U     | 0.0475 U        | 0.05 U      | 0.05 U      | 0.05 U      | 0.049 U     |
|            | 8081A         | alpha-Chlordane    | 0.011  |           |                 | ug/1        | 0.075 U     | 0.075 U         | 0.07 U       | 0.075 U      | 0.075 U      | 0.075 U      | 0.07 U       | 0.07 U       | 0.075 U      | 0.07 U          | 0.075 U     | 0.075 U     | 0.075 U     | 0.075 U     |
|            | 8081A         | beta-BHC           | 0.17   | <u>ca</u> |                 | ug/1        | 0.025 U     | 0.025 U         | 0.024 0      | 0.025 U      | 0.0245 U     | 0.025 U      | 0.024 U      | 0.024 U      | 0.025 U      | 0.024 U         | 0.0255 U    | 0.025 U     | 0.025 U     | 0.0245 U    |
|            | 8081A         | delta-BHC          | 0.057  | Ca        |                 | ug/1        | 0.0495 U    | 0.0495 U        | 0.048 U      | 0.0495 U     | 0.049 U      | 0.05 U       | 0.048 U      | 0.048 U      | 0.0495 U     | 0.0475 U        | 0.05 U      | 0.05 U      | 0.05 U      | 0.049 U     |
|            | 8081A         | Dieldrin           | 0.0042 | ca        |                 | ug/1        | 0.0495 U    | 0.0495 U        | 0.048 U      | 0.0495 U     | 0.049 U      | 0.05 U       | 0.048 U      | 0.048 U      | 0.0495 U     | 0.0475 U        | 0.05 U      | 0.05 U      | 0.05 U      | 0.049 U     |
|            | 8081A         | Endosulfan I       | 220    | nc        |                 | 110/1       | 0.0495 U    | 0.0495 U        | 0.048 U      | 0.0495 U     | 0.049 U      | 0.05 U       | 0.048 U      | 0.048 U      | 0.0495 U     | 0.0475 U        | 0.05 U      | 0.05 U      | 0.05 U      | 0.049 U     |
|            | 8081A         | Endosulfan II      | 220    | nc        |                 | 110/1       | 0.075 U     | 0.075 U         | 0.07 11      | 0.075 U      | 0.075 11     | 0.075 U      | 0.048 0      | 0.048 U      | 0.0495 U     | 0.04/3 0        | 0.05 U      | 0.05 U      | 0.05 U      | 0.049 0     |
|            | 8081A         | Endosulfan sulfate | 220    | nc        |                 | ug/i        | 0.075 U     | 0.075 U         | 0.07 U       | 0.075 U      | 0.075 U      | 0.075 U      | 0.07 U       | 0.07 U       | 0.075 U      | 0.07 U          | 0.075 U     | 0.075 U     | 0.075 U     | 0.075 U     |
|            | 8081A         | Endrin             | 11     | nc        |                 | ug/l        | 0.0495 U    | 0.0495 U        | 0.048 U      | 0.0495 11    | 0.049 11     | 0.05 11      | 0.048 11     | 0.07.0       | 0.0405 11    | 0.0475 11       | 0.075 U     | 0.075 U     | 0.073 0     | 0.073 0     |
|            | 8081A         | Endrin aldehyde    |        |           |                 | ug/l        | 0.075 U     | 0.075 U         | 0.07 U       | 0.075 U      | 0.075 11     | 0.075 11     | 0.07 11      | 0.040 0      | 0.075 11     | 0.0473 0        | 0.05 0      | 0.05 0      | 0.05 0      | 0.049 0     |
|            | 8081A         | Endrin ketone      |        |           |                 | ug/l        | 0.0495 U    | 0.0495 U        | 0.048 U      | 0.0495 U     | 0.049 II     | 0.05 11      | 0.048 11     | 0.048 11     | 0.0495 11    | 0.075 11        | 0.075 U     | 0.075 U     | 0.075 U     | 0.073 0     |
|            | 8081A         | gamma-BHC          | 0.052  | ca        |                 | ug/l        | 0.075 U     | 0.075 U         | 0.07 U       | 0.075 U      | 0.075 U      | 0.075 U      | 0.07 11      | 0.07 11      | 0.075 11     | 0.07 11         | 0.075 11    | 0.075 11    | 0.075 11    | 0.049 0     |
|            | 8081A         | gamma-Chlordane    | 0.19   | ca        |                 | ug/l        | 0.0495 U    | 0.0495 U        | 0.048 U      | 0.0495 U     | 0.049 U      | 0.05 U       | 0.048 U      | 0.048 U      | 0.0495 11    | 0.0475 11       | 0.05 11     | 0.05 11     | 0.05 11     | 0.049 11    |
|            | 8081A         | Heptachlor         | 0.015  | ca        |                 | ug/l        | 0.075 U     | 0.075 U         | 0.07 U       | 0.075 U      | 0.075 U      | 0.075 U      | 0.07 U       | 0.07 U       | 0.075 U      | 0.07 11         | 0.075 U     | 0.075 11    | 0.075 11    | 0.075 11    |
|            | 8081A         | Heptachlor epoxide | 0.0074 | ca        |                 | ug/l        | 0.075 U     | 0.075 U         | 0.07 U       | 0.075 U      | 0.075 U      | 0.075 U      | 0.07 U       | 0.07 U       | 0,075 []     | 0.07 U          | 0.075 11    | 0.075 11    | 0.075 11    | 0.075 11    |
|            |               |                    |        |           |                 |             |             | ·····           |              |              | 1            |              |              |              |              |                 |             |             |             |             |

#### Load Line 12 Summary of All Groundwater Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

|       |        |                            |             |          |                |             | 1           | 1           |             | 1           | T           |                                       |             |             |             |             |             |             |             |             |
|-------|--------|----------------------------|-------------|----------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|       |        |                            |             |          |                |             |             |             |             |             |             |                                       |             |             |             |             |             |             |             |             |
|       |        |                            |             |          |                |             | M           | M           | M           | M           | A           | A A A A A A A A A A A A A A A A A A A | - B         | À           | A           | 8           |             | A           | ≽           | 8           |
|       |        |                            |             |          |                |             | 88          | 0-6         | 300         | 0.8         | 3.0         | 40                                    | 5-D         | 2-G         | 9.9         | 0+          | D-S         | Ŭ,          | D-1         | D.          |
|       |        |                            |             |          |                |             | 08          | -10         | -11         | -12         | -12         | -15                                   | <u>80</u>   | 18          | -18         | -18         | -18         | -186        | -18.        | -186        |
|       |        |                            |             |          |                |             | 2mv         | j ma        | , my        | mw          | M           | Mm                                    | M M         | M M         | A M         | A A         | A M         | Mu Nu       | , Mu        | Ma Na       |
|       |        |                            |             |          |                |             | L11         | L12         | L12         | L12         | L12         | C12                                   | C12         | C12         | .12         | 12          | 12          | 12          | 121         | 121         |
|       |        |                            |             |          | S              | ample Date: | 10/26/2004  | 10/27/2004  | 11/5/2004   | 10/27/2004  | 10/28/2004  | 10/28/2004                            | 10/29/2004  | 10/29/2004  | 11/1/2004   | 10/29/2004  | 11/1/2004   | 11/1/2004   | 10/29/2004  | 10/28/2004  |
|       |        |                            |             |          | Sa             | mple Depth: | 17.5 ft.    | 21.5 ft.    | 12.5 ft.    | 23 ft.      | 13 ft.      | 24 ft.                                | 30 ft.      | 30 ft.      | 24 ft.      | 19 ft.      | 17.5 ft.    | 11 ft.      | 9.82 ft.    | 13 ft       |
|       |        |                            |             |          |                | Description | UC/Filtered | UC/Filtered | UC/Filtered | UC/Filtered | UC/Filtered | UC/Filtered                           | UC/Filtered | UC/Filtered | UC/Filtered | UC/Filtered | UC/Filtered | UC/Filtered | UC/Filtered | UC/Filtered |
|       |        |                            |             |          | Unconsolidated |             |             |             |             |             |             |                                       |             |             |             |             |             |             |             |             |
|       |        |                            | <b>_</b>    |          | Filtered       |             |             |             |             |             |             |                                       |             |             |             |             |             |             |             |             |
| Group | Method | Parameter                  | Region 9    | PRG      | Groundwater    | TTAK        |             |             |             |             |             |                                       |             |             |             |             |             |             | 1           |             |
| Gloup | 8081 A | Methoxychlor               | (Tap wa     | aler)    | Background     | Units       | 0.205.11    | 0.005.11    |             |             |             |                                       |             |             |             |             |             |             |             |             |
|       | 8081A  | Toxaphene                  | 0.061       | <br>     |                |             | 0.295 U     | 0.295 U     | 0.29 U      | 0.295 U     | 0.295 U     | 0.3 U                                 | 0.29 U      | 0.29 U      | 0.295 U     | 0.285 U     | 0.305 U     | 0.3 U       | 0.3 U       | 0.295 U     |
| PCBs  | 8082   | Aroclor 1016               | 0.96        | ca       |                | 1 ug/1      | 0.25 U      | 0.25 U      | 0.24 U      | 0.25 U      | 0.245 U     | 0.23 U                                | 0.24 U      | 0.24 U      | 0.25 U      | 0.24 U      | 0.255 U     | 0.25 U      | 0.25 0      | 0.245 U     |
|       | 8082   | Aroclor 1221               | 0.034       | ca       |                | ug/1        | 0.65 U      | 0.255 U     | 0.29 U      | 0.295 0     | 0.295 0     | 0.5 U                                 | 0.29 U      | 0.29 U      | 0.295 U     | 0.285 0     | 0.305 U     | 0.3 U       | 0.3 U       | 0.295 U     |
|       | 8082   | Aroclor 1232               | 0.034       | ca       |                | ug/l        | 0.65 U      | 0.65 U      | 0.6 U       | 0.65 U      | 0.65 U      | 0.65 U                                | 0.00        | 0.0 0       | 0.65 U      | 0.00        | 0.65 U      | 0.65 11     | 0.65 U      | 0.65 U      |
|       | 8082   | Aroclor 1242               | 0.034       | ca       |                | ug/l        | 0.65 U      | 0.65 U      | 0.6 U       | 0.65 U      | 0.65 U      | 0.65 U                                | 0.6 U       | 0.6 U       | 0.65 U      | 0.6 U       | 0.05 U      | 0.65 U      | 0.65 U      | 0.65 U      |
|       | 8082   | Aroclor 1248               | 0.034       | ca       |                | ug/l        | 0.75 U      | 0.75 U      | 0.7 U       | 0.75 U      | 0.75 U      | 0.75 U                                | 0.7 U       | 0.7 U       | 0.75 U      | 0.7 U       | 0.75 U      | 0.75 U      | 0.75 U      | 0.75 U      |
|       | 8082   | Aroclor 1254               | 0.034       | ca       |                | ug/l        | 0.65 U      | 0.65 U      | 0.6 U       | 0.65 U      | 0.65 U      | 0.65 U                                | 0.6 U       | 0.6 U       | 0.65 U      | 0.6 U       | 0.65 U      | 0.65 U      | 0.65 U      | 0.65 U      |
|       | 8082   | Aroclor 1260               | 0.034       | ca       |                | ug/l        | 0.295 U     | 0.295 U     | 0.29 U      | 0.295 U     | 0.295 U     | 0.3 U                                 | 0.29 U      | 0.29 U      | 0.295 U     | 0.285 U     | 0.305 U     | 0.3 U       | 0.3 U       | 0.295 U     |
| VOCs  | 8260B  | 1,1,1-Trichloroethane      | 3172        | nc       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | 1,1,2,2-1etrachioroethane  | 0.055       | ca       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | 1,1,2-111chloroethane      | 0.20<br>911 | ca       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | 1 1-Dichloroethene         | 339         | nc       |                | ug/1        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | 1.2-Dibromoethane          | 0.0056      | ca       |                | ug/1        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | 1,2-Dichloroethane         | 0.12        | ca       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | 1,2-Dichloroethene (total) | 120         | nc       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | 1,2-Dichloropropane        | 0.16        | ca       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | 2-Butanone                 | 6968        | nc       |                | ug/l        | 8.3 J       | 5 U         | 5 U         | 5 U         | 5 U         | 5 U                                   | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         |
|       | 8260B  | 2-Hexanone                 | 2000        | nc       |                | ug/l        | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U                                   | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         |
|       | 8260B  | 4-Methyl-2-pentanone       | 1993        | nc       |                | ug/l        | 8.3 J       | 5 U         | 5 U         | 5 U         | 5 U         | 5 U                                   | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         |
|       | 8260B  | Acetone                    | 5475        | nc       |                | ug/l        | 74          | 5 U         | 5 U         | 5 U         | 5 U         | 5 U                                   | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         |
|       | 8200B  | Benzene                    | 0.35        | ca       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | Bromodichloromethane       | 0.19        |          |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | Bromoform                  | 8.5         | Ca<br>Ca |                | ug/1        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | Bromomethane               | 8.7         | nc       |                | 110/1       | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | Carbon disulfide           | 1043        | nc       |                | ug/l        | 2.5 U       | 2.5 U       | 25 11       | 2511        | 2511        | 25 U                                  | 25 U        | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | Carbon tetrachloride       | 0.17        | ca       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 2.5 U       |
|       | 8260B  | Chlorobenzene              | 106         | nc       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | Chloroethane               | 4.6         | ca       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | Chloroform                 | 0.17        | ca       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | Chloromethane              | 158         | nc       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 0200B  | cis-1,2-Dichloroethene     | 61          | nc       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | Dibromochloromethane       | 0.40        | ca       |                | ug/i        | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | .0.5 U      | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | Ethylbenzene               | 1340        | nc       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | m&p-Xylenes                | 206         | nc       |                | 110/l       | 1 11        | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 0       | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | Methylene chloride         | 4.3         | ca       |                | ug/1        | 0.75 II     | 0.75 11     | 0.75 11     | 0.75 11     | 0.75 11     | 1 U                                   | 0.75 TT     | 0.75 11     | 0.75 II     | 10          | 1 U         | 1 U         | <u> </u>    | 1 U         |
|       | 8260B  | o-Xylene                   | 206         | nc       |                | ug/l        | 0.5 U       | 0.5 U       | 0.5 U       | 0.75 0      | 0.75 0      | 0.5 II                                | 0.73 0      | 0.75 U      | 0.75 0      | 0.75 U      |
|       | 8260B  | Styrene                    | 1641        | nc       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 0       | 0.5 U       |
|       | 8260B  | Tetrachloroethene          | 0.10        | ca       |                | ug/l        | 0.5 U                                 | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 U       | 0.5 0       |
|       |        |                            |             |          |                |             |             |             |             |             |             |                                       |             |             |             | 0.0 0       | 0.0 0       | 0.0 0       | 0.0 0       | 0.5 0       |
|       |        |                              |          |      |                |             | r           |             |             |             |             |             |             |             |             |               |             |             |               |             |
|-------|--------|------------------------------|----------|------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|---------------|-------------|
|       |        |                              |          |      |                |             |             |             |             |             |             |             | 1           | [           |             |               |             |             |               |             |
|       |        |                              |          |      |                |             |             |             |             |             |             |             |             |             |             |               |             |             |               |             |
|       |        |                              |          |      |                |             |             |             |             |             |             |             |             |             |             |               |             |             |               |             |
|       |        |                              |          |      |                |             | <u>≥</u>    | A A         | A A         | ≥           | ≥           | ≥           | 5           |             | ≥           | 3             | 3           | 3           | 3             | 3           |
|       |        |                              |          |      |                |             |             | 2           | U O         | 0           |             | 0           | L Q         | U U         | Ŭ,          | Ŭ,            | C C         | U C         | j õ           | - Q         |
|       |        |                              |          |      |                |             | 80          | 9           |             | 128         | 153         | 154         | 182         | 182         | 183         | 184           | 185         | 186         | 187           | 88          |
|       |        |                              |          |      |                |             | NC N        | N N         | -MI         |             |             | Å           |             | *           | *           | *             | *           | *           |               |             |
|       |        |                              |          |      |                |             | 12n         | []]]        | [2n         | 2m            | 5m          | 5m          | 5m            | 5m          |
|       |        |                              |          |      |                |             | L           | 1           | <u> </u>    |             | 1           | 1 1         | ΓI          | L L L       | L1          | L I           | L I         | L L         | 1 3           |             |
|       |        |                              |          |      | S              | ample Date: | 10/26/2004  | 10/27/2004  | 11/5/2004   | 10/27/2004  | 10/28/2004  | 10/28/2004  | 10/29/2004  | 10/29/2004  | 11/1/2004   | 10/29/2004    | 11/1/2004   | 11/1/2004   | 10/29/2004    | 10/28/2004  |
|       |        |                              |          |      | Sa             | mple Depth: | 17.5 ft.    | 21.5 ft.    | 12.5 ft.    | 23 ft.      | 13 ft.      | 24 ft.      | 30 ft.      | 30 ft.      | 24 ft.      | 19 ft.        | 17.5 ft.    | 11 ft.      | 9.82 ft.      | 13 ft       |
|       |        |                              |          |      | ·····          | Description | UC/Filtered   | UC/Filtered | UC/Filtered | UC/Filtered   | UC/Filtered |
|       |        |                              |          |      | Unconsolidated |             |             |             |             |             |             |             |             |             |             |               |             |             |               |             |
|       |        |                              |          |      | Filtered       |             |             |             |             | -           |             |             |             |             |             |               |             |             | 1             |             |
|       |        |                              | Region 9 | PRG  | Groundwater    |             |             |             |             |             |             |             |             |             |             |               |             |             |               |             |
| Group | Method | Parameter                    | (Tap Wa  | ter) | Background     | Units       |             |             |             |             |             | [           |             |             |             |               |             |             |               |             |
|       | 8260B  | Toluene                      | 723      | nc   |                | ug/l        | 0.5 U       | 05.U        | 0511        | 0511        | 0511          | 0.5.11      | 0.5.11      | 05.11         | 0.5.11      |
|       | 8260B  | Total Xylenes                | 206      | nc   |                | ug/l        | 0.5 U       | 0.5 11      | 0.5 U       | 0.5 U         | 0.5 U       | 0.5 U       | 0.5 U         | 0.5 U       |
|       | 8260B  | trans-1,2-Dichloroethene     | 122      | nc   |                | ug/l        | 0.5 U       | 05 U        | 05 U        | 0.5 U       | 0.50          | 0.50        | 0.50        | 0.50          | 0.5 0       |
|       | 8260B  | trans-1,3-Dichloropropene    | 0.40     | ca   |                | ug/l        | 0.5 U       | 0.5 11      | 0.5 0       | 0.50        | 0.5 0         | 0.50        | 0.50        | 0.50          | 0.50        |
|       | 8260B  | Trichloroethene              | 0.028    | ca   |                | ug/l        | 0.5 U       | 0.5 0       | 0.5 U       | 0.5 0       | 0.5 0         | 0.50        | 0.5 U       | 0.50          | 0.5 U       |
|       | 8260B  | Vinyl chloride               | 0.020    | ca   |                | ug/l        | 0.5 U       | 0511        | 0.5 11      | 0.5 U       | 0.5 0       | 0.5 U         | 0.50        | 0.50        | 0.5 0         | 0.5 0       |
| SVOCs | 8270C  | 1,2,4-Trichlorobenzene       | 7.2      | nc   |                | ug/l        | 1 U ·       | 1 U         | 1 U         | 111         | 1 11        | 1 11        | 0.5 0       | 0.5 0       | 1.11        | 0.5 0         | 0.5 0       | 0.50        | 0.5 0         | 0.3 0       |
|       | 8270C  | 1,2-Dichlorobenzene          | 370      | nc   |                | ug/l        | 1 U         | 1 U         | 111         | 1 11        | 1 U         | 10          | 0.95 U      | 0.95 U      | 1 U         | 10            | 10          | 10          | 10            | 10          |
|       | 8270C  | 1,3-Dichlorobenzene          | 182      | nc   |                | ug/l        | 1 U         | 1 U         | 1 U         | 1 11        | 1 11        | 1 11        | 0.95 U      | 0.95 U      | 1 U         | 10            | 10          | 10          | 10            | 1 U         |
|       | 8270C  | 1,4-Dichlorobenzene          | 0.50     | ca   |                | ug/l        | 1 U         | 1 U         | 1 U         | 1 U         | 1 11        | 1 U         | 0.95 U      | 0.95 U      | 1 U         | 1.11          | 10          | 1 U         | 10            | 10          |
|       | 8270C  | 2,2-oxybis (1-chloropropane) | 0.27     | ca   |                | ug/l        | 1 U         | 1 U         | 1 UJ        | 1 U         | 1 U         | 1 11        | 0.95 U      | 0.95 U      | 1 U         | 1.U           | 10          | 1 U         | 10            | 10          |
|       | 8270C  | 2,4,5-Trichlorophenol        | 3650     | nc   |                | ug/l        | 5 U         | 5 U         | 5 11        | 511         | 5 11        | 5 11        | 4.85 U      | 4 75 11     | 5.11        | 5 11          | 5 11        | <u> </u>    | 10            | <u> </u>    |
|       | 8270C  | 2,4,6-Trichlorophenol        | 3.6      | nc   |                | ug/l        | 2.5 U       | 2.55 U      | 2.5 U       | 2511        | 2511        | 2 55 II     | 2.45 U      | 4.75 U      | 2 55 11     | 255 U         | 2511        | 25 U        | 4.9 U         | <u> </u>    |
|       | 8270C  | 2,4-Dichlorophenol           | 109      | nc   |                | ug/l        | 5 U         | 5 U         | 5 U         | 5 U         | <u>5 U</u>  | 5 U         | 4.85 11     | 4 75 II     | <u> </u>    | <u> </u>      | 2.50        | 2.5 U       | 2.43 U        | 2.5 U       |
|       | 8270C  | 2,4-Dimethylphenol           | 730      | nc   |                | ug/l        | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 11        | 4.85 U      | 4.75 U      | 5.11        | 50            | 511         | 50          | 4.90          | 50          |
|       | 8270C  | 2,4-Dinitrophenol            | 73       | nc   |                | ug/l        | 10 U        | 9511        | 9511        | 10 UI       | 10 U          | 10 11       | 10 U        | 4.90          | 10 U        |
|       | 8270C  | 2,4-Dinitrotoluene           | 73       | nc   |                | 'ug/l       | 0.5 U       | 0.485 U     | 0.475 11    | 05 U        | 05.11         | 05.0        | 0.5 11      | 0.40 U        | 10 U        |
|       | 8270C  | 2,6-Dinitrotoluene           | 36       | nc   |                | ug/l        | 0.25 U      | 0.255 U     | 0.25 U      | 0 25 U      | 0.25 U      | 0.255 II    | 0.45 U      | 0.24 II     | 0.255 U     | 0.5 U         | 0.5 U       | 0.5 U       | 0.49 0        | 0.5 0       |
|       | 8270C  | 2-Chloronaphthalene          | 487      | nc   |                | ug/l        | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 11        | 0.95 11     | 0.95 U      | 0.255 U     | 0.255 U       | 0.25 0      | 0.25 U      | 0,243 0       | 0.23 U      |
|       | 8270C  | 2-Chlorophenol               | 30       | nc   |                | ug/l        | 2.5 U       | 2.55 U      | 2.5 U       | 2.5 U       | 2.5 U       | 2 55 U      | 2 45 11     | 2411        | 2 55 11     | 2 55 11       | 2511        | 2511        | 245 U         | 25.11       |
|       | 8270C  | 2-Methylnaphthalene          |          |      |                | ug/l        | 0.25 U      | 0.255 U     | 0.25 U      | 0.25 U      | 0.25 U      | 0.255 U     | 0.245 U     | 0.24 II     | 0.255 U     | 0.255 U       | 0.25 U      | 0.25 U      | 2.45 U        | 2.5 U       |
|       | 8270C  | 2-Methylphenol               | 1825     | nc   |                | ug/l        | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 11        | 0.95 U      | 0.95 U      | 1 11        | 1 11          | 0.25 0      | 0.25 U      | 0.245 0       | 0.25 U      |
|       | 8270C  | 2-Nitroaniline               | 109      | nc   |                | ug/l        | 2.5 U       | 2.55 U      | 2.5 U       | 2.5 U       | 2.5 U       | 2.55 U      | 2.45 U      | 24 11       | 2 55 11     | 2 55 11       | 25 11       | 25 U        | 245 U         | 2511        |
|       | 8270C  | 2-Nitrophenol                |          |      |                | ug/l        | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 4 85 11     | 4 75 U      | 5 11        | <u>2.55 U</u> | 2.5 U       | 2.5 U       | 2.45 U        | 2.5 U       |
|       | 8270C  | 3,3'-Dichlorobenzidine       | 0.15     | ca   |                | ug/l        | 2.5 U       | 2.55 U      | 2.5 U       | 2.5 U       | 2.5 U       | 2.55 U      | 2.45 U      | 2411        | 2 55 11     | 2 55 U        | 2511        | 25.11       | 2.45 11       | 2511        |
|       | 8270C  | 3-Nitroaniline               | 3.2      | ca   |                | ug/l        | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 4 85 U      | 4 75 11     | 5 11        | 5.11          | <u> </u>    | 5.11        | <u> 40 II</u> | 2.5 U       |
|       | 8270C  | 4,6-Dinitro-2-methylphenol   | 3.6      | nc   |                | ug/l        | 10 U        | 95 U        | 95 U        | 10 U        | 10 U          | 10 U        | 10 U        | 10 U          | 10 U        |
|       | 8270C  | 4-Bromophenyl phenyl ether   |          |      |                | ug/l        | 2.5 U       | 2.55 U      | 2.5 U       | 2.5 U       | 2.5 U       | 2.55 U      | 2.45 U      | 24 11       | 2 55 11     | 2 55 11       | 2511        | 25 U        | 2 45 11       | 25 U        |
|       | 8270C  | 4-Chloro-3-methylphenol      |          |      |                | ug/l        | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 4.85 U      | 4 75 U      | 5 U         | 5 11          | <u>5 U</u>  | 5 U         | <u>49 II</u>  | <u> </u>    |
|       | 8270C  | 4-Chloroaniline              | 146      | nc   |                | ug/l        | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 4.85 U      | 4 75 U      | <u>5 U</u>  | 5 11          | 5 11        | 5 U         | 491           | 511         |
|       | 8270C  | 4-Chlorophenyl phenyl ether  |          |      |                | ug/l        | 2.5 U       | 2.55 U      | 2.5 U       | 2.5 U       | 2.5 U       | 2.55 U      | 2.45 U      | 2.4 U       | 2 55 11     | 2 55 11       | 2511        | 2511        | 2 45 11       | 25 U        |
|       | 8270C  | 4-Methylphenol               | 182      | nc   |                | ug/l        | 2.9         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 0.95 U      | 0.95 U      | 1 U         | 1 U           | 1 U         | 1 U         | 1 11          | 1 11        |
|       | 8270C  | 4-Nitroaniline               | 3.2      | ca   |                | ug/l        | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 5 U         | 4.85 U      | 4.75 U      | 5 UI        | 5 U           | 5 11        | 5 111       | 4911          | 511         |
|       | 8270C  | 4-Nitrophenol                |          |      |                | ug/l        | 10 U        | 9.5 U       | 9.5 U       | 10 U        | 10 U          | 10 U        | 10 U        | 10 U          | 10 U        |
|       | 8270C  | Acenaphthene                 | 365      | nc   |                | ug/l        | 0.5 U       | 0.485 U     | 0.475 U     | 0.5 U       | 0.5 U         | 0.5 U       | 0.5 U       | 0 49 TI       | 0511        |
|       | 8270C  | Acenaphthylene               |          |      |                | ug/l        | 0.5 U       | 0.485 U     | 0.475 U     | 0.5 U       | 0.5 U         | 0.5 U       | 0.5 U       | 0.49 11       | 0511        |
|       | 8270C  | Anthracene                   | 1825     | nc   |                | ug/l        | 0.5 U       | 0.485 U     | 0.475 U     | 0.5 U       | 0.5 U         | 0.5 U       | 0.5 U       | 0.49 11       | 0.5 U       |
|       | 8270C  | Benzo(a)anthracene           | 0.092    | ca   |                | ug/l        | 0.1 U       | 0.095 U     | 0.095 U     | 0.14 J      | 0.1 U         | 0.1 U       | 0.27        | 01 U          | 0111        |
|       | 8270C  | Benzo(a)pyrene               | 0.0092   | ca   |                | ug/l        | 0.2 U       | 0.205 U     | 0.195 U     | 0.19 U      | 0.16 J      | 0.205 U       | 0.2 U       | 0.29 J      | 0.195 U       | 0.2 U       |
|       | 8270C  | Benzo(b)fluoranthene         | 0.092    | ca   |                | ug/l        | 0.2 U       | 0.205 U     | 0.195 U     | 0.19 U      | 0.205 U     | 0.205 U       | 0.2 U       | 0.2 J       | 0.195 U       | 0.2 U       |
|       | 8270C  | Benzo(g,h,i)perylene         |          |      |                | ug/l        | 0.5 U       | 0.485 U     | 0.475 U     | 0.34 J      | 0.5 U         | 0.5 U       | 0.81 J      | 0.49 U        | 0.5 U       |
|       | 8270C  | Benzo(k)fluoranthene         | 0.92     | ca   |                | ug/l        | 0.2 U       | 0.205 U     | 0.195 U     | 0.19 U      | 0.12 J      | 0.205 U       | 0.2 U       | 0.24 J      | 0.195 U       | 0.2 U       |
|       |        |                              |          |      |                |             |             |             |             |             |             |             |             |             |             |               |             |             |               |             |

| Г          |        |                             |           |      |                     |                            | <u></u>    | r            |             |                 |              |             |             |             |             |             |              |              |                |                |
|------------|--------|-----------------------------|-----------|------|---------------------|----------------------------|------------|--------------|-------------|-----------------|--------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|----------------|----------------|
|            |        |                             |           |      |                     |                            |            |              |             |                 |              |             |             |             |             |             |              |              |                |                |
|            |        |                             |           |      |                     |                            | 3          | 8            | 3           | 3               | 3            | ~           | E.          | ~           | >           | 2           | >            | >            | >              | >              |
|            |        |                             |           |      |                     |                            | Ö          | ဗို          | Ģ           | Į Õ             | Ģ            | 5           | Ğ           | 6           | 5           | 6           | 5            | 5            | Ģ              | l S            |
|            |        |                             |           |      |                     |                            | 880        | 107          | 113         | 128             | 153          | 154         | 182         | 182         | 83          | 84          | 85           | 86           | 87.            | 88             |
|            |        |                             |           |      |                     |                            | -Mu        | -MU          | -21         | -21             | -wi          |             | -           | -           |             | -M          | *            | *            |                |                |
|            |        |                             |           |      |                     |                            | 12n        | 12n          | 12m         | 12 <sup>m</sup> | 12m          | 12m         | 12m         | [2m         | 2m          |             | 2m           | 2m           | 5 <sup>m</sup> | 2m             |
|            |        |                             |           |      | 5                   | amula Datas                |            |              | <u> </u>    |                 |              |             | H           | <u> </u>    | <u> </u>    | <u>ב</u>    | <u> </u>     | <u> </u>     | <u> </u>       | <u> </u>       |
|            |        |                             |           |      | Sor                 | ampie Date:<br>nale Doath: | 10/20/2004 | 21.5 0       | 12.5.0      | 10/27/2004      | 10/28/2004   | 10/28/2004  | 10/29/2004  | 10/29/2004  | 11/1/2004   | 10/29/2004  | 11/1/2004    | 11/1/2004    | 10/29/2004     | 10/28/2004     |
|            |        |                             |           |      | Sal                 | Description                | I/.J IL.   | LIC/Filtered | I2.5 IL.    | 23 IL           | IS II.       | 24 IL       | 30 ft.      | 30 ft.      | 24 ft.      | 19 ft.      | 17.5 ft.     | ll ft.       | 9.82 ft.       | <u>13 ft</u>   |
|            |        |                             | 1         |      | The second state of |                            | 0C/Thered  | 00/Filtered  | 0C/Fillered | UC/Filtered     | UC/Fillered  | UC/Filtered | UC/Filtered | UC/Filtered | UC/Filtered | UC/Filtered | UC/Filtered  | UC/Filtered  | UC/Filtered    | UC/Filtered    |
|            |        |                             |           |      | Filtered            |                            |            |              |             |                 |              |             |             |             |             |             |              |              | , I            | í -            |
|            |        |                             | Region 91 | PRG  | Groundwater         | i i                        |            |              |             |                 |              |             |             |             |             |             |              |              | 1 1            | i              |
| Group      | Method | Parameter                   | (Tap Wa   | ter) | Background          | Units                      |            |              |             |                 |              |             |             |             |             |             |              |              | , I            | l .            |
|            | 8270C  | Benzoic acid                | 145979    | nc   |                     | ug/l                       | 15 J       | 10 U         | 10 U        | 10 U            | 10 U         | 10 U        | 95 U        | 9511        | 10 11       | 10 U        | 10 II        | 10 11        | 10.11          | 10.11          |
|            | 8270C  | Benzyl alcohol              | 10950     | nc   |                     | ug/l                       | 10 U       | 10 U         | 10 U        | 10 U            | 10 U         | 10 U        | 9.5 U       | 9.5 U       | 10 U        | 10 U        | 10 U         | 10 U         | 10 U           | 10 U           |
|            | 8270C  | Bis(2-chloroethoxy)methane  |           |      |                     | ug/l                       | 1 U        | 1 U          | 1 U         | 1 U             | 1 U          | 1 U         | 0.95 U      | 0.95 U      | 1 U         | 1 U         | 1 U          | 1 U          | 1 U            | 1 U            |
|            | 8270C  | Bis(2-chloroethyl) ether    | 0.010     | ca   |                     | ug/l                       | 1 U        | 1 U          | 1 U         | 1 U             | 1 U          | 1 U         | 0.95 U      | 0.95 U      | 1 U         | 1 U         | 1 U          | 1 U          | 1 U            | 1 U            |
|            | 8270C  | Bis(2-ethylhexyl) phthalate | 4.8       | ca   |                     | ug/l                       | 7.5 U      | 7.5 U        | 7.5 U       | 7.5 U           | 7.5 U        | 7.5 U       | 7.5 U       | 6.3 J       | 7.5 U       | 5 J         | 7.5 U        | 7.5 U        | 59             | 7.5 U          |
|            | 8270C  | Butylbenzyl phthalate       | 7300      | nc   |                     | ug/l                       | 1 U        | 1 U          | 1 U         | 1 U             | 1 U          | 1 U         | 0.95 U      | 0.95 U      | 1 U         | 1 U         | 1 U          | 1 U          | · 1U           | 1 U            |
|            | 8270C  | Carbazole                   | 3.4       | ca   |                     | ug/l                       | 2.5 U      | 2.55 U       | 2.5 U       | 2.5 U           | 2.5 U        | 2.55 U      | 2.45 U      | 2.4 U       | 2.55 U      | 2.55 U      | 2.5 U        | 2.5 U        | 2.45 U         | 2.5 U          |
|            | 8270C  | Dibenzo(a h)onthrocono      | 9.2       | ca   |                     | ug/l                       | 0.25 U     | 0.255 U      | 0.25 U      | 0.25 U          | 0.25 U       | 0.255 U     | 0.245 U     | 0.24 U      | 0.15 J      | 0.255 U     | 0.25 U       | 0.25 J       | 0.245 U        | 0.25 U         |
|            | 8270C  | Dibenzofuran                | 0.0092    | ca   |                     | ug/l                       | 0.2 U      | 0.2 U        | 0.2 U       | 0.2 U           | 0.2 U        | 0.205 U     | 0.195 U     | 0.19 U      | 0.5 J       | 0.205 U     | 0.2 UJ       | 0.95 J       | 0.195 U        | 0.2 U          |
|            | 8270C  | Diethyl phthalate           | 20100     | nc   |                     | ug/1                       | 1 U        | 10           | 1 U         | 10              | 10           | 10          | 0.95 U      | 0.95 U      | <u>1 U</u>  | 1 U         | <u>1 U</u>   | 1 U          | 1 U            | <u>1 U</u>     |
|            | 8270C  | Directly philling           | 364867    | nc   |                     | ug/1                       | 1 U        | 1 U          | 1 U         | 1 U             | 10           | 10          | 0.95 U      | 0.95 U      | 10          | 10          | 1 U          | <u>1 U</u>   | <u>1 U</u>     | <u>1 U</u>     |
|            | 8270C  | Di-n-butyl phthalate        | 3650      | nc   |                     | 110/l                      | 2511       | 2 55 11      | 25 11       | 25 11           | 25 11        | 2 55 II     | 0.95 U      | 0.95 U      | 255 U       | 255.11      |              | 10           | <u> </u>       | <u> </u>       |
|            | 8270C  | Di-n-octyl phthalate        | 1460      | nc   |                     | ug/1<br>ug/1               | 5 U        | 5 U          | 5 U         | <u>2.5 U</u>    | <u>2.5 U</u> | 2.55 U      | 2.45 U      | 4 75 U      | 2.55 U      | 2.55 U      | 2.5 U        | 2.5 U        |                | <u> </u>       |
|            | 8270C  | Fluoranthene                | 1460      | nc   |                     | ug/l                       | 0.5 U      | 0.5 U        | 0.5 U       | 0.5 U           | 0.5 U        | 0511        | 0.485 U     | 0475 U      | 0511        | 0511        | 05 U         | 05 U         | 0.49 U         | 0511           |
|            | 8270C  | Fluorene                    | 243       | nc   |                     | ug/l                       | 0.5 U      | 0.5 U        | 0.5 U       | 0.5 U           | 0.5 U        | 0.5 U       | 0.485 U     | 0.475 U     | 0.5 U       | 0.5 U       | 0.5 U        | 0.5 U        | 0.49 U         | 0.5 U          |
|            | 8270C  | Hexachlorobenzene           | 0.042     | ca   |                     | ug/l                       | 0.25 U     | 0.255 U      | 0.25 U      | 0.25 U          | 0.25 U       | 0.255 U     | 0.245 U     | 0.24 U      | 0.255 U     | 0.255 U     | 0.25 U       | 025 U        | 0.45 U         | 0.5 U          |
|            | 8270C  | Hexachlorobutadiene         | 0.86      | ca   |                     | ug/l                       | 2.5 U      | 2.55 U       | 2.5 U       | 2.5 U           | 2.5 U        | 2.55 U      | 2.45 U      | 2.4 U       | 2.55 U      | 2.55 U      | 2.5 U        | 2.5 U        | 2.45 U         | 2.5 U          |
|            | 8270C  | Hexachlorocyclopentadiene   | 219       | nc   |                     | ug/l                       | - R        | - R          | - R         | - R             | - R          | - R         | - R         | - R         | - R         | - R         | - R          | - R          | - R            | - R            |
|            | 8270C  | Hexachloroethane            | 4.8       | ca   |                     | ug/l                       | 2.5 U      | 2.55 U       | 2.5 U       | 2.5 U           | 2.5 U        | 2.55 U      | 2.45 U      | 2.4 U       | 2.55 U      | 2.55 U      | 2.5 U        | 2.5 U        | 2.45 U         | 2.5 U          |
|            | 82700  | Indeno(1,2,3-cd)pyrene      | 0.092     | ca   |                     | ug/l                       | 0.2 U      | 0.2 U        | 0.2 U       | 0.2 U           | 0.2 U        | 0.205 U     | 0.195 U     | 0.19 U      | 0.37 J      | 0.205 U     | 0.2 U        | 0.81         | 0.195 U        | 0.2 U          |
|            | 8270C  | Nonhtholene                 | 62        | ca   |                     | ug/l                       | 10         | 10           | IU          | 1 U             | 1 U          | 1 U         | 0.95 U      | 0.95 U      | 1 U         | 1 U         | 1 U          | 1 U          | 1 U            | 1 U            |
|            | 8270C  | Nitrobenzene                | 3.4       | ne   |                     | ug/l                       | 0.5 U      | 0.5 U        | 0.5 U       | 0.5 U           | 0.5 U        | 0.5 U       | 0.485 U     | 0.475 U     | 0.5 U       | 0.5 U       | 0.5 U        | 0.5 U        | 0.49 U         | 0.5 U          |
|            | 8270C  | n-Nitroso-di-n-propylamine  | 0.0096    | <br> |                     | ug/1                       | 0.5 U      | 0.5 U        | 0.5 U       | 0.5 U           | 0.5 U        | 0.5 U       | 0.485 U     | 0.475 U     | 0.5 U       | 0.5 U       | 0.5 U        | 0.5 U        | 0.49 U         | 0.5 U          |
|            | 8270C  | n-Nitrosodiphenylamine      | 14        | ca   |                     | ug/l                       | 0.5 U      | 0.255 0      | 0.25 0      | 0.25 0          | 0.25 U       | 0.255 0     | 0.245 U     | 0.24 0      | 0.255 U     | 0.255 U     | 0.25 U       | 0.25 U       | 0.245 U        | 0.25 U         |
|            | 8270C  | Pentachlorophenol           | 0.56      | ca   |                     | ug/l                       | 5 U        | 5 U          | 5 U         | 5 U             | 5 U          | 5 U         | 4 85 11     | 4 75 11     | 5.11        | 5.11        | 0.3 U<br>5 U | 0.3 U<br>5 U | <u> </u>       | 0.5 U          |
|            | 8270C  | Phenanthrene                |           |      |                     | ug/l                       | 0.5 U      | 0.5 U        | 0.5 U       | 0.5 U           | 0.5 U        | 0.5 U       | 0.485 U     | 0 475 U     | 0511        | 0511        | 0511         | 0511         | 0.49 U         | 0511           |
|            | 8270C  | Phenol                      | 10950     | nc   |                     | ug/l                       | 25         | 2.55 U       | 2.5 U       | 2.5 U           | 2.5 U        | 2.55 U      | 11          | 9.4         | 2.55 U      | 2.9 J       | 2.5 U        | 2.5 U        | 2.4 J          | 2.5 U          |
|            | 8270C  | Pyrene                      | 182       | nc   |                     | ug/l                       | 0.5 U      | 0.5 U        | 0.5 U       | 0.5 U           | 0.5 U        | 0.5 U       | 0.485 U     | 0.475 U     | 0.5 U       | 0.5 U       | 0.5 U        | 0.13 J       | 0.49 U         | 0.5 U          |
| Explosives | 8330   | 1,3,5-Trinitrobenzene       | 1095      | nc   |                     | ug/l                       | 0.1 U      | 0.1 U        | 0.185 U     | 0.1 U           | 0.1 U        | 0.1 UJ      | 0.1 U        | 0.1 U        | 0.1 U          | 0.1 U          |
|            | 8330   | 1,3-Dinitrobenzene          | 3.6       | nc   |                     | ug/l                       | 0.1 U      | 0.1 U        | 0.185 U     | 0.1 U           | 0.1 U        | 0.1 UJ      | 0.1 U        | 0.1 U        | 0.1 U          | 0.1 U          |
|            | 8330   | 2,4,6-1N1                   | 2.2       | ca   |                     | ug/l                       | 0.125 U    | 0.125 U      | 0.23 U      | 0.125 U         | 0.125 U      | 0.125 UJ    | 0.125 U      | 0.125 U      | 0.125 U        | 0.125 U        |
|            | 8330   | 2,4-Dinitrotoluene          | 73        | nc   |                     | ug/l                       | 0.18 U     | 0.18 U       | 0.33 U      | 0.18 U          | 0.18 U       | 0.18 UJ     | 0.18 U       | 0.18 U       | 0.18 U         | 0.18 U         |
|            | 8330   | 2-Amino-4 6-Dinitrotoluene  | 30        | nc   |                     | ug/l                       | 0.215 U    | 0.215 U      | 0.395 U     | 0.215 U         | 0.215 U      | 0.215 UJ    | 0.215 U      | 0.215 U      | 0.215 U        | 0.215 U        |
|            | 8330   | 2-Nitrotoluene              | 0.049     |      |                     | ug/1                       | 0.15 U     | 0.155 11     | 0.33 U      | 0.18 U          | 0.18 U       | 0.18 UJ     | 0.18 U       | 0.18 U       | 0.18 U         | 0.18 U         |
|            | 8330   | 3-Nitrotoluene              | 122       | nc   |                     | 110/l                      | 0.155 11   | 0.155 U      | 0.285 U     | 0.155 U         | 0.155 U      | 0.155 UJ    | 0.155 U      | 0.155 U      | 0.155 U        | <u>0.155 U</u> |
|            | 8330   | 4-Amino-2,6-Dinitrotoluene  |           |      |                     | ug/l                       | 0.165 U    | 0.165 U      | 0.205 U     | 0.155 U         | 0.155 U      | 0.155 UJ    | 0.155 U      | 0.155 U      | 0.155 U        | 0.155 U        |
|            | 8330   | 4-Nitrotoluene              | 0.66      | ca   |                     | ug/l                       | 0.155 U    | 0.155 U      | 0.285 U     | 0.155 U         | 0.105 U      | 0.105 UJ    | 0.155 U     | 0.155 U     | 0.105 U     | 0.105 U     | 0.105 U      | 0.105 U      | 0.105 U        | 0.105 U        |
|            | 8330   | HMX                         | 1825      | nc   |                     | ug/l                       | 0.155 U    | 0.155 U      | 0.285 U     | 0.155 U         | 0.155 U      | 0.155 UI    | 0.155 U      | 0.155 U      | 0.155 U        | 0.155 U        |
|            | 8330   | Nitrobenzene                | 3.4       | nc   |                     | ug/l                       | 0.08 U     | 0.08 U       | 0.145 U     | 0.08 U          | 0.08 U       | 0.08 UJ     | 0.08 U       | 0.08 II      | 0.08 11        | 0.08 11        |
|            |        |                             |           |      |                     |                            |            |              |             |                 |              |             |             |             |             |             |              |              | <u> </u>       | 0.000          |

# Table L12-3Load Line 12 Summary of All Groundwater ResultsRVAAP 14 AOC CharacterizationRavenna Army Ammunition Plant, Ravenna, Ohio

|                |                 |                      |          |      |                            |             |              |              |              | · · · · · · · · · · · · · · · · · · · |              |              |               |              |              |              |              |              |              |              |
|----------------|-----------------|----------------------|----------|------|----------------------------|-------------|--------------|--------------|--------------|---------------------------------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                |                 |                      |          |      |                            |             | L12mw-088-GW | Ll2mw-107-GW | L12mw-113-GW | L12mw-128-GW                          | L12mw-153-GW | L12mw-154-GW | L12mw-182-DUP | L12mw-182-GW | L12mw-183-GW | L12mw-184-GW | L12mw-185-GW | L12mw-186-GW | L12mw-187-GW | L12mw-188-GW |
|                |                 |                      |          |      | Sa                         | mple Date:  | 10/26/2004   | 10/27/2004   | 11/5/2004    | 10/27/2004                            | 10/28/2004   | 10/28/2004   | 10/29/2004    | 10/29/2004   | 11/1/2004    | 10/29/2004   | 11/1/2004    | 11/1/2004    | 10/29/2004   | 10/28/2004   |
|                |                 |                      |          |      | San                        | nple Depth: | 17.5 ft.     | 21.5 ft.     | 12.5 ft.     | 23 ft.                                | 13 ft.       | 24 ft.       | 30 ft.        | 30 ft.       | 24 ft.       | 19 ft.       | 17.5 ft.     | 11 ft.       | 9.82 ft.     | 13 ft        |
|                | 1               | 1                    | 1        |      | ]                          | Description | UC/Filtered  | UC/Filtered  | UC/Filtered  | UC/Filtered                           | UC/Filtered  | UC/Filtered  | UC/Filtered   | UC/Filtered  | UC/Filtered  | UC/Filtered  | UC/Filtered  | UC/Filtered  | UC/Filtered  | UC/Filtered  |
|                |                 |                      |          |      | Unconsolidated<br>Filtered |             |              |              |              |                                       |              |              |               |              |              |              |              |              |              |              |
|                |                 |                      | Region 9 | prg  | Groundwater                |             |              |              |              |                                       |              |              |               |              |              |              |              |              |              |              |
| Group          | Method          | Parameter            | (Tap Wa  | ter) | Background                 | Units       |              |              |              |                                       | 1            |              |               |              |              |              |              |              |              |              |
|                | 8330            | RDX                  | 0.61     | ca   |                            | ug/l        | 0.1 U        | 0.1 U        | 0.185 U      | 0.1 U                                 | 0.1 U        | 0.1 UI       | 01 U          | 01 U         | 0111         | 0111         | 0111         | 0111         | 0111         | 01.11        |
|                | 8330            | Tetryl               | 365      | nc   |                            | ug/l        | 0.39 U       | 0.39 U       | 0.7 U        | 0.39 U                                | 0.39 U       | 0.39 UJ      | 0.39 U        | 0.39 U       | 0.39 U       | 0.39 U       | 0.39 U       | 0 39 11      | 0 39 U       | 0.39 U       |
| Propellants    | 353.2 Modified  | Nitrocellulose       |          |      |                            | ug/l        | 250 U        | 250 U        | 250 U        | 250 U                                 | 250 U        | 250 U        | 250 U         | 250 U        | 250 U        | 180          | 300          | 250 U        | 9400         | 250 U        |
|                | 8332            | Nitroglycerine       | 4.8      | ca   |                            | ug/l        | 0.5 U        | 0.5 U        | 0.9 U        | 0.5 U                                 | 0.5 U        | 0.5 UJ       | 0.5 U         | 0.5 U        | 0.5 U        | 0.5 U        | 0.5 UJ       | 0.5 U        | 0.5 U        | 0.5 U        |
|                | SW8330 Modified | Nitroguanidine       | 3650     | nc   |                            | ug/l        | 10 U         | 10 U         | 10 U         | 10 U                                  | 10 U         | 10 U         | 10 U          | 10 U         | 10 U         | 10 U         | 10 U         | 10 U         | 10 U         | 10 U         |
| Other Analytes | 353.2           | Nitrate as N (NO3-N) | 10000    | nc   |                            | ug/l        | 100 U        | 570          | 510          | 100 U                                 | 100 U        | 100 U        | 100 U         | 100 U        | 270          | 200          | 160000       | 100 U        | 1200000      | 100 U        |

Notes:

-- - no background/PRG value is available for this analyte

blank cell indicates that the analysis was not performed

ug/l - means micrograms per Liter (parts per billion - ppb)

PRG - preliminary remediation goals (The screeing value for lead is the Maximum Contaminant level (MCL) from the safe Drinking Water Act)

nc - non-cancer basis

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

UC/Filtered - GW sample was filtered for metals and taken from an unconsolidated MW

C/Filtered - GW sample was filtered for metals and taken from a consolidated (bedrock) MW

[n] - nutrient

U - analyte not detected

J - estimated value

R - result rejected during ADR validation

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style

If Result = or > PRG, then the value is presented with a bold style

If Result < PRG & Background, then the value is presented with a normal style

| ·          |        |                       |              |                |                |             |                |             |              |             |             |             |
|------------|--------|-----------------------|--------------|----------------|----------------|-------------|----------------|-------------|--------------|-------------|-------------|-------------|
|            |        |                       |              |                |                |             |                |             |              |             |             |             |
|            |        |                       |              |                |                |             |                |             |              |             |             |             |
|            |        |                       |              |                |                | MB          | 1 5            | A B         | M:           | ME          | MO .        | ME          |
|            |        |                       |              |                |                | 89-68       | 12-1           | 12-0        | 13-0         | 4           | 12-0        | 9-94        |
|            |        |                       |              |                |                | v-18        | v-2            | 24          | -5           | -24         | 1-24        | -24         |
| 1          |        |                       |              |                |                | L Ma        | m              | l â         | n n          | n n         | mv<br>m     | n m         |
|            |        |                       |              |                |                | L11         | C13            | C12         | L12          | [1]         | C12         | C12         |
|            |        |                       |              | S              | ample Date:    | 10/26/2004  | 11/30/2004     | 11/30/2004  | 11/29/2004   | 11/29/2004  | 11/29/2004  | 11/29/2004  |
|            |        |                       |              | Sa             | mple Depth:    | 7.83 ft.    | 20 ft.         | 20 ft.      | 10.3 ft.     | 13.2 ft.    | 11.7 ft.    | 17.5 ft.    |
|            |        |                       | •            |                | Description    | UC/Filtered | UC/Filtered    | UC/Filtered | UC/Filtered  | UC/Filtered | UC/Filtered | UC/Filtered |
|            |        |                       | -            | Unconsolidated | 1              | 1           |                |             |              |             |             |             |
|            |        |                       |              | Filtered       |                |             |                |             |              | 1           |             |             |
|            |        |                       | Region 9 PRG | Groundwater    |                |             |                |             |              |             |             |             |
| Group      | Method | Parameter             | (Tap Water)  | Background     | Units          |             |                |             |              |             |             |             |
| Metals     | 6010B  | Aluminum              | 36499 nc     |                | ug/l           | 66          | 75 U           | 75 U        | 42           | 75 U        | 140         | 75 U        |
|            | 6010B  | Barium                | 2555 nc      | 82.1           | ug/l           | 20          | 23             | 20          | 62           | 130         | 54          | 47          |
|            | 6010B  | Beryllium             | 73 nc        | 0.00           | ug/l           | 1 U         | 1 U            | 1 U         | <u>1 U</u>   | 1 U         | 1 U         | 1 U         |
|            | 6010B  | Cadmium               | 18 nc        | 0.00           | ug/l           | 1 U         | 1 U            | 1 U         | 0.31         | 1 U         | 1 U         | 1 U         |
|            | 6010B  | Calcium               | [n]          | 115000         | ug/l           | 170000      | 67000          | 68000       | 130000       | 80000       | 120000      | 110000      |
|            | 6010B  | Chromium              | 109 nc       | 7.3            | ug/l           | <u>5 U</u>  | 5 U            | 5 U         | 5 U          | <u>5 U</u>  | 5 U         | <u>5 U</u>  |
|            | 6010B  | Cobalt                | /30 nc       | 0.00           | ug/l           | 2.5 U       | 2.5 U          | 2.5 U       | 1.4          | 2.5 U       | 1.4         | 2.5 U       |
|            | 6010B  | Copper                | 1460 nc      | 0.00           | ug/l           | 2:2         | 3              | 2.8         | <u>5 U</u>   | <u>5 U</u>  | 5 U         | 5 U         |
|            | 6010B  | Iron<br>Monagium      | 10950 nc     | 279            | ug/l           | 560         | 1000           | 1100        | 240          | 42          | 240         | 1200        |
|            | 6010B  | Magnesium             | [n]          | 43300          | ug/l           | 77000       | 44000          | 44000       | 77000        | 25000 J     | 60000       | 52000       |
|            | 6010B  | Nialial               | 8/6 nc       | 1020           | ug/l           | 390         | 84             | 86          | 250          | 160         | 99          | 78          |
|            | 6010B  | Deteosium             | /30 nc       | 0.00           | ug/l           | 50          | 50             | <u>5 U</u>  | 3.2          | 1.5         | 4.3         | 2.3         |
|            | 6010B  | Potassium<br>Salanium | [n]          | 2890           | ug/l           | 2600        | 4800           | 4900        | 7100         | 6600        | 5600        | 4400        |
|            | 6010B  | Selenium              | 182 nc       | 0.00           | ug/l           | 7.5 U       | 7.5 U          | 7.5 U       | 7.5 U        | 7.5 U       | 3.4         | 7.5 U       |
|            | 6010B  | Silver                | 182 nc       | 0.00           | ug/l           | 50          | 50             | <u> </u>    | 50           | 5 U         | <u>5 U</u>  | <u>5 U</u>  |
|            | 6010B  | Vonodium              | [n]          | 45700          | ug/i           | 53000       | 34000          | 35000       | 21000        | 11000       | 22000       | 23000       |
|            | 6010B  | Zinc                  | 30 IIC       | 60.0           | ug/1           | 50          | 50             | 50          | 50           | <u> </u>    | 50          | 50          |
|            | 7041   | Antimony              | 10930 IIC    | 0.00           | ug/1           | 2.75.11     | 7.5<br>2.75 II | 275.11      | 2 75 11      | 15 U        | 31          | 15          |
|            | 70604  | Arsenic               | 13 nc        | 11.7           | ug/i           | 3.75 0      | 3.75 U         | 3.75 0      | 3.75 U       | 3.75 U      | 3.75 U      | 3.75 U      |
|            | 7421   | Lead                  | 0.045 Ca     | 0.00           | ug/1           | <u>2.2</u>  | 43<br>15 U     | 23<br>15 U  | <u> </u>     |             | 4.9         | 30          |
|            | 7470A  | Mercury               | 11 no        | 0.00           | ug/1           | 0.1 U       | 1.5 U          | 1.5 U       | 8.0<br>0.1 U |             | 1.5         | 1./         |
|            | 7841   | Thallium              | 24 nc        | 0.00           | ug/I           | 2 11        | 0.1 U          | 0.10        | 0.1 0        | 0.1 U       | 0.1 0       | 0.1 0       |
| Pesticides | 8081A  | 4 4'-DDD              | 0.28 02      | 0.00           | ug/l           | 0.055 UI    | 0.055 U        | 0.055 UI    | 2.0          | 2 U         | 2 U         | 2.0         |
|            | 8081A  | 4 4'-DDE              | 0.20 ca      |                | ug/1           | 0.033 UJ    | 0.055 U        | 0.053 UJ    | 0.033 0      | 0.055 U     | 0.035 U     | 0.055 U     |
|            | 8081A  | 4 4'-DDT              | 0.20 ca      |                | ug/1<br>11g/1  | 0.049 0J    | 0.05 U         | 0.03 03     | 0.03 U       | 0.03 U      | 0.049 0     | 0.0495 U    |
|            | 8081A  | Aldrin                | 0.0040 ca    |                | 10g/1<br>10g/1 | 0.049 UI    | 0.075 U        | 0.075 UI    | 0.075 U      | 0.075 U     | 0.073 U     | 0.075 U     |
|            | 8081A  | alpha-BHC             | 0.011 nc     |                | ug/l           | 0.075 UI    | 0.075 U        | 0.05 UI     | 0.075 U      | 0.075 U     | 0.049 U     | 0.0495 U    |
|            | 8081A  | alpha-Chlordane       | 0.19 ca      |                | ug/l           | 0.0245 UJ   | 0.025 U        | 0.025 UI    | 0.026 U      | 0.025 U     | 0.0245 U    | 0.075 U     |
|            | 8081A  | beta-BHC              | 0.037 ca     |                | ug/l           | 0.049 UJ    | 0.05 U         | 0.05 UI     | 0.05 U       | 0.05 U      | 0.049 11    | 0.0495 U    |
|            | 8081A  | delta-BHC             |              |                | ug/l           | 0.049 UJ    | 0.05 U         | 0.05 UJ     | 0.05 U       | 0.05 U      | 0.049 U     | 0.0495 U    |
|            | 8081A  | Dieldrin              | 0.0042 ca    |                | ug/l           | 0.049 UJ    | 0.05 U         | 0.05 UJ     | 0.05 U       | 0.05 U      | 0.049 U     | 0.0495 U    |
|            | 8081A  | Endosulfan I          | 220 nc       |                | ug/l           | 0.049 UJ    | 0.05 U         | 0.05 UJ     | 0.05 U       | 0.05 U      | 0.049 U     | 0.0495 U    |
|            | 8081A  | Endosulfan II         | 220 nc       |                | ug/l           | 0.075 UJ    | 0.075 U        | 0.075 UJ    | 0.075 U      | 0.075 U     | 0.075 U     | 0.075 U     |
|            | 8081A  | Endosulfan sulfate    | 220 nc       |                | ug/l           | 0.075 UJ    | 0.075 U        | 0.075 UJ    | 0.075 U      | 0.075 U     | 0.075 U     | 0.075 U     |
|            | 8081A  | Endrin                | 11 nc        |                | ug/l           | 0.049 UJ    | 0.05 U         | 0.05 UJ     | 0.05 U       | 0.05 U      | 0.049 U     | 0.0495 U    |
|            | 8081A  | Endrin aldehyde       |              |                | ug/l           | 0.075 UJ    | 0.075 U        | 0.075 UJ    | 0.075 U      | 0.075 U     | 0.075 U     | 0.075 U     |
|            | 8081A  | Endrin ketone         |              |                | ug/l           | 0.049 UJ    | 0.05 U         | 0.05 UJ     | 0.05 U       | 0.05 U      | 0.049 U     | 0.0495 U    |
|            | 8081A  | gamma-BHC             | 0.052 ca     |                | ug/l           | 0.075 UJ    | 0.075 U        | 0.075 UJ    | 0.075 U      | 0.075 U     | 0.075 U     | 0.075 U     |
|            | 8081A  | gamma-Chlordane       | 0.19 ca      |                | ug/l           | 0.049 UJ    | 0.05 U         | 0.05 UJ     | 0.05 U       | 0.05 U      | 0.049 U     | 0.0495 U    |
|            | 8081A  | Heptachlor            | 0.015 ca     |                | ug/l           | 0.075 UJ    | 0.075 U        | 0.075 UJ    | 0.075 U      | 0.075 U     | 0.075 U     | 0.075 U     |
|            | 8081A  | Heptachlor epoxide    | 0.0074 ca    |                | ug/l           | 0.075 UJ    | 0.075 U        | 0.075 UJ    | 0.075 U      | 0.075 U     | 0.075 U     | 0.075 U     |
|            |        |                       |              |                |                |             |                |             |              |             |             |             |

|       |        | x                         |              |                |             | GW          | DUP         | GW          | GW          | MD          | MB          | ME          |
|-------|--------|---------------------------|--------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|       |        |                           |              |                |             | -68         | 42-]        | 42-6        | 43-6        | 44-0        | 45-(        | 46-0        |
|       |        |                           |              |                |             | w-1         | w-2         | %-2         | ×-2         | ×-2         | ×-2         | ×-2         |
|       |        |                           |              |                |             | 5m          | 2m          | 2m          | 2m          | 5m          | 2m          | 5m          |
|       |        |                           |              |                |             | E           | LI LI       | L1          | L11         | L L L       | E F         | L II        |
|       |        |                           |              | S              | ample Date: | 10/26/2004  | 11/30/2004  | 11/30/2004  | 11/29/2004  | 11/29/2004  | 11/29/2004  | 11/29/2004  |
|       |        |                           |              | Sa             | mple Depth: | 7.83 ft.    | 20 ft.      | 20 ft.      | 10.3 ft.    | 13.2 ft.    | 11.7 ft.    | 17.5 ft.    |
|       |        |                           |              |                | Description | UC/Filtered |
|       |        |                           |              | Unconsolidated |             |             |             |             |             |             |             |             |
|       |        |                           | Desise 0 DDC | Filtered       |             |             |             |             |             |             |             |             |
| Group | Method | Parameter                 | (Top Wotor)  | Groundwater    | T In ite    |             |             |             |             |             | -           |             |
| Gioap | 80814  | Methoxychlor              | (Tap water)  | Background     | Units       | 0.205 111   | 0.2.11      | 0.2.111     | 0.21 11     | 0.2.1/      | 0.005.11    | 0.005.11    |
|       | 8081A  | Toxanhene                 | 0.061 ca     |                | ug/1        | 0.295 UJ    | 0.3 U       | 0.3 UJ      | 0.31 U      | 0.3 U       | 0.295 U     | 0.295 U     |
| PCBs  | 8082   | Aroclor 1016              | 0.001 ca     |                | ug/1        | 0.245 UJ    | 0.23 U      | 0.23 U      | 0.20 0      | 0.23 U      | 0.245 U     | 0.25 U      |
|       | 8082   | Aroclor 1221              | 0.034 ca     |                | ug/1        | 0.295 0     | 0.5 U       | 0.5 U       | 0.51 U      | 0.5 U       | 0.295 U     | 0.295 U     |
|       | 8082   | Aroclor 1232              | 0.034 ca     |                | 110/1       | 0.65 U      | 0.65 U      | 0.65 U      | 0.05 U      | 0.65 U      | 0.05 U      | 0.65 U      |
|       | 8082   | Aroclor 1242              | 0.034 ca     |                | ug/l        | 0.65 U      |
|       | 8082   | Aroclor 1248              | 0.034 ca     |                | ug/l        | 0.75 U      | 0.05 U      |
|       | 8082   | Aroclor 1254              | 0.034 ca     |                | ug/l        | 0.65 U      |
|       | 8082   | Aroclor 1260              | 0.034 ca     |                | ug/l        | 0.295 U     | 0.3 U       | 0.3 U       | 0.31 U      | 0.3 U       | 0.295 U     | 0.295 U     |
| VOCs  | 8260B  | 1,1,1-Trichloroethane     | 3172 nc      |                | ug/l        | 0.5 U       |
|       | 8260B  | 1,1,2,2-Tetrachloroethane | 0.055 ca     |                | ug/l        | 0.5 U       |
|       | 8260B  | 1,1,2-Trichloroethane     | 0.20 ca      |                | ug/l        | 0.5 U       |
|       | 8260B  | 1,1-Dichloroethane        | 811 nc       |                | ug/l        | 0.5 U       |
|       | 8260B  | 1,1-Dichloroethene        | 339 nc       |                | ug/l        | 0.5 U       |
|       | 8260B  | 1,2-Dibromoethane         | 0.0056 ca    |                | ug/l        | 0.5 U       |
|       | 8260B  | 1,2-Dichloroethane        | 0.12 ca      |                | ug/l        | 0.5 U       |
|       | 8260B  | 1.2 Dichloropropono       | 120 nc       |                | ug/l        | 0.5 U       |
|       | 8260B  | 2-Butanone                | 0.10 Ca      |                | ug/l        | 0.5 U       | 0.5 U       | 0.5 0       | 0.5 U       | 0.5 U       | 0.5 0       | 0.5 U       |
|       | 8260B  | 2-Hexanone                | 2000 nc      |                | ug/1        | 5 U         |             | 4/<br>5 II  | 5 U         | <u> </u>    | <u> </u>    | 50          |
|       | 8260B  | 4-Methyl-2-pentanone      | 1993 nc      |                | 110/l       | 5.0         | 511         | 5.0         | 5.0         | 5 U         | 50          | 5 U         |
|       | 8260B  | Acetone                   | 5475 nc      |                | 110/1       | 5 U         | 5 11        | 5.0         | 5 11        | 5.0         | 5.0         | 50          |
|       | 8260B  | Benzene                   | 0.35 ca      |                | ug/1        | 0.5 U       | 0.5 U       | 05 U        | 05 U        | 05 U        | 0511        | 0511        |
|       | 8260B  | Bromochloromethane        |              |                | ug/l        | 0.5 U       |
|       | 8260B  | Bromodichloromethane      | 0.18 ca      |                | ug/l        | 0.5 U       |
|       | 8260B  | Bromoform                 | 8.5 ca       |                | ug/l        | 0.5 U       |
|       | 8260B  | Bromomethane              | 8.7 nc       | '              | ug/l        | 0.5 U       |
|       | 8260B  | Carbon disulfide          | 1043 nc      |                | ug/l        | 2.5 U       | 2.5 UJ      |
|       | 8260B  | Carbon tetrachloride      | 0.17 ca      |                | ug/l        | 0.5 U       |
|       | 8260B  | Chlorobenzene             | 106 nc       |                | ug/l        | 0.5 U       |
|       | 8260B  | Chloroethane              | 4.6 ca       |                | ug/l        | 0.5 U       |
|       | 8200B  | Chloromothere             | 0.17 ca      |                | ug/l        | 0.5 U       |
|       | 8260B  | ciis 1.2 Dichloroothono   | 158 nc       |                | ug/l        | 0.5 U       |
|       | 8260B  | cis-1.3-Dichloropropene   | 0.40 cc      |                | ug/1        | 0.5 U       |
|       | 8260B  | Dibromochloromethane      | 0.13 02      |                | 110/l       | 0.5 0       | 0.5 U       | U.S U       |
|       | 8260B  | Ethylbenzene              | 1340 nc      |                | 100/1       | 0.5 U       | 0.5 0       | 0.5 0       | 0.5 U       | 0.5 U       | 0.5 U       | 0.50        |
|       | 8260B  | m&p-Xylenes               | 206 nc       |                | ug/l        | 1 11        | 1 11        | 1 11        | 1 11        | 1 IT        | 1 II        | 1 11        |
|       | 8260B  | Methylene chloride        | 4.3 ca       |                | ug/l        | 0.75 U      | 0.75 U      | 0.75 U      | 0.75 II     | 0.75 U      | 0.75 U      | 0.75 U      |
|       | 8260B  | o-Xylene                  | 206 nc       |                | ug/l        | 0.5 U       | 0.5 U       | 0.5 U       | 0.5.U       | 0.5 U       | 0.5 U       | 0.5 U       |
|       | 8260B  | Styrene                   | 1641 nc      |                | ug/l        | 0.5 U       |
|       | 8260B  | Tetrachloroethene         | 0.10 ca      |                | ug/l        | 0.5 U       |
|       |        |                           |              |                |             |             |             |             |             |             |             |             |

|       |        | •<br>•                       |            |    |                                           |                     | 39-GW       | t2-DUP      | t2-GW       | 13-GW       | 4-GW        | 15-GW       | 9-GW        |
|-------|--------|------------------------------|------------|----|-------------------------------------------|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|       |        |                              |            |    |                                           |                     | v-15        | v-24        | v-24        | v-24        | v-24        | v-24        | -24         |
|       |        |                              |            |    |                                           |                     | 2mv         | 2mv         | Smy         | 2mv         | 2mv         | Smv         | , w         |
|       |        |                              |            |    |                                           |                     | L11         | L1:         | LLI:        | L1:         | L15         | L11         | TI          |
|       |        |                              |            |    | S                                         | ample Date:         | 10/26/2004  | 11/30/2004  | 11/30/2004  | 11/29/2004  | 11/29/2004  | 11/29/2004  | 11/29/2004  |
|       |        |                              |            |    | Sar                                       | nple Depth:         | 7.83 ft.    | 20 ft.      | 20 ft.      | 10.3 ft.    | 13.2 ft.    | 11.7 ft.    | 17.5 ft.    |
|       |        |                              | I          |    |                                           | Description         | UC/Filtered |
|       |        |                              | Region 9 P | RG | Unconsolidated<br>Filtered<br>Groundwater |                     |             |             |             |             |             |             |             |
| Broup | Method | Parameter                    | (Tap Wate  | r) | Background                                | Units               |             |             |             |             |             |             |             |
|       | 8260B  | Toluene                      | 723        | nc |                                           | ug/l                | 0.5 U       |
|       | 8260B  | Total Xylenes                | 206        | nc |                                           | ug/l                | 0.5 U       |
|       | 8260B  | trans-1,2-Dichloroethene     | 122        | nc |                                           | ug/l                | 0.5 U       |
|       | 8260B  | trans-1,3-Dichloropropene    | 0.40       | ca |                                           | ug/l                | 0.5 U       |
|       | 8260B  | I richloroethene             | 0.028      | ca |                                           | ug/l                | 0.5 U       |
| VOCa  | 8200B  | 1.2.4.Tricklarsharson        | 0.020      | ca |                                           | ug/l                | 0.5 U       |
| VOUS  | 8270C  | 1,2,4-1 fichlorobenzene      | 7.2        | nc |                                           | ug/l                | 0.95 U      | 1 U         | <u>1 U</u>  | 1 U         | 1 U         | 1 U         | 1 U         |
|       | 82700  | 1,2-Dichlorobenzene          | 370        | nc |                                           | ug/l                | 0.95 U      | 10          | 10          | 10          | 1 U         | <u>1 U</u>  | 1 U         |
|       | 8270C  | 1,5-Dichlorobenzene          | 0.50       | nc |                                           | ug/l                | 0.95 U      | 10          | 10          | 10          | 10          | 10          | 10          |
|       | 8270C  | 2 2-oxybis (1-chloropropage) | 0.30       | ca |                                           | ug/1                | 0.95 U      | 1 U         | 1 U         | 1 U         | 10          | 10          | 10          |
|       | 8270C  | 2.4.5-Trichlorophenol        | 3650       | nc |                                           | ug/1                | 0.95 U      | 5 U         | 1 U<br>5 U  | 1 U         | 10          | 10          | 10          |
|       | 8270C  | 2 4 6-Trichlorophenol        | 36         | nc |                                           | ug/1                | 4.85 U      | 255 U       | 255 U       | 4.95 U      | 4.9 U       | 4.95 U      | 4.9 U       |
|       | 8270C  | 2.4-Dichlorophenol           | 109        | nc |                                           | <u>ug/1</u><br>ug/1 | 2.45 U      | 2.33 0      | 2.35 U      | 2.5 U       | 2.45 U      | 2.5 U       | 2.45 U      |
|       | 8270C  | 2.4-Dimethylphenol           | 730        | nc |                                           | ug/1                | 4.85 U      | 5.11        | 5.0         | 4.95 U      | 4.9 U       | 4.95 U      | 4.9 U       |
|       | 8270C  | 2.4-Dinitrophenol            | 73         | nc |                                           | 110/I               | 9511        | 10 U        | 10 U        | 4.95 U      | 4.9 0       | 4.93 U      | 4.9 U       |
|       | 8270C  | 2,4-Dinitrotoluene           | 73         | nc |                                           | ug/1                | 0 485 U     | 0511        | 0511        | 0.495 11    | 0.49 U      | 0.495 11    | 0.49 U      |
|       | 8270C  | 2,6-Dinitrotoluene           | 36         | nc |                                           | ug/l                | 0.245 U     | 0.255 U     | 0.255 U     | 0.455 U     | 0.45 U      | 0.495 U     | 0.49 0      |
|       | 8270C  | 2-Chloronaphthalene          | 487        | nc |                                           | ug/l                | 0.95 U      | 1 U         | 1 U         | 1 U         | 1 11        | 1 11        | 1 11        |
|       | 8270C  | 2-Chlorophenol               | 30         | nc |                                           | ug/l                | 2.45 U      | 2.55 U      | 2.55 U      | 25 U        | 2.45 U      | 2511        | 2.45 U      |
|       | 8270C  | 2-Methylnaphthalene          |            |    |                                           | ug/l                | 0.245 U     | 0.255 U     | 0.255 U     | 0.25 U      | 0.245 U     | 0.25 U      | 0.245 U     |
|       | 8270C  | 2-Methylphenol               | 1825       | nc |                                           | ug/l                | 0.95 U      | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
|       | 8270C  | 2-Nitroaniline               | 109        | nc |                                           | ug/l                | 2.45 U      | 2.55 U      | 2.55 UJ     | 2.5 U       | 2.45 U      | 2.5 U       | 2.45 U      |
|       | 8270C  | 2-Nitrophenol                |            |    |                                           | ug/l                | 4.85 U      | 5 U         | 5 U         | 4.95 U      | 4.9 U       | 4.95 U      | 4.9 U       |
|       | 8270C  | 3,3'-Dichlorobenzidine       | 0.15       | ca |                                           | ug/l                | 2.45 U      | 2.55 U      | 2.55 U      | 2.5 U       | 2.45 U      | 2.5 U       | 2.45 U      |
|       | 8270C  | 3-Nitroaniline               | 3.2        | ca |                                           | ug/l                | 4.85 U      | 5 U         | 5 U         | 4.95 U      | 4.9 U       | 4.95 U      | 4.9 U       |
|       | 8270C  | 4,6-Dinitro-2-methylphenol   | 3.6        | nc |                                           | ug/l                | 9.5 U       | 10 U        | 10 U        | 10 U        | 10 U        | 10 U        | 10 U        |
|       | 8270C  | 4-Bromophenyl phenyl ether   |            |    |                                           | ug/l                | 2.45 U      | 2.55 U      | 2.55 U      | 2.5 U       | 2.45 U      | 2.5 U       | 2.45 U      |
|       | 8270C  | 4-Chloro-3-methylphenol      |            |    |                                           | ug/l                | 4.85 U      | 5 U         | 5 U         | 4.95 U      | 4.9 U       | 4.95 U      | 4.9 U       |
|       | 8270C  | 4-Chloroaniline              | 146        | nc |                                           | ug/l                | 4.85 U      | 5 U         | 5 U         | 4.95 U      | 4.9 UJ      | 4.95 UJ     | 4.9 UJ      |
|       | 8270C  | 4-Chlorophenyl phenyl ether  |            |    |                                           | ug/l                | 2.45 U      | 2.55 U      | 2.55 U      | 2.5 U       | 2.45 U      | 2.5 U       | 2.45 U      |
|       | 8270C  | 4-Methyphenol                | 182        | nc |                                           | ug/I                | 0.95 U      | 10          | 10          | 10          | 1 U         | 1 U         | 1 U         |
|       | 8270C  | 4-Nitrophenol                | 3.2        | ca |                                           | ug/l                | 4.85 U      | 50          | 50          | 4.95 U      | 4.9 U       | 4.95 U      | 4.9 U       |
|       | 8270C  | Acenanhthene                 | 365        | -  |                                           | ug/1                | 9.5 U       | 10 0        | 10 U        |
|       | 8270C  | Acenaphthylene               | 505        | ne |                                           | ug/i                | 0.465 U     | 0.5 U       | 0.5 U       | 0.495 U     | 0.49 U      | 0.495 U     | 0.49 U      |
|       | 8270C  | Anthracene                   | 1825       | nc |                                           | ug/1                | 0.465 U     | 0.5 U       | 0.5 U       | 0.495 U     | 0.49 U      | 0.495 U     | 0.49 U      |
|       | 8270C  | Benzo(a)anthracene           | 0.092      | Ca |                                           | 1)10/1              | 0.465 U     | 0.50        | 0.5 U       | 0.495 U     | 0.49 U      | 0.495 U     | 0.49 U      |
|       | 8270C  | Benzo(a)pyrene               | 0.0092     | ca |                                           | 110/1               | 0.095 U     | 0.10        | 0.1 0       | 0.1 0       | 0.105 11    | 0.1.0       | 0.105.11    |
|       | 8270C  | Benzo(b)fluoranthene         | 0.092      | ca |                                           | ug/1                | 0.195 U     | 0.2.0       | 0.2.0       | 0.2 0       | 0.195 U     | 0.2 0       | 0.195 U     |
|       | 8270C  | Benzo(g,h,i)perylene         |            | +  |                                           | ug/l                | 0.485 II    | 0511        | 0.2.0       | 0.495 11    | 0.195 0     | 0.405 11    | 0.195 0     |
|       | 8270C  | Benzo(k)fluoranthene         | 0.92       | ca |                                           | ug/l                | 0.195 U     | 0.2 11      | 0211        | 0.100       | 0.195 II    | 0211        | 0 105 11    |
|       |        |                              |            |    |                                           |                     | 0.175 0     | 0.20        | 0.2 0       | 0.4 0       | 0.195 U     | 0.2 0       | 0.195 0     |

|            |        |                             |              |                                           |             | 9-GW        | 2-DUP       | 2-GW        | 3-GW        | 4-GW        | MD-5        | 6-GW        |
|------------|--------|-----------------------------|--------------|-------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|            |        |                             |              |                                           |             | -18         | -24         | -24         | -24         | -24         | -24         | -246        |
|            |        |                             |              |                                           |             | , Mu        | N N         | A A A       | A M         | A H         | A M         | Mu N        |
|            |        |                             |              |                                           |             | L12         | L12         | L12         | L12         | C13         | C12         | C12         |
|            |        |                             |              | S                                         | ample Date: | 10/26/2004  | 11/30/2004  | 11/30/2004  | 11/29/2004  | 11/29/2004  | 11/29/2004  | 11/29/2004  |
| [          |        |                             |              | Sa                                        | mple Depth: | 7.83 ft.    | 20 ft.      | 20 ft.      | 10.3 ft.    | 13.2 ft.    | 11.7 ft.    | 17.5 ft.    |
|            |        |                             |              |                                           | Description | UC/Filtered |
|            |        |                             | Region 9 PRG | Unconsolidated<br>Filtered<br>Groundwater |             |             |             |             |             |             |             |             |
| Group      | Method | Parameter                   | (Tap Water)  | Background                                | Units       |             |             |             |             |             |             |             |
|            | 8270C  | Benzoic acid                | 145979 nc    |                                           | ug/l        | 95 U        | 10 U        | 10.11       |
|            | 8270C  | Benzyl alcohol              | 10950 nc     |                                           | ug/l        | 9.5 U       | 10 U        | 10 U        | 10 U        | 10 U        | 10 U        | 10 U        |
|            | 8270C  | Bis(2-chloroethoxy)methane  |              |                                           | ug/l        | 0.95 U      | 1 U         | 1 U         | 1 U         | 100         | 1 11        | 1 11        |
|            | 8270C  | Bis(2-chloroethyl) ether    | 0.010 ca     |                                           | ug/l        | 0.95 U      | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 1 1       |
|            | 8270C  | Bis(2-ethylhexyl) phthalate | 4.8 ca       |                                           | ug/l        | 7.5 U       |
|            | 8270C  | Butylbenzyl phthalate       | 7300 nc      |                                           | ug/l        | 0.95 U      | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
|            | 8270C  | Carbazole                   | 3.4 ca       |                                           | ug/l        | 2.45 U      | 2.55 U      | 2.55 U      | 2.5 U       | 2.45 U      | 2.5 U       | 2.45 U      |
|            | 8270C  | Chrysene                    | 9.2 ca       |                                           | ug/l        | 0.245 U     | 0.255 U     | 0.255 U     | 0.25 U      | 0.245 U     | 0.25 U      | 0.245 U     |
|            | 8270C  | Dibenzo(a,h)anthracene      | 0.0092 ca    |                                           | ug/l        | 0.195 U     | 0.2 U       | 0.2 U       | 0.2 U       | 0.195 U     | 0.2 U       | 0.195 U     |
|            | 8270C  | Dibenzofuran                | 12 nc        |                                           | ug/l        | 0.95 U      | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
|            | 8270C  | Diethyl phthalate           | 29199 nc     |                                           | ug/l        | 0.95 U      | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
|            | 8270C  | Dimethyl phthalate          | 364867 nc    | ·                                         | ug/l        | 0.95 U      | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         | 1 U         |
|            | 8270C  | Di-n-butyl phthalate        | 3650 nc      |                                           | ug/l        | 2.45 U      | 2.55 U      | 2.55 U      | 2.5 U       | 2.45 U      | 2.5 U       | 2.45 U      |
|            | 8270C  | Di-n-octyl phthalate        | 1460 nc      |                                           | ug/l        | 4.85 U      | 5 U         | 5 U         | 4.95 U      | 4.9 U       | 4.95 U      | 4.9 U       |
|            | 8270C  | Fluoranthene                | 1460 nc      |                                           | ug/l        | 0.485 U     | 0.5 U       | 0.5 U       | 0.495 U     | 0.49 U      | 0.495 U     | 0.49 U      |
|            | 8270C  | Fluorene                    | 243 nc       |                                           | ug/l        | 0.485 U     | 0.5 U       | 0.5 U       | 0.495 U     | 0.49 U      | 0.495 U     | 0.49 U      |
|            | 8270C  | Hexachlorobenzene           | 0.042 ca     |                                           | ug/l        | 0.245 U     | 0.255 U     | 0.255 U     | 0.25 U      | 0.245 U     | 0.25 U      | 0.245 U     |
|            | 8270C  | Hexachlorobutadiene         | 0.86 ca      |                                           | ug/l        | 2.45 U      | 2.55 U      | 2.55 U      | 2.5 U       | 2.45 U      | 2.5 U       | 2.45 U      |
|            | 8270C  | Hexachlorocyclopentadiene   | 219 nc       |                                           | ug/l        | - R         | - R         | - R         | - R         | - R         | - R         | - R         |
|            | 8270C  | Hexachioroethane            | 4.8 ca       |                                           | ug/l        | 2.45 U      | 2.55 U      | 2.55 UJ     | 2.5 U       | 2.45 U      | 2.5 U       | 2.45 U      |
|            | 8270C  | Indeno(1,2,3-cd)pyrene      | 0.092 ca     |                                           | ug/l        | 0.195 U     | 0.2 U       | 0.2 U       | 0.2 U       | 0.195 U     | 0.2 U       | 0.195 U     |
|            | 8270C  | Nonhtholono                 | /1 ca        |                                           | ug/l        | 0.95 U      | 10          | 1 U         | <u> </u>    | 1 U         | 1 U         | 1 U         |
|            | 8270C  | Nitrohenzene                | 0.2 nc       |                                           | ug/l        | 0.485 U     | 0.5 U       | 0.5 U       | 0.495 U     | 0.49 U      | 0.495 U     | 0.49 U      |
|            | 8270C  | n.Nitroso di p propulamine  | 0.0006 ac    |                                           | ug/l        | 0.485 U     | 0.5 U       | 0.5 U       | 0.495 U     | 0.49 U      | 0.495 U     | 0.49 U      |
|            | 8270C  | n-Nitrosodinbenylamine      | 0.0090 ca    |                                           | ug/I        | 0.245 U     | 0.255 0     | 0.255 U     | 0.25 U      | 0.245 U     | 0.25 U      | 0.245 U     |
|            | 8270C  | Pentachlorophenol           | 0.56 ca      |                                           | ug/1        | 0.485 U     | 0.5 0       | 0.5 0       | 0.495 U     | 0.49 U      | 0.495 U     | 0.49 U      |
|            | 8270C  | Phenanthrene                | 0.50 ca      |                                           | ug/1        | 4.85 U      | 0511        | 05 U        | 4.95 U      | 4.9 U       | 4.95 U      | 4.9 U       |
|            | 8270C  | Phenol                      | 10950 nc     |                                           | 110/1       | 2 45 11     | 2 55 11     | 2 55 11     | 25 11       | 2.45 U      | 0.493 U     | 0.49 U      |
|            | 8270C  | Pyrene                      | 182 nc       |                                           | 110/1       | 0.485 U     | 05 U        | 05 11       | 0.495 11    | 0.49 11     | 0.495 U     | 2.43 U      |
| Explosives | 8330   | 1,3,5-Trinitrobenzene       | 1095 nc      |                                           | 110/        | 01 U        | 0111        | 0.11 II     | 0.11 U      | 0.145 U     | 0.495 0     | 0.49 0      |
|            | 8330   | 1,3-Dinitrobenzene          | 3.6 nc       |                                           | ug/l        | 0.1 U       | 01 U        | 0.11 U      | 0.11 U      | 0.145 U     | 0.1 U       | 0.14 U      |
|            | 8330   | 2,4,6-TNT                   | 2.2 ca       |                                           | ug/l        | 0.125 U     | 0 125 U     | 0.14 U      | 3           | 0.18 U      | 0.125 U     | 0.175 U     |
|            | 8330   | 2,4-Dinitrotoluene          | 73 nc        |                                           | ug/l        | 0.18 U      | 0.18 U      | 0.2 U       | 0.195 U     | 0.26 U      | 0 18 U      | 0.175 U     |
|            | 8330   | 2,6-Dinitrotoluene          | 36 nc        |                                           | ug/l        | 0.215 U     | 0.215 U     | 0.235 U     | 0.235 U     | 0.31 U      | 0.215 U     | 0.3 U       |
|            | 8330   | 2-Amino-4,6-Dinitrotoluene  |              |                                           | ug/l        | 0.18 U      | 0.18 U      | 0.2 U       | 2.5         | 0.26 U      | 0.18 U      | 0.25 U      |
|            | 8330   | 2-Nitrotoluene              | 0.049 ca     |                                           | ug/l        | 0.155 U     | 0.155 U     | 0.17 U      | 0.17 U      | 0.22 U      | 0.155 U     | 0.215 U     |
|            | 8330   | 3-Nitrotoluene              | 122 nc       |                                           | ug/l        | 0.155 U     | 0.155 U     | 0.17 U      | 0.17 U      | 0.22 U      | 0.155 U     | 0.215 U     |
|            | 8330   | 4-Amino-2,6-Dinitrotoluene  |              |                                           | ug/l        | 0.165 U     | 0.165 U     | 0.18 U      | 3.2         | 0.235 U     | 0.165 U     | 0.23 U      |
|            | 8330   | 4-Nitrotoluene              | 0.66 ca      |                                           | ug/l        | 0.155 U     | 0.155 U     | 0.17 U      | 0.17 U      | 0.22 U      | 0.155 U     | 0.215 U     |
|            | 8330   | HMX                         | 1825 nc      |                                           | ug/l        | 0.155 U     | 0.155 U     | 0.17 U      | 0.78        | 0.22 U      | 0.155 U     | 0.215 U     |
|            | 10220  | Nitrohenzene                | 3.4 20       |                                           | 110/1       | 0.08 11     | 0.08.11     | 0.00 IT     | 0.095 11    | 0.116 TT    | 0.00 TT     | 0 11 TT     |

#### Load Line 12 Summary of All Groundwater Results RVAAP 14 AOC Characterization Ravenna Army Ammunition Plant, Ravenna, Ohio

|                |                 |                      |          |      |                |             | w-189-GW    | w-242-DUP   | .w-242-GW   | w-243-GW    | w-244-GW    | w-245-GW    | w-246-GW    |
|----------------|-----------------|----------------------|----------|------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                |                 |                      |          |      |                |             | L12n        | L12n        | L12n        | L12n        | L12n        | L12m        | L12m        |
|                |                 |                      |          |      | Sa             | ample Date: | 10/26/2004  | 11/30/2004  | 11/30/2004  | 11/29/2004  | 11/29/2004  | 11/29/2004  | 11/29/2004  |
|                |                 |                      |          |      | Sar            | nple Depth: | 7.83 ft.    | 20 ft.      | 20 ft.      | 10.3 ft.    | 13.2 ft.    | 11.7 ft.    | 17.5 ft.    |
|                | 1               | 1                    |          |      |                | Description | UC/Filtered |
|                |                 |                      |          |      | Unconsolidated |             |             |             |             |             |             |             |             |
|                |                 |                      |          |      | Filtered       |             |             |             |             |             |             |             |             |
| Group          | Method          | Perometer            | Region 9 | PRG  | Groundwater    |             |             |             |             |             |             |             |             |
| Group          | 0220            | PDV                  | (Tap wa  | ter) | Background     | Units       |             |             |             |             |             |             |             |
|                | 8330            | KDX                  | 0.61     | ca   |                | ug/l        | 0.1 U       | 0.1 U       | 0.11 U      | 1.5         | 0.145 U     | 0.1 U       | 0.14 U      |
|                | 8330            | Tetryi               | 365      | nc   |                | ug/l        | 0.39 U      | 0.39 U      | 0.43 U      | 0.425 U     | 0.55 U      | 0.39 U      | 0.55 U      |
| Propellants    | 353.2 Modified  | Nitrocellulose       |          |      |                | ug/l        | 250 U       |
|                | 8332            | Nitroglycerine       | 4.8      | ca   |                | ug/l        | 0.5 UJ      | 0.18 J      | 0.55 U      | 0.55 U      | 0.7 U       | 0.5 U       | 0.7 U       |
|                | SW8330 Modified | Nitroguanidine       | 3650     | nc   |                | ug/l        | 10 U        |
| Other Analytes | 353.2           | Nitrate as N (NO3-N) | 10000    | nc   |                | ug/l        | 100 U       |

Notes:

--- no background/PRG value is available for this analyte

blank cell indicates that the analysis was not performed

ug/l - means micrograms per Liter (parts per billion - ppb)

PRG - preliminary remediation goals (The screeing value for lead is the Maximum Contaminant level (MCL) from the safe Drinking

nc - non-cancer basis

ca - cancer basis

pbk - based on PBK modeling

mcl - based on CWA maximum contaminant level

max - ceiling limit

sat - soil saturation

UC/Filtered -- GW sample was filtered for metals and taken from an unconsolidated MW

C/Filtered - GW sample was filtered for metals and taken from a consolidated (bedrock) MW

[n] - nutrient

U - analyte not detected

J - estimated value

R - result rejected during ADR validation

If Result = or > Background, then the value is presented with a shaded/highlighted style

If Result = or > Background & PRG, then result is presented with a bold + shaded/highlighted style

If Result = or > PRG, then the value is presented with a bold style

If Result < PRG & Background, then the value is presented with a normal style